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Abstract The inclination or λ-lemma is a fundamental tool in finite dimensional
hyperbolic dynamics. In contrast to finite dimension, we consider the forward semi-
flow on the loop space of a closed Riemannian manifold M provided by the heat flow.
The main result is a backward λ-lemma for the heat flow near a hyperbolic fixed point
x . There are the following novelties. Firstly, infinite versus finite dimension. Secondly,
semi-flow versus flow. Thirdly, suitable adaption provides a new proof in the finite
dimensional case. Fourthly and a priori most surprisingly, our λ-lemma moves the
given disk transversal to the unstable manifold backward in time, although there is
no backward flow. As a first application we propose a new method to calculate the
Conley homotopy index of x .

Mathematics Subject Classification (2000) 37L05 · 35K05

1 Introduction and main results

Assume M is a closed smooth manifold of dimension n ≥ 1 equipped with a Rie-
mannian metric g and the Levi–Civita connection ∇. Throughout smooth means C∞
smooth. The loop space is the Hilbert manifold ΛM := W 1,2(S1, M) of absolutely
continuous loops in M with square integrable derivative. We identify S1 = R/Z and
think of γ ∈ ΛM as a map γ : R→ M that satisfies γ (t + 1) = γ (t). Pick a smooth
function V : S1 × M → R and set Vt (q) := V (t, q).
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930 J. Weber

Consider the heat equation

∂su −∇t∂t u − gradVt (u) = 0 (1)

for smooth maps R × S1 → M : (s, t) �→ u(s, t). It is well known that the corre-
sponding Cauchy problem for the map [0,∞)→ ΛM : s �→ us := u(s, ·) admits a
unique solution. The associated forward semi-flow ϕ on ΛM is called the heat flow.
It is a continuous map

ϕ : [0,∞)×ΛM → ΛM

which is of class C1 on (0,∞); see (5) for its representative φ in local coordinates.
For γ ∈ ΛM abbreviate γ̇ = d

dt γ . Because (1) is the downward L2 gradient equation
of the action functional SV : ΛM → R given by

SV (γ ) =
1∫

0

(
1

2
|γ̇ (t)|2 − Vt (γ (t))

)
dt,

the fixed points of the heat flow are the critical points of the action. The latter are
(perturbed) closed geodesics, that is solutions x : S1 → M to the second order ODE

−∇t ẋ −∇Vt (x) = 0.

By ind(x) we denote the Morse index of x . Nondegeneracy of the critical point x , that
is nondegeneracy of the Hessian of SV at x , corresponds to hyperbolicity of the fixed
point x .

Fix a nondegenerate critical point x of the action SV . While the stable manifold
W s(x) is defined in the usual way as the set of all points which flow in forward
time asymptotically into x , it is of infinite dimension. The fact that W s(x) is globally
embedded is, firstly, remarkable since the standard method of pulling back coordinates
near x using the backward flow is obviously not available. Secondly, except for [8,
Theorem 6.1.9] this fact is usually not mentioned at all in the literature—unlike the
widely known local submanifold property near x ; see Sect. 2.5. In contrast, without
a backward flow the definition of the unstable manifold W u(x) becomes somewhat
awkward: It is the set of endpoints of all heat flow trajectories parametrized by (−∞, 0]
and emanating at time −∞ from x . On the other hand, this definition lends itself
to define a backward flow on W u(x) which immediately implies that the unstable
manifold is globally embedded. Most importantly, its dimension given by ind(x) is
finite; see e.g. [18]. It is this finite dimensionality which is one of two pillars on which
this paper is based. A key consequence is smoothness of every γ ∈ W u(x); see
Remark 3.

1.1 Some history

In finite dimensional hyperbolic dynamics there are two fundamental tools: The
Grobman–Hartman Theorem [5,7] and the λ-lemma [11]. While the first is powerful
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Backward λ-lemma 931

Fig. 1 Preimage of disk Dγ (x)

converges in C1 and locally near
x to the stable manifold W s (x)

concerning topological questions the latter reigns in the differentiable world. It even
implies the former. The λ-lemma asserts that the backward flow applied to any disk
D transversal to the unstable manifold and of complementary dimension converges in
C1 to the local stable manifold, see Fig. 1, and similarly for the forward flow. For a
beautiful presentation see [12]. Since convergence is in C1, the λ-lemma is also called
inclination lemma.

The second pillar on which this paper is based is the replacement of the absent
backward flow on the loop space by the family of preimages s �→ ϕs

−1D . This idea
was born when we attempted to construct a Morse filtration of the loop space using the
method of Abbondandolo and Majer [1]. Their construction builds on open sets being
mapped to open sets under a forward flow. But this is not true forϕs—from a topological
point of view the heat semi-flow is useless! The way out was the simple observation
that preimages of open sets are open by continuity of ϕs . Unfortunately, still the
Abbondandolo–Majer method would not apply, because things were moving in the
wrong direction now. However, the definition given in [15, proof of Lemma 3.2] in finite
dimensions carries over providing a Conley pair (N , L) for the semi-flow invariant set
given by the critical point x . Now the backward λ-lemma enters. In [19,20] we use
it to define an invariant stable foliation of (N , L) which is a fundamental ingredient
in our construction of a Morse filtration of ΛM by open semi-flow invariant sets. In
Sect. 1.4 we discuss the key calculation.

In other words, we were led to discover the backward λ-lemma through the attempt
to solve a very different problem—thereby reconfirming a major principle advocated
by Arnol’d throughout his mathematical life.

1.2 Main results

Assume Dγ (x) is a disk in the Hilbert manifold ΛM = W 1,2(S1, M) which intersects
the unstable manifold W u(x) transversally in a point γ near x . Our main goal is to prove
that the preimage ϕT

−1Dγ (x) converges, as T →∞, uniformly in C1 and locally near
x to the stable manifold W s(x); see Fig. 1. In fact, we prove right away a family version
where D is fibered over a descending sphere Su

ε (x) = W u(x) ∩ {SV = SV (x)− ε}.
Since the λ-lemma is a local result we choose a local parametrization

Φ := expx : X → ΛM, X = TxΛM = W 1,2(S1, x∗T M),
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932 J. Weber

of an open neighborhood of x in ΛM in terms of the exponential map; here compact-
ness of M enters. The orthogonal splitting

X 
 Tx W u(x)⊕ Tx W s(x) = X− ⊕ X+

with associated orthogonal projections π± is a key ingredient to make the analysis
work; at this stage take the final identity as a definition. By a standard graph argument
we may assume without loss of generality that U is of the form W u × O+. Here
W u ⊂ X− represents a descending disk W u(x)∩{SV > SV (x)−δ} for some δ > 0
sufficiently small and O+ ⊂ X+ is an open ball about 0. By φ we denote the local
semi-flow on U which represents the heat flow ϕ on ΛM with respect to the local
parametrization Φ; see (5).

Hypothesis 1 (Local setup—Fig. 4) Fix a perturbation V ∈ C∞(S1 × M) and a
nondegenerate critical point x of SV of Morse index k.

(a) Consider the coordinates on ΛM provided by Φ and modelled on the open subset
U = W u × O+ of X. In these coordinates the origin 0 ∈ X represents x and
S := SV ◦Φ−1 represents the action. Denote closed radius R balls about 0 by

BR := {‖·‖X ≤ R}, B+R := {‖·‖X+ ≤ R}.

Choose the constant ρ0 > 0 in the Lipschitz Lemma 1 smaller, if necessary, such
that Bρ0 ⊂ U . Pick a sufficiently small constant ε0 > 0 such that for each
ε ∈ (0, ε0] the descending and ascending disks

W u
ε (x) := W u(x) ∩ {SV > SV (x)− ε},

W s
ε (x) := W s(x) ∩ {SV < SV (x)+ ε},

are contained in the coordinate patch Φ(Bρ0) and such that their closures are
diffeomorphic to the closed unit disks in R

k and X+, respectively. Existence of ε0
follows by the Morse- and the Palais–Morse lemma.

(b) Fix μ ∈ (0, d) in the spectral gap (4) of the Jacobi operator. Pick  ∈ (0, ρ0) so
small that D := Su

ε ×B+ is contained in Bρ0 and set Dγ := {γ } ×B+ .
(c) Our notation for objects expressed in coordinates will be the global notation with

x omitted, for example W s
ε and Dγ .

Theorem 1 (Backward λ-lemma) Assume the local setup of Hypothesis 1. In partic-
ular, consider the hyperbolic fixed point 0 of the local semi-flow φ defined by (5) on
U ⊂ X and the hypersurface D = Su

ε × B+ ⊂ Bρ0 ⊂ U ; see Fig. 2. Then the
following is true. There is a closed ball B+ ⊂ X+ of radius r > 0 about zero, a
constant T0 > 0, and a Lipschitz continuous map

G : (T0,∞)× Su
ε ×B+ → W u ×B+ ⊂ U

(T, γ, z+) �→
(

GT
γ (z+), z+

)
=: G T

γ (z+)
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Backward λ-lemma 933

Fig. 2 Backward λ-lemma

of class C1 and defined by (25). Each map G T
γ : B+ → X is bi-Lipschitz, a diffeo-

morphism onto its image, and G T
γ (0) = φ−T γ =: γT . The graph of GT

γ consists of
those z ∈ U which satisfy π+z ∈ B+ and reach the fiber Dγ = {γ } ×B+ at time
T , that is

G T
γ (B+) = φT

−1Dγ ∩
(
X− ×B+

)
.

Furthermore, the graph map G T
γ converges uniformly, as T → ∞, to the stable

manifold graph map G∞ of Theorem 3. More precisely, it holds that 1

∥∥∥G T
γ (z+)− G∞(z+)

∥∥∥
C1(S1)

≤ ρ0e−T μ
16

for all T > T0, γ ∈ Su
ε , and z+ ∈ B+.

Theorem 2 (Uniform C1 convergence on X ) Under the assumptions of Theorem 1 the
linearized graph maps dG T

γ (z+) : X+ → X extend to bounded linear operators on

the L2 completions and their limit, as T →∞, is dG∞(z+), uniformly in z+ ∈ B+.
More precisely,

∥∥∥dG T
γ (z+)v

∥∥∥
2
≤ 2 ‖v‖2

and
∥∥∥dG T

γ (z+)v − dG∞(z+)v

∥∥∥
2
≤ e−T μ

16 ‖v‖2

for all T > T0, γ ∈ Su
ε , z+ ∈ B+, and v in the L2 closure of X+.

Remark 1 (i) The reason why the W 1,2 norm has been replaced by C1 (←↩ W 1,4)
in Theorem 1 and by L2 in Theorem 2 is the application in Sect. 1.4. Here the
L2 nature of (1) requires to estimate the nonlinearity f in (5) in the L2 norm.
Observe that f maps W 1,4 to L2.

1 Note that the difference lies in X−, hence in C∞. Therefore it makes sense to take the C1 norm.
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934 J. Weber

(ii) All results in this paper extend to the more general class of perturbations satisfying
axioms (V0–V3) in [16]; see [21].

Remark 2 (a) Theorem 1 recovers the common case of a single disk intersecting the
unstable manifold transversely in one point γ near 0. Apply the implicit function
theorem to bring the disk into the normal form {γ } × B+ . Observe that G T

γ

is defined without reference to any neighbors of γ . To formally get a bundle
D = Su

ε ×B+ as in the hypothesis just add disks artificially.
(b) Theorem 1 for endpoint time T = ∞ and radius  = 0 recovers two known

results. These appear as extreme cases concerning the radius 0 disk bundle D =
Su
ε × {0}.
I Disk of radius 0 sitting at the origin: In this case Su

ε = {0}, that is the disk
bundle degenerates to just one radius 0 disk sitting at the origin. This recovers
the local stable manifold Theorem 3 and inspires the notation G∞ for the stable
manifold graph map. The preimage φT

−1(0) for T = ∞ corresponds to the
local stable manifold.

II Radius 0 disk bundle sitting at ∞: This recovers the stable foliation in [3].
Two points belong to the same leaf if under the semi-flow φs their difference
converges exponentially to zero, as s →∞. The leaf over 0 is the local stable
manifold.

Remark 3 (Mixed Cauchy problem) We motivate why the map G in the backward λ-
lemma should exist. Assume the hypotheses of the backward λ-lemma and fix T > 0.
Each point z in the preimage φT

−1Dγ corresponds to a unique semi-flow line ξ such
that ξ(0) = z and ξ hits the fiber Dγ precisely at time T , say in the point q := ξ(T ).
Of course, we cannot change the order, i.e. first choosing an end point q ∈ Dγ and
then determining a semi-flow line ξ with ξ(T ) = q. This would amount to solve the
Cauchy problem for the heat equation in backward time, a problem well known to
be ill defined in general: Indeed any non-smooth element q ∈ Dγ ⊂ W 1,2 cannot be
reached, since the point ξ(T ) on any heat flow trajectory ξ is necessarily a smooth
loop in M—due to the strongly regularizing effect of the heat flow for T > 0; see
e.g. [21]. However, consider the splitting X = X−⊕X+ in unstable and stable tangent
spaces. In Sect. 2.3 we will see that each element of X− is smooth. So specifying only
the X− part of the endpoint does not contradict regularity to start with. The key idea
is to introduce the notion of a mixed Cauchy problem: Apart from time T only the
stable part z+ of the initial point is prescribed—in exchange of prescribing in addition
the unstable part qu of the end point; see Fig. 3. Indeed the representation formula in
Proposition 2 shows that the mixed Cauchy problem is equivalent to the usual Cauchy
problem with initial value z. Since the latter admits a unique solution, so does the
mixed Cauchy problem.

1.3 Outlook

To put the backward λ-lemma and the associated stable foliations [20] in perspec-
tive recall the celebrated proof by Palis in his 1967 PhD thesis [10] of Andronov–
Pontryagin structural stability of hyperbolic dynamical systems in small dimensions.
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Backward λ-lemma 935

Fig. 3 Data (T, qu , z+) for mixed Cauchy problem

Key innovations and tools in his proof were the notions of stable and unstable foliations
which led to numerous applications ever since.

Another interesting perspective of the backward λ-lemma is that, to the best of our
knowledge, it provides the first backward time information concerning the heat flow—
apart from the obvious backward flow on the (finite dimensional) unstable manifolds.
In fact the backward λ-lemma provides backward time information on open subsets.

Going from (1) and W 1,2 to general semilinear parabolic PDEs and W k,p will be
investigated elsewhere.

1.4 Application

The method in [19,20] to construct a Morse filtration of the loop space is inspired by
Conley theory [4]. For reals ε, τ > 0 denote by N the path connected component of x
of the open set {γ ∈ ΛM | SV (γ ) < SV (x)+ε,SV (ϕτ γ ) > SV (x)−ε}. For ε > 0
small and τ > 0 large the closed subset L := {γ ∈ N | SV (ϕ2τ γ ) ≤ SV (x) − ε}
of N is an exit set of N and (N , L) is a Conley pair for the semi-flow invariant set
{x}; see [20,21]. Concerning the Morse filtration a fundamental step is to prove that
relative singular homology is given by

H�(N , L) 

{

Z, � = k := ind(x),

0, otherwise.

Because the part of N in the unstable manifold is an open k disk bounded by the
(relatively) closed annulus L ∩ W u(x), the relative homology of these parts has the
required property and it suffices to show that (N∩W u(x), L∩W u(x)) is a deformation
retract of (N , L). Observe that N contains the ascending disk W s

ε (x)—from now on
abbreviated W s

ε —whose part in the unstable manifold is precisely the critical point x
itself. Thus on W s

ε the semi-flow ϕs itself provides the desired deformation. Obviously
this fails on the complement of the ascending disk. Now the backward λ-lemma comes
in. It naturally endows (N , L), as we show in [20], with the structure of a codimension
k foliation whose leaves N (γu) are parametrized by γu ∈ N ∩ W u(x). Furthermore,
each leaf is diffeomorphic to a neighborhood Uγu of W s

ε in W s(x). The leaf through
x is given by N (x) = W s

ε = Ux (W s
ε ). These diffeomorphisms, denoted by

Ψγu : Uγu (W s
ε )

−→ N (γu), Ψγu (x) = γu, Ψx = idW s

ε
,
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936 J. Weber

allow to extend to all of N the desirable deformation property provided by ϕs on W s
ε .

Indeed pick γ ∈ N . By the foliation property γ lies on some leaf, say on N (γu).
Now the map θs(γ ) := Ψγu ◦ ϕs ◦ Ψγu

−1(γ ) for s ∈ [0,∞] deforms N onto its part
in the unstable manifold. So we are done. Well, note the subtlety arising due to the
deformation having to take place entirely in N which is equivalent to invariance of
Uγu (W s

ε ) under ϕs . For Ux (W s
ε ) = W s

ε this follows immediately from the fact that
the action decreases along the heat flow. Since dim Uγu (W s

ε ) = ∞, the general case
is non-trivial. Apart from the Palais–Smale condition, the analytic properties of the
graph maps G T

γ provided by Theorems 1 and 2 enter heavily. We refer to [20] for
details and to [19] for a survey.

2 Toolbox

Throughout we fix a nondegenerate critical point x of SV : ΛM → R. Representing
the Hessian of SV at x with respect to the L2 inner product on the loop space gives
rise to the Jacobi operator Ax defined by

Axξ = −∇t∇tξ − R(ξ, ẋ)ẋ − ∇ξ∇Vt (x) (2)

for every smooth vector field ξ along the loop x . Here R denotes the Riemannian
curvature tensor. Viewed as unbounded operator on a general Sobolev space W k,q :=
W k,q(S1, x∗T M) with dense domain W k+2,q , where k ∈ N0 and q ≥ 1, the spectrum
of Ax does not depend on (k, q) and takes the form of a sequence of real eigenvalues
(counting multiplicities)

λ1 ≤ λ2 ≤ · · · ≤ λk < 0 < λk+1 ≤ λk+2 ≤ · · · (3)

which converges to∞. Calculation of the spectrum is standard: One picks the Hilbert
space case (k, q) = (0, 2) and proves first that Ax admits a compact self-adjoint
resolvent. In the second step it remains to prove C∞ regularity of eigenfunctions. The
spectral gap (0, d) of Ax is determined by

d := dist (0, σ (A)) = min{−λk, λk+1} > 0. (4)

By σ± we denote the positive and negative part of the spectrum of Ax . Note that
nondegeneracy of the critical point x means that zero is not in the spectrum of Ax .
Equivalently x is a hyperbolic fixed point of ϕs whenever s > 0, that is the spectrum
of the linearized flow dϕs(x) does not contain 1. The Morse index of x is the number
k of negative eigenvalues of Ax counted with multiplicities.

It is worthwhile to mention some of the useful properties enjoyed by the action
functional: It strictly decreases along non-constant heat flow trajectories. It is bounded
below and satisfies the Palais–Smale condition.

In the following subsections we provide the analytical tools required in the proof
of the backward λ-lemma. Apart from Lemma 1 they are all well known, surely by
the experts, and so we simply list them without proofs. On the other hand, some are
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Backward λ-lemma 937

difficult to find in the literature, e.g. sectoriality of Ax in the relevant periodic case.
So here is some good news for non-experts:

Convention The proof of any assertion attributed well known in Sect. 2 is given in [21].
The same holds for facts stated without reference.

2.1 Local semi-flow

Recall that U = W u × O+ by Hypothesis 1. Any path [0, T ] � s �→ us in the
neighborhood U (x) := Φ(U ) of x in the Hilbert manifold ΛM corresponds to a path
ζ : [0, T ] → U , s �→ ζ(s), determined uniquely by the identity us = expx ζ(s) =:
Φ(ζ(s)) pointwise for t ∈ S1. Applying the operators ∂s and ∇t∇t to this identity
transforms the Cauchy problem on ΛM associated to (1) into the equivalent Cauchy
problem

d

ds
ζ(s)+ Axζ(s) = f (ζ(s)), ζ(0) = z := Φ−1(γ ) ∈ U , (5)

for maps ζ : [0, T ] → U ⊂ X = W 1,2(S1, x∗T M) where T depends on z ∈ U and
Ax denotes the Jacobi operator (2) on W 1,2 with dense domain W 3,2. The solution
to (5) defines the local semi-flow φs z := ζ(s) on U that represents the heat flow. The
nonlinearity

f : X ⊃ U → Y, X = W 1,2, Y = L1,

actually maps W 1,2p to L p for p ≥ 1 and is given by the identity

f (ζ ) = E2(x, ζ )−1
(

E11(x, ζ )
(
ẋ, ẋ

)+ 2E12(x, ζ )
(
ẋ,∇tζ

)

+E22(x, ζ )
(∇tζ,∇tζ

)+∇Vt (expx ζ )− E1(x, ζ )∇Vt (x)
)

−R(ζ, ẋ)ẋ − ∇ζ∇Vt (x) (6)

pointwise at (s, t). To arrive at this form of f we used the well known covariant partial
derivatives of the exponential map E(q, v) := expq v. These are multilinear maps

Ei1...i j (q, v) : (Tq M
)× j → Texpq v M

which depend smoothly on (q, v) ∈ T M for each j ∈ N. Those up to order two are
characterized by the identities

d
dt expγ (ξ) = E1(γ, ξ)∂tγ + E2(γ, ξ)∇tξ

∇t (E1(γ, ξ)η) = E11(γ, ξ) (η, ∂tγ )+ E12(γ, ξ) (η,∇tξ)+ E1(γ, ξ)∇tη

∇t (E2(γ, ξ)η) = E21(γ, ξ) (η, ∂tγ )+ E22(γ, ξ) (η,∇tξ)+ E2(γ, ξ)∇tη
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938 J. Weber

whenever γ : R→ M, t �→ γ (t), is a smooth curve in M and ξ, η are smooth vector
fields along γ . These covariant derivatives satisfy

E1(q, 0) = E2(q, 0) = 1, E11(q, 0) = E21(q, 0) = E22(q, 0) = 0, (7)

and admit symmetries

E12(q, z)(v,w) = E21(q, z)(w, v), E22(q, z)(v,w) = E22(q, z)(w, v),

and
E11(q, z)(v,w)− E11(q, z)(w, v) = E2(q, z)R(v,w)z

for all q ∈ M and z, v, w ∈ Tq M . Furthermore, it holds that

E112(γ, 0)(γ̇ , γ̇ , ξ) := D
dτ

∣∣
τ=0 E11(γ, τξ)(γ̇ , γ̇ ) = R(ξ, γ̇ )γ̇ (8)

pointwise for every t ∈ R. For more details see e.g. [21, Appendix].
After all what is the advantage of reformulating the Cauchy problem? Obviously

the linear structure of X to start with. However, the really great features are (a) the
spectral splitting X 
 X− ⊕ X+ induced by Ax is preserved by the semigroups of
Sect. 2.3 and (b) the part X− is of finite dimension k and consists of smooth elements.

2.2 Lipschitz estimate for the nonlinearity

Lemma 1 (Locally Lipschitz) There are constants ρ0, κ∗ > 0 and a continuous non-
decreasing function κ on the interval [0, ρ0] with κ(0) = 0 such that the follow-
ing is true for any constant p ≥ 1. In the Sobolev space W 1,2p(S1, x∗T M) con-
sider the closed ball B

1,2p
ρ0 of radius ρ0. Then B

1,2p
ρ0 ⊂ U and the nonlinearity

f : B1,2p
ρ0 → L p given by (6) is of class C1 and satisfies f (0) = 0, d f (0) = 0, and

‖ f (ξ)− f (η)‖p ≤ κ(ρ) ‖ξ − η‖1,2p ,

‖d f (ξ)v − d f (η)v‖p ≤ κ∗ ‖ξ − η‖1,2p ‖v‖1,2p ,

whenever ‖ξ‖1,2p, ‖η‖1,2p ≤ ρ < ρ0 and v ∈ W 1,2p.

Corollary 1 The assumptions of Lemma 1 imply that ‖d f (ξ)v‖p ≤ κ(ρ)‖v‖1,2p

whenever v ∈ W 1,2p and ‖ξ‖1,2p ≤ ρ < ρ0.

Proof Use that d f (ξ)v = limτ→0
f (ξ+τv)− f (ξ)

τ
and apply Lemma 1. ��

Remark 4 (a) That κ(ρ) is nondecreasing in ρ is used to prove the assertion of The-
orem 3 that at the fixed point 0 the stable manifold is tangent to X+.

(b) The Lipschitz estimate for d f with constant κ∗ is required, firstly, to prove that the
graph map G T

γ is of class C1 in T and, secondly, to prove uniform convergence
of its derivative to the derivative of the stable manifold graph map, as T → ∞;
see proofs of Theorem 1 step 4 and Theorem 2 step II.
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Backward λ-lemma 939

(c) While Lemma 1 is used mainly in case p = 1 the fundamental step in Sect. 1.4,
carried out in [20], requires Lemma 1 for p = 2.

Proof (Lipschitz Lemma 1) Fix p ≥ 1 and observe that‖·‖∞ ≤ c∞‖·‖1,2 ≤ c∞‖·‖1,2p

for some constant c∞ > 0. The last step uses Hölder’s inequality and vol(S1) = 1.
By ι > 0 we denote the injectivity radius of the closed Riemannian manifold M . Fix
ρ0 ∈ (0, ι/8c∞) sufficiently small such that the ball Bρ0 := B1,2

ρ0
in W 1,2 of radius

ρ0 is contained in U . From now on assume that ρ ∈ [0, ρ0) and ξ, η ∈ W 1,2p satisfy
‖ξ‖1,2p, ‖η‖1,2p ≤ ρ. Note that ξ ∈ U and ‖ξ‖∞ ≤ c∞ρ < ι

8 and similarly for η.
So both ξ and η take values in the compact subset Dρ ⊂ T M consisting of all pairs
(q, v) such that q ∈ M and v ∈ Tq M satisfies |v| ≤ 4c∞ρ. Note that D0 is the zero
section.

To see that f (0) = 0 use (6) and (7). Use in addition (8) to prove that d f (0)ζ :=
d

dτ
f (τζ ) = 0. Abbreviate X := η − ξ to obtain that

f (ξ)− f (η) =
(

E2(x, ξ)−1 E11(x, ξ)− E2(x, η)−1 E11(x, η)
) (

ẋ, ẋ
)+ R(X, ẋ)ẋ

+2
(

E2(x, ξ)−1 E21(x, ξ)∇tξ − E2(x, η)−1 E21(x, η)∇tη
)

ẋ

+E2(x, ξ)−1 E22(x, ξ)
(∇tξ,∇tξ

)− E2(x, η)−1 E22(x, η)
(∇tη,∇tη

)
+E2(x, ξ)−1∇Vt (expx ξ)− E2(x, η)−1∇Vt (expx η)+ ∇X∇Vt (x)

−
(

E2(x, ξ)−1 E1(x, ξ)− E2(x, η)−1 E1(x, η)
)
∇Vt (x)

pointwise at every t ∈ S1. We denote the last five lines of the formula above by
I through V , respectively, and deal with each one separately. For now think of ξ

as a fixed parameter and view η(X) = ξ + X as a function of X . Then each line
becomes a (smooth) function of X (t) depending on additional quantities such as
certain derivatives of ξ , X , and x all evaluated at t . For instance, term I becomes the
identity

I (X) =
(

E2(x, ξ)−1 E11(x, ξ)− E2(x, η(X))−1 E11(x, η(X))
) (

ẋ, ẋ
)+ R(X, ẋ)ẋ

pointwise at every t ∈ S1. Straighforward calculation shows that

d I (X)Y = D
dτ

∣∣
τ=0 I (X + τY )

= (
E2(x, η(X))

)−1
E22(x, η(X))

(
E2(x, η(X))−1 E11(x, η(X)) (ẋ, ẋ) , Y

)

−E2(x, η(X))−1 E112(x, η(X)) (ẋ, ẋ, Y )+ R(Y, ẋ)ẋ

pointwise at every t ∈ S1. Note that η(σ X) = ση + (1 − σ)ξ , for σ ∈ [0, 1] and
pointwise in t , takes values in Dρ/2 ⊂ Dρ ⊂ Dρ0 . Note further that I (0) = 0. Hence
by Taylor’s theorem there is a constant σ = σ(t) ∈ [0, 1] such that
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|I (X)| = |d I (σ X)X | ≤
∥∥∥E2

−1
∥∥∥2

L∞(Dρ0 )
‖E22‖L∞(Dρ) ‖E11‖L∞(Dρ) |ẋ |2 |X |

+
∥∥∥E2

−1 E112 (∗, ∗, ·)− R(·, ∗)∗
∥∥∥

L∞(Dρ)
|ẋ |2 |X |

=: κ1(ρ) |ẋ |2 |X |

pointwise at every t ∈ S1. The function κ1 depends continuously on ρ ∈ [0, ρ0] and
κ1(0) = 0 by the curvature identity (8) and since Ei j (·, 0) = 0 for i, j ∈ {1, 2} by (7).
By the a priori estimate [18, Theorem 12] applied to the constant heat flow trajectory
u(s) ≡ x there is a constant C = C(V,SV (x)) such that |ẋ(t)| ≤ ‖ẋ‖∞ ≤ C . By
Hölder’s inequality ‖gh‖p ≤ ‖g‖2p‖h‖2p we obtain the desired Lipschitz estimate
for term one, namely ‖I (X)‖p ≤ κ1(ρ)‖ẋ‖22p‖X‖∞ ≤ c∞κ1(ρ)‖ẋ‖2∞‖ξ − η‖1,2p.
Indeed the constant depends on ρ, but not on p. We did not pull out ‖ẋ‖∞ right in the
first step in order to illustrate how Hölder’s inequality serves to deal with first order
squares. The argument for terms two through five is analogous; see [21] for details.
Here first order squares of the form |∇t X |2 appear.

To see that f is of class C1 observe that d f (ξ)X = −d I (0)X − · · · − dV (0)X .
Careful inspection term by term then shows that each of the five terms in this sum
depends continuously on ξ with respect to the W 1,2p topology.

It remains to prove the second Lipschitz estimate, that is the one for the difference
of derivatives d f (ξ)−d f (η). Unfortunately, the number of terms appearing during the
calculation is rather large. Fortunately, we are only claiming existence of a constant
κ∗. Straightforward calculation shows that

d f (ξ)v = −R(v, ẋ)ẋ − E2(x, ξ)−1
[

E22(x, ξ)
(

E2(x, ξ)−1 E11(x, ξ) (ẋ, ẋ), v
)

−E22(x, ξ)
(
E2(x, ξ)−1[2E12(x, ξ) (ẋ,∇tξ)+ E22(x, ξ) (∇tξ,∇tξ)

]
, v

)
−E22(x, ξ)

(
E2(x, ξ)−1∇Vt (expx ξ), v

)
+ E22(x, ξ) (∇Vt (x), v)

+E112(x, ξ) (ẋ, ẋ, v)+ 2E122(x, ξ) (ẋ,∇tξ, v)+ 2E12(x, ξ) (ẋ,∇tv)

+E222(x, ξ) (∇tξ,∇tξ, v)+ 2E22(x, ξ) (∇tξ,∇tv)

+ D
dτ

∣∣
τ=0∇Vt (expx (ξ + τv))− E12(x, ξ) (∇Vt (x), v)

]
− ∇v∇Vt (x).

Denote the 14 terms in this sum by
∑14

j=1 Hj (ξ)v. For X := η − ξ set 2Fj (X)v :=
Hj (ξ)v − Hj (ξ + X)v. For instance, consider F8. We get that

d F8(X)(v, Y )

= D
dτ

∣∣
τ=0

[
E2(x, ξ + X + τY )−1 E122(x, ξ + X + τY ) (ẋ,∇t (ξ + X + τY ), v)

]
= −E2

−1 E22
(
E2
−1 E122 (ẋ,∇tξ + ∇t X, v) , Y

)
+E2

−1 E1222 (ẋ,∇tξ + ∇t X, v, Y )+ E2
−1 E122 (ẋ,∇t Y, v)

where the maps are evaluated at (x, ξ + X). Since F8(0) = 0 there is by Taylor’s
theorem, pointwise at every t ∈ S1, a constant σ = σ(t) ∈ [0, 1] such that
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‖2F8(X)v‖p = ‖2d F8(σ X) (v, X)‖p

≤
∥∥∥E2

−1
∥∥∥

L∞ρ0

(∥∥∥E2
−1

∥∥∥
L∞ρ0

‖E22‖L∞ρ ‖E122‖L∞ρ0
+ ‖E1222‖L∞ρ0

)

· ‖ẋ‖2p

(
σ ‖η‖1,2p + (1− σ) ‖ξ‖1,2p

)
‖v‖∞ ‖ξ − η‖∞

+
∥∥∥E2

−1
∥∥∥

L∞ρ0

‖E122‖L∞ρ0
‖ẋ‖2p ‖ξ − η‖1,2p ‖v‖∞

where we abbreviated L∞ρ := L∞(Dρ). Since ‖ẋ‖2p ≤ ‖ẋ‖∞ ≤ C this proves the
Lipschitz estimate for term eight. Note that F1 ≡ 0 ≡ F14. The estimates for the other
11 F-terms follow similarly. This proves the Lipschitz Lemma 1. ��

2.3 Semigroups and splittings

For any q ∈ [1,∞) and k ∈ N0 the negative Jacobi operator −A := −Ax on
Z := W k,q with dense domain W k+2,q and given by (2) is sectorial and therefore
generates the strongly continuous semigroup e−s A ∈ L (Z) given by

e−s A := 1

2π i

∫

γ

esΛ R(λ,−A) dλ, ∀s > 0, (9)

and by e0A := 1Z for s = 0. Here R denotes the resolvent and γ : R → C ∪ {∞}
is a suitable loop inside the resolvent set ρ(−A). Sectoriality of −A is well known,
but a proof for the periodic domain S1 is hard to find, unlike for the domain R. So
we provide the details in [21]. By nondegeneracy of x the operator −A is hyperbolic,
that is its spectrum and the imaginary axis iR are disjoint. Pick a counter-clockwise
oriented circle γ+ : S1 → (0,∞) × iR which encloses precisely the positive part
{−λk, . . . ,−λ1} of the spectrum of −A. The linear operators

π− := 1

2π i

∫

γ+
R(λ,−A) dλ, π+ := 1− π−, (10)

are elements of L (Z) called spectral projections, because (π±)2 = π±.
We collect key facts of semigroup theory. By boundedness of π± the images

Z± := range π±, (11)

are closed (Banach) subspaces. As a vector space Z− is spanned by k eigenfunc-
tions corresponding to the k = ind(x) negative eigenvalues of A, in particular
Z− ⊂ C∞(S1, x∗T M). In contrast Z+ is the W k,q closure of the sum of eigenspaces
coresponding to positive eigenvectors of A. Thus Z+ = Z+(k, q). The obvious iden-
tity π−π+ = π+π− = 0 shows that

Z 
 Z− ⊕ Z+.
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Moreover, this splitting is preserved by A and the restrictions of A to the Banach sub-
spaces Z± are denoted by A±. Since the semigroup e−s A preserves both subspaces
Z±, the restrictions e−s A|Z± are semigroups as well. They are called subspace semi-
groups. On the other hand, the restrictions −A± themselves are sectorial operators
on the Banach spaces Z± with dense domains Z± ∩ D(A). Therefore they generate
strongly continuous semigroups e−s A± on Z±. But these coincide with the subspace
semigroups due to the resolvent identity R(λ,−A)|Z± = R(λ,−A±) which holds for
every λ in the resolvent set ρ(−A) ⊂ ρ(−A±). The upshot is the formula

e−s A = e−s A− ⊕ e−s A+ , s ≥ 0.

Note that D(A) ∩ Z− = Z− by smoothness. Thus A− ∈ L (Z−) and the series

e−s A− :=
∞∑

k=0

(−s A−)k

k! , ∀s ∈ R, (12)

is well defined providing a norm continuous group which for s ≥ 0 coincides with
the subspace semigroup e−s A|Z− . For negative times s ≤ 0 it decays exponentially
‖e−s A−‖L (Z−) ≤ ce−sλk ≤ cesμ. The constructions above “commute” with Sobolev
embeddings W �,r ↪→ W k,q . For π± this is again a consequence of a resolvent identity.

Proposition 1 Fix integers � ≥ k ≥ 0 and constants r ≥ q ≥ 1. Consider the Jacobi
operator A := Ax on Z := W k,q with dense domain W k+2,q and its restrictions A±
to the closed subspaces Z± := π±(Z). Fix μ > 0 in the spectral gap (4) of A. Then
there is a constant c = c(�, k, r, q, μ) such that

(a) The operator−A on L1 generates the strongly continuous semigroup e−s A on L1

given by (9). Both commute with the spectral projections π± in (10).
(b) The subspace semigroup e−s A| on Z ⊂ L1 coincides with the strongly continuous

semigroup e−s A| generated by the restriction −A| of −A to Z ⊂ L1. Restricting
the semigroup and restricting A both commute with the spectral projections which
themselves satisfy π±(−A|) = π±(−A)|. To simplify notation we omit from now
on the slash sign |.

(c) The restriction of −A to Z− generates the norm continuous group e−s A− on Z−
given by the exponential series (12). For positive times this group is equal to the
restriction of the semigroup e−s A to Z−. For negative times it holds that

∥∥e−s A−π−
∥∥

L (W k,q ,W �,r )
≤ cesμ, s ≤ 0. (13)

(d) Restricting e−s A to Z+ gives a strongly continuous semigroup on Z+ and

∥∥∥e−s Aπ+
∥∥∥

L (W k,q ,W �,r )
≤ cs−

1
2 ( 1

q− 1
r +�−k)e−sμ, s > 0. (14)
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2.4 The representation formula

Proposition 2 Consider the nonlinearity f : X ⊃ U → Y given by (6) and the
constant ρ0 provided by the Lipschitz Lemma 1. Pick T > 0 and assume ξ : [0, T ] →
X is a map bounded by ρ0, thus taking values in U . Then the following are equivalent.

(a) The map ξ : [0, T ] → Y is the (unique) solution of the Cauchy problem (5) with
initial value ξ(0).

(b) The map ξ : (0, T ] → X is continuous2 and satisfies the integral equation, also
called representation formula, given by

ξ(s) = e−s Aπ+ξ(0)+
s∫

0

e−(s−σ)Aπ+ f (ξ(σ )) dσ

+ e−(s−T )A−π−ξ(T )−
T∫

s

e−(s−σ)A−π− f (ξ(σ )) dσ (15)

for every s ∈ [0, T ]. In the limit T →∞ the first term in line two disappears.

2.5 Local stable manifold theorem

Theorem 3 (C1 graph) Assume the local setup of Hypothesis 1; see Fig. 4. In partic-
ular, consider the hyperbolic fixed point 0 of the local semi-flow φ defined by (5) on
U ⊂ X. Then the following is true. There is a closed ball B+ ⊂ X+ of radius r > 0
about 0 such that a neighborhood of 0 in the local stable manifold

W s(0,U ) :=
{

z ∈ U
∣∣φ(s, z) ∈ U ∀s > 0 and lim

s→∞φ(s, z) = 0
}

(16)

is a graph over B+, tangent to X+ at 0. In fact, there is a Lipschitz continuous map

G∞ = (G, id) : B+ → X− ×B+, G(0) = 0, dG(0) = 0,

of class C1 such that G∞(B+) is a neighborhood of 0 in W s(0,U ); cf. Fig. 2.

Proposition 3 (L2 extension) Assume Theorem 3. Then the linearization dG∞(z+) :
X+ → X extends to a bounded linear operator on the L2 completions, uniformly in
z+ ∈ B+. More precisely, it holds that

∥∥dG∞(z+)v
∥∥

2 ≤ 2 ‖v‖2 ,
∥∥dG∞(z+)v − v

∥∥
2 ≤

1

4
‖v‖2 ,

for all v ∈ π+(L2) and z+ ∈ B+.

2 Hence f ◦ ξ : (0, T ] → Y is continuous and, by the Lipschitz Lemma 1, bounded.
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The local stable manifold Theorem 3 is well known; see e.g. [8, Theorem 5.2.1]
for a proof by the contraction method. In finite dimensions the theorem is also called
Hadamard–Perron Theorem [6,13].

Observe that proofs of Theorem 3 and Proposition 3 arise as special cases of the
proofs in Sect. 3, formally set T = ∞. Now we recall the contraction method for
the stable manifold theorem. Pick a value for each parameter of interest, in our case
z+ ∈ X+. Our object of interest is a heat flow line η : [0,∞) → U whose initial
value projects to z+ under π+ and which converges to 0, as s →∞. Find a complete
metric space, namely

Z = Zρ
μ :=

{
η ∈ C0([0,∞), X)

∣∣∣ ‖η‖exp := sup
s≥0

es μ
2 ‖η(s)‖X ≤ ρ

}
(17)

for suitable constants ρ and μ, and a strict contraction on Z , namely

(Ψz+η)(s) = e−s Az+ +
s∫

0

e−(s−σ)Aπ+ f (η(σ ))dσ −
∞∫

s

e−(s−σ)A−π− f (η(σ ))dσ

such that the (unique) fixed point ηz+ is the initial object of interest. Use the represen-
tation formula (15) for T = ∞ to see that this is indeed true. In fact this setup works
for any μ in the spectral gap (4) of the Jacobi operator A := Ax , see [21], and for all
ρ > 0 sufficiently small, that is whenever (20) holds. The map

G : B+ → X−, B+ := {
z+ ∈ X+ : ‖z+‖X ≤ ρ/2c

}
,

z+ �→ π−
(
ηz+(0)

)

has the properties asserted by Theorem 3; here c = c(μ) is given by Proposition 1.

Remark 5 (Unstable manifold) The contraction method also serves to represent the
elements of the local unstable manifold W u(0,U ); see e.g. [8, Theorem 5.2.1, proof
of Theorem 5.1.3]. By definition this is the set of end points of all (backward) heat
flow lines η̃ in U parametrized by (−∞, 0] and emanating at time−∞ from 0. There
is a ball B− ⊂ W u ⊂ X− of sufficiently small radius r > 0 such that the following
is true.

Pick γ ∈ B− and consider the backward heat flow trajectory η̃ which satisfies γ =
η̃(0) = π−η̃(0). (Backward flow invariance of descending disks and W u ⊂ X− imply
that η̃ lies completely in X−.) Note that η̃ is asymptotic to zero in infinite backward
time since η̃(0) lies in a descending disk. By (15) and the uniqueness Theorem 17
in [18] for action bounded backward heat flow solutions η̃ is equal to the unique fixed
point of the map

(Φγ η̃)(s) := e−s A−γ −
0∫

s

e−(s−σ)A−π− f (η̃(σ ))dσ +
s∫

−∞
e−(s−σ)Aπ+ f (η̃(σ ))dσ
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Fig. 4 Local setup

which acts as a strict contraction on the complete metric space

Z̃ = Z̃ μ
2 ,ρ :=

{
η̃ ∈ C0((−∞, 0], X)

∣∣∣ ‖η̃‖exp := sup
s≤0

e−s μ
2 ‖η̃(s)‖X ≤ ρ

}
.

3 Proofs

3.1 Proof of the backward λ-lemma (Theorem 1)

Uniform exponential convergence in step 6 is the heart of the proof. It relies on a
suitable time decomposition of trajectories. Throughout assume

Hypothesis 2 Assume the local setup of Hypothesis 1; see Fig. 4. Consider the con-
stants ρ0 > 0 and κ∗ ≥ 1 and the continuous function κ(ρ) with κ(0) = 0 provided
by the Lipschitz Lemma 1. Note that Bρ0 ⊂ U . Fix μ in the spectral gap (0, d)

given by (4) and a constant c = c(μ) ≥ 1 satisfying Proposition 1 for the (finitely
many) choices of (�, k, r, q) that will be used in the present proof. We may assume
that 3

ρ0c2κ∗

(
1

μ
+ 8

μ
1
4

+ 6

μ
5
4

)
≤ 1

8
. (18)

In Hypothesis 1 (b) we picked  ∈ (0, ρ0) and so the constant 4

T1 = T1(, μ, ρ0) := − 2

μ
ln



ρ0
> 0 (19)

3 Otherwise, choose ρ0 > 0 smaller. This leads to a smaller ε in Hypothesis 1 (a). Condition (18) is used
in step 4 and in the proof of Theorem 2, both concerning C1.
4 The definition of T1 ensures in step 2 the second of the two endpoint conditions (21).

123



946 J. Weber

is well defined. Assume ρ ∈ (
0, 1

2ρ0
]

is sufficiently small such that

c2κ(ρ)

(
9

μ
1
4

+ 4

3μ
+ 3

μ
5
4

)
≤ 1

8
(20)

and such that all points of U of distance ≤ ρ to the descending sphere Su
ε are

contained in Bρ0 . Fix a constant T2 = T2(c, μ, ρ, ε) ≥ 0 such that 8ce−μT2/4 ≤ 1
and φ−T2/8W u

ε ⊂ B− := Bρ/2c ∩ X−; see Remark 5. 5 Set T0 := max{T1, T2} > 0.

Pick T ≥ T0 andγ ∈ Su
ε and consider the infinite dimensional diskDγ = {γ }×B+ .

The key observation to represent the preimage φT
−1Dγ under the time-T -map φT as

a graph over the stable subspace X+ is the fact that to any pair (qu, z+) ∈ X− ⊕ X+
sufficiently close to zero there corresponds a unique heat flow trajectory ξ whose
initial value ξ(0) projects under π+ to z+ and whose endpoint at time T projects
under π− to qu ; see Remark 3. In particular, for qu := γ any z+ ∈ X+ near the
origin corresponds to a unique heat flow line ξ = ξ T

γ,z+ which ends at time T in Dγ .
Because its initial value ξ(0) is of the form (π−ξ(0), z+), it is natural to define the
map GT

γ (z+) := π−ξ(0) whose graph at z+ reproduces ξ(0). In fact, we prove that

for any z+ ∈ X+ with ‖z+‖ ≤ ρ/2c there is precisely one semi-flow line ξ = ξ T
γ,z+

with initial condition π+ξ(0) = z+ and endpoint condition ξ(T ) ∈ Dγ . The latter is
equivalent to

π−ξ(T ) = γ ∧ ‖ξ(T )− γ ‖X ≤ . (21)

We will see in step 2 that the definition of T1 assures the second condition.
The key step to determine the unique semi-flow line ξ associated to (T, γ, z+) is to

set up a strict contraction on a complete metric space Z T whose (unique) fixed point
is ξ . Set

‖ξ‖exp = ‖ξ‖exp,T := max
s∈[0,T ] e

s μ
2 ‖ξ(s)‖X (22)

and for γT := φ−T γ define

Z T = Z T,γ
μ/2,ρ :=

{
ξ ∈ C0([0, T ], X) : ‖ξ − φ·γT ‖exp ≤ ρ

}
. (23)

Consider the map Ψ T = Ψ T
γ,z+ defined on Z T by

(
Ψ T

γ,z+ξ
)

(s) := e−s Az+ +
s∫

0

e−(s−σ)Aπ+ f (ξ(σ )) dσ

+ e−(s−T )A−γ −
T∫

s

e−(s−σ)A−π− f (ξ(σ )) dσ (24)

5 The conditions on T2 will be used in step 6, in particular in (39).
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for every s ∈ [0, T ]. The fixed points of Ψ T correspond to the desired heat flow
trajectories by Proposition 2. By step 1 and step 2 below Ψ T is a strict contraction on
Z T . Hence by the Banach fixed point theorem it admits a unique fixed point ξ T

γ,z+ and

for B+ := B+ρ/2c ⊂ X+ we define the map

GT : Su
ε ×B+ → W u ⊂ X−, (γ, z+) �→ π−ξ T

γ,z+(0) =: GT
γ (z+). (25)

Actually B+ is the same ball for which the stable manifold Theorem 3 holds true [21].
The proof takes six steps. Fix γ ∈ Su

ε and z+ ∈ B+ and abbreviate Ψ T = Ψ T
γ,z+ .

Step 1 Fix T ≥ 0. Then the set Z T equipped with the metric induced by the exp norm
is a complete metric space, any ξ ∈ Z T takes values in Bρ0 , and Ψ T acts on Z T .

Proof In case of the compact domain [0, T ] the space C0([0, T ], X) is complete with
respect to the supremum norm, hence with respect to the exp norm as both norms
are equivalent by compactness of [0, T ]. The subset Z T ⊂ C0([0, T ], X) is closed
with respect to the exp norm. By the assumption which immediately follows (20) the
elements of Z T take values in Bρ0 , hence in U .

To see that Ψ T acts on Z T we need to verify that Ψ T ξ is continuous and satisfies
the exponential decay condition in (23) whenever ξ ∈ Z T . By definition Ψ T ξ is a
sum of four terms. That each one is continuous as a map [0, T ] → X is standard.
For terms one, two, and four see step 1 (iii) in the proof of Theorem 3 given in [21].
For term three continuity follows from the definition of the exponential by the power
series (12). For latter reference we sketch the argument for term two which we denote
by F(s): Continuity of F : [0, T ] → X and the fact that F(0) = 0 (used in steps 2
and 3 below) both follow by an analogue of [17, Lemma 9.7 a)] for −A instead of �

and with p = 2; see also [8, Lemma 3.2.1]. The condition to be checked is that the
map f̃ := π+ ◦ f ◦ ξ : [0, T ] → Y+ ↪→ Y is continuous and bounded: This is true
since ξ : [0, T ] → X is continuous and bounded by definition of Z T and so is f by
Lemma 1.

We prove exponential decay. For s ∈ [0, T ] consider the heat flow trajectory given
by φsγT . By the representation formula of Proposition 2 it satisfies

φsγT =
s∫

0

e−(s−σ)Aπ+ f (φσ γT ) dσ + e−(s−T )A−γ −
T∫

s

e−(s−σ)A−π− f (φσ γT ) dσ.

(26)
Here we used thatπ+γT = 0, becauseγ and thereforeγT = φ−T γ lies in W u(0,U ) ⊂
X− by backward flow invariance. By the same argument π−φT γT = π−γ = γ . By
definition (24) of Ψ T and (26) we get for s ∈ [0, T ] the estimate

∥∥∥
(
Ψ T ξ

)
(s)− φsγT

∥∥∥
X

≤
∥∥∥e−s Az+

∥∥∥
X
+

s∫

0

∥∥∥e−(s−σ)Aπ+
∥∥∥

L (Y,X)
‖ f (ξ(σ ))− f (φσ γT )‖Y dσ
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+
T∫

s

∥∥∥e−(s−σ)A−π−
∥∥∥

L (Y,X)
‖ f (ξ(σ ))− f (φσ γT )‖Y dσ

≤ ce−sμ ‖z+‖X + cκ(ρ)e−s μ
2 ‖ξ − φ·γT ‖exp

s∫

0

e−(s−σ)
μ
2

(s − σ)
3
4

dσ

+cκ(ρ)e−s μ
2 ‖ξ − φ·γT ‖exp

T∫

s

e(s−σ) 3
2 μ dσ

≤ ρ

2
e−sμ + cκ(ρ)

(
8

μ1/4 +
2

3μ

)
ρe−s μ

2 ≤ ρe−s μ
2 (27)

where the last inequality is by smallness (20) of ρ. Inequality two follows by the
exponential decay Proposition 1 with constant c and the Lipschitz Lemma 1 for f
with Lipschitz constant κ(ρ). We multiplied the integrands by e−σ

μ
2 eσ

μ
2 to create the

exp norms. Inequality three uses ‖z+‖X ≤ ρ
2c and boundedness of the exp norms by

ρ since ξ ∈ Z T . We also used that

∞∫

s

e(s−σ) 3
2 μ dσ = 2

3μ
. (28)

To estimate the other integral define Γ (α) := ∫∞
0 e−τ τα−1 dτ for α > 0. The Γ

function satisfies Γ ( 1
4 ) = 4Γ ( 5

4 ) ≤ 4 since Γ ≤ 1 on the interval [1, 2]. Hence

s∫

0

e−(s−σ)
μ
2

(s − σ)
3
4

dσ =
(

2

μ

) 1
4

s μ
2∫

0

e−τ τ
1
4−1 dτ ≤ 2

1
4

μ
1
4

Γ ( 1
4 ) ≤ 8

μ
1
4

. (29)

��

Step 2 For T ≥ 0 the map Ψ T acts as a strict contraction on Z T . Each image point
Ψ T ξ satisfies the initial condition π+

(
Ψ T ξ

)
(0) = z+ and, if T ≥ T1, also the

endpoint condition (21), that is
(
Ψ T ξ

)
(T ) ∈ Dγ = {γ } ×B+ .

Proof Assume T ≥ 0 and fix ξ1, ξ2 ∈ Z T . Similarly to (27) we obtain that

∥∥∥
(
Ψ T ξ1

)
(s)−

(
Ψ T ξ2

)
(s)

∥∥∥
X

≤
s∫

0

∥∥∥e−(s−σ)Aπ+
∥∥∥

L (Y,X)
‖ f (ξ1(σ ))− f (ξ2(σ ))‖Y dσ
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+
T∫

s

∥∥∥e−(s−σ)A−π−
∥∥∥

L (Y,X)
‖ f (ξ1(σ ))− f (ξ2(σ ))‖Y dσ

≤ cκ(ρ)

(
8

μ1/4 +
2

3μ

)
e−s μ

2 ‖ξ1 − ξ2‖exp (30)

for every s ∈ [0, T ]. Now use the smallness assumption (20) on ρ to conclude that
‖Ψ T ξ1 − Ψ T ξ2‖exp ≤ 1

2‖ξ1 − ξ2‖exp.
The identities π+

(
Ψ T ξ

)
(0) = z+ and π−

(
Ψ T ξ

)
(T ) = γ follow from defini-

tion (24) of Ψ T , the identities π+π− = π−π+ = 0, strong continuity of the semi-
groups on X− and X+ asserted by Proposition 1, continuity and boundedness of both
integrands, and F(0) = 0 by the proof of step 1. Concerning the second endpoint
condition in (21) assume T ≥ T1 and evaluate (27) at s = T to get

‖(Ψ ξ) (T )− γ ‖X ≤ ρe−T μ
2 ≤ e−T1

μ
2 ρ0 = 

where the last step is by definition of T1 in (19). ��
Step 3 For T ≥ 0 the map GT : Su

ε ×B+ → X− defined by (25) is of class C1 and,
for each γ ∈ Su

ε , the map GT
γ := GT (γ, ·) : B+ → X− satisfies

GT
γ (0) = φ−T γ =: γT , graph GT

γ =
{
ξ T
γ,z+(0)

∣∣ z+ ∈ B+
}

.

Proof Assume T ≥ 0. By step 2 and its proof the map

Ψ T : Su
ε ×B+ × Z T → Z T , (γ, z+, ξ) �→ Ψ T

γ,z+ξ

is a uniform contraction on Z T with contraction factor 1
2 . (Actually Z T depends on γ ,

but the complete metric spaces associated to different γ ’s are quasi-isometric.) Observe
that Ψ T is linear, hence smooth, in γ and in z+ and of class C1 in ξ , because f is of
class C1 by the Lipschitz Lemma 1. Hence by the uniform contraction principle, see
e.g. [2], the map λ : Su

ε ×B+ → Z T assigning to (γ, z+) the unique fixed point ξ T
γ,z+

of Ψ T
γ,z+ is of class C1. So is its composition with (linear) evaluation ev0 : Z T → X ,

ξ �→ ξ(0), and (linear) projection π− : X → X−. But overall this composition is GT

by definition (25). This proves that GT , thus G , is of class C1 in γ and z+.
Consider the heat flow trajectory η̃ : [0, T ] → X , s �→ φsγT = φs−T γ . By

Remark 5 it takes values in X−, because η̃(T ) = γ ∈ Su
ε = ∂W u

ε ⊂ W u lies
in a descending disk. Hence π+η̃(0) = 0 and π− leaves η̃ pointwise invariant. An
argument as in Remark 5 (using likewise forward uniqueness) shows that η̃ = ξ T

γ,0.

Thus GT
γ (0) := π−ξ T

γ,0(0) = π−η̃(0) = η̃(0) = γT . To get the desired representation

of graph GT
γ observe that

G T
γ (z+) :=

(
GT

γ (z+), z+
)
=

(
π−ξ T

γ,z+(0), π+ξ T
γ,z+(0)

)
= ξ T

γ,z+(0) (31)
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by definition (25). The first identity also uses the fixed point property and the initial
condition proved in step 2. The final identity is by π− ⊕ π+ = 1Y . ��
Step 4 The map G is of class C1. The map T �→ G (T, γ, z+) is Lipschitz continuous
and its derivative is locally Hölder continuous with exponent α = 1

8 . The map γ �→
G (T, γ, z+) is Lipschitz continuous.

Proof By step 3 the map G is of class C1 in the γ and z+ variables. By compactness
of the (k−1)-dimensional sphere Su

ε , the derivative of G with respect to γ is bounded.
Thus G is Lipschitz continuous in γ .

We prove that G is Lipschitz continuous in T. Fix T ≥ T0 > 0, γ ∈ Su
ε , and

z+ ∈ B+. The fixed point ξ T := ξ T
γ,z+ of Ψ T is given by (24) and the one of Ψ T+τ by

ξ T+τ (s) := ξ T+τ
γ,z+ (s) = e−s Az+ +

s∫

0

e−(s−σ)Aπ+ f (ξ T+τ (σ )) dσ

+ e−(s−T−τ)A−γ −
T+τ∫

s

e−(s−σ)A−π− f (ξ T+τ (σ )) dσ.

For s ∈ [0, T ] and τ ≥ 0 we obtain, analogously to (27), the estimate∥∥∥ξ T+τ (s)− ξ T (s)
∥∥∥

X

≤
s∫

0

∥∥e−(s−σ)Aπ+
∥∥

L (Y,X)

∥∥∥ f (ξ T+τ (σ ))− f (ξ T (σ ))

∥∥∥
Y

dσ

+∥∥(eτ A− − 1
)
e−(s−T )A−γ

∥∥
X +

T∫

s

∥∥e−(s−σ)A−π−
∥∥

L (Y,X)

∥∥∥ f (ξ T+τ (σ ))− f (ξ T (σ ))

∥∥∥
Y

dσ+
T+τ∫

T

∥∥e−(s−σ)A−π−
∥∥

L (Y,X)

∥∥∥ f (ξ T+τ (σ ))

∥∥∥
Y

dσ

≤ cκ(ρ)

∥∥∥ξ T+τ − ξ T
∥∥∥

C0([0,T ],X)

⎛
⎝

s∫

0

e−(s−σ)μ

(s − σ)
3
4

dσ +
T∫

s

e(s−σ)μ dσ

⎞
⎠

+τc|λ1| · ce(s−T )μ ‖γ ‖X + cκ(ρ)ρ0

T+τ∫

T

e(s−σ)μ dσ

≤ cκ(ρ)

(
8

μ1/4 +
1

μ

)∥∥∥ξ T+τ − ξ T
∥∥∥

C0([0,T ],X)
+ τρ0c2|λ1|e(s−T )μ

+cκ(ρ)ρ0
e(s−T )μ

μ

(
1− e−τμ

)

≤ 1

8

∥∥∥ξ T+τ − ξ T
∥∥∥

C0([0,T ],X)
+ τρ0

(
c2|λ1| + 1

)
e(s−T )μ.
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Fig. 5 The difference G T+τ
γ (z+)− G T

γ (z+)

Inequality two uses the Lipschitz Lemma 1 for f and the exponential estimates of
Proposition 1. To estimate the second of the four terms recall that X− is spanned by an
orthonormal basis of eigenvectors of A− ∈ L (X−) corresponding to the eigenvalues
λ1 ≤ · · · ≤ λk < 0. Hence ‖A−‖ = −λ1 = |λ1|. Since e−sμ ≤ 1 we get that

1− e−μτ

μ
=

τ∫

0

e−sμ ds ≤ τ. (32)

Thus [9, Proposition 1.3.6. (ii)] implies the estimate

‖eτ A− − 1‖L (X−) =
∥∥∥∥∥∥A−

τ∫

0

eσ A− dσ

∥∥∥∥∥∥
L (X−)

≤ |λ1|
τ∫

0

ce−σμ dσ ≤ τc|λ1|. (33)

Coming back to inequality two above, we used that ξ T+τ ∈ Z T+τ in term four takes
values in Bρ0 by step 1. Inequality three uses (29) and (28) for the first two integrals
and that γ ∈ Su

ε ⊂ Bρ0 . Inequality four uses (32) and smallness (20) of ρ which also
implies that cκ(ρ) ≤ 1. Now set c1 = 2(c2|λ1| + 1) and take the supremum over
s ∈ [0, T ] to get that ∥∥∥ξ T+τ − ξ T

∥∥∥
C0([0,T ],X)

≤ ρ0c1τ. (34)

Therefore by (31) we get ‖G T+τ
γ (z+)−G T

γ (z+)‖X = ‖ξ T+τ (0)− ξ T (0)‖X ≤ ρ0c1τ

and this proves that G (T, γ, z+) = G T
γ (z+) is Lipschitz continuous in T . The differ-

ence ξ T+τ − ξ T is illustrated by Fig. 5.
We prove that T �→ d

dT G (T, γ, z+) is locally Hölder. Consider the derivative

�T (s) := d
dτ

∣∣
τ=0 ξ T+τ

γ,z+ (s)

=
s∫

0

e−(s−σ)Aπ+
(
d f |ξT (σ ) ◦�T (σ )

)
dσ + A−e−(s−T )A−γ

− e−(s−T )A−π− f (ξ T (T ))−
T∫

s

e−(s−σ)A−π−
(

d f |ξT (σ ) ◦�T (σ )
)

dσ.
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Since d
dT G (T, γ, z+) = �T (0) by (31), it remains to show that the map T �→

�T (0) ∈ X is locally Hölder continuous. By definition of �T we get the identity

�T+τ (s)−�T (s)

=
s∫

0

e−(s−σ)Aπ+d f |ξT+τ (σ )

(
�T+τ (σ )−�T (σ )

)
dσ

+
s∫

0

e−(s−σ)Aπ+
(
d f |ξT+τ (σ ) − d f |ξT (σ )

) ◦�T (σ ) dσ

+(eτ A− − 1
)

A−e−(s−T )A−γ − (
eτ A− − 1

)
e−(s−T )A−π− f (ξ T+τ (T + τ))

−e−(s−T )A−π−
(

f (ξ T+τ (T + τ))− f (ξ T (T ))
)

−
T∫

s

e−(s−σ)A−π−d f |ξT+τ (σ )

(
�T+τ (σ )−�T (σ )

)
dσ

−
T∫

s

e−(s−σ)A−π−
(
d f |ξT+τ (σ ) − d f |ξT (σ )

) ◦�T (σ ) dσ

−
T+τ∫

T

e−(s−σ)A−π−d f |ξT+τ (σ ) ◦�T+τ (σ ) dσ

for all s ∈ [0, T ] and τ ≥ 0. To obtain terms one and two we added zero, similarly for
terms four and five and terms six and seven. Abbreviate the norm of the Banach space
C0([0, T ], X) by ‖·‖C0

T
and combine terms one and six and terms two and seven to

get that

∥∥∥�T+τ (s)−�T (s)
∥∥∥

X

≤ cκ(ρ)

∥∥∥�T+τ −�T
∥∥∥

C0
T

⎛
⎝

s∫

0

e−(s−σ)μ

(s − σ)
3
4

dσ +
T∫

s

e(s−σ)μ dσ

⎞
⎠

+cκ∗
∥∥∥ξ T+τ − ξ T

∥∥∥
C0

T

∥∥∥�T
∥∥∥

C0
T

⎛
⎝

s∫

0

e−(s−σ)μ

(s − σ)
3
4

dσ +
T∫

s

e(s−σ)μ dσ

⎞
⎠

+τc2|λ1|
(
|λ1| · ‖γ ‖X + κ(ρ)

∥∥∥ξ T+τ (T+τ)

∥∥∥
X

)
e(s−T )μ

+cκ(ρ)

∥∥∥ξ T+τ (T+τ)− ξ T (T )

∥∥∥
X

e(s−T )μ + cκ(ρ)

∥∥∥�T+τ
∥∥∥

C0
T+τ

T+τ∫

T

e(s−σ)μ dσ

≤ cκ(ρ)

(
8

μ1/4 +
1

μ

)∥∥∥�T+τ −�T
∥∥∥

C0
T

+ τcκ∗ρ2
0 c2

1

(
8

μ1/4 +
1

μ

)
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+τcρ0|λ1| (c|λ1| + 1)+ τ
1
8 ρ0

(
c3T

1
8 + c4τ

1
8

)
+ ρ0c1

μ

(
1− e−τμ

)

≤ 1

8

∥∥∥�T+τ −�T
∥∥∥

C0
T

+ ρ0

(
τc2

1 + τc|λ1|c1 + τ
1
8

(
c3T

1
8 + c4τ

1
8

)
+ τc1

)

for s ∈ [0, T ] and τ ≥ 0. Inequality one uses the exponential decay Proposition 1, the
Lipschitz Lemma 1 for f , and its Corollary 1. To obtain line three we used (33). In
line five we used backward time exponential decay (13).

To see inequality two observe the following. Estimate the first integral in lines one
and two by (29), the second one by (28). Recall that γ ∈ Bρ0 by our local setup.
Apply estimate (34). In addition, use (34) to conclude that ‖�T (s)‖X ≤ ρ0c1 when-
ever s ∈ [0, T ]. (Note that the same is true when T is replaced by T +τ .) The elements
of Z T (and Z T+τ ) take values in Bρ0 by step 1. Use that cκ(ρ) ≤ 1 by (20) and that
e(s−T )μ ≤ 1. To estimate the difference ξ T+τ (T + τ) − ξ T (T ) ∈ X in line four is
surprisingly subtle. This estimate will be carried out separately below; see (36) for
the result used in inequality two and for the definition of c3 and c4.

To obtain inequality three we used smallness (18) and (20) of ρ and estimate (32).
Now take the supremum over s ∈ [0, T ] to get

∥∥∥�T+τ −�T
∥∥∥

C0([0,T ],X)
≤ cT ρ0τ

1
8 (35)

where 1
2 cT = c3T

1
8 + τ

7
8
(
c2

1 + c2λ2
1 + c|λ1| + c1

)+ c4τ
1
8 . Thus

∥∥ d
dT G (T + τ, γ, z+)− d

dT G (T, γ, z+)
∥∥

X =
∥∥∥�T+τ (0)−�T (0)

∥∥∥
X
≤ cT ρ0τ

1
8 ,

that is T �→ d
dT G (T, γ, z+) is locally Hölder continuous with exponent α = 1

8 .
As mentioned above it remains to estimate the W 1,2 norm of the difference:

ξ T+τ (T + τ)− ξ T (T ) =
(

e−τ A − 1
)

e−T Az+

+
T∫

0

e−(T+τ−σ)Aπ+
(

f (ξ T+τ (σ ))− f (ξ T (σ ))
)

dσ

+
T∫

0

(
e−τ A − 1

)
e−(T−σ)Aπ+ f (ξ T (σ )) dσ

+
T+τ∫

T

e−(T+τ−σ)Aπ+ f (ξ T+τ (σ )) dσ.

We added zero to obtain terms II and III in this sum I + II + III + IV of four.
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I. Concerning term one we get

∥∥∥
(

e−τ A − 1
)

e−T Az+
∥∥∥

X
=

∥∥∥∥∥∥
τ∫

0

−Ae−s Ae−T Az+ ds

∥∥∥∥∥∥
X

≤
τ∫

0

∥∥∥e−s Aπ+
∥∥∥

L (X)

∥∥∥Ae−T Aπ+
∥∥∥

L (X)
‖z+‖X ds

≤
τ∫

0

ce−sμ
(

c′C
T

e−T μ

)
ρ0 ds

≤ cc′Cρ0e−T0μ

T0
τ.

The first identity even without norms is standard; see e.g. [9, Proposition 1.3.6. (ii)].
To obtain inequality one we permuted A and e−s A; see e.g. [9, Theorem 1.3.3. (i)].
Here we used that e−T Az+ ∈ W 2,1 = D(A) since T > 0. Compare the above esti-
mate on X+ with the corresponding estimate (33) on the finite dimensional vector
space X− and note how boundedness of A− simplifies (33). Inequality two uses
that the norms ‖A·‖1,2 and ‖·‖3,2 are equivalent with constant c′ by compactness
of S1 and A being of second order. The regularity-for-singularity estimate (14)
with constant C = C(μ) allows to get from W 3,2 back to W 1,2 catching a factor
CT−1. The final step uses (32).

II. For term two use estimate (34) and the fact that cκ(ρ) ≤ 1 by (20) to get that

T∫

0

∥∥∥e−(T+τ−σ)Aπ+
(

f (ξ T+τ (σ ))− f (ξ T (σ ))
)∥∥∥

X
dσ ≤ ρ0c1τ

μ
1
4

τμ+T μ∫

τμ

e−s

s
3
4

ds

≤ ρ0c1τ

μ
1
4

Γ ( 1
4 )

≤ 4ρ0c1

μ
1
4

τ.

We also used the definition of the Γ function after (28) and its functional equation.
III. Term three requires similar techniques as term one, but their application requires

more care. Namely, it is crucial not to deal with the L (L1, W 3,2) norm in one go,
but to decompose it into a product involving L (L1, W 1,q) and L (W 1,q , W 3,2)

norms where q is any real strictly larger than the order (two) of the differential
operator A. This way we avoid catching factors s−α with α ≥ 1 when trading reg-
ularity for singularity via (14). Such factors would void our estimate, since they
are not integrable locally near zero. As we will see below integrability requires
q > 2 and q < ∞ and picking q = 4 leads to equal exponents. Similarly as in
case of term one we obtain that
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T∫

0

∥∥∥
(

e−τ A − 1
)

e−(T−σ)Aπ+ f (ξ T (σ ))

∥∥∥
X

dσ

≤
T∫

0

τ∫

0

∥∥∥Ae−s Ae−(T−σ)Aπ+ f (ξ T (σ ))

∥∥∥
W 1,2

ds dσ

≤
T∫

0

τ∫

0

c′
∥∥∥e−s Ae−(T−σ)Aπ+ f (ξ T (σ ))

∥∥∥
W 3,2

ds dσ

≤ c′κ(ρ)ρ0

T∫

0

τ∫

0

∥∥∥e−s Aπ+
∥∥∥

L (W 1,q ,W 3,2)

∥∥∥e−(T−σ)Aπ+
∥∥∥

L (L1,W 1,q )
ds dσ

≤ c′C ′C ′′ρ0

τ∫

0

e−sμs−
3
4− 1

2q ds

T∫

0

e−(T−σ)μ(T − σ)
−1+ 1

2q dσ

= c′C ′C ′′ρ0

τ∫

0

e−sμs−
7
8 ds

T∫

0

e−sμs−
7
8 ds

≤ 64c′C ′C ′′ρ0T
1
8 τ

1
8 .

Inequality three uses once more that ‖ξ T (σ )‖X ≤ ρ0 by step 1. Note that
κ(ρ) ≤ 1. Inequality four uses twice the regularity-for-singularity estimate (14)
with constants C ′ and C ′′, respectively. In the final inequality we dropped the
factors e−sμ ≤ 1 and carried out the integrals.

IV. Concerning term four we get the estimate

T+τ∫

T

∥∥∥e−(T+τ−σ)Aπ+ f (ξ T+τ (σ ))

∥∥∥
X

dσ ≤ ρ0

τ∫

0

e−sμs−
3
4 ds ≤ 4ρ0τ

1
4

by dropping the term e−sμ ≤ 1 under the integral.

Side remark concerning the estimate for term III: Unfortunately, we do not see any
way to trade τ 1/8 for τ or, equivalently, to trade T 1/8 for T . This has the following con-
sequences. The positive power of T obstructs the conclusion that d

dT G is uniformly
continuous in T . The conclusion of local Lipschitz continuity is obstructed by the
factor τα with α = 1/8 < 1. All we can say is that d

dT G is locally Hölder continuous
in T with exponent α = 1/8.

To summarize, the above estimates show that
∥∥∥ξ T+τ (T + τ)− ξ T (T )

∥∥∥
X
≤ τ

1
8 ρ0

(
c3T

1
8 + c4τ

1
8

)
(36)

for τ ≥ 0 and where
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c3 := 64c′C ′C ′′, c4 := 4+ τ
7
8

(
cc′CT−1

0 + 4c1μ
− 1

4

)
.

This concludes the proof of (35) and therefore of step 4. ��
Step 5 For T ≥ 0 the graph map G T

γ : B+ → X−⊕ X+, z+ �→
(

GT
γ (z+), z+

)
, and

its inverse π+|G T
γ (B+) are both Lipschitz continuous with respect to the W 1,2 norm.

In fact, the graph map is a diffeomorphism onto its image.

Proof For j = 1, 2 pick z j ∈ B+ and denote the fixed point ξ T
γ,z j

of Ψ T = Ψ T
γ,z j

by
ξ j . Similarly to the estimate in the proof of step 2 we obtain for each s ∈ [0, T ] that

‖ξ1(s)− ξ2(s)‖X ≤ ce−sμ ‖z1 − z2‖X + 1

2
‖ξ1 − ξ2‖exp .

Multiply by es μ
2 and take the supremum over s ∈ [0, T ] to get

‖ξ1 − ξ2‖exp ≤ 2c ‖z1 − z2‖X . (37)

By (31) this proves Lipschitz continuity of G T
γ , namely

∥∥∥G T
γ (z1)− G T

γ (z2)

∥∥∥
X
= ‖ξ1(0)− ξ2(0)‖X ≤ ‖ξ1 − ξ2‖exp ≤ 2c ‖z1 − z2‖X .

Next use that π+ vanishes on X− and acts as the identity on X+ to see that π+ is a
left inverse of G T

γ . Thus π+ restricted to G T
γ (B+) is its inverse. But this restriction

is of class C1, because it is of the form π+ ◦ G T
γ (z+) where π+ is linear and the map

z+ �→ G T
γ (z+) :=

(
GT

γ z+, z+
)

is of class C1 by step 3.

To see that the restriction of π+ to G T
γ (B+) is Lipschitz continuous consider the

difference ξ1(0)−ξ2(0) = Ψ T ξ1(0)−Ψ T ξ2(0) whose right hand side is given by (24).
Apply ‖a − b‖ ≥ ‖a‖ − ‖b‖ with a = z1 − z2 and (30) for s = 0 to get

‖ξ1(0)− ξ2(0)‖X ≥ ‖z1 − z2‖X − cκ(ρ)
2

3μ
‖ξ1 − ξ2‖exp .

By (37) and the smallness assumption (20) on ρ this implies that

‖ξ1(0)− ξ2(0)‖X ≥
(

1− cκ(ρ)
2

3μ
2c

)
‖z1 − z2‖X ≥ 1

2
‖z1 − z2‖X

which by (31) and the fact that π+ left inverts G T
γ is equivalent to

∥∥∥G T
γ (z1)− G T

γ (z2)

∥∥∥
X
≥ 1

2

∥∥∥π+G T
γ (z1)− π+G T

γ (z2)

∥∥∥
X

. (38)

This proves that π+ is Lipschitz continuous on the image of G T
γ .
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By estimate (38) and the estimate after (37) the map G T
γ is bi-Lipschitz and therefore

a homeomorphism onto its image. Since the map and its inverse are both of class C1,
it is in fact a diffeomorphism onto its image. ��

Step 6 (Uniform convergence) ‖G∞(z+)− G T
γ (z+)‖W 2,2 ≤ ρ0e−T μ

16 ∀T ≥ T2.

Proof Assume T ≥ T2; see (39) below. Consider the fixed point ξ T = ξ T
γ,z+ of

Ψ T
γ,z+ on Z T and the fixed point η = ηz+ of Ψz+ on Z defined by (17). Because

G T
γ (z+) = ξ T (0) by (31), similarly G∞(z+) = η(0), it remains to estimate the

difference η(0) − ξ T (0). Observe that, firstly, since the difference lies in X− ⊂ C∞
application of the W 2,2 norm makes sense. Secondly, by the respective representation
formulae, this difference depends on the whole trajectories η and ξ T . But while η runs
into the origin, the trajectory ξ T ends on the fiber Dγ far away! So the difference η−ξ T

cannot converge to zero, as T → ∞, uniformly on [0, T ]. However, Fig. 5 suggests
that this could be true on some initial part of the domain [0, T ], say on

[
0, 1

2 T
]
. So

step A is to reduce the problem to the smaller interval
[
0, 1

2 T
]
. Step B is to solve the

reduced problem. Here the key idea is to suitably partition both trajectories η and ξ T

and compare due parts; see Fig. 6. The fact that η is asymptotically well behaved, i.e.
exponentially close to zero on [T,∞), enters frequently.

We proceed as follows: In step A we estimate the (stronger) W 2,2 norm of the
difference η(0)−ξ T (0) by an exponentially decaying function of T plus the supremum
over s ∈ [

0, 1
2 T

]
of the (weaker) norm ‖η(s)− ξ T (s)‖X . This reduction of a stronger

to a weaker norm is based on the key fact that the difference η(0) − ξ T (0) only
involves π− terms. Namely, these take values in X−, hence in C∞. In step B we prove
exponential decay of this sup norm. Here we encounter again the difference η − ξ T ,
unfortunately on the whole interval [0, T ]. Now the key idea is to decompose this
interval into three pieces, namely

I := [
0, 1

2 T
]
, I I := [ 1

2 T, 3
4 T

]
, I I I := [ 3

4 T, T
]
,

as shown in Fig. 6. In fact an extra piece [T,∞) is brought in by η. On interval I we
pull out the supremum norm and use smallness of the Lipschitz constant κ(ρ) to get
a coefficient less than one to throw the whole (η − ξ T ) term on the left hand side.

Fig. 6 Time partitions and exponentially decaying differences
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Off I we apply the triangle inequality to deal with each term η and ξ T separately.
Exponential decay built into the definition (17) of Z allows to handle η on its whole
remaining time interval

[ 1
2 T,∞)

in one go. It remains to deal with ξ T on intervals II
and III. For σ ∈ II we exploit (after adding zero) that both terms ξ T (σ )−φσ (γT ) and
φσ (γT ) individually decay exponentially in T , uniformly in σ ∈ I I . For the first term
this is simply true by definition (23) of Z T . Concerning the second term we use that
γ lies in the unstable manifold. Hence φσ (γT ) = φt (γ ) collapses exponentially fast
into the origin, since t := σ − T ∈ [− 1

2 T,− 1
4 T

]
and the whole interval sets off to

−∞ 6; cf. Remark 5. For interval I I I the argument is analytic and cannot be guessed
by Fig. 6. The figure even suggests trouble. Fortunately, we are not concerned with
the image of the trajectory, but with the integral over its time parametrization. In fact
due to an abundance of negative powers already the coarse estimate ‖ξ T (σ )‖X ≤ ρ0
is fine: It leaves us with integrating e(s−σ)μ over I I I . But s ≤ 1

2 T by assumption and
σ ≥ 3

4 T on I I I . 7

Our choice of time partitions and combinations of trajectory pieces which leads to
exponential decay in T is shown in Fig. 6 where the upper labels of points are time.
It is instructive to figure out how the drawing changes as T tends to infinity. How
do η and ξ T change and how their time labels? What happens to the lengths of the
four double arrows? Consider the pair of double arrows with common point ξ T (T/2).
What is the asymptotic behavior of this point?

(A) Abbreviate X̃ := W 2,2. Note that by parabolic regularity the heat flow trajectories
η and ξ T take values in C∞ at strictly positive times. Recall that γ ∈ Su

ε ⊂
(X− ∩Bρ0) by our local setup. Use formula (24) for ξ T and the one for η, see
formula after (17), together with the fact that the nonlinearity f maps X to Y to
obtain 8

∥∥∥η(0)− ξ T (0)

∥∥∥
X̃

≤
⎛
⎜⎝

T/2∫

0

+
T∫

T/2

⎞
⎟⎠

∥∥∥eσ A−π−
∥∥∥

L (Y,X̃)

∥∥∥ f ◦ η(σ )− f ◦ ξ T (σ )

∥∥∥
Y

dσ

+
∥∥∥eT A−π−

∥∥∥
L (X,X̃)

‖γ ‖X +
∞∫

T

∥∥∥eσ A−π−
∥∥∥

L (Y,X̃)
‖ f ◦ η(σ )‖Y dσ

≤ cκ(ρ)

∥∥∥η − ξ T
∥∥∥

C0
([

0, T
2

]
,X

)
T/2∫

0

e−σμ dσ + cκ(ρ) · 2ρ0

T∫

T/2

e−σμ dσ

6 The argument relies on the right boundary of the t-interval running to −∞, as T →∞. Therefore the
right boundary of I I needs to be strictly smaller than T , but at the same time be element of [0, T ]whichever
T we pick. Thus any αT with 0 < α < 1 is a good choice.
7 Exponential decay is achieved, if the left boundary of III is of the form αT with α > 1

2 .
8 Here and throughout

(∫ b
a +

∫ d
c

)
f abbreviates

∫ b
a f + ∫ d

c f .
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+cρ0e−T μ + cκ(ρ)ρ0

∞∫

T

e−σμ dσ.

≤ cκ(ρ)

μ

∥∥∥η − ξ T
∥∥∥

C0
([

0, T
2

]
,X

) + 2cκ(ρ)

μ
ρ0e−T μ

2 + ρ0

8
e−T μ

2 + cκ(ρ)

μ
ρe−T μ

≤ 1

8

∥∥∥η − ξ T
∥∥∥

C0
([

0, T
2

]
,X

) + 1

2
ρ0e−T μ

2 .

Inequality two uses the exponential decay Proposition 1 (c) and the Lipschitz
Lemma 1 for f and p = 1. We also used definition (22) of the exp-T norm and
the fact that the elements of Z T take values in Bρ0 by step 1 and those of Z in
Bρ ⊂ Bρ0 by definition (17). Inequalities three is by calculation and definition
of T2. Now use (20).

(B) Pick s ∈ [
0, T

2

]
. Similarly as in (A) we get the estimate∥∥∥η(s)− ξ T (s)
∥∥∥

X

≤
s∫

0

∥∥∥e−(s−σ)Aπ+
∥∥∥

L (Y,X)

∥∥∥ f ◦ η(σ )− f ◦ ξ T (σ )

∥∥∥
Y

dσ

+

⎛
⎜⎜⎝

T
2∫

s

+
3T
4∫

T
2

+
T∫

3T
4

⎞
⎟⎟⎠

∥∥∥e−(s−σ)A−π−
∥∥∥

L (Y,X)

∥∥∥ f ◦ η(σ )− f ◦ ξ T (σ )

∥∥∥
Y

dσ

+ce(s−T )μ ‖γ ‖X +
∞∫

T

∥∥∥e−(s−σ)A−π−
∥∥∥

L (Y,X)
‖ f ◦ η(σ )‖Y dσ

≤ cρ0e−T μ
2 + cκ(ρ)

∥∥∥η − ξ T
∥∥∥

C0([0, T
2 ],X)

⎛
⎜⎝

s∫

0

e−(s−σ)μ

(s − σ)
3
4

dσ +
T
2∫

s

e(s−σ)μdσ

⎞
⎟⎠

+cκ(ρ)

3T
4∫

T
2

e(s−σ)μ
(∥∥∥ξ T (σ )− φσ (γT )

∥∥∥
X
+ ‖φσ (γT )‖X

)
dσ

+cκ(ρ)

T∫

3T
4

e(s−σ)μ
∥∥∥ξ T (σ )

∥∥∥
X

dσ + cκ(ρ) ‖η‖exp

∞∫

T
2

e(s− 3
2 σ)μdσ.

To get overall exponential decay in T we have split the domain of integration in
three parts. The domain of integration

∫∞
T/2 in the last line is not a misprint.

To continue the estimate consider the last three lines. Now we explain how to
get to the corresponding three lines in (40) below. Concerning line one use the
definition of T2 and recall that s ∈ [0, T/2] and use (28) and (29). In line two we
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drop e(s−σ)μ ≤ 1 and use that ‖ξ T (σ )−φσ (γT )‖X ≤ ρe−σ
μ
2 by definition of Z T

and that

3T
4∫

T
2

‖φσ−T γ ‖X dσ =
3T
8∫

T
8

∥∥∥φ−t− T
8
γ

∥∥∥
X

dt ≤
3T
8∫

T
8

ρe−t μ
2 dt ≤ 2ρ

μ
e−T μ

16 . (39)

Here the identity is by change of variables t = −σ + 7
8 T and the first inequality

uses Remark 5 for the backward time trajectory η̃(−t) = φ−t−T/8(γ ) defined
for t ≥ 0. To see this note that η̃(−t) → 0, as t → ∞, because γ lies in the
descending sphere Su

ε by assumption. Observe that the image of η̃ is contained
in the backward flow invariant set φ−T/8W u

ε which by assumption on T2 is itself
contained in B− := Bρ/2c∩X− ⊂ Bρ . By the argument in Remark 5 the solution
η̃ is equal to the unique fixed point of the map Φγ . In particular, it holds that η̃ ∈ Zu

and therefore ‖η̃(−t)‖X ≤ ρe−tμ/2 for every t ≥ 0. To summarize, line two is
bounded from above by

cκ(ρ) · ρ

⎛
⎜⎜⎝

3T
4∫

T
2

e−σ
μ
2 dσ + 2e−T μ

16

μ

⎞
⎟⎟⎠ ≤ cκ(ρ) · 2ρ

μ

(
e−T μ

4 + e−T μ
16

)
.

In line three use ‖ξ T (σ )‖X ≤ ρ0 for any ξ T ∈ Z T by step 1 and ‖η‖exp ≤ ρ by
definition of Z . Carry out the integrals, in the second one drop e(s−σ)μ ≤ 1, to get

∥∥∥η(s)− ξ T (s)
∥∥∥

X
≤ ρ0

8
e−T μ

4 + cκ(ρ)

(
8

μ1/4 +
1

μ

)∥∥∥η − ξ T
∥∥∥

C0([0, T
2 ],X)

+4cκ(ρ)

μ
ρe−T μ

16+ cκ(ρ)

μ
ρ0e−T μ

4 + 2cκ(ρ)

μ
ρe−T μ

4

≤ 1

8

∥∥∥η − ξ T
∥∥∥

C0([0, T
2 ],X)
+ 1

2
ρ0e−T μ

16 . (40)

The last step uses smallness (20) of ρ. Take the sup over s ∈ [0, T
2 ] to get

∥∥∥η − ξ T
∥∥∥

C0([0, T
2 ],X)

≤ 4

7
ρ0e−T μ

16 . (41)

Hence ‖G∞(z+) − G T
γ (z+)‖X̃ = ‖η(0) − ξ T (0)‖X̃ ≤ ρ0e−T μ

16 , for all γ ∈ Su
ε ,

times T ≥ T2, and z+ ∈ B+ and this proves step 6. ��

The Sobolev embedding W 2,2(S1) ↪→ C1(S1) concludes the proof of Theorem 1.
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3.2 Proof of uniform C1 convergence (Theorem 2)

Theorem 2 builds on the backward λ-lemma, Theorem 1. So we may use any of the
six steps of its proof. The proof at hand takes two steps. Fix γ ∈ Su

ε and z+ ∈ B+.
Step I. (L2 extension) ‖dG T

γ (z+)v‖2 ≤ 2‖v‖2 for all v ∈ π+(L2) and T ≥ T1.

Proof By the bounded linear transform theorem [14, Theorem I.7] it suffices to pick v

in the dense subspace X+ = π+(X) of π+(L2). Pick τ ≥ 0 small. Consider the fixed
point ξz++τv = ξ T

γ,z++τv ∈ Z T of Ψ T
γ,z++τv . By (24) the fixed point property means

ξz++τv(s) = e−s A(z+ + τv)+
s∫

0

e−(s−σ)Aπ+ f (ξz++τv(σ )) dσ

+ e−(s−T )A−γ −
T∫

s

e−(s−σ)A−π− f (ξz++τv(σ )) dσ (42)

for every s ∈ [0, T ]. By the proof of step 3 the composition of maps τ �→ ξz++τv �→
ξz++τv(s) is of class C1. Hence the linearization is well defined and satisfies

Xv(s) := d
dτ

∣∣
τ=0 ξz++τv(s)

= e−s Av +
s∫

0

e−(s−σ)Aπ+
(

d f |ξz+ (σ ) ◦ Xv(σ )
)

dσ

−
T∫

s

e−(s−σ)A−π−
(

d f |ξz+ (σ ) ◦ Xv(σ )
)

dσ (43)

for each s ∈ [0, T ]. Use (31) to see that Xv(0) = d
dτ

∣∣
τ=0 ξz++τv(0) = dG T

γ (z+)v.
To conclude the proof it remains to show that ‖Xv(0)‖2 ≤ 2‖v‖2. Recall the estimate

∥∥∥e−s Aπ+
∥∥∥

L (L2,X)
≤ cs−

1
2 e−sμ, s > 0, (44)

provided by Proposition 1. This motivates, cf. [8], to define the weighted exp norm

‖Xv‖ 1
2 ,exp = ‖Xv‖ 1

2 ,exp,T := sup
s∈[0,T ]

s
1
2 es μ

2 ‖Xv(s)‖X .

This choice allows to estimate ‖Xv(s)‖X (up to a singular factor) in terms of ‖v‖2
instead of ‖v‖X . Namely, by (43) and since v ∈ X+ ⊂ X ↪→ L2 we obtain that

s
1
2 es μ

2 ‖Xv(s)‖X ≤ s
1
2 es μ

2

∥∥∥e−s Aπ+
∥∥∥

L (L2,X)
‖v‖2

+s
1
2 es μ

2

s∫

0

∥∥∥e−(s−σ)Aπ+
∥∥∥

L (Y,X)
κ(ρ) ‖Xv(σ )‖X dσ
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+s
1
2 es μ

2

T∫

s

∥∥∥e−(s−σ)A−π−
∥∥∥

L (Y,X)
κ(ρ) ‖Xv(σ )‖X dσ

≤ ce−s μ
2 ‖v‖2 + cκ(ρ) ‖Xv‖ 1

2 ,exp

s∫

0

e−(s−σ)
μ
2

(s − σ)
3
4

( s

σ

) 1
2

dσ

+cκ(ρ) ‖Xv‖ 1
2 ,exp

T∫

s

e
3
2 (s−σ)μ

( s

σ

) 1
2

dσ

≤ ce−s μ
2 ‖v‖2 + cκ(ρ)

(
18

μ1/4 +
2

3μ

)
‖Xv‖ 1

2 ,exp

for every s ∈ [0, T ]. Inequality one uses that ξz+ ∈ Z T takes values in Bρ0 ⊂ U by
step 1. Hence Corollary 1 applies and provides the estimate for d f . In inequality two

we used that ‖Xv(σ )‖X ≤ σ− 1
2 e−σ

μ
2 ‖Xv‖ 1

2 ,exp by definition of the exp norm. We
used (44) to obtain the first term and Proposition 1 to obtain the other two terms of
the sum. Inequality three will be proved below. Now use smallness (20) of ρ and take
the supremum over s ∈ [0, T ] to obtain

‖Xv‖ 1
2 ,exp ≤ 2c ‖v‖2 . (45)

Concerning inequality three we need to estimate the two integrals. Observe first of

all that
∫ T

s e
3
2 (s−σ)μ

( s
σ

) 1
2 dσ ≤ ∫ T

s e
3
2 (s−σ)μ dσ ≤ 2

3μ
and

s∫

0

e−(s−σ)
μ
2

(s − σ)
3
4

( s

σ

) 1
2

dσ

=
s/2∫

0

e−(s−σ)
μ
2︸ ︷︷ ︸

≤e−sμ/4

(s − σ︸ ︷︷ ︸
≥s/2

)−
3
4 s

1
2 σ−

1
2 dσ +

s∫

s/2

e−(s−σ)
μ
2

(s − σ)
3
4

( s/σ︸︷︷︸
≤2

)
1
2 dσ

≤ 2
3
4 s−

1
4 e−s μ

4

s/2∫

0

σ−
1
2 dσ + 2

3
4

μ
1
4

Γ ( 1
4 )

≤ 2

μ
1
4

+ 8

μ
1
4

. (46)

Here we used that the last integral is equal to
√

2s and h(s) := 2
5
4 s

1
4 e−s μ

4 is bounded
by h(smax ) = h(1/μ) = 2(2/μe)1/4. Furthermore, we used (29).

We start over estimating Xv(s), but now at s = 0 and in the L2 norm. Similarly as

above, using that ‖Xv(σ )‖X ≤ 2cσ− 1
2 e−σ

μ
2 ‖v‖2 by (45) we get
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‖Xv(0)‖2 ≤ ‖v‖2 +
T∫

0

∥∥∥eσ A−π−
∥∥∥

L (L1,L2)
κ(ρ) ‖Xv(σ )‖X dσ

≤ ‖v‖2 + 2c2κ(ρ) ‖v‖2
T∫

0

e−
3
2 σμσ−

1
2 dσ

≤ ‖v‖2 + c2κ(ρ)

(
6

μ1/4 +
3

μ5/4

)
‖v‖2 ≤ 2 ‖v‖2 .

Inequality one also uses that e−s A restricts to a strongly continuous semigroup on L2

by Proposition 1 and that ‖·‖L (L1,L2) ≤ ‖·‖L (L1,X) by the embedding X ↪→ L2.
Inequality four is by smallness (20) of ρ. Concerning inequality three we applied
(for s = 0) the following consequence of Hölder’s inequality on the domain [s,∞),
namely

∞∫

s

e−
3
2 σμσ−

1
2 dσ ≤ ‖e−σμ‖L4‖e−σ

μ
2 σ−

1
2 ‖L4/3 ≤

(
3+ 3

2μ

)
e−sμ

μ
1
4

(47)

for s ≥ 0. Here step two uses that ‖e−σμ‖L4 = (1/4μ)1/4e−sμ by calculation and
that

‖e−σ
μ
2 σ−

1
2 ‖

4
3

L
4
3
=
∞∫

s

e−σ 2
3 μσ−

2
3 dσ ≤

1∫

0

σ−
2
3 dσ +

∞∫

1

e−σ 2
3 μ dσ = 3+ 3

2μ
e−

2
3 μ.

This proves Step I. ��
Step II. ‖dG T

γ (z+)v − dG∞(z+)v‖2 ≤ e−T μ
16 ‖v‖2 ∀T ≥ T0 ∀v ∈ π+(L2).

Proof The proof of convergence of the linearized graph maps should use convergence
of the graph maps themselves. Indeed (41) is a key ingredient. Another one is the
Lipschitz estimate for d f provided by Lemma 1.

Pick T ≥ T0 and v ∈ X+. Consider the fixed point ξz+ = ξ T
γ,z+ of the strict

contraction Ψ T
γ,z+ on Z T and the fixed point ηz+ of Ψz+ on Z . It is a side remark

that Theorem 3 is recovered by the present setup for T = ∞ and γ := 0. For
τ ≥ 0 small ξz++τv satisfies the integral equation (42) and ηz++τv satisfies (42) with
T = ∞; in particular, term three in that sum disappears. Consider the linearizations
Xv := d

dτ

∣∣
τ=0 ξ T

γ,z++τv and Yv := d
dτ

∣∣
τ=0 ηz++τv . Observe that Xv satisfies the

integral equation (43) and Yv satisfies (43) with T = ∞. We know that dG T
γ (z+)v =

Xv(0) by the identity following (43), similarly dG∞(z+)v = Yv(0). It remains to
estimate ‖Xv(0)− Yv(0)‖2. Define

‖Xv‖∗ := sup
s∈[0, 1

2 T ]
s

1
2 ‖Xv(s)‖X
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and abbreviate ξ := ξ T
γ,z+ and η := ηz+ . Then we obtain the L2 estimate

‖Xv(0)− Yv(0)‖2

≤

⎛
⎜⎜⎝

T
2∫

0

+
T∫

T
2

⎞
⎟⎟⎠

∥∥∥eσ A−π−
∥∥∥

L (L1,L2)

∥∥d f |ξ(σ ) ◦ Xv(σ )− d f |η(σ) ◦ Yv(σ )
∥∥

Y dσ

+
∞∫

T

∥∥∥eσ A−π−
∥∥∥

L (L1,L2)

∥∥d f |η(σ) ◦ Yv(σ )
∥∥

Y dσ

≤
T
2∫

0

ce−σμ

⎛
⎜⎜⎜⎝κ∗ ‖ξ(σ )− η(σ )‖X︸ ︷︷ ︸

≤ 4
7 ρ0e−T μ

16 ,(41)

‖Xv(σ )‖X + κ(ρ) ‖Xv(σ )− Yv(σ )‖X

⎞
⎟⎟⎟⎠ dσ

+
T∫

T
2

ce−σμκ(ρ) ‖Xv(σ )‖X︸ ︷︷ ︸
≤2cσ−

1
2 e−σ

μ
2 ‖v‖2

dσ +
∞∫

T
2

ce−σμκ(ρ) ‖Yv(σ )‖X︸ ︷︷ ︸
≤2cσ−

1
2 e−σ

μ
2 ‖v‖2

dσ

≤ 8

7
ρ0c2κ∗e−T μ

16 ‖v‖2
T
2∫

0

e−σ 3
2 μσ−

1
2 dσ + cκ(ρ) ‖Xv − Yv‖∗

T
2∫

0

e−σμσ−
1
2 dσ

+4c2κ(ρ) ‖v‖2
∞∫

T
2

e−σ 3
2 μσ−

1
2 dσ

≤ 1

8
‖Xv − Yv‖∗ +

(
1

4
e−T μ

16 + 1

4
e−T μ

2

)
‖v‖2 .

Inequality two uses that by the Lipschitz Lemma 1 for d f and its Corollary 1

∥∥d f |ξ(σ ) ◦ Xv(σ )− d f |η(σ) ◦ Yv(σ )
∥∥

Y

= ∥∥(d f |ξ(σ ) − d f |η(σ)

) ◦ Xv(σ )+ d f |η(σ) ◦ (Xv(σ )− Yv(σ ))
∥∥

Y

≤ κ∗ ‖ξ(σ )− η(σ )‖X ‖Xv(σ )‖X + κ(ρ) ‖Xv(σ )− Yv(σ )‖X

and ‖d f |η(σ) ◦ Yv(σ )‖Y ≤ κ(ρ)‖Yv(σ )‖X , respectively. We treated the integral over
[T/2, T ] with the triangle inequality and incorporated its η part into the integral
over [T/2,∞). Furthermore, use that ‖·‖L (L1,L2) ≤ ‖·‖L (L1,X) by the embedding
X ↪→ L2, then apply Proposition 1. Consider inequality three. In the calculation above
we indicated how to estimate certain terms. The estimates used are (41) and (45). We
also used (45) for Yv with T = ∞. In inequality four we applied the estimate (47) to
deal with all integrals and we used the smallness assumption (18) on ρ0 and (20) on ρ.
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It remains to prove exponential decay of the weighted sup norm ‖·‖∗ over the
domain

[
0, 1

2 T
]
. Fix s ∈ [

0, 1
2 T

]
and conclude similarly as above that

s
1
2 ‖Xv(s)− Yv(s)‖X

≤ s
1
2 c

s∫

0

e−(s−σ)μ

(s−σ)
3
4

⎛
⎜⎜⎜⎝κ∗ ‖ξ(σ )−η(σ )‖X︸ ︷︷ ︸

≤ 4
7 ρ0e−T μ

16

‖Xv(σ )‖X + κ(ρ) ‖Xv(σ )− Yv(σ )‖X

⎞
⎟⎟⎟⎠ dσ

+s
1
2 c

T
2∫

s

e(s−σ)μ
(
κ∗ ‖ξ(σ )−η(σ )‖X ‖Xv(σ )‖X+κ(ρ) ‖Xv(σ )− Yv(σ )‖X

)
dσ

+s
1
2 cκ(ρ)

⎛
⎜⎜⎝

T∫

T
2

e(s−σ)μ ‖Xv(σ )‖X︸ ︷︷ ︸
≤2cσ−

1
2 e−σ

μ
2 ‖v‖2

dσ +
∞∫

T
2

e(s−σ)μ ‖Yv(σ )‖X︸ ︷︷ ︸
≤2cσ−

1
2 e−σ

μ
2 ‖v‖2

dσ

⎞
⎟⎟⎠

≤ 8

7
ρ0c2κ∗e−T μ

16 ‖v‖2

⎛
⎜⎝

s∫

0

e−(s−σ)μe−σ
μ
2 s

1
2

(s − σ)
3
4 σ

1
2

dσ +
T
2∫

s

e(s−σ)μe−σ
μ
2 s

1
2

σ
1
2

dσ

⎞
⎟⎠

+cκ(ρ) ‖Xv − Yv‖∗

⎛
⎜⎝

s∫

0

e−(s−σ)μs
1
2

(s − σ)
3
4 σ

1
2

dσ +
T
2∫

s

e(s−σ)μs
1
2

σ
1
2

dσ

⎞
⎟⎠

+4c2κ(ρ) ‖v‖2
∞∫

T
2

e(s− 3
2 σ)μ

( s

σ

) 1
2

dσ

≤
(

8

7
ρ0c2κ∗

(
10

μ1/4 +
1

μ

)
+ 8c2κ(ρ)

3μ

) ‖v‖2
eT μ

16
+ cκ(ρ)

(
10

μ1/4 +
1

μ

)
‖Xv − Yv‖∗

≤
(1

4
+ 1

4

)
‖v‖2 e−T μ

16 + 1

4
‖Xv − Yv‖∗ .

It is a side remark that without the weight factor s1/2 in the ‖·‖∗ norm the integrals
involving (s − σ)−3/4 cause trouble, concerning boundedness, for s near zero. It is
another side remark that due to the presence of the extra factor ‖Xv(σ )‖X we do not
have to cut the interval [ T2 , T ] into two pieces as we did in step 6 above. Inequality
three uses the following estimates. By (46) and by calculation, respectively, we obtain

s∫

0

e−(s−σ)μ

(s − σ)3/4

( s

σ

)1/2
dσ ≤ 10/μ

1
4 ,

T
2∫

s

e(s−σ)μ
( s

σ

)1/2
dσ ≤ 1

μ
.
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To get the second of these estimates we used s/σ ≤ 1. Again by calculation we get

∞∫

T
2

e(s− 3
2 σ)μ

( s

σ

) 1
2

dσ ≤
∞∫

T
2

e(s− 3
2 σ)μdσ ≤ 2

3μ
e(s− 3

4 T )μ ≤ 2

3μ
e−T μ

4

since s ≤ T/2 ≤ σ . In the final inequality four use smallness (18) of ρ0 and (20) of
ρ. Now take the supremum over s ∈ [0, 1

2 T ] to obtain ‖Xv − Yv‖∗ ≤ e−T μ/16 ‖v‖2.
Together with the estimate for ‖Xv(0) − Yv(0)‖2 derived earlier this concludes the
proof of Step II. ��

This concludes the proof of Theorem 2.
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