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Abstract The present paper establishes a certain duality between the Dirichlet and
Regularity problems for elliptic operators with t-independent complex bounded mea-
surable coefficients (t being the transversal direction to the boundary). To be precise,
we show that the Dirichlet boundary value problem is solvable in L p′

, subject to the
square function and non-tangential maximal function estimates, if and only if the cor-
responding Regularity problem is solvable in L p. Moreover, the solutions admit layer
potential representations. In particular, we prove that for any elliptic operator with
t-independent real (possibly non-symmetric) coefficients there exists a p > 1 such
that the Regularity problem is well-posed in L p.

1 Introduction

We consider a divergence form elliptic operator

L := − div A(x)∇,
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864 S. Hofmann et al.

defined in R
n+1 = {(x, t), x ∈ R

n, t > 0}. Here A is an (n + 1) × (n + 1) matrix
of bounded, complex-valued, t-independent coefficients, which satisfies the uniform
ellipticity condition

λ|ξ |2 ≤ Re 〈A(x) ξ, ξ 〉 := Re
n+1∑

i, j=1

Ai j (x) ξ j ξ̄i , ‖A‖L∞(Rn) ≤ λ−1, (1.1)

for some λ > 0, and for all ξ ∈ C
n+1, x ∈ R

n . The number λ in (1.1) will be referred
as the ellipticity parameter of L . As usual, the divergence form equation is interpreted
in the weak sense, i.e., we say that Lu = 0 in a domain � if u ∈ W 1,2

loc (�) and

¨
�

A∇u · ∇� = 0, (1.2)

for all complex valued � ∈ C∞
0 (�). For us, � will be a Lipschitz graph domain

�ψ := {(x, t) ∈ R
n+1 : t > ψ(x)}, (1.3)

where ψ : R
n → R is a Lipschitz function, or more specifically (but without loss of

generality),�will be the half-space R
n+1+ := {(x, t) ∈ R

n × (0,∞)}. We shall return
to this point below.

Let us start by defining the weak solutions to the Dirichlet problem for the case of the

nice data, that is, consider Lu = 0 in R
n+1+ , u

∣∣∣
Rn

= f ∈ C∞
0 (R

n). In principle, taking

a harmonic extension of f to R
n+1+ (denote it by w) and then using the Lax-Milgram

lemma to resolve Lu = −Lw with zero trace on the boundary, we get a solution in
Ẇ 1,2(Rn+1+ ), the factor space of functions modulo constants with the seminorm given
by the norm of the gradient in L2(Rn+1+ ). It is somewhat more convenient though to
use a non-homogeneous space. One option (and here we follow an approach in [45])
is to work in the following framework. Let W̃ 1,2(Rn+1+ ) denote the space of functions
F for which

‖F‖W̃ 1,2(Rn+1+ )
:=

(¨
R

n+1+
|F(X)|2 d X

1 + |X |2 +
¨

R
n+1+

|∇F(X)|2 d X

)1/2

< ∞.

One can define the trace operator, for instance, as Tr : W̃1,2(Rn+1+ ) → L̃2(Rn), a
continuous extension of the restriction to the boundary operator, with L̃2(Rn) denoting
the space of functions f on R

n with

‖ f ‖L̃2(Rn) =
(ˆ

Rn
| f (x)|2 dx

1 + |x |
)1/2

< ∞,

(follow, e.g., the argument in [24], p. 272). Notation W̃ 1,2
0 (Rn+1+ ) stands for the space of

functions in W̃ 1,2(Rn+1+ ) with trace zero. In Lemma 2.2 below we present a detailed
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Regularity problem 865

argument showing that, in particular, for every f ∈ C∞
0 (R

n) there exists a unique
solution u ∈ W̃ 1,2(Rn+1+ ) to the boundary problem

{
Lu = 0 in R

n+1+
limt→0 u = f,

(1.4)

where limt→0 u is interpreted in the sense of the trace operator as discussed above.
This solution will be referred to as the weak solution hereafter.

We say that the Dirichlet problem (Dp′ ) for L is solvable for some 1 < p′ < ∞ if
for every f ∈ C∞

0 (R
n) the weak solution to the boundary problem (1.4) satisfies the

non-tangential maximal function estimate

‖N∗(u)‖L p′
(Rn)

≤ C‖ f ‖L p′
(Rn)

. (1.5)

Here,

N∗F(x) ≡ sup
(z,t)∈�(x)

|F(z, t)|,

with �(x) := {(y, t) ∈ R
n+1+ : |y − x | < t}. Respectively, we write that

⎧
⎪⎨

⎪⎩

Lu = 0 in R
n+1+

limt→0 u = f,

‖N∗(u)‖L p′
(Rn)

< ∞,

(Dp′)

is solvable. Note that, modulo some necessary explanations of the essence of the weak
solution caused by the generality of L at hand and provided above and in Sect. 2, this
definition coincides with the one classically used in this context (see, e.g., [41]).

We say that the Dirichlet boundary value problem is well-posed if for every f ∈
L p′
(Rn) there exists a unique solution to (Dp′) satisfying (1.5), with limt→0 u = f

interpreted in the sense that u(·, t) converges to f as t → 0 strongly in L p′
(Rn), and

if moreover, the corresponding solution in the special case of f ∈ C∞
0 (R

n) coincides
with the weak solution defined above in W̃ 1,2(Rn+1+ ).

We say that the Regularity problem (Rp) for L is solvable for some 1 < p < ∞ if
for every f ∈ C∞

0 (R
n) the weak solution to the boundary problem (1.4) satisfies the

non-tangential maximal function estimate

‖Ñ (∇u)‖L p(Rn) ≤ C‖∇‖ f ‖L p(Rn), (1.6)

where the modified non-tangential maximal function is given by

Ñ F(x) ≡ sup
(z,t)∈�(x)

⎛

⎜⎝
  

W (z,t)

|F(y, s)|2dyds

⎞

⎟⎠

1
2

,
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and W (x, t) ≡ �(x, t)×(t/2, 3t/2),�(x, t) ≡ {y ∈ R
n : |x − y| < t}. Respectively,

we write that

⎧
⎪⎨

⎪⎩

Lu = 0 in R
n+1+

limt→0 u = f,

‖Ñ (∇u)‖L p(Rn) < ∞,

(Rp)

is solvable.
Let us note that the condition ‖Ñ (∇u)‖L p(Rn) < ∞ imposed on the solution

above automatically implies that there exists a non-tangential trace, or, more precisely,
limt→0 u = f n.t. (that is, lim(y,t)→(x,0): (y,t)∈�(x) u(y, t) = f (x), for a.e. x ∈ R

n)
and ∇‖u(·, t) converges to ∇‖ f as t → 0 weakly in L p(Rn) (see Lemma 2.1 below).
Thus, for f ∈ C∞

0 we can interpret limt→0 u = f as a trace operator acting on
W̃ 1,2(Rn+1+ ) or as a non-tangential trace and the two traces coincide (see also [13],
Remark 7.13, for a detailed discussion).

We say that the Regularity boundary value problem is well-posed if for every
f ∈ L̇ p

1 (R
n) there exists a unique solution to (Rp) satisfying (1.6), with limt→0 u = f

interpreted in the sense that limt→0 u = f n.t. and ∇‖u(·, t) converges to ∇‖ f as
t → 0 weakly in L p(Rn), and if moreover, the corresponding solution in the special
case of f ∈ C∞

0 (R
n) coincides with the weak solution defined above in W̃ 1,2(Rn+1+ ).

The homogeneous Sobolev space L̇ p
1 (R

n) is the completion of C∞
0 with respect

to the Sobolev norm ‖∇‖ f ‖L p(Rn). While fairly evident here, it will be convenient to
distinguish the gradient in R

n+1 and the gradient in R
n throughout the paper, and we

shall denote the latter by ∇‖.
We note, furthermore, that (Dp′ ) and (Rp) above are defined in R

n+1+ . An analogous
definition applies to the lower half-space. Well-posedness in R

n+1± stands for the well-
posedness both in R

n+1+ and R
n+1− , and similarly for other properties.

Let us comment on a somewhat peculiar definition of well-posedness in this paper,
insisting that for C∞

0 (R
n) data the solution coincides with the weak solution defined

above in W̃ 1,2(Rn+1+ ). The rationale for such a definition comes, in particular, from
the example in [11,42,45], where it has been demonstrated that the solution of (Dp′)
in principle does not have to coincide with the weak solution, even for nice data.

Indeed, the papers [11,42,45] consider solvability of boundary-value problems for
the (two-dimensional) coefficient matrix

Ak(x, t) = Ak(x) =
(

1 k sgn(x)
−k sgn(x) 1

)

where k is a real number. It turns out that for certain values of k and p, the Dirichlet
problem is solvable in the sense that for every f ∈ L p′

(Rn) there exists a solution
satisfying (Dp′ ) and converging to f as t → 0 in the strong L p′

sense [11] (moreover,
according to [35], such a solution is unique), but however, the weak solution (with
nice datum which, in particular, belongs to L p′

(Rn)) does not necessarily satisfy the
non-tangential maximal function estimate in (Dp′) [42]. And indeed, the solution
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Regularity problem 867

built in [11] does not satisfy ∇u ∈ L2(R2+), not even for smooth boundary data. Our
definitions are aimed to avoid such a situation.

It has been proved in [31] that for any elliptic operator L with real bounded measur-
able t-independent coefficients there exists p′ < ∞ such that the Dirichlet problem
(Dp′) is well-posed. The purpose of this paper is to establish a certain duality between
the Dirichlet and the Regulatity problems, and in particular, to show that for any ellip-
tic operator L with real bounded measurable t-independent coefficients there exists a
p > 1 such that the Regularity problem (Rp) is well-posed. Before stating the main
result, let us introduce some relevant terminology.

Here and throughout the paper, the capital letters X,Y, Z denote points in R
n+1 and

the corresponding small ones stand for the points in R
n . Furthermore, B = BR(X) =

B(X, R) is the ball in R
n+1 centered at X ∈ R

n+1 with the radius R > 0, and
� = �R(x) = �(x, R) is the ball in R

n centered at x ∈ R
n with the radius R > 0.

Then the tent regions are T (�) = �̂ = {(x, t) ∈ R
n+1+ : dist(x,�c) ≥ t}, and the

Whitney cubes are, as above, W (x, t) = �(x, t)× (t/2, 3t/2), (x, t) ∈ R
n+1+ .

Throughout the paper L will be an elliptic divergence form elliptic operator with
bounded, measurable, complex-valued, t-independent coefficients. We shall assume,
in addition, that the solutions to Lu = 0 in R

n+1+ are locally Hölder continuous in the
following sense. Assume that Lu = 0 in R

n+1+ in the weak sense and B2R(X) ⊂ R
n+1+ ,

X ∈ R
n+1+ , R > 0. Then

|u(Y )− u(Z)| ≤ C

( |Y − Z |
R

)μ
⎛

⎜⎝
  

B2R(X)

|u|2
⎞

⎟⎠

1
2

, for all Y, Z ∈ BR(X), (1.7)

for some constants μ > 0 and C > 0. In particular, one can show that for any p > 0

|u(Y )| ≤ C

⎛

⎜⎝
  

B2R(X)

|u|p

⎞

⎟⎠

1
p

, for all Y, Z ∈ BR(X). (1.8)

We shall refer to property (1.7) by saying that the solutions (or, slightly abusing the
terminology, the operator) satisfy the De Giorgi–Nash–Moser (or DG/N/M) bounds.
Respectively, the constants C andμ in (1.7), (1.8) will be referred to as the De Giorgi–
Nash–Moser constants of L . Finally, following [6,35,37], we shall normally refer to
the following collection of quantities: the dimension, the ellipticity, and the De Giorgi–
Nash–Moser constants of L , L∗ collectively as the “standard constants”.

We note that the De Giorgi–Nash–Moser bounds are not necessarily satisfied for
all elliptic PDEs with complex t-independent coefficients [28,34,49]. However, (1.7),
(1.8) always hold when the coefficients of the underlying equation are real [21,50,51],
and the constants depend quantitatively only upon ellipticity and dimension (for this
result, the matrix A need not be t-independent). Moreover, (1.7) (which implies (1.8))
is stable under small complex perturbations of the coefficients in the L∞ norm (see,
e.g., [30], Chapter VI, or [1]). Thus, in particular, (1.7)–(1.8) hold automatically,
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868 S. Hofmann et al.

e.g., for small complex perturbations of real elliptic coefficients. We also note that in
the t-independent setting that we consider here, the interior De Giorgi–Nash–Moser
estimates hold always when the ambient dimension n + 1 = 3 (see [6, Section 11]).

Let us now turn to the layer potentials. Let L be an elliptic operator with bounded
measurable coefficients. By E, E∗ we denote the fundamental solutions associated
with L and L∗, respectively, in R

n+1, so that

Lx,t E(x, t; y, s) = δ(y,s)(x, t) and L∗
y,s E∗(y, s; x, t)

≡ L∗
y,s E(x, t; y, s) = δ(x,t)(y, s),

where δ(x,t) denotes the Dirac delta function at the point (x, t). One can refer, e.g., to
[32] for their construction and properties. We note for future reference that when the
coefficients of the underlying matrix are t-independent,

E(x, t; y, s) = E(x, t − s; y, 0), (1.9)

and hence, in particular, one can swap the derivatives in t and s for the fundamental
solution.

The single layer potential and the double layer potential operators associated with
L are given, respectively, by

SL
t f (x) ≡

ˆ

Rn

E(x, t; y, 0) f (y) dy, t ∈ R, x ∈ R
n,

DL
t f (x) ≡

ˆ

Rn

∂νA∗ ,y E∗(y, 0; x, t) f (y) dy, t �= 0, x ∈ R
n . (1.10)

Here, the conormal derivative is roughly ∂νA u = −en+1 A(y)∇u, en+1 = (0, . . . , 0, 1).
The precise meaning of the latter on the boundary will be discussed later, with the
Preliminaries.

The main result of this paper is as follows.

Theorem 1.1 Let L be a divergence form elliptic operator with bounded, complex-
valued, t-independent coefficients in R

n+1± , n ≥ 2. Assume, in addition, that the
solutions to Lu = 0 in R

n+1± satisfy the De Giorgi–Nash–Moser bounds, and that the
same is true for the adjoint operator L∗. Then there exists ε > 0 depending on the
standard constants only such that for any 1 < p < 2 + ε, 1

p + 1
p′ = 1, the following

are equivalent:

(a) The Dirichlet problem (Dp′) for L∗ is solvable in R
n+1± , and, in addition to (1.5),

the weak solution satisfies the square function bounds

‖A(t∇u)‖L p′
(Rn)

≤ C‖ f ‖L p′
(Rn)

, (1.11)
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Regularity problem 869

where A stands for the square function, that is,

AF(x) :=
(¨

|x−y|<|t |
|F(y, t)|2 dydt

|t |n+1

)1/2

, (1.12)

for F : R
n+1± → R.

(b) The Regularity problem (Rp) for L is solvable in R
n+1± .

(c) The Regularity problem (Rp) for L is solvable in R
n+1± , and the solution can be

represented by means of (compatible) layer potentials, that is,

u(x, t) = SL
t

(
SL

0

)−1
f (x), (x, t) ∈ R

n+1± . (1.13)

In particular, the operator f �→ Ñ (∇SL
t f ) is bounded in L p(Rn) and

SL
0 : L p(Rn) → L̇ p

1 (R
n)

is compatibly invertible.
(d) The Dirichlet problem (Dp′ ) for L∗ is solvable in R

n+1± , and the solution can be
represented by means of (compatible) layer potentials as

u(x, t) = SL∗
t

(
SL∗

0

)−1
f (x), (x, t) ∈ R

n+1± . (1.14)

In particular, f �→ N (SL∗
t f ) is a bounded operator from L p′

−1(R
n) to L p′

(Rn)

and

SL
0 : L p′

−1(R
n) → L p′

(Rn)

is compatibly invertible. Here L p′
−1(R

n) := (
L̇ p

1 (R
n)

)∗
.

(e) The Dirichlet problem (Dp′) for L∗ is well-posed in R
n+1± , and, in addition to

(1.5), the solution satisfies the square function bounds (1.11).
(f) The Regularity problem (Rp) for L is well-posed in R

n+1± .

Remark 1.1 Let us comment on what is meant by compatibility (or rather compatible
invertibility) of layer potentials.

It is known that (SL)± : L̇2−1/2(R
n) → L̇2

1/2(R
n) is an invertible operator,

essentially by the Lax-Milgram lemma and suitable trace/extension theorems (see,
e.g., [9], Section 13). It is, however, possible, that the two inverses of (SL)±,

one in L̇ p
1 (R

n) → L p(Rn) (or, respectively, L p′
(Rn) → L p′

−1(R
n)) and another

one L̇2
1/2(R

n) → L̇2−1/2(R
n) are not compatible, that is, when acting on f ∈

L̇2
1/2(R

n) ∩ L̇ p
1 (R

n) (or, respectively, on f ∈ L̇2
1/2(R

n) ∩ L p′
(Rn)) they produce

different functions. This is due to the aforementioned counterexample in [11] (see
also the corresponding discussion in [13]).

123
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It is important that this is not the case here. That is, the inverse of (SL )± : L p(Rn) →
L̇ p

1 (R
n) in statement (c) (and, respectively, the inverse of SL

0 : L p′
−1(R

n) → L p′
(Rn)

is statement (d)) is compatible with the inverse of (SL)± : L̇2−1/2(R
n) → L̇2

1/2(R
n).

We shall refer to this property as compatible invertibility hereafter, the corresponding
inverses will be called compatible, and we shall say that the representations (1.13),
(1.14) feature compatible layer potentials (while referring to the involved inverses).

In combination with the results in [6,31,37], and [52] (as regards the latter, see
also [29] for an alternative proof), Theorem 1.1 yields the following Corollaries. Their
proofs can be found in Sect. 7.

Corollary 1.1 Let L be a divergence form elliptic operator with bounded measurable
t-independent coefficients, and assume that there exists an operator L0, falling under
the scope of Theorem 1.1, such that for some p > 1 one of the properties (a)–(f) is
satisfied for L0. Assume, furthermore, that

‖A − A0‖L∞(Rn) < η

for a sufficiently small η > 0 depending on the standard constants and the involved
solvability constants of L0, L∗

0. Then all six assertions (a)–( f ) of Theorem 1.1 are
valid for the operator L as well.

Corollary 1.2 Let L be either a divergence form elliptic operator with real (pos-
sibly non-symmetric) bounded t-independent coefficients, or a perturbation of such
an operator, in the sense of Corollary 1.1. Then there exists p > 1, depending on
the dimension and the ellipticity constant of L only, such that statements (a)–( f ) of
Theorem 1.1 are valid for L.

In particular, the Regularity problem is well-posed, for some range of p > 1, for
any elliptic operator with real t-independent coefficients and for its perturbations.

We note that this result is sharp, in the sense that one cannot specify the range
of well-posedness of boundary value problems for real non-symmetric t-independent
operators which would not depend on the ellipticity parameter of the operator. More
precisely, for every p > 1 there exists an elliptic operator L with real non-symmetric
t-independent coefficients such that the Regularity problem (Rp) is not well-posed.
A similar statement holds for the Dirichlet problem: given any p′ < ∞ there exists
an elliptic operator L with real non-symmetric t-independent coefficients such that
the Dirichlet problem (Dp′ ) is not well-posed. The counterexample can be found in
[42,45] in the context of the Dirichlet and Regularity problem, respectively.

In the case of real coefficients, the solvability of the Regularity problem for some
L p, p > 1, is equivalent to the solvability in Hardy spaces H1, much as the solvability
of the Dirichlet problem in L p′

for some p′ < ∞ is equivalent to the solvability of the
Dirichlet problem in B M O . For the Dirichlet problem the equivalence was established
in [22] and for the Regularity problem in [23]. We refer the reader to [22,23] for
precise statements. Here we just point out that in the realm of real coefficients the
results of Corollary 1.2 automatically extend to H1 and B M O spaces for Regularity
and Dirichlet problems, respectively. In fact, the solvability of the Regularity problem
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for operators with real coefficients can then be further extended to H p, 1−ε < p ≤ 1.
Indeed, one can establish layer potential representations of solutions in H1 (by the same
argument as in the proof of Theorem 1.1), use boundedness of layer potentials in H p

demonstrated in [37], and then a Sneiberg-type argument to extrapolate invertibility
in H1 to invertibility in H p, 1 − ε < p ≤ 1. This, in turn, can be dualized to
get the solvability results in Holder Ċα spaces for the Dirichlet problem, with α > 0
sufficiently close to zero. Furthermore, having obtained layer potential representations
for these solutions, we can use analytic perturbation theory (cf. Sect. 1 below) to treat
complex perturbations of any real coefficient matrix, thereby extending Corollary 1.2
to the case of H p data, 1 − ε < p ≤ 1 (for the regularity problem), and to Ċα, α =
n(1/p − 1) and BMO data, for the Dirichlet problem. We omit the details, but refer to
[37] where this is done for real symmetric matrices and their perturbations. Once the
layer potential representation has been established, the arguments in [37] carry over
mutatis mutandi to the non-symmetric setting.

Finally, we remark that all the results, in particular, Theorem 1.1 and Corollar-
ies 1.1–1.2, automatically extend to Lipschitz domains as defined in (1.3). This is a
consequence of the fact that a “flattening” change of variables (x, t) �→ (x, t −ψ(x)),
which maps a Lipschitz domain {(x, t) ∈ R

n+1+ : t > ψ(x)} into R
n+1+ , preserves the

class of t-independent elliptic operators.
Let us now discuss the history of the problem. The study of elliptic boundary

problems (Dp′ ), (Rp) has started with the results for the Dirichlet problem for the
Laplacian on Lipschitz domains [18,19]. The first breakthrough in the context of
the elliptic operators with bounded measurable coefficients came in [39], where the
authors realized how to resolve (Dp′ ), p′ = 2, resting on the so-called Rellich identity.
The latter is essentially a result of an integration by parts argument which allows one
to compare the tangential and normal derivatives of the solution on the boundary, in
the sense that

‖∇‖ f ‖L2(Rn) ≈ ‖∂νA u‖L2(Rn), f = u
∣∣
Rn . (1.15)

The Rellich identity underpinned the development of the elliptic theory for real and
symmetric operators, and over the years the problems (Dp′) and (Rp) were resolved
for the sharp range of p for operators with real symmetric t-independent coefficients
in [43] and perturbation results were obtained in [20,25,27,44], (see also [4,6,35] for
later developments in connection with the perturbation questions).

We remark that some “smoothness” of the underlying matrix in t is necessary for
well-posedness [14] and thus starting the investigation with the t-independent case is
natural in this context.

The argument for the Rellich identity heavily used the condition of the symmetry
of the matrix, and thus, could not be extended neither to real non-symmetric, nor more
generally, to the complex case. The only exception to this rule was the resolution
of the Kato problem [8,15,33,36], in which (1.15) was established in the absence
of self-adjointness, in the special case that the matrix has block structure, that is,
A = {A jk}n+1

j,k=1 with A j,n+1 = An+1, j = 0, j = 1, . . . , n, and An+1,n+1 = 1. The
observation that the solution of the Kato problem amounts to (1.15) is due to C. Kenig,
see [41]. Moreover, quite recently (simultaneously with the preparation of this man-
uscript) it was shown in [9], by a refinement of the proof of the Kato conjecture, that
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the Kato estimate, or more precisely, the � side of (1.15), could be extended to the
“block triangular” case when only A j,n+1 = 0 without necessarily An+1, j = 0 and
similarly, the � side of (1.15) holds when An+1, j = 0.

However, the aforementioned ideas could not be directly applied to the general
case of a non-symmetric matrix lacking any additional block structure.1 Moreover, it
was demonstrated in [42] (see also [45]) that the well-posedness in L2 may fail when
matrix has no symmetry and thus, (1.15) is not to be expected. Nonetheless, using
a completely different approach, in [31,42] the authors have established that for any
operator L with real non-symmetric coefficients there is a p′ < ∞ such that (Dp′ ) is
solvable. This raised the question of solvability of the Regularity problem.

In the particular case of the operators with real non-symmetric coefficients in dimen-
sion two and their perturbations the Regularity problem was resolved in [12,45]. The
present paper resolves this problem in arbitrary dimension. It shows that the solvability
of the Dirichlet problem is generally equivalent to that of the Regularity problem and
thus, in the context of real non-symmetric matrices there is always a p such that (Rp)
is solvable. The core of our argument is a new Rellich-type inequality. We demon-
strate that, in fact, for any operator L with complex and t-independent coefficients the
solvability of the Dirichlet problem (Dp′ ), together with the square function bounds,
entails a one-sided Rellich inequality,

‖∂νA u‖L p(Rn) � ‖∇‖ f ‖L p(Rn), f = u
∣∣
Rn . (1.16)

This ultimately paves the way to (Rp). Of course, having a reverse inequality as well
would be extremely interesting, but at the moment seems quite challenging.

Finally, we also point out that the actual question of connections between the Dirich-
let and Regularity problem has received considerable attention in the literature, and
some partial results were established in [54] ((Rp) ⇐⇒ (Dp′ ), Laplacian on a Lip-
schitz domain), [43] ((Rp) �⇒ (Dp′), real coefficients), [47,53] ((Rp) ⇐⇒ (Dp′ ),
real symmetric constant coefficient systems), [45] ((Dp′) �⇒ (Rp), real coefficients,
dimension two), where in the non-selfadjoint case, one should understand that these
implications hold up to taking adjoints. Some related counterexamples were obtained
in [48]. We also observe that more recently, in the case p = 2, the fact that (D2)

(with square function estimates) ⇐⇒ (R2) (again, up to adjoints), was established
explicitly in [5] (when the domain is the ball, but the proof there carries over to the
half-space mutatis mutandi), and is at least implicit in the combination of results in
[7, Section 4] and [6, Estimate (5.3)], and also in [4, Section 9]. Our main result,
Theorem 1.1, generalizes all implications above, at least as far as the t-independent
matrices are concerned, under the assumption of De Giorgi–Nash–Moser bounds for
solutions. The proof of (1.16) builds on Verchota’s duality argument [54] , reducing
matters to proving L p′

estimates for certain conjugates, and in turn, the estimates for
the conjugates will be obtained by an extension of an argument in [6] which exploits
the solution of the Kato problem.

1 Although the technology of the Kato problem continues to play a crucial role in the present paper and in
[31].
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2 Preliminaries

Let L be a divergence-form elliptic operator with t-independent bounded measurable
coefficients. Any solution to Lu = 0 satisfies the interior Caccioppoli inequality:

Assume that Lu = 0 in R
n+1+ in the weak sense and B2R(X) ⊂ R

n+1+ , X ∈ R
n+1+ ,

R > 0. Then   

BR(X)

|∇u(Y )|2 dY ≤ C

R2

  

B2R(X)

|u(Y )|2 dY, (2.1)

for some C > 0 depending on the dimension and the ellipticity parameter of L only.
An analogous statement holds in R

n+1− .
Recall that we assume, in addition, that solutions of L and L∗ satisfy the interior

Hölder continuity conditions, that is, the De Giorgi–Nash–Moser estimates (1.7), (1.8).
We proceed to the issues of the non-tangential convergence and uniqueness of

solutions. Unless explicitly stated otherwise, we assume throughout the rest of the
paper that L = − div(A∇) is an elliptic operators with complex bounded measurable
t-independent coefficients and that the solutions to Lu = 0 and L∗u = 0 satisfy the
De Giorgi–Nash–Moser bounds. Furthermore, throughout the paper we assume that
n ≥ 2, as much of this theory in the case n = 1 has already been treated in [45] and
[12].

Lemma 2.1 Suppose that u ∈ W 1,2
loc (R

n+1+ ) is a weak solution of Lu = 0, which
satisfies Ñ (∇u) ∈ L p(Rn) for some 1 < p < ∞. Then

(i) there exists f ∈ L̇ p
1 (R

n) such that u → f n.t. a.e., with

|u(y, t)− f (x)| � t Ñ (∇u)(x), for every (y, t) ∈ �(x), x ∈ R
n,

and

‖ f ‖L̇ p
1

� ‖Ñ (∇u)‖L p ;

(ii) for the limiting function f from (i), one has

∇‖u(·, t) −→ ∇‖ f

as t → 0, in the weak sense in L p;
(iii) there exists g ∈ L p(Rn) such that g = ∂νA u in the variational sense, i.e.,

¨

R
n+1+

A(X)∇u(X)∇�(X) d X =
ˆ

Rn

g(x) ϕ(x) dx,

for � ∈ C∞
0 (R

n+1) and ϕ := � |t=0;
(iv) for the limiting function g from (iii), one has

−en+1 A∇u(·, t) −→ g
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as t → 0, in the weak sense in L p. Here en+1 = (0, . . . , 0, 1). Finally,

‖g‖L p(Rn) ≤ C ‖Ñ (∇u)‖L p(Rn). (2.2)

An analogous statement holds in R
n+1− .

The Lemma can be found in [37] (as stated above), [35] (for somewhat more general
operators), [6] (for p = 2), [46] (for real coefficients) and the proof in all cases closely
follows an analogous argument in [43].

Remark We note that the convergence results above entail, in particular, the following.
The solvability of (Rp) as defined in the introduction, that is, for C∞

0 (R
n) data, implies

existence of a solution to (Rp) for any f ∈ L̇ p
1 (R

n). We refer the reader, e.g., to [46],
Theorems 4.6, 5.6, where similar results were established for real symmetric matrices,
and the proofs apply to our case without changes.

Lemma 2.2 For any 2 < r <
2(n+1)

n−1 and 1 < q < rn
n+1 , n ≥ 1, and for any

f ∈ L2
1(R

n) ∩ Lr (Rn) ∩ Lq(Rn) there exists a unique u ∈ W̃ 1,2(Rn+1+ ) such that
Tr u = f and Lu = 0, in the usual weak sense. Moreover,

‖u‖W̃ 1,2(Rn+1+ )
� ‖ f ‖L2

1(R
n) + ‖ f ‖Lr (Rn) + ‖ f ‖Lq (Rn). (2.3)

Proof The proof is a modification of an analogous arguments [45]. Here we only
mention the main idea. The remaining details are quite easy to fill in, and if needed,
the reader may consult [45].

The basic idea, already mentioned above, is to realize u as v + w, where w is the
solution to the Laplace’s equation with data f , that is, the Poisson extension of f ,
and v is the solution to Lv = G (where G = −Lw) with zero boundary data, given
by the Lax-Milgram Lemma. A direct computation shows that w ∈ W̃ 1,2(Rn+1+ )

satisfies (2.3). The Lax-Milgram lemma assures existence of the unique solution v ∈
W̃ 1,2

0 (Rn+1+ ) to the problem

¨
R

n+1+
A∇v∇� dxdt =

¨
R

n+1+
A∇w∇� dxdt, for all � ∈ W̃ 1,2

0 (Rn+1+ ).

This requires boundedness and coercivity of the bilinear form with respect to the norm
in W̃ 1,2(Rn+1+ ). Boundedness is obvious from the definition, and the coercivity follows
from the Poincaré inequality. We note for the future reference that the Lax-Milgram
lemma, in particular, assures that

‖∇v‖L2(Rn+1+ )
≤ C‖∇w‖L2(Rn+1+ )

. (2.4)

Finally, the desired estimates (2.3) follow from the combination of aforementioned
bounds on w and (2.4). ��

Let us now provide somewhat more precise asymptotic estimates on the weak
solution u constructed above in the case when f is a nice compactly supported function.
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Lemma 2.3 For any f ∈ C∞
0 (R

n) the weak solution u ∈ W̃ 1,2(Rn+1+ ) to the problem

Lu = 0, u
∣∣∣
Rn

= f , warranted by Lemma 2.2, satisfies the following estimates. Let

�R denote the surface ball centered at O such that supp f ⊂ �R. Then for all
(x, t) ∈ R

n+1+ such that |(x, t)| >> R we have:

|u(x, t)| ≤ C f t−
n+1

2 −ε, (x, t) ∈ R
n+1+ , (2.5)

uniformly in x, provided that t is significantly bigger than the size of the support of f .
The constant C f depends on f and the operator L, ε > 0 depends on the ellipticity
parameters of L only.

The statement and the proof of this Lemma is the only place in the paper where
constants denoted by C are allowed to depend on data f . The results, however, will
be only used qualitatively to ensure the convergence of some later arising integrals.

Proof Recall the construction of the solution from the proof of Lemma 2.2. The
classical harmonic Poisson extension of f , denoted by w, clearly satisfies (2.5). In
fact, it decays faster, asw(X) = O (|X |−n), at infinity. It remains to estimate v. To this
end, we decompose v as a sum

∑∞
i=0 vi , where vi ∈ W̃ 1,2

0 (Rn+1+ ) is the Lax-Milgram
solution to

¨
R

n+1+
A∇vi ∇� dxdt =

¨
R

n+1+
A∇wi ∇� dxdt, for all � ∈ W̃ 1,2

0 (Rn+1+ ).

Here wi = ηiw, with ηi , i = 0, 1, . . ., being the elements of the usual partition of
identity associated to dyadic annuli of radius 2i centered at the origin (andη0 associated
to the unit ball). Then, in particular, for all i sufficiently large depending on the size
of the support of f we have

‖∇vi‖L p(Rn+1+ )
≤ C‖∇wi‖L p(Rn+1+ )

≤ C2−i(n+1)/p,
2(n+1)

n+3 −ε < p ≤ 2+ε, (2.6)

for a suitable ε > 0 depending on the ellipticity constants of L only. The first inequality
can be seen, e.g., following the reflection procedure to reduce to the case of the entire
R

n+1 and then using the Riesz transform bounds from [2]. Note that the elliptic operator
arising after reflection is not t-independent and does not necessarily satisfy De Giorgi–
Nash–Moser bounds (due to boundary effects) but it is a complex coefficient elliptic
operator falling under the scope of [2].

Next, observing that vi = 0 on the boundary we employ Poincaré inequality to
write

⎛

⎜⎝
  

Bk (O)

|vi |p d X

⎞

⎟⎠

1/p

≤ C 2k

⎛

⎜⎝
  

Bk (O)

|∇vi |p d X

⎞

⎟⎠

1/p

≤ C 2
k
(

1− n+1
p

)

2− i(n+1)
p .
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876 S. Hofmann et al.

Finally, by De Giorgi–Nash–Moser estimates,

|u(x, t)|�
⎛

⎜⎝
  

Bt/2(x,t)

|u|p d X

⎞

⎟⎠

1/p

≤
⎛

⎜⎝
  

Bt/2(x,t)

|w|p d X

⎞

⎟⎠

1/p

+
∞∑

i=1

⎛

⎜⎝
  

Bt/2(x,t)

|vi |p d X

⎞

⎟⎠

1/p

� t−n +t1− n+1
p ,

with the implicit constant depending on f and assuming that t is large enough com-
pared to the size of the support of f . Given the range of p in (2.6), this finishes the
proof of (2.5). ��

As discussed above, any u ∈ W̃ 1,2(Rn+1+ ) has a trace in L̃2(Rn). Moreover, for
any u which is a solution to Lu = 0 in the sense of Lemma 2.2, one can define the
conormal derivative ∂νu = ∂νA u, in the sense of distributions, via

ˆ

Rn

∂νu(x) ϕ(x) dx :=
¨

R
n+1+

A(X)∇u(X)∇�(X) d X, (2.7)

for any ϕ ∈ C∞
0 (R

n) and � ∈ C∞
0 (R

n+1) such that ϕ := � |t=0. The details are as
follows.

Lemma 2.4 Suppose that u ∈ Ẇ 1,2(Rn+1+ ), and that Lu = 0 in R
n+1+ . Then ∂νA u

exists in L̇2−1/2(R
n); i.e., there is a gu ∈ L̇2−1/2(R

n) such that for all H ∈ Ẇ 1,2(Rn+1+ ),

with trace tr(H) = h ∈ L̇2
1/2(R

n), we have

¨
R

n+1+
A∇u · ∇H = 〈gu, h〉, (2.8)

where 〈·, ·〉 denotes here the duality pairing of L̇2−1/2(R
n) and L̇2

1/2(R
n). The analo-

gous statements hold for the adjoint L∗, and in the lower half-space.

Proof We define a bounded linear functional �u on L̇2
1/2(R

n) as follows. For h ∈
L̇2

1/2(R
n), set

�u(h) :=
¨

R
n+1+

A∇u · ∇H ,

where H is any Ẇ 1,2(Rn+1+ ) extension of h (of course, such extensions exist by
standard extension/trace theory). Note that �u is well-defined: indeed, if H1 and H2
are two different Ẇ 1,2(Rn+1+ ) extensions of the same h, then H1 − H2 ∈ Ẇ 1,2

0 (Rn+1+ ),
whence it follows that

¨
R

n+1+
A∇u · ∇(H1 − H2) = 0,
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since Lu = 0 in the weak sense. Moreover, it is obvious that �u is linear. To see
that the functional is bounded, we simply choose an extension H (e.g., the harmonic
extension), for which

‖H‖Ẇ 1,2(Rn+1+ )
≤ C0 ‖h‖L̇2

1/2(R
n),

for some purely dimensional constant C0. We then have

|�u(h)| ≤ ‖A‖∞ ‖u‖Ẇ 1,2(Rn+1+ )
‖H‖Ẇ 1,2(Rn+1+ )

≤ C0‖A‖∞ ‖u‖Ẇ 1,2(Rn+1+ )
‖h‖L̇2

1/2(R
n),

i.e., ‖�u‖ � ‖u‖Ẇ 1,2(Rn+1+ )
. The conclusion of Lemma 2.4 now follows by the Riesz

Representation Theorem. ��
Lemma 2.4 allows us to justify the definition of the conormal derivative by (2.7) for

all functions u ∈ W̃ 1,2(Rn+1+ ), by first identifying such a function with the correspond-
ing equivalence class in Ẇ 1,2(Rn+1+ ), then applying Lemma 2.4 and then deducing that
for any particular representative of this equivalence class, in particular, for u itself, we
have (2.7). Such a definition gives identical result for u in the same equivalence class,
but, naturally, the conormal derivative would not distinguish functions that differ by a
constant.

Note that if, in addition, Ñ (∇u) ∈ L p(Rn), for some 1 < p < ∞, then ∂νu ∈
L p(Rn) by Lemma 2.1.

3 Boundary estimate: a version of the Rellich-type inequality

Theorem 3.1 Let L be an elliptic operator with t-independent coefficients such that
the solutions to Lu = 0 and L∗u = 0 in R

n+1± satisfy the De Giorgi–Nash–Moser

estimates. Let u be a solution to the Dirichlet problem Lu = 0 in R
n+1+ , u

∣∣∣
∂Rn+1+

= f ,

for some f ∈ C∞
0 (R

n), in the sense of Lemma 2.2. Suppose that for some 1 < p′ < ∞
the Dirichlet problem (Dp′ ) for the operator L∗ is solvable with the square function
bounds, that is, for every C∞

0 boundary data the corresponding weak solution satisfies
both (1.5) and the square function estimate (1.11). Then the variational derivative of
u defined by (2.7) can be identified with an L p function, and

‖∂νA u‖L p(Rn) ≤ C ‖∇‖ f ‖L p(Rn), (3.1)

where 1
p + 1

p′ = 1. The constant C depends on the standard constants and on the
solvability constants of L∗ involved in (1.5) and (2.7).

Proof We aim to show that for u, a solution to Lu = 0 in R
n+1+ , the normal derivative

on the boundary is controlled by the tangential derivatives for some 1 < p < ∞. To
this end, take 1 < p′ < ∞ such that (Dp′) for the operator L∗ is solvable with the
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square function bounds, consider any g ∈ C∞
0 with ‖g‖L p′ ≤ 1, and denote by w the

weak solution to (Dp′) for the operator L∗ with boundary data g. Then

ˆ
Rn
∂νA u g dx =

¨

R
n+1+

∇F(X) A∗(X)∇w(X) d X =
ˆ

Rn
f ∂νA∗w dx, (3.2)

for any F ∈ C∞
0 (R

n+1) such that F
∣∣∣
Rn

= f . This follows simply from the definition

of the weak conormal derivative in (2.7). Indeed, by definition

ˆ
Rn

f ∂νA∗w dx =
¨

R
n+1+

∇F(X) A∗(X)∇w(X) d X =
¨

R
n+1+

∇u(X) A∗(X)∇w(X) d X,

where for the second equality we use the fact that u − F ∈ W̃ 1,2
0 (Rn+1+ ) and w is a

solution in the sense of (1.2) (evidently, C∞
0 functions are dense in W̃ 1,2

0 (Rn+1+ )). A
similar argument applies to show that

ˆ
Rn
∂νA u g dx =

¨

R
n+1+

A(X)∇u(X)∇w(X) d X.

We shall take an extension of f in the form F(x, t) := f (x)ηr,R(t), R >> r , where
ηr,R(t) ∈ C∞

0 ((−(R +r), R +r)), ηr,R(t) = 1 for t ∈ (−R, R), and |η′| ≤ 1/r . Here
r is chosen so that�r contains supp( f ). Then the right-hand side of (3.2) is equal to

¨

�r ×(0,R)
∇F(X) A∗(X)∇w(X) d X +

¨

�r ×(R,r+R)

∇F(X) A∗(X)∇w(X) d X

=
n∑

j=1

¨

�r ×(0,R)
∂ j f (x) e j A∗(X)∇w(X) d X

+
¨

�r ×(R,r+R)

∇F(X) A∗(X)∇w(X) d X

=
n∑

j=1

ˆ

�r

∂ j f (x)

(ˆ R

0
e j A∗(x)∇w(x, t) dt

)
dx

+
¨

�r ×(R,r+R)

∇F(X) A∗(X)∇w(X) d X, (3.3)

where e j = (0, . . . , 0, 1, 0, . . . , 0) is the j th basis vector of R
n+1, and we used the fact

that by construction F = f in �r × (0, R) and hence, in this range, it is independent
of t .
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We remark that, intuitively, one can think of the functions in parentheses above as
an analogue of harmonic conjugates. That is, given a solution w to Lw = 0 in R

n+1+ ,
a system of L-harmonic conjugates could be defined as follows:

w̃ j (x, t) := −
ˆ ∞

t
e j A(x)∇w(x, s) ds, (x, t) ∈ R

n+1+ , j = 1, . . . , n + 1,

(3.4)
(see, e.g., [26] and [45] for analogous constructions in the case of harmonic functions
and variable-coefficient operators in dimension 2, respectively). Thus, (3.2)–(3.3) and
forthcoming calculations are actually manipulations with harmonic conjugates in dis-
guise. However, because of the weak nature of the available definition of solution and
conormal derivative, we have to carefully keep track of the error terms.

Going further, departing from the right-hand side of (3.3), we can write

ˆ
Rn
∂νA u g dx

=
n∑

i, j=1

ˆ

�r

∂ j f (x)

(ˆ R

0
A∗

j i (x)∂iw(x, t) dt

)
dx

−
n∑

j=1

ˆ

�r

∂ j f (x) A∗
j,n+1(x)g(x) dx +

n∑

j=1

ˆ

�r

∂ j f (x) A∗
j,n+1(x)w(x, R) dx

+
¨

�r ×(R,r+R)

∇F(X) A∗(X)∇w(X) d X =: IR + II + E1,R + E2,R . (3.5)

First of all, we claim that the terms E1,R and E2,R both vanish as R → ∞. Indeed,

E2,R ≤ C f,r

⎛

⎜⎝
¨

2�r ×(R−r,2r+R)

|w|2 d X

⎞

⎟⎠

1/2

≤ C f,r R1− n+1
2 ,

using the Cauchy-Schwarz and Caccioppoli inequalities for the first bound and
Lemma 2.3 for the second one. Analogously, using Lemma 2.3, we see that E1,R ≤
C f,r R1− n+1

2 as well.
It remains to analyze IR and II. The integral in II directly gives the desired bound

by ‖∇‖ f ‖L p . The estimate on IR is trickier. Using, as before, the decay of w assured
by Lemma 2.3, we see that it is enough to bound

I :=
ˆ

Rn
∇‖ f (x) · A∗‖(x)∇‖v(x) dx, (3.6)

where formally

v(x, t) :=
ˆ ∞

t
w(x, s) ds, v(x) := v(x, 0), (3.7)
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as the error vanishes as R → ∞. Here and in the sequel, A‖ denotes an n × n block
of the matrix A, that is, {A jk}n

j,k=1, and L‖ = − div‖ A‖∇‖, interpreted, as usually, in
the weak sense.

Let us discuss the definition of v. First of all, v(x, t) itself is well-defined for any
t > 0 as an absolutely convergent integral (using Lemma 2.3), and ∇v(·, t) belongs
to L2

loc(R
n) for any t > 0 (again, using Lemma 2.3). Further, ∇‖v on the boundary

is well-defined as an L2
loc(R

n) function (using the fact that w ∈ W̃ 1,2(Rn+1+ ) and
aforementioned considerations), and ∇‖v(·, t) converges to ∇‖v(·) in the sense of
distributions and in L2

loc(R
n). In fact, we have for any ρ such that �ρ ⊃ supp(g) and

any cube Qρ ⊂ R
n of side-length ρ

ˆ
Qρ

|∇‖v(x, t)− ∇‖v(x, 0)|2 dx ≤ Cρ,gt,
ˆ

Qρ

|∇‖v(x, t)|2 dx ≤ Cρ,g, t ≥ 0,

(3.8)
with the constant Cρ,g independent of t and of the center of cube Qρ . This clarifies
the sense of (3.6)–(3.7). We note for the future reference that ∂tv = −w belongs to
W̃ 1,2(Rn+1+ ) and satisfies Lemma 2.3, as well as (2.1).

We claim that

∣∣∣∣
ˆ

Rn
∇‖ f (x) · A∗‖(x)∇‖v(x) dx

∣∣∣∣ � ‖∇‖ f ‖L p
(‖A(t∇∂tv)‖L p′ + ‖N∗(∂tv)‖L p′

)
,

(3.9)
where A, as before, stands for the square function (1.12). Estimate (3.9) is one of the
core components of our approach to the regularity problem and we will concentrate
on its proof in the next section. It is interesting to point out that the particular quadratic
form appearing here is important: even though (3.9) holds, one cannot expect to deduce
that ∇‖v ∈ L p′

, except in the range 2 − ε < p < 2 + ε (for us, 1 < p < 2 + ε in
any case, so only the lower bound here is a further restriction). Indeed, specializing
to the block case, an L p′

bound for ∇‖v for p′ > 2 + ε (i.e, p < 2 − ε), would
contradict the counter-example of Kenig (see [10, pp 119–120]). This has to do with
the failure of the Hodge decomposition for L‖ := − div‖ A‖∇‖, outside of the stated
range of p. Indeed, to test the L p′

norm of A∗‖∇‖v (which by ellipticity of A∗‖ is

equivalent to the L p′
norm of ∇‖v), would require that we test against an arbitrary

vector �h ∈ L p(Rn,Cn). Observe that the form
´ �h · A∗‖∇‖v is equivalent to the form

on the left-hand side of (3.9), only if we have a Hodge decomposition �h = ∇‖ f + �g,
where �g satisfies div‖ A‖ �g = 0, and f ∈ L̇ p

1 . But such a Hodge decomposition holds
only in the range 2 − ε < p < 2 + ε.

For now, let us finish the proof of the Theorem assuming (3.9).
Recall that ∂tv = w and by definition w is the solution to (Dp′ ) for L∗ satisfying

both the non-tangential maximal function and the square function estimates. All in all,
then (3.5)–(3.9) guarantee that for any g ∈ L p′

,

ˆ
Rn
∂νA u g dx � ‖∇‖ f ‖L p‖g‖L p′ . (3.10)
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Hence,
‖∂νA u‖L p(Rn) � ‖∇‖ f ‖L p(Rn), (3.11)

with f = u|Rn . This finished the proof of Theorem 3.1, modulo (3.9). ��

4 Proof of the main estimate (3.9)

In this section, we establish the “main estimate” (3.9) (re-stated as Theorem 4.1 below)
thereby completing the proof of Theorem 3.1. We shall adapt the proof of [6, estimate
(5.3)], which is essentially the case p = 2 of (3.9), and which exploits the solution of
the Kato problem. In our case, we require L p versions of the Kato estimate (cf. (4.2)
below).

Let us start by recalling a few results regarding the square roots of elliptic operators
and the corresponding square functions that will be used throughout the proof. Retain
the definitions of N∗, Ñ and A from Sects. 1 and 3, and let

Aα
q (F)(x) =

⎛

⎜⎝
¨

|x−z|<αt

|F(z, t)|q dzdt

tn+1

⎞

⎟⎠

1/q

,

Cq(F)(x) = sup
��x

⎛

⎜⎝
1

|�|
¨

�̂

|F(y, s)|q dyds

s

⎞

⎟⎠

1/q

,

where, as before, �̂ = {(x, t) : dist(x,�c) ≥ t} and�(x, t) = {y ∈ R
n : |x − y| < t}.

The aperture indexαwill usually be omitted unless it plays an explicit role in the proof.
Also, as per (1.12), A = A2, and C = C2.

For a Lebesgue measurable set E , we let M(E) denote the collection of measurable
functions on E . For 0 < p, q < ∞ we define the following tent spaces:

T p
q (R

n+1+ ) =
{

F ∈ M(Rn+1+ ) : Aq(F) ∈ L p(Rn)
}
,

T p∞(Rn+1+ ) =
{

F ∈ M(Rn+1+ ) : N∗(F) ∈ L p(Rn)
}
,

T̃ p∞(Rn+1+ ) =
{

F ∈ M(Rn+1+ ) : Ñ (F) ∈ L p(Rn)
}
,

T ∞
q (Rn+1+ ) =

{
F ∈ M(Rn+1+ ) : Cq(F) ∈ L∞(Rn)

}
,

T∞
q (R

n+1+ ) =
{

F ∈ M(Rn+1+ ) : Cq(s(F)) ∈ L∞(Rn)
}
,

where in the last definition, for F ∈ M(Rn+1+ ), we set

s(F)(x, t) := sup
(y,s)∈W (x,t)

|F(y, s)|
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(the notation “sup” is interpreted as the essential supremum) and W (x, t) = �(x, t)×
(t/2, 3t/2). The spaces T p

q (R
n+1+ ), 0 < p, q ≤ ∞ were first introduced by Coifman,

Meyer and Stein in [16]. The spaces T̃ p∞(Rn+1+ ) and T∞
q (R

n+1+ ) started appearing
in the literature more recently, naturally arising for elliptic PDEs with non-smooth
coefficients.

As usual, we say that a family of operators {Tt }t>0 satisfies L p − Lq off-diagonal
estimates, 1 ≤ p ≤ q ≤ ∞, if for arbitrary closed sets E, F ⊂ R

n

‖Tt f ‖Lq (F) ≤ Ct

(
n
q − n

p

)

e− dist (E,F)2
ct ‖ f ‖L p(E), (4.1)

for every t > 0 and every f ∈ L p(Rn) supported in E . We remark that whenever L and
L∗ both satisfy the De Giorgi–Nash–Moser property, the heat semigroup Pt := e−t2 L‖ ,
t > 0, satisfies pointwise Gaussian upper bounds, and hence, L p − Lq off-diagonal
estimates for all 1 ≤ p, q ≤ ∞. Indeed, if the solutions of L have the De Giorgi–
Nash–Moser bounds, then so do the solutions to L‖. To see that, let � = �(x, r)
be an n-dimensional ball, and let B = B((x, r), r/2) be the corresponding (n + 1)-
dimensional ball. Let u = u(x) solve L‖u = 0 in 2�. Set U (x, t) := u(x), so
that U is t-independent. Since U and also the coefficients of L are t-independent,
we have that LU (x, t) = L‖u(x) = 0 for all (x, t) ∈ 2B. Since U satisfies the De
Giorgi–Nash–Moser property in B, we conclude that u satisfies the De Giorgi–Nash–
Moser property in �. Furthermore, if the solutions to both L‖ and L∗‖ have the De
Giorgi–Nash–Moser bounds, then the heat kernel, that is, the kernel of the semigroup
Pt := e−t2 L‖ , t > 0, satisfies pointwise Gaussian upper bounds, and enjoys Nash type
local Hölder continuity, by [10] (Theorem 10, p. 34 [10]), as desired.

The latter, in turn, imply that the square root estimate,

∥∥∥
√

L‖ f
∥∥∥

L p
≤ C ‖∇ f ‖L p , (4.2)

holds for all 1 < p < ∞, f ∈ C∞
0 , (the case p = 2 corresponds to the Kato problem

solved in [8], and the generalization to other values of p (given the L2 case), in the
presence of Gaussian bounds, can be found in [10]). The Gaussian bounds also imply
that

‖A(θt f )‖L p ≤ C‖ f ‖L p ,

with θt = t
√

L‖ Pt , θt = t2∇‖
√

L‖ Pt , θt = t3L3/2
‖ Pt , θt = t4∇‖L3/2

‖ Pt ,

(4.3)

holds for all 1 < p < ∞, f ∈ L p. In the required generality these square function
estimates do not seem to be explicitly stated anywhere, but they are all essentially well
known. Indeed, one may verify the case p = 2 by a standard “quasi-orthogonality”
argument; for p > 2, one may follow the well known argument of [26] to get a
Carleson measure estimate when f ∈ L∞, and then use tent space interpolation
to obtain all p ∈ [2,∞); for p < 2, one may first prove the Hardy space bound
‖A(θt f )‖L1 ≤ C‖ f ‖H1 , by a standard argument using the atomic decomposition of
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H1, and the local Hölder continuity of the heat kernel, and then interpolate to get the
full range of p. We omit the details.

Going further, we record the following result essentially following from the
Poincaré inequality. It was proved for p = 2 in [6] (Lemma 3.5, [6]).

Lemma 4.1 Assume that a family of operators {Rt }t>0 satisfies L2 − L2 off-diagonal
estimates and that Rt 1 = 0 (in the sense of L2

loc(R
n)). Then

‖A(Rt F)‖L p ≤ C‖A(t∇‖F)‖L p , (4.4)

for every F with t∇‖F ∈ T p
2 , i.e., such that the right-hand side of (4.4) is finite, and

for every 1 < p < ∞.

In fact, a weaker off-diagonal decay rate of Rt than the exponential estimates above
would suffice, but for all relevant choices of Rt ’s in the present paper the exponential
decay will be valid.

Proof Let us denote �x,t = {y ∈ R
n : |x − y| < t}, S j (�x,t ) = �x,2 j+1t\�x,2 j t ,

j ∈ N, and Fx,t := ffl
�x,t

F(y, t) dy. Then

‖A1(Rt F)‖L p =
(ˆ

Rn

(¨
|x−y|<t

|Rt F(y, t)|2 dydt

tn+1

)p/2

dx

)1/p

≤
(ˆ

Rn

(¨
|x−y|<t

|Rt ([F(·, t)− Fx,2t ]χ�x,2t )(y)|2
dydt

tn+1

)p/2

dx

)1/p

+
∞∑

j=1

(ˆ
Rn

(¨
|x−y|<t

|Rt ([F(·, t)− Fx,2t ]χS j (�x,t ))(y)|2
dydt

tn+1

)p/2

dx

)1/p

= I + II. (4.5)

Using the uniform in t boundedness of Rt in L2(Rn) (following from the L2 − L2

off-diagonal estimates) and then the Poincaré inequality, we deduce that

I �
(ˆ

Rn

(¨
|x−y|<2t

|F(y, t)− Fx,2t |2 dydt

tn+1

)p/2

dx

)1/p

�
(ˆ

Rn

(¨
|x−y|<2t

|t∇‖F(y, t)|2 dydt

tn+1

)p/2

dx

)1/p

= ‖A2(t∇‖F)‖L p .

(4.6)
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On the other hand, by L2 − L2 off-diagonal estimates,

II �
∞∑

j=1

⎛

⎝
ˆ

Rn

(ˆ ∞

0
e−(2 j t)2/(ct2)

ˆ
S j (�x,t )

|F(y, t)− Fx,2t |2 dy
dt

tn+1

)p/2

dx

⎞

⎠
1/p

�
∞∑

j=1

j∑

k=1

(ˆ
Rn

(ˆ ∞

0
e− C 4 j

(
2 j

2k

)n ˆ
�x,2k+1 t

|F(y, t)

−Fx,2k+1t |2 dy
dt

tn+1

)p/2

dx

)1/p

, (4.7)

where we used the representation

F(y, t)− Fx,2t = F(y, t)− Fx,2 j+1t + Fx,2 j+1t − Fx,2 j t + · · · + Fx,22t − Fx,2t

for the second inequality. Using now the Poincaré inequality, we have

II �
∞∑

j=1

j∑

k=1

⎛

⎝
ˆ

Rn

(ˆ ∞

0
e− C 4 j

2 jn2−kn 22k
ˆ
�x,2k+1 t

|t∇‖F(y, t)|2 dy
dt

tn+1

)p/2

dx

⎞

⎠
1/p

�
∞∑

k=1

2−Mk

⎛

⎝
ˆ

Rn

(ˆ ∞

0

ˆ
�x,2k+1 t

|t∇‖F(y, t)|2 dy
dt

tn+1

)p/2

dx

⎞

⎠
1/p

, (4.8)

where M > n/2 can be arbitrarily large constant. However, (4.8) simply says that

II �
∞∑

k=1

2−Mk
∥∥∥A2k+1

(t∇‖F)
∥∥∥

L p
,

which in turn implies that

I + II �
∞∑

k=0

2−Mk+C(n,p)k‖A1(t∇‖F)‖L p � ‖A1(t∇‖F)‖L p ,

since M can always be taken large enough. We remark that the sharp constant
C(n, p) appearing in the change-of-aperture square function estimates was obtained
in [3], although for the purposes of the present argument we only need to know
that the dependence on the aperture is polynomial, and this was already established
in [16]. ��

At this point we are ready to turn to the proof of estimate (3.9).

Theorem 4.1 Assume that L is an elliptic operator with t-independent coefficients,
and that L and L∗ satisfy the De Giorgi–Nash–Moser bounds. Let w be the weak

123



Regularity problem 885

solution to the Dirichlet problem for L∗ with some C∞
0 data, guaranteed by Lemma 2.2,

and v be its antiderivative, defined by (3.7). Then

∣∣∣∣
ˆ

Rn
∇‖ f (x) · A∗‖(x)∇‖v(x, 0) dx

∣∣∣∣

≤ C ‖∇‖ f ‖L p
(‖A(t ∇(∂tv))‖L p′ + ‖N∗(∂tv)‖L p′

)
(4.9)

for every f ∈ C∞
0 (R

n) and 1 < p < ∞. Here C > 0 depends on the standard
constants only.

Clearly, (4.9) is only of interest when the right-hand side of (4.9) is finite. It is the
case, e.g., when the Dirichlet problem is solvable in L p′

, and the solution satisfies the
square function estimates. However, this information is not needed to establish (4.9).

Remark For future reference, we point out that the argument will establish a more
general result. To be specific, for L and f as in the statement of Theorem 4.1 we shall
demonstrate that

∣∣∣∣
ˆ

Rn
∇‖ f (x) · A∗‖(x)∇‖v(x, 0) dx

∣∣∣∣

≤ C ‖∇‖ f ‖L p
(‖A(t ∇(∂tv))‖L p′ + ‖N∗(∂tv)‖L p′

)

+
∣∣∣∣∣

¨
R

n+1+
∂2

t Pt f (x) L∗v(x, t) tdtdx

∣∣∣∣∣ , (4.10)

for every v : R
n+1+ → R with reasonable decay properties sufficient to justify conver-

gence of involved integrals. Here Pt := e−t2 L‖ , t > 0, is, as before, the heat semigroup
associated to the operator L‖. Clearly, when v is a solution, as in the statement of The-
orem 4.1, the last integral on the right hand side of (4.10) is equal to zero and (4.10)
reduces to (4.9).

Proof of Theorem 4.1 As discussed in the paragraph above (3.9), the left-hand side
of (4.9) is an absolutely convergent integral since ∇‖v(·, 0) ∈ L2

loc(R
n) and f ∈

C∞
0 (R

n). It will be convenient though to work with a particular approximation.
Let us recall that fε := Pε f converges to f as ε → 0 weakly in L̇ p

1 (R
n) for all

1 < p < 2 + ε. One way to see this is to invoke the bound

‖Ñ (∇Pt f )‖L p ≤ C‖∇‖ f ‖L p , 1 < p < 2 + ε,

(it was proved for the Poisson semigroup in [48], but the same proof, or, actually,
its simplified version, applies to the case of the heat semigroup as well). We only
remark that the full range of 1 < p < 2+ ε in the bounds for the heat semigroup Pε is
achievable due to the De Giorgi–Nash–Moser estimates on L which yield the Gaussian
bounds on the heat semigroup of L‖ [see the discussion preceding (4.2)]. Having this
at hand, we can use the general fact that the estimates on the non-tangential maximal
function of the gradient imply weak convergence to the boundary data in L̇ p

1 (R
n) (see
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the statements (i) and (ii) of Lemma 2.2 in the current manuscript and recall that they
do not use the assumption that u is a solution). In addition, we know that the off-
diagonal decay of the heat semigroup assures that tk∂k

t Pt f , as well as tk+1∇‖∂k
t Pt f ,

k = 0, 1, 2, . . . , decay exponentially away from the support of f ∈ C∞
0 (R

n) in the
sense of Gaffney off-diagonal estimates, that is, (4.1) holds (with a restriction q < 2+ε
in the case of estimates on tk+1∇‖∂k

t Pt f ).
It follows, in particular, that

´
Rn ∇‖Pε f (x) · A∗‖(x)∇‖v(x, 0) dx converges to the

left-hand side of (4.9) as ε → 0: we can apply off-diagonal decay of the gradient
of the heat semigroup far away from the support of f and the aforementioned weak
convergence in the remaining portion of the integral, as ∇‖v ∈ L2

loc(R
n).

Now, with fε = Pε f ,

ˆ
Rn

∇‖ fε(x) · A∗‖(x)∇‖v(x, 0) dx

= −
¨

R
n+1+

∂

∂t

(
∇‖Pt fε(x) · A∗‖(x)∇‖v(x, t)

)
dtdx

= −
¨

R
n+1+

∇‖∂tPt fε(x) · A∗‖(x)∇‖v(x, t) dtdx

−
¨

R
n+1+

∇‖Pt fε(x) · A∗‖(x)∇‖∂tv(x, t) dtdx

=
¨

R
n+1+

∇‖Pt fε(x) · A∗‖(x)∇‖∂2
t v(x, t) tdtdx

+2
¨

R
n+1+

∇‖∂tPt fε(x) · A∗‖(x)∇‖∂tv(x, t) tdtdx

+
¨

R
n+1+

∇‖∂2
t Pt fε(x) · A∗‖(x)∇‖v(x, t) tdtdx =: I + II + III. (4.11)

For any fixed ε > 0 the convergence of integrals and integration by parts above and
through the argument is justified by our assumptions on v (in particular, the properties
of v and ∂tv outlined in the paragraph above (3.9)), and off-diagonal estimates for Pt

and its derivatives. In particular, denoting

h(t) =
ˆ

Rn
∇‖PtPε f (x) · A∗‖(x)∇‖v(x, t) dx

one can show that h(t) → h(0) as t → 0 writing

h(t) =
ˆ

Rn
∇‖PtPε f (x) · A∗‖(x)∇‖(v(x, t)− v(x, 0)) dx

+
ˆ

Rn
∇‖(Pt − I )Pε f (x) · A∗‖(x)∇‖v(x, 0) dx + h(0),

and further splitting the two integrals in the last expression above into the parts where
|x | < R and |x | > R, for R large. The portions where |x | < R are handled using
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the L2
loc convergence of v and weak L̇2

1 convergence of the heat semigroup, and the
portions corresponding to |x | > R are estimated using the uniform local estimates on
∇‖v in (3.8) and Gaffney off-diagonal estimates for the heat semigroup. Then we let
R → +∞ and obtain the desired limit. In order to show that h(t) → 0 as t → +∞,
we recall that for large enough t (depending on the support of g) Lemma 2.3 entails that

|v(x, t)| ≤ Cg t− n+1
2 +1−ε, uniformly in x . This and the L2

loc estimates on the tangential
gradient of v (3.8), along with the Gaffney estimates for the heat semigroup, allow
one to integrate by parts and write

h(t) =
ˆ

Rn
L‖PtPε f (x) · v(x, t) dx,

at which point another application of Gaffney bounds and the aforementioned point-
wise decay of v shows that h(t) → 0 as t → +∞. The other terms, in particular, the
limits of th′(t), are handled in a similar manner.

Then

|I | =
∣∣∣∣∣

¨
R

n+1+
L‖Pt fε(x)∂2

t v(x, t) tdtdx

∣∣∣∣∣

�
∥∥∥A(t√L‖Pt (

√
L‖ fε))

∥∥∥
L p

∥∥∥A(t∂2
t v)

∥∥∥
L p′

�
∥∥∥A(t√L‖Pt (Pε

√
L‖ f ))

∥∥∥
L p

∥∥∥A(t∂2
t v)

∥∥∥
L p′

� ‖Pε
√

L‖ f )‖L p

∥∥∥A(t∂2
t v)

∥∥∥
L p′ � ‖∇‖ f ‖L p

∥∥∥A(t∂2
t v)

∥∥∥
L p′ , (4.12)

using boundedness of the square function based on t
√

L‖Pt (4.3), uniform in ε bounds
on Pε in L p, and then the Kato estimate (4.2), all available for 1 < p < ∞. Largely
by the same argument,

|II| �
∥∥∥A(t2∇‖

√
L‖Pt (

√
L‖ fε))

∥∥∥
L p

∥∥A(t∇‖∂tv)
∥∥

L p′

� ‖∇‖ f ‖L p
∥∥A(t∇‖∂tv)

∥∥
L p′ . (4.13)

The estimate on III is more delicate. We write

III =
¨

R
n+1+
∂2

t Pt fε(x) L∗v(x, t) tdtdx

+
n∑

j=1

¨
R

n+1+
∂2

t Pt fε(x) ∂ j A∗
j,n+1∂tv(x, t) tdtdx

+
n+1∑

j=1

¨
R

n+1+
∂2

t Pt fε(x) A∗
n+1, j∂ j∂tv(x, t) tdtdx =: III1 + III2 + III3.

(4.14)
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The term III1 shows up explicitly on the right hand side of (4.10). It is zero when
v(x, t) = ´∞

t w(x, s) ds and w ∈ W̃ 1,2(Rn+1+ ) is a solution as in the statement of the
Theorem. Indeed, according to the definition (1.2), since w is a solution,

¨
R

n+1+
A∇� ∇w dxdt = 0 (4.15)

for any � ∈ C∞
0 (R

n+1+ ). Now, for any fixed ε > 0, using Gaffney off-diagonal
estimates, uniform L2

loc estimates on v and its derivatives, pointwise decay of solutions
at infinity, as well as convergence statements, much as above, one can justify the
following computations

III1 = −
¨

R
n+1+

∇x,t

(
t∂2

t Pt fε(x)
)

A∗(x)∇x,tv(x, t) dtdx

= −
¨

R
n+1+

∇x,t

(
t∂2

t Pt fε(x)
)

A∗(x)
ˆ ∞

t
∇x,sw(x, s) ds dtdx

= −
¨
(x,s)∈R

n+1+
A(x)∇x,s

ˆ s

0

(
t∂2

t Pt fε(x)
)

dt ∇x,sw(x, s) dsdx .

Furthermore,

ˆ s

0

(
t∂2

t Pt fε(x)
)

dt = s∂sPs fε −
ˆ s

0
∂tPt fε dt = s∂sPs fε − Ps fε + fε.

The latter vanishes on the boundary and using, as usual, Gaffney estimates and uniform
bounds/decay at infinity for the solutions, we can furnish a limiting procedure showing
that (4.15) implies III1 = 0.

The term III3 can be handled just as I and II above and gives the bound

III3 � ‖∇‖ f ‖L p ‖A(t∇∂tv)‖L p′ , (4.16)

once again using (4.3) and (4.2).
As for III2,

III2 = C
n∑

j=1

¨
R

n+1+
∂ j∂

2
t Pt fε(x) A∗

j,n+1(I − Pt )∂tv(x, t) tdtdx

+ C
n∑

j=1

¨
R

n+1+
∂2

t Pt fε(x)
(
∂ j A∗

j,n+1 Pt∂tv(x, t)
)

tdtdx

=: III2,1 + III2,2, (4.17)

where Pt is a nice approximation of identity, e.g., the heat semigroup of the Laplacian.
Since Rt := I − Pt kills constants, and, by virtue of standard heat kernel bounds,
satisfies off-diagonal decay estimates, one can use the Poincaré inequality to produce
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the gradient and get an estimate on III2,1 akin to that for I + II. Indeed, according to
Lemma 4.1, square function estimates (4.3) and Kato estimate (4.2),

III2,1 � ‖Pε
√

L‖ f ‖L p ‖A((I − Pt )∂tv)‖L p′ � ‖∇‖ f ‖L p ‖A(t∇∂tv)‖L p′ .

Concerning III2,2, we further write

III2,2

= C
n∑

j=1

¨
R

n+1+

(
4t2 L2‖e−t2 L‖ − 2L‖e−t2 L‖

)
fε(x)

(
∂ j A∗

j,n+1 Pt∂tv(x, t)
)

tdtdx

=
n∑

j=1

¨
R

n+1+

(
C1t2 L2‖e− 3

4 t2 L‖ + C2 L‖e− 3
4 t2 L‖

)
fε(x)P∗

t/2

(
∂ j A∗

j,n+1 Pt∂tv(x, t)
)

tdtdx

=
n∑

j=1

¨
R

n+1+

(
C1t2 L2‖e− 3

4 t2 L‖ + C2 L‖e− 3
4 t2 L‖

)
fε(x)×

(
P∗

t/2∂ j A∗
j,n+1 Pt∂tv(x, t)− (P∗

t/2∂ j A∗
j,n+1)(Pt∂tv(x, t))

)
tdtdx

+
n∑

j=1

¨
R

n+1+

(
C1t2 L2‖e− 3

4 t2 L‖ + C2 L‖e− 3
4 t2 L‖

)
fε(x)

× (P∗
t/2∂ j A∗

j,n+1) (Pt∂tv(x, t)) tdtdx = III′2,2 + III′′2,2, (4.18)

where (P∗
t/2∂ j A∗

j,n+1) (Pt∂tv(x, t)) is interpreted as a product of two functions, while
P∗

t/2∂ j A∗
j,n+1 Pt∂tv(x, t), as before, is a result of an operator P∗

t/2∂ j A∗
j,n+1 Pt acting

on the function ∂tv.
Much as in the analysis of III2,1, we note that the operator

Rt := t
(
P∗

t/2∂ j A∗
j,n+1 Pt − (P∗

t/2∂ j A∗
j,n+1)Pt

)

kills constants and satisfies L2 − L2 off-diagonal estimates (see, e.g., [8]), so that by
Lemma 4.1 one can bound III′2,2 similarly to III2,1. Finally,

III′′2,2 �
n∑

j=1

∥∥∥C(t P∗
t/2∂ j A∗

j,n+1)

∥∥∥
L∞

×
∥∥∥A

((
C1t3L2e− 3

4 t2 L + C2t Le− 3
4 t2 L

)
fε

)∥∥∥
L p

‖N∗(Pt∂tv)‖L p′ .

(4.19)

The latter estimate follows from the duality of tent spaces T p
2 and T p′

2 and the fact that

T ∞
2 ·T p′

∞ ↪→ T p′
2 (see [16] for the case p′ > 2 and [17,35], p. 313 for all 0 < p′ < ∞).
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For each j , the estimate on the Carleson measure of C(t P∗
t/2∂ j A∗

j,n+1) is controlled,
since the Kato problem for L∗‖ is equivalent to the statement that

‖C(tP∗
t/2∇‖ · �b)‖L∞(Rn) ≤ C‖�b‖L∞(Rn),

for every �b ∈ L∞(Rn,Cn) [8]. Hence,

III′′2,2 �
∥∥∇‖ f

∥∥
L p ‖N∗(∂tv)‖L p′ . (4.20)

Indeed, recall that Pt is a “nice” approximation of identity, e.g., the heat semigroup of
the Laplacian and hence, one can drop it inside the non-tangential maximal function
using the fact that N∗(Pt (F(·, t)) ≤ M(N∗F)with M denoting the Hardy–Littlewood
maximal function. ��

This finishes the proof of Theorem 3.1.

5 Boundedness of layer potentials and estimates for solutions in R
n+1
+

Let us start by recalling a few known estimates on the layer potentials and related
operators that will be used throughout this section.

Proposition 5.1 Suppose that L is t-independent, that L and its adjoint L∗ satisfy
the De Giorgi–Nash–Moser bound (1.7). Then the single layer potential satisfies the
following estimates in L2:

ˆ ∞

−∞

ˆ
Rn

∣∣∣t∂t∇SL
t f (x)

∣∣∣
2 dxdt

|t | ≤ C ‖ f ‖2
L2(Rn)

, (5.1)

sup
t �=0

(
‖(SL∗

t ∇) f ‖L2(Rn) + ‖∇SL
t f ‖L2(Rn)

)
� ‖ f ‖L2(Rn), (5.2)

‖Ñ (∇SL±t f )‖L2(Rn) � ‖ f ‖L2(Rn). (5.3)

Moreover, there exists ε > 0 such that for all 1 < p < 2 + ε we have

‖Ñ (∇SL±t f )‖L p(Rn) � ‖ f ‖L p(Rn), (5.4)

and for the dual exponent p′,

‖N∗((SL∗
±t ∇) f )‖L p′

(Rn)
� ‖ f ‖L p′

(Rn)
, (5.5)

‖A(t∇SL∗
±t ∇ f )‖L p′ � ‖ f ‖L p′

(Rn)
. (5.6)

Analogous bounds hold for L∗. The implicit constants in all inequalities and ε > 0
depend upon the standard constants only.
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Here and below

(
St D j

)
f (x) :=

ˆ
Rn

∂

∂y j
E(x, t; y, 0) f (y) dy, 1 ≤ j ≤ n, (5.7)

(St Dn+1) f (x) :=
ˆ

Rn

∂

∂s
E(x, t; y, s)

∣∣
s=0 f (y) dy, (5.8)

and we set

(St∇) :=
(
(St D1) , (St D2) , . . . , (St Dn+1)

)
, and (St∇) · �f :=

n+1∑

j=1

(
St D j

)
f j ,

(5.9)
where �f takes values in C

n+1. Similarly,

(
St∇‖

) :=
(
(St D1) , (St D2) , . . . , (St Dn)

)
, and

(
St∇‖

) · �f :=
n∑

j=1

(
St D j

)
f j ,

(5.10)
where �f takes values in C

n .
Note that for t-independent operators, we have by translation invariance in t that

(St Dn+1) = − ∂t St .

Remark 5.1 We remark that, considering only the tangential gradient ∇‖ in (5.5), the
latter may be re-formulated as

SL∗
±t : L p′

−1 → T p′
∞ (Rn+1+ ). (5.11)

We further note that (5.4), (5.5), t-independence of L , and the De Giorgi–Nash–Moser
bounds immediately imply that

∂t SL
t : L p(Rn) → T p∞(Rn+1+ ), 1 < p < ∞, (5.12)

under the assumptions of Proposition 5.1.

Proof of Proposition 5.1 The square function bound (5.1) was proved in [52] (for an
alternative proof, see [29]). The fact that (5.1) implies (5.2) and (5.3) is basically
a combination of results in [6] and [4]. See Proposition 1.19 in [35] for a detailed
discussion and references. The fact that (5.2) for L and L∗ implies (5.4) and (5.5) has
been proved in [37, Theorem 1.1 and estimate (4.45)]. Finally, (5.6) can be found in
[35]. ��
Proposition 5.2 Suppose that L is t-independent, that L and its adjoint L∗ satisfy the
De Giorgi–Nash–Moser bound (1.7). Then

∇L−1 div : T p
2 → T̃ p∞, 1 < p < 2 + ε, (5.13)

∇L−1 1
t : T p

1 → T̃ p∞, 1 < p < 2 + ε, (5.14)
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for some ε > 0, depending on the standard constants only. Here the operator L−1 1
t

is to be interpreted via

(
L−1 1

t �
)
(y, s) :=

¨
R

n+1+
E(y, s; x, t)�(x, t)

dxdt

t
, (y, s) ∈ R

n+1+ . (5.15)

Proof The Proposition was proved in [35]. ��
Proposition 5.3 Suppose that L is t-independent, that L and its adjoint L∗ satisfy
the De Giorgi–Nash–Moser bound (1.7). Then there exists ε > 0 such that for all
1 < p < 2 + ε, we have

∇DL±t : L̇ p
1 → T p∞(Rn+1+ ). (5.16)

In particular,
‖Ñ (∇DL±t f )‖L p(Rn) ≤ C‖∇‖ f ‖L p(Rn). (5.17)

Here C > 0 and ε > 0 depend upon the standard constants only. Analogous bounds
hold for L.

Proof By the usual density considerations, it is enough to demonstrate (5.17) for
f ∈ C∞

0 (R
n). To start, let us concentrate on the estimate for ∂t DL

t , that is,

‖Ñ (∂t DL
t f )‖L p(Rn) � ‖∇‖ f ‖L p(Rn). (5.18)

To this end, we note that L∗
y,s E∗(y, 0; x, t) = 0 for all (x, t) ∈ R

n+1+ , since (y, 0)
is on the boundary. Hence, one can formally write

∂t

ˆ
Rn
∂νA∗ ,y E∗(y, 0; x, t) f (y) dy

=
ˆ

Rn
∂sen+1 A∗(y)∇y,s E∗(y, s; x, t)

∣∣∣
s=0

f (y) dy

= −
ˆ

Rn

n∑

j=1

∂ j e j A∗(y)∇y,s E∗(y, s; x, t)
∣∣∣
s=0

f (y) dy

=
ˆ

Rn
L∗‖,y E∗(y, 0; x, t) f (y) dy

−
ˆ

Rn

n∑

j=1

∂ j A∗
j,n+1(y) ∂s E∗(y, s; x, t)

∣∣∣
s=0

f (y) dy

=
ˆ

Rn
A∗‖(y)∇y E∗(y, 0; x, t)∇y f (y) dy

+
ˆ

Rn

n∑

j=1

A∗
j,n+1(y) ∂s E∗(y, s; x, t)

∣∣∣
s=0

∂ j f (y) dy. (5.19)

Of course, the formal computations in (5.19) should be interpreted in the weak sense,
using, in particular, the weak definition of the normal derivative (2.7) (see the discus-
sion in proof of Theorem 5.1 for more details).
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The desired estimate on the second term on the right-hand side of (5.19) follows
from (5.12). Passing to the first term, recall that the tent space T̃ p∞ can be realized as

a space of the linear functionals on T̃ p′
1 , where the latter is defined as a collection of

F ∈ M(Rn+1+ ) such that

‖F‖
T̃ p′

1
:= ‖C1(W2 F)‖L p′ < ∞,

where

W2 F(x, t) =
⎛

⎜⎝
  

W (x,t)

|F(y, s)|2dyds

⎞

⎟⎠

1
2

, (x, t) ∈ R
n+1+ .

Indeed, it was proved in [38], Theorem 3.2, that T̃ p∞ =
(

T̃ p′
1

)∗
, 1 < p < ∞. Pairing

the first term on the right-hand side of (5.19) with �, one obtains

¨
R

n+1+

ˆ
Rn

A∗‖(y)∇y E∗(y, 0; x, t)∇y f (y) dy�(x, t)
dxdt

t

=
ˆ

Rn
A∗‖(y)∇y T�(y, 0)∇y f (y) dy, (5.20)

where T = (L∗)−1 1
t , that is, as before,

T�(y, s) = Ts�(y) :=
¨

R
n+1+

E∗(y, s; x, t)�(x, t)
dxdt

t
. (y, s) ∈ R

n+1+ .

(5.21)
The goal is to show that

∣∣∣∣
ˆ

Rn
A∗‖(y)∇y T�(y, 0)∇y f (y) dy

∣∣∣∣ � ‖�‖
T̃ p′

1
‖∇‖ f ‖L p , (5.22)

for any � ∈ T̃ p′
1 .

It is sufficient to verify (5.22) for � smooth and compactly supported in R
n+1+ ,

as such functions are dense in T̃ p′
1 . At this point, recall the estimate (4.9) or, more

precisely, (4.10). One can carefully track the proof of (4.9)–(4.10) to see that all the
computations are justified for v := T� with � smooth and compactly supported in
R

n+1+ . However, v = T� is not a solution in R
n+1+ and hence, the term III1 (that is,

the last integral on the right-hand side of (4.10)) will not be annulated. Instead, we
have L∗v(x, t) = L∗T�(x, t) = �(x, t)/t for (x, t) ∈ R

n+1+ .
All in all, it is enough to bound the right-hand side of (4.10) with v = T�,

� ∈ T̃ p′
1 (Rn+1+ ). Thus, one has to prove:

‖A(t ∇∂t Tt�)‖L p′
(Rn)

� ‖�‖
T̃ p′

1 (Rn+1+ )
, ‖N∗(∂t Tt�)‖L p′

(Rn)
� ‖�‖

T̃ p′
1 (Rn+1+ )

,
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or, equivalently, in the language of tent spaces,

‖t∇∂t Tt�‖
T p′

2 (Rn+1+ )
� ‖�‖

T̃ p′
1 (Rn+1+ )

, (5.23)

‖∂t Tt�‖
T p′
∞ (Rn+1+ )

� ‖�‖
T̃ p′

1 (Rn+1+ )
, (5.24)

and to bound the last term on the right-hand side of (4.10) with f in place of f .
However,

¨
R

n+1+
∂2

t Pt f (x) L∗T�(x, t) tdtdx =
¨

R
n+1+
∂2

t Pt f (x)�(x, t) dtdx, (5.25)

so that using once again duality relationship for tent spaces the desired bound on (5.25)
reduces to

‖Ñ (t∂2
t Pt f )‖L p(Rn) � ‖∇‖ f ‖L p(Rn) = ‖∇‖ f ‖L p(Rn). (5.26)

The estimate (5.26) follows from the bound Ñ (t∂2
t Pt f ) � M(∇‖ f ), while the latter

can be proved essentially by the same argument as that in (4.5)–(4.8), using the off-
diagonal decay estimates on t2∂2

t Pt and the Poincaré inequality.
It remains to discuss (5.23) and (5.24). A direct computation shows that the adjoint

of the operator ∂t T , under the usual tent space pairing 〈�,�〉 = ˜
R

n+1+
�� dxdt

t , is

−∂s L−1 1
t (since by t-independence one can swap the derivatives in t and s on the

fundamental solution). Since T p∞ =
(

T p′
1

)∗
, 1 < p < ∞, (see, e.g., [38], Theorem

3.2, or the duality argument in [16]), (5.24) follows from (5.14) in the range 1 < p <
2 + ε.

Finally, the adjoint of the operator t∇∂t T , under the tent space pairing 〈�,�〉 =˜
R

n+1+
�� dxdt

t , is −∂s L−1 div, and T p
2 =

(
T p′

2

)∗
, 1 < p < ∞, (see [16]), so that

(5.23) follows from (5.13), once again, in the range 1 < p < 2 + ε, as desired.
This finishes the proof of (5.18).
We claim that the desired bound (5.17) follows from (5.18), or, to be precise, from

the estimate
‖N∗(∂t DL

t f )‖L p(Rn) ≤ C‖∇‖ f ‖L p(Rn). (5.27)

Since ∂t DL
t f is a solution, (5.27) is equivalent to (5.18) by the De Giorgi–Nash–Moser

estimates.
Indeed, using the argument in [43], p. 494, we see that the left-hand side of (5.17)

is controlled by the sum of ‖M(∇‖DL
t

∣∣∣
t=0

f )‖L p(Rn) and ‖M(N∗(∂t DL
t f ))‖L p(Rn),

where M is the Hardy–Littlewood maximal function on R
n . The first of these two

terms is bounded by ‖∇‖ DL
t

∣∣∣
t=0

f ‖L p . The second one is bounded by the left-hand

side of (5.27).
Thus, it remains to show that

∇‖ DL
t

∣∣∣
t=0

: L̇ p
1 (R

n) → L p(Rn), 1 < p < 2 + ε. (5.28)
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Let f, g ∈ C∞
0 (R

n), (where g is vector-valued) and set w(x, t) := SL∗
−t div‖ g(x),

x ∈ R
n , so that, by (5.5),

‖w(·, 0)‖L p′
(Rn)

� ‖g‖L p′
(Rn)

. (5.29)

Note that w is a solution (for L∗) in the lower half-space, and choose an appropriate
solution v in the lower half-space such that ∂tv = w. Dualizing, and using the equation,
we then have

ˆ
Rn

∇‖Dt

∣∣∣
t=0

f (x) g(x) dx =
ˆ

Rn
f (x) ∂νA∗w(x) dx =

ˆ
Rn

f (x) ∂t∂νA∗v(x) dx

= −
n∑

j=1

ˆ
Rn
∂ j f (x) A∗

j,n+1∂tv(x) dx −
ˆ

Rn
∇‖ f A∗‖∇‖v dx =: I + II.

For term I , we just use (5.29), and for term II, we apply estimate (3.9) and then (5.5)
and (5.6) (one can go over the argument of (3.9) and justify integration by parts and
convergence of involved integrals even though the data of w on the boundary is not
C∞

0 ). ��
Theorem 5.1 Let L be an elliptic operator with t-independent coefficients such that
the solutions to Lu = 0 and L∗u = 0 in R

n+1± satisfy the De Giorgi–Nash–Moser

estimates. Let u be the solution to the Dirichlet problem Lu = 0 in R
n+1+ , u

∣∣∣
∂Rn+1+

= f ,

for some f ∈ C∞
0 (R

n), in the sense of Lemma 2.2. Then for 1 < p < 2 + ε

‖Ñ (∇u)‖L p(Rn) ≤ C
(‖∇‖ f ‖L p(Rn) + ‖∂νA u‖L p(Rn)

)
, (5.30)

with C and ε depending on the standard constants only.

Proof By Green’s formula, the solution to Lu = 0 in R
n+1+ , u

∣∣∣
∂Rn+1+

= f , can be

written as

u(x, t) = −
ˆ

Rn
∂νA∗ ,y E∗(y, 0; x, t) f (y) dy +

ˆ
Rn

E(x, t; y, 0) ∂νA u(y) dy,

(5.31)
or, in the language of layer potentials,

u = −DL
t ( f )+ SL

t (∂νA u). (5.32)

With (5.32) at hand, (5.30) follows directly from (5.17) and (5.4).
It remains to justify the use of the Green’s formula in the present context.
To this end, fix X0 := (x0, t0) ∈ R

n+1+ , and let ε > 0, with ε < t0/8. We define a
nice approximate identity on R

n+1 in the standard way as follows. Let� ∈ C∞
0 (R

n+1),
with� ≥ 0, supp(�) ⊂ B(0, 1), and

˜
Rn+1 � = 1, and set�ε(X) := ε−n−1�(X/ε).
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For (y, s) ∈ R
n+1, we set

Hε(y, s) :=
(
�ε ∗ E∗(y, s, ·, ·)

)
(x0, t0).

We observe that by definition of the fundamental solution E∗,

Hε = (
L∗)−1

�X0
ε ,

where �X0
ε (X) := �ε(X0 − X) ∈ C∞

0 (B(X0, ε)). In particular, then, we have that
Hε ∈ Ẇ 1,2(Rn+1).

Let F be a C∞
0 (R

n+1) extension of f = u(·, 0), and set

ũ(x, t) :=
{

u(x, t), t ≥ 0
F(x, t), t ≤ 0.

Since ε � t0, and since L∗Hε = �
X0
ε in the weak sense in R

n+1 (and in particular,
L∗Hε = 0 in the lower half-space), we have

�ε ∗ u(X0) =
¨

Rn+1
ũ(X)�X0

ε (X) d X =
¨

Rn+1
∇ũ · A∗∇Hε

=
¨

R
n+1+

A∇u · ∇Hε +
¨

R
n+1−

∇F · A∗∇Hε

= 〈∂νA u , hε〉 − 〈∂νA∗ Hε , f 〉, (5.33)

where hε := Hε(y, 0), and where in the last step we have used Lemma 2.4. By
definition of Hε, (5.32) follows, letting ε → 0, once we establish the convergence in
ε for both terms on the right-hand side of (5.33).

The convergence of the first term is quite easy, as hε → E∗ in L̇2
1/2(R

n).
Let us discuss the second one. In this regard, one has to show that for ε � t0, the

variational co-normal derivative −∂νA∗ Hε, initially defined in the sense of Lemma 2.4,
belongs to L2(Rn), and satisfies

− ∂νA∗ Hε(y, 0) = en+1 · A∗(�ε ∗ ∇y,s E∗(y, s, ·, ·)∣∣s=0

)
(X0). (5.34)

That the right hand side of (5.34) belongs to L2(Rn) follows directly from [6,
Lemma 2.8]. Thus we need only verify the identity (5.34). By Lemma 2.4, applied
in the lower half-space, it is enough to verify that for any F ∈ C∞

0 (R
n+1), with

F(·, 0) := f , we have

¨
R

n+1−
∇F · A∗∇Hε =

ˆ
Rn

f (y) �N · A∗
(
�ε ∗ ∇y,s E∗(y, s, ·, ·)∣∣s=0

)
(X0) dy.

(5.35)
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To this end, let Pη be a nice approximate identity in R
n , applied in the y variable. By

the divergence theorem

ˆ
Rn

f (y) �N · Pη
(

A∗
(
�ε ∗ ∇y,s E∗(y, s, ·, ·)∣∣s=0

)
(X0)

)
dy

=
¨

R
n+1−

div

(
F(y, s) Pη

(
A∗

(
�ε ∗ ∇y,s E∗(y, s, ·, ·)

)
(X0)

))
dyds

=
¨

R
n+1−

∇F(y, s) · Pη (A∗∇Hε(y, s)) dyds, (5.36)

where in the last step we have used the definition of Hε, and that it is a null solution
of L∗ in R

n+1− . We now obtain (5.35) by letting η → 0.
This finishes the argument. ��

Corollary 5.1 Assume that L is an elliptic operator with t-independent coefficients,
and that L and L∗ satisfy the De Giorgi–Nash–Moser condition. If for some 1 < p <
2 + ε the Dirichlet problem (Dp′ ) for L∗ is solvable in R

n+1± and, in addition to (1.5),
the solution satisfies the square function estimates (1.11), then the Regularity problem
(Rp) for L is solvable in R

n+1± . That is, assertion (a) implies (b) in Theorem 1.1.

Proof The combination of Theorems 5.1 and 3.1 entails that every solution to Lu = 0

in R
n+1+ , u

∣∣∣
∂Rn+1+

= f ∈ C∞
0 (R

n) in the weak sense of Lemma 2.2 satisfies the estimate

(1.6). ��
Lemma 5.1 Assertions (b) and (f) of Theorem 1.1 are equivalent.

Proof The fact that assertion (b) of Theorem 1.1 implies ( f ) was proved in [13],
Remark 9.15. Indeed, our notion of solvability of (Rp) as defined in the Introduction,
complemented by the Remark following Lemma 2.1, implies compatible solvability of
problem (D)p,1 as defined in [13] (see definitions in Section 2.4 of [13], in particular,
Definition 2.37 and the definition of compatible solvability right after it). Note, in
particular, our comments regarding the sense of the convergence to the boundary data
in the introduction to the present manuscript.

Then Remark 9.15 in [13] detailed the passage from compatible solvability to the
well-posedness.

The fact that ( f ) implies (b) in Theorem 1.1 follows directly from the definitions.
��

6 Invertibility of layer potentials. Layer potential representations of solutions

Propositions 5.1 and Remark 5.1 ascertain that the layer potentials are always bounded
for elliptic operators with t-independent coefficients that satisfy the De Giorgi–Nash–
Moser bounds. We note that, furthermore, (5.4) and Lemma 2.1 imply that for f ∈
L p(Rn), 1 < p < 2 + ε, the single layer potential SL f has well-defined normal and
tangential derivatives on the boundary in the sense of Lemma 2.1 (denoted below by
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−�en · A ∇SL f and ∇‖SL f , respectively). Both �en · A ∇SL f and ∇‖S f belong to L p

with the appropriate estimates. In particular,

SL : L p(Rn) → L̇ p
1 (R

n), (6.1)

is a bounded operator for all 1 < p < 2 + ε. When necessary, we shall use the
superscripts + and − to underline the limit taken from the upper and the lower half
space, respectively.

Recall the following jump relations:

�en · A(∇SL)+g − �en · A(∇SL)−g = −g, (6.2)

(∇‖SL)+g − (∇‖SL)−g = 0, (6.3)

(DL)+ f − (DL)− f = − f. (6.4)

The jump relations (6.2), (6.3) can be found, e.g., in the proof of [6, Lemma 4.18]
for g ∈ L2(Rn), and then extended to any g ∈ L p(Rn), 1 < p < 2+ε, using (5.4) and
Lemma 2.1. In particular (SL)+ = (SL)− regarded as operators L p(Rn) → L̇ p

1 (R
n),

1 < p < 2 + ε. Similarly, (6.4) is established for f ∈ C∞
0 (R

n) in [6, Lemma 4.18]
and can be extended by continuity to f ∈ L̇ p

1 (R
n) for all p such that (5.17) holds.

Proposition 6.1 Assume that L is an elliptic operator with t-independent coefficients,
and that L and L∗ satisfy the De Giorgi–Nash–Moser condition. Assume further that
for some 1 < p < ∞ the Regularity problem (Rp) for the operator L is solvable
in R

n+1± . Then the operator (SL)± : L p(Rn) → L̇ p
1 (R

n) is compatibly invertible,
1
p + 1

p′ = 1. An analogous statement holds for L∗.

A few remarks are in order here.

Remark 6.1 We note that in the statement of Proposition 6.1 it is sufficient to assume
instead of solvability of (Rp) that the Dirichlet problem (Dp′) for L∗ is solvable in
R

n+1± and, in addition to (1.5), the solution satisfies the square function estimates
(1.11). This would entail (Rp) by Corollary 5.1.

Remark 6.2 Finally, let us point out that the solvability of (Rp) for some 1 < p < 2+ε
implies that for every f ∈ C∞

0 (R
n) the weak solution to Lu = 0 in R

n+1+ , u
∣∣∣
∂Rn+1+

=
f ∈ C∞

0 (R
n) has a variational conormal in L p(Rn) which satisfies estimate (3.1).

This is a consequence of the definition of (Rp) and Lemma 2.1, (2.2).

Proof of Proposition 6.1 First of, the boundedness of (SL)± follows from the discus-
sion of (6.1) above. The bounds from below can be established as follows. By (6.2),
(6.3) and Lemma 2.1, for any g ∈ C∞

0 (R
n) we have

‖g‖L p(Rn) = ‖�en · A(∇SL)+g − �en · A(∇SL)−g‖L p(Rn) ≤ C ‖(∇‖SL g)±‖L p(Rn).

(6.5)
To justify this, we point out that whenever g ∈ C∞

0 (R
n), the functions (SL)

±g belong
to the space L2

1(R
n)∩ Lr (Rn)∩ Lq(Rn) from Lemma 2.2 and to L̇ p

1 (R
n). This can be
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seen from (6.1) and its dual. Hence, (SL)
±g can be approximated by fk ∈ C∞

0 (R
n)

in L2
1(R

n) ∩ Lr (Rn) ∩ Lq(Rn) and in L̇ p
1 (R

n). Using Lemma 2.5 in [6], one can
also show that the solution St g belongs to W̃ 1,2(Rn+1+ ). Now, for each such fk there
exists a weak solution of the Dirichlet problem by Lemma 2.2 (call it uk) and, due
to (2.3), these solutions converge to St g in W̃ 1,2(Rn) norm. Moreover, uk satisfy
estimate (3.1) by our assumptions and Remark 6.2. Hence, the corresponding weak
conormal derivatives ∂νA uk form a Cauchy sequence in L p and thus, converge to some
L p function, h, in L p norm. On the other hand, as mentioned above, uk converge to
St g in W̃ 1,2(Rn) norm and hence, ∂νA uk converge to the conormal derivative of St g in
the sense of distributions. Thus, the conormal derivative of St g can be identified with
h and its L p norm is bounded by the L p norm of the tangential derivative, as desired.

Next, we note that (6.5) for all g ∈ C∞
0 (R

n) implies (6.5) for all g ∈ L p(Rn).
Indeed, every g ∈ L p(Rn) can be approximated in L p by C∞

0 functions gk , and
by (6.1) (∇‖SL g)± is well-defined, belongs to L p, and the sequence (∇‖SL gk)

±
converges in L p to (∇‖SL g)±. Thus, (6.5) holds for all g ∈ L p(Rn) as well.

Let us show that (SL)± is surjective2. Choose some f ∈ C∞
0 (R

n). Let u± be the
solutions to the Dirichlet problem in the weak sense of Lemma 2.2 with boundary
data f in R

n+1± . By our assumptions and Remark 6.2, the distributions g± = �en ·
A∇u±

∣∣∣
∂Rn+1±

lie in L p(Rn).

We shall show that

(SL)±(g− − g+) = f in L̇ p
1 (R

n). (6.6)

According to the proof of Theorem 5.1, we have

u± = −(DL
t )

±( f )+ (SL
t )

±(g±).

Using jump relations (6.2)–(6.4), we deduce that

u+
∣∣∣
Rn

− u−
∣∣∣
Rn

= f + (SL)±(g+ − g−).

Restriction to the boundary is interpreted here in the sense of the non tangential limit
and the weak-L p limit of the gradient, and the equality holds in L̇ p

1 (R
n). We used, in

particular, the fact that (SL)+ = (SL)− regarded as operators L p(Rn) → L̇ p
1 (R

n),
alluded to above. On the other hand, by definition of u as a solution to (Rp) with data

f , we have u+
∣∣∣
Rn

− u−
∣∣∣
Rn

= 0, again in the sense of the non-tangential limit of

the gradient and equality in L̇ p
1 (R

n). The combination of these two facts immediately
yields (6.6) for f ∈ C∞

0 (R
n). Now, for general f ∈ L̇ p

1 (R
n) we can use the limiting

procedure, (6.6) for C∞
0 functions and (6.5) to find g ∈ L p(Rn) such that (SL)±g = f .

Let us discuss the compatibility of the involved inverses. Note that by construction,
if f ∈ C∞

0 (R
n) then g := g− − g+ such that (SL)±g = f satisfies g ∈ L p(Rn)

2 We note that the surjectivity argument presented here was inspired by the surjectivity result for layer
potentials in [13].
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and also g ∈ L̇2−1/2(R
n). By density we can conclude that the operator (SL)± :

L p(Rn) ∩ L̇2−1/2(R
n) → L̇ p

1 (R
n) ∩ L̇2

1/2(R
n) is also surjective (cf. Theorem 9.13 in

[13]). Thus, the resulting inverse indeed satisfies the compatibility property (see the
proof of Theorem 3.18 in [13] for a detailed discussion). ��
Corollary 6.1 Assume that L is an elliptic operator with t-independent coefficients,
and that L and L∗ satisfy the De Giorgi–Nash–Moser condition.

If (Rp) is solvable in R
n+1± for some 1 < p < 2 + ε then the solution can be

represented by means of compatible layer potentials, that is, assertion (b) implies (c)
in Theorem 1.1. An analogous statement holds for L∗.

Proof The corollary is a combination of the boundedness results in Proposition 5.1 and
compatible invertibility of layer potentials following from Proposition 6.1. We only
point out that, in the presence of compatibility, the solution with C∞

0 data furnished
by layer potentials is indeed the weak solution, thus complying with our definitions.
Various versions of this fact have already been used above, but let us repeat the argu-
ment. Indeed, due to the fact that by our assumptions for every f ∈ C∞

0 (R
n) the

function u(x, t) = SL∗
t

(
SL∗

0

)−1
f (x), (x, t) ∈ R

n+1± , furnishes a solution and that

the involved inverses are compatible, we see that
(

SL∗
0

)−1
f ∈ L̇2

1/2(R
n) and thus,

∇SL∗
t

(
SL∗

0

)−1
f ∈ L2(Rn+1+ ) (6.7)

(see, e.g., [13], Theorem 3.1). With a little more care one can show that in fact,

SL∗
t

(
SL∗

0

)−1
f ∈ W̃ 1,2(Rn+1+ ), either by a direct computation, or, alternatively, using

(6.7) and the procedure described in the proof of Lemma 2.2. ��
Corollary 6.2 Assume that L is an elliptic operator with t-independent coefficients,
and that L and L∗ satisfy the De Giorgi–Nash–Moser condition.

If (Rp) is solvable in R
n+1± for L for some 1 < p < 2 + ε with the solution

represented by means of compatible layer potentials then (Dp′) is solvable in R
n+1±

for L∗, with the solution represented by means of compatible layer potentials, that is,
assertion (c) implies (d) in Theorem 1.1. An analogous statement holds for L∗.

Proof We note first that for any fixed t > 0 the operator SL∗
t is the Hermitian adjoint

of SL
t (hence, in particular, it is bounded (SL∗

t )± : L p′
−1(R

n) → L p′
(Rn) uniformly

in t – the fact that one can also deduce from (5.5)). Moreover, there exists a bounded

operator (SL∗
)± : L p′

−1(R
n) → L p′

(Rn), such that for every fixed f ∈ L p′
(Rn) the

sequence (SL∗
t )± f converges to (SL∗

)± f weakly in L p′
and finally, the operator SL∗

is the Hermitian adjoint of SL . All this is detailed in [35,37].
In the assumptions of the present Corollary, the operator (SL)± : L p(Rn) →

L̇ p
1 (R

n) is bounded and invertible. It follows that the operator

(SL∗
)± : L p′

−1(R
n) → L p′

(Rn)
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is bounded and invertible. Moreover, compatibility of inverses would be inherited
by the dual. Taking in account (5.5), the solvability of the Dirichlet problem via the

representation (1.14) essentially follows immediately once we observe that h ∈ L p′
−1

if and only if there exists �H ∈ L p′
such that div‖ �H = h, with the accompanying

norm equivalence. Note that we already showed in the proof of Corollary 6.1 that, in
the presence of compatibility, the solution with C∞

0 data furnished by layer potentials
is indeed the weak solution, thus complying with our definitions. ��
Proposition 6.2 Assume that L is an elliptic operator with t-independent coefficients,
and that L and L∗ satisfy the De Giorgi–Nash–Moser condition.

If (Dp′ ) is solvable in R
n+1± for L∗ for some 1 < p < 2 + ε with the solution

represented by means of compatible layer potentials then (Dp′) is well-posed in R
n+1±

for L∗, that is, assertion (d) implies (e) in Theorem 1.1. An analogous statement holds
for L.

Proof First, we show that the solvability of (Dp′ ) with compatible layer potential
representations implies that for every f ∈ L p′

(Rn) there exists a solution to the
Dirichlet problem (Dp′) with the appropriate convergence to the boundary data. For
now, as in the proof of Corollary 6.2, we have only claimed convergence weakly in
L p′
(Rn).

Going further, we show that the solution converges to the boundary data strongly
in L p′

(Rn). To this end, take first f ∈ C∞
0 (R

n) and recall that (SL∗
t ∇‖) is bounded in

L p′
(Rn) uniformly in t by (5.5). Then for every g ∈ L p(Rn), t > 0, we have

ˆ
Rn
(SL∗

t ∇‖ − SL∗∇‖) f (x) g(x) dx =
ˆ

Rn
div‖ f (x) (SL

t − SL)g(x) dx

�
ˆ

Rn
div‖ f (x) t Ñ (∇(SL

t − SL)g(x)) dx

� t‖div‖ f ‖L p′
(Rn)

‖Ñ (∇(SL
t − SL)g)‖L p(Rn)

� t‖div‖ f ‖L p′
(Rn)

‖g‖L p(Rn), (6.8)

by Lemma 2.1 and (5.4). It follows that

‖(SL∗
t ∇‖ − SL∗∇‖) f ‖L p′ = sup

g∈L p : ‖g‖L p =1

ˆ
Rn
(SL∗

t ∇‖ − SL∗∇‖) f (x) g(x) dx

� sup
g∈L p : ‖g‖L p =1

(
t‖div‖ f ‖L p′

(Rn)
‖g‖L p(Rn)

)
≤ C f t.

Hence, ‖(SL∗
t ∇‖−SL∗∇‖) f ‖L p′ converges to 0 as t → 0. One concludes that for every

fixed f ∈ C∞
0 (R

n) the sequence (SL∗
t ∇‖) f converges to its boundary data strongly

in L p′
. Given the uniform in t ≥ 0 bounds on the operator (SL∗

t ∇‖), it follows that for
every f ∈ L p′

(Rn) the sequence (SL∗
t ∇‖) f converges to its boundary data strongly

in L p′
, as desired.
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The non-tangential and square function estimates for the resulting solution follow
from (5.5) and (5.6), respectively.

Finally, we recall that uniqueness follows from [35]. Indeed, the solvability of (Dp′)
with compatible layer potential representations implies, in particular, solvability (and
even well-posedness) of (Rp) by Corollary 5.1 and Lemma 5.1. This, in turn, implies
solvability of (Rp) as defined in [35] and hence, we have uniqueness for (Dp′) by [35],
Proposition 8.19. This finishes the proof of assertion (e) in Theorem 1.1. ��
Proof of Theorem 1.1 Let us finally combine the results. Under the assumptions of
Theorem 1.1, we have (a) �⇒ (b) (Corollary 5.1), (b) �⇒ (c) (Corollary 6.1),
(c) �⇒ (d) (Corollary 6.2), (d) �⇒ (e) (Proposition 6.2), (e) �⇒ (a) (by definition).

Finally, (b) ⇐⇒ ( f ) (Lemma 5.1). ��

7 Proofs of Corollaries 1.1–1.2 and further remarks

Proof of Corollary 1.1 The De Giorgi–Nash–Moser bounds are stable under L∞ per-
turbation of the coefficients. Thus, if L0 falls under the scope of Theorem 1.1, so that
L0 and L∗

0 both have the De Giorgi–Nash–Moser property, then so do L and L∗. Thus,
the conditions (a)− ( f ) of Theorem 1.1 are equivalent for the operator L too, and it
is sufficient to prove one of them. It is easier to access (c) or (d). Let us focus on (c).

The fact that f �→ Ñ (∇SL
t f ) is bounded in L p(Rn), 1 < p < 2 + ε, for any t-

independent operator L (with some ε depending on the ellipticity constant) is known
– see the discussion of (5.4). Respectively,

SL
0 : L p(Rn) → L̇ p

1 (R
n),

is bounded by Lemma 2.1. The operator norm in both cases depends on standard
constants only.

As far as invertibility is concerned, we have by analytic perturbation theory (see
the Appendix for details)

‖∇‖SL
0 − ∇‖SL0

0 ‖L p(Rn)→L p(Rn) ≤ C‖A0 − A‖L∞(Rn), (7.1)

and hence, invertibility of SL
0 follows from that of SL0

0 via the Neumann series. More-
over, by the same analytic perturbation argument we can establish that

‖∇‖SL
0 − ∇‖SL0

0 ‖L p(Rn)∩L̇2−1/2(R
n)→L p(Rn)∩L̇2−1/2(R

n) ≤ C‖A0 − A‖L∞(Rn), (7.2)

which assures compatible invertibility, as desired. ��
Proof of Corollary 1.2 Recall that the De Giorgi–Nash–Moser bounds for solutions
inside the domain and at the boundary are always valid for the operators with real
coefficients.

The validity of (a) for an elliptic operator with real, t-independent, possibly non-
symmetric, coefficients is the main result of [31]. To be precise, note that the A∞
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property of harmonic measure proved in [31] yields solvability of the (Dp′ ) problem
for some 1 < p′ < ∞ (see [41], Theorem 1.7.3) and that the solvability as defined
in [41], Theorem 1.7.3, (ii), exactly coincides with our notion due to the fact that the
classical solution of [41] is indeed our weak solution (see the construction on p. 5 of
[41] and the accompanying discussion). Then the validity of all ascertions (b)− ( f )
of Theorem 1.1 for such an operator follows from Theorem 1.1, and the claimed
perturbation results follow from Corollary 1.1. ��

Finally, let us make the following remark.

Remark Theorem 1.1 is stated in terms of the simultaneous solvability of the cor-
responding boundary value problems in both lower and upper half spaces. This is
used when proving layer potential representations of solutions (or, to be more precise,
invertibility results on the boundary). However, one can establish that the solvability
of the Dirichlet problem implies the solvability of the corresponding Regularity prob-
lem working in one selected half-space. Indeed, for C∞

0 data and the corresponding
weak solution one can directly use Theorem 3.1, representation formula (5.31), and
(5.17), (5.4), to get the desired bounds. Theorem 3.1 actually ensures the analogue of
the Rellich-type estimate in the same half-space as that of solvability of the Dirich-
let problem, and the results (5.17), (5.4) hold both for upper and lower half space
independently of any solvability assumptions.
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Appendix: Analyticity of ∇St

In this section we present a discussion of (7.1). It is essentially treated within the
framework of the analytic perturbation theory in [40] (and was already used, e.g., in
[6,12]). However, a detailed argument for the particular case at hand does not seem to
be available in the literature, and for completeness, we provide it here.

Let A0 be elliptic, (n + 1) × (n + 1), t-independent, and bounded measurable,
and let Az := A0 + zM , where M is (n + 1)× (n + 1), t-independent, and bounded
measurable, with ‖M‖L∞(Rn) ≤ 1. Set L0 := − div A0∇, and Lz := − div Az∇,
and suppose that null solutions of L0 satisfy the De Giorgi–Nash–Moser bounds. For
|z| small enough, say |z| < ε0, we have that Lz is also elliptic, and satisfies the De
Giorgi–Nash–Moser bounds. By ellipticity, for |z| < ε0,

∇L−1
z div : L2(Rn+1) → L2(Rn+1),
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or equivalently,

L−1
z : Ẇ −1,2(Rn+1) → Ẇ 1,2(Rn+1).

Moreover, we have the Taylor expansion

∇L−1
z div = ∇L−1

0 div
∞∑

k=0

(
zM∇L−1

0 div
)k
,

which is convergent, as a mapping from Ẇ −1,2(Rn+1) to Ẇ 1,2(Rn+1), if ε0 is small
enough. Therefore, the mapping z → L−1

z , taking values in the space of bounded
operators from Ẇ −1,2(Rn+1) to Ẇ 1,2(Rn+1), is analytic in a neighborhood of z = 0.
The same is true for L∗

z , so by trace theory, we then have that z → Tr ◦(L∗
z )

−1 is an
analytic mapping, taking values in the space of bounded operators from Ẇ −1,2(Rn+1)

to Ḣ1/2(Rn). Here Tr denotes the trace operator, on R
n × {0} = ∂(Rn+1+ ). We then

define the single layer potential for Lz , denoted by SLz , as the adjoint of the operator
Tr ◦(L∗

z )
−1, so that z → SLz is an analytic mapping taking values in the space of

bounded operators from Ḣ−1/2(Rn) to Ẇ 1,2(Rn+1). By trace theory again, we have
that z → SLz

t is an analytic mapping taking values in the space of bounded operators
from Ḣ−1/2(Rn) to Ḣ1,2(Rn), where SLz

t denotes the restriction of SLz to the hyper-
plane xn+1 = t ; i.e., z → ∇‖SLz

t is an analytic mapping taking values in the space of
bounded operators from Ḣ−1/2(Rn) to Ḣ−1,2(Rn). Thus,

z → 〈∇‖SLz
t f, g〉

is an analytic function, for every f ∈ Ḣ−1/2(Rn), and every g ∈ Ḣ1/2(Rn), in
particular, for every pair f, g ∈ C∞

0 (R
n). By [37, Theorem 1.1], we have that

sup
|z|<ε0

sup
t

‖∇‖SLz
t ‖L p(Rn)→L p(Rn) ≤ C p , 1 < p < 2 + ε,

with C p depending only on p, ellipticity, dimension, and the De Giorgi–Nash–Moser
constants. Therefore by [40, p. 365], since C∞

0 is dense in L p and L p′
, we have that

for each fixed t , z → ∇‖SLz
t is an analytic mapping, taking values in the space of

bounded operators on L p(Rn), in the disk |z| < ε0. This means that

sup
t

∥∥ d

dz
∇‖SLz

t

∥∥
L p(Rn)→L p(Rn)

≤ C p,

so that

sup
t

‖∇‖SLz
t − ∇‖SL0

t ‖L p(Rn)→L p(Rn) ≤ C p|z|. (8.1)
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Now, given A0 as above, take M := (A1 − A0)/‖A1 − A0‖L∞(Rn), so that A1 =
A0 + z1 M , with z1 = ‖A1 − A0‖L∞(Rn). If ‖A1 − A0‖L∞(Rn) < ε0, by (8.1), we have
that

sup
t

‖∇‖SL1
t − ∇‖SL0

t ‖L p(Rn)→L p(Rn) ≤ C p ‖A1 − A0‖L∞(Rn),

as desired.
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