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Abstract We prove Furuta-type bounds for the intersection forms of spin cobordisms
between homology 3-spheres. The bounds are in terms of a new numerical invariant of
homology spheres, obtained from Pin(2)-equivariant Seiberg-Witten Floer K-theory.
In the process we introduce the notion of a Floer KG-split homology sphere; this
concept may be useful in an approach to the 11/8 conjecture.

Mathematics Subject Classification (2000) 57R58 · 57R57

1 Introduction

Let X be a smooth, oriented, spin 4-dimensional manifold. Donaldson’s diagonaliz-
ability theorem [9,10] implies that if X is closed, then X cannot have a non-trivial
definite intersection form. If X is not closed but has boundary a homology 3-sphere
Y , its intersection form is still unimodular, and Frøyshov [12] found constraints on
the definite intersection forms of such X ; see also [18,31]. These constraints depend
on an invariant associated to the boundary Y and, later, various other invariants of this
type have been developed [13,14,21,23,33].

With respect to indefinite forms, the situation is less understood. If X is closed,
Matsumoto’s 11/8 conjecture [26] states that b2(X) ≥ 11

8 |σ(X)|. (Here, σ denotes the
signature). Since X is spin, its intersection form must be even. A unimodular, even
indefinite form (of, say, nonpositive signature) can be decomposed as

p(−E8) ⊕ q
(

0 1
1 0

)
, p ≥ 0, q > 0.
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696 C. Manolescu

For forms coming from closed spin 4-manifolds, Rokhlin’s theorem [34] implies that
p is even. Since b2(X) = 8p + 2q and p = |σ(X)|/8, the 11/8 conjecture can be
rephrased as

q ≥ 3p/2. (1)

An important result in this direction was obtained by Furuta [19], who proved the
inequality b2(X) ≥ 10

8 |σ(X)| + 2, i.e.,

q ≥ p + 1. (2)

The free coefficient 1 in the bound can sometimes be improved slightly, depending on
the value of p mod 8; see [7,37,40].

The purpose of this paper is to obtain constraints on the indefinite intersection forms
of spin four-manifolds with boundary. Although many of the results can be extended
to the setting where the boundary ∂ X = Y is a disjoint union of rational homology
spheres (equipped with spin structures), for simplicity we will focus on the case where
Y consists of either one or two integral homology 3-spheres. Then, the intersection

form must still be of the type p(−E8) ⊕ q
(

0 1
1 0

)
, and the parity of p is given by

the Rokhlin invariant of the boundary. (We allow here the case p < 0, and then we
interpret p(−E8) as a direct sum of copies of the positive form E8.) One method
to obtain constraints on the intersection form is to pick a spin 4-manifold X ′ with
boundary −Y , and apply Furuta’s bound (2) to the closed manifold X ∪Y X ′. This
method can be refined by choosing X ′ to be an orbifold rather than a manifold, and
applying the orbifold version of (2) developed by Fukumoto and Furuta in [16]. We
refer to [5,8,15] for some results obtained using these methods.

In this paper we find further constraints by a different technique, based on adapting
Furuta’s proof of (2) to the setting of manifolds with boundary. (However, our proof
does not use the Adams operations, so it is in fact closer in spirit to Bryan’s modification
of Furuta’s argument [6].) Here is the first result:

Theorem 1 To every oriented homology 3-sphere Y we can associate an invariant
κ(Y ) ∈ Z, with the following properties:

(i) The mod 2 reduction of κ(Y ) is the Rokhlin invariant μ(Y );
(ii) Suppose that W is a smooth, spin, negative-definite cobordism from Y0 to Y1, and

let b2(W ) denote the second Betti number of W . Then:

κ(Y1) ≥ κ(Y0) + 1

8
b2(W ).

(iii) Suppose that W is a smooth, spin cobordism from Y0 to Y1, with intersection form

p(−E8) ⊕ q
(

0 1
1 0

)
. Then:

κ(Y1) + q ≥ κ(Y0) + p − 1.

Our main interest is in part (iii), but we listed properties (i) and (ii) in order to
compare κ with the invariants α, β, γ constructed in [23], using Pin(2)-equivariant
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On the intersection forms of spin four-manifolds 697

Seiberg-Witten Floer homology. The invariants α, β, γ satisfy the analogues of (i)
and (ii). Property (iii) seems specific to the invariant κ , which is constructed from the
Pin(2)-equivariant Seiberg-Witten Floer K-theory of Y . The use of Pin(2)-equivariant
K-theory is to be expected, because it also appeared in Furuta’s and Bryan’s proofs
of (2).

Roughly, the invariant κ is defined as follows. We use the set-up from [23,24]:
Pick a metric g on Y and consider a finite dimensional approximation to the Seiberg-
Witten equations, depending on an eigenvalue cut-off ν � 0. The resulting flow has
a Conley index Iν , which is a pointed topological space with an action by the group
G = Pin(2). After changing Iν by a suitable suspension if necessary, we can arrange
for the S1-fixed point set of Iν to be equivalent to a complex representation sphere of
G. We then consider the reduced G-equivariant K-theory of Iν . The inclusion of the
S1-fixed point set into Iν induces a map

ι∗ : K̃G(Iν) → K̃G(I S1

ν ). (3)

We have a Bott isomorphism

K̃G(I S1

ν ) ∼= KG(pt) = Z[w, z]/(w2 − 2w,wz − 2w).

We let

k(Iν) = min{k ≥ 0 | ∃ x ∈ image(ι∗) ⊆ KG(pt), wx = 2kw},

and obtain κ(Y ) from 2k(Iν) by subtracting a correction term depending on ν and g.
The invariant κ(Y ) can be computed explicitly in some cases. For example:

Theorem 2 (a) We have κ(S3) = 0.
(b) Consider the Brieskorn spheres Σ(2, 3, m) with gcd(m, 6) = 1, oriented as

boundaries of negative definite plumbings. Then:

κ(Σ(2, 3, 12n − 1)) = 2, κ(Σ(2, 3, 12n − 5)) = 1,

κ(Σ(2, 3, 12n + 1)) = 0, κ(Σ(2, 3, 12n + 5)) = 1.

(c) For the same Brieskorn spheres with the orientations reversed, we have

κ(−Σ(2, 3, 12n − 1)) = 0, κ(−Σ(2, 3, 12n − 5)) = 1,

κ(−Σ(2, 3, 12n + 1)) = 0, κ(−Σ(2, 3, 12n + 5)) = −1.

Observe that κ(−Y ) is not determined by κ(Y ). However, we can prove that κ(Y )+
κ(−Y ) ≥ 0. (See Proposition 3.) Furthermore, observe that for the examples appearing
in Theorem 2, the values for κ coincide with those for the invariant α defined in [23].
We conjecture that κ = α in general; see Sect. 6 for a discussion of this.

Note also that when Y0 = Y1 = S3, the bound in Theorem 1 (iii) is weaker than
Furuta’s bound (2). We can remedy this by introducing the following concept:
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698 C. Manolescu

Definition 1 We say that a homology sphere is Floer KG-split if the image of the
map ι∗ from (3) is an ideal of Z[w, z]/(w2 − 2w,wz − 2w) of the form (zk) for some
k ≥ 0.

For example, one can show that the three-sphere S3, the Brieskorn spheres
±Σ(2, 3, 12n + 1) and ±Σ(2, 3, 12n + 5) are all Floer KG-split, but the Brieskorn
spheres of the form ±Σ(2, 3, 12n −1) and ±Σ(2, 3, 12n −5) are not Floer KG-split.
If the starting 3-manifold in a cobordism W is Floer KG-split, we can strengthen the
bound in Theorem 1 (iii):

Theorem 3 Suppose that W is a smooth, spin cobordism from Y0 to Y1, with inter-

section form p(−E8) ⊕ q
(

0 1
1 0

)
and q > 0. If Y0 is KG-split, then:

κ(Y1) + q ≥ κ(Y0) + p + 1.

Applying this to Y0 = S3, which is Floer KG-split, we obtain:

Corollary 1 Let X be a smooth, compact, spin four-manifold with boundary a homol-

ogy sphere Y . If the intersection form of X is p(−E8) ⊕ q
(

0 1
1 0

)
and q > 0, then:

q ≥ p + 1 − κ(Y ).

When Y = S3, we recover Furuta’s 10/8 Theorem (2). When Y = ±Σ(2, 3, m)

with gcd(m, 6) = 1, we get specific bounds by combining Theorem 2 (ii) and (iii)
with Corollary 1. In some of these cases, the bounds given by Corollary 1 can be
obtained more easily by applying the orbifold version of Furuta’s theorem to a filling
of X . However, the bounds we get in the cases Y = +Σ(2, 3, 12n + 1) and Y =
+Σ(2, 3, 12n + 5) appear to be new. We refer to Sect. 5.3 for a detailed discussion.

The techniques developed in this paper may also be of interest in studying closed
4-manifolds. Indeed, Bauer [4] proposed a strategy for proving the 11/8 conjecture (in
the simply connected case) by decomposing the 4-manifold along homology spheres.
Specifically, suppose we had a counterexample to (1), i.e., a closed, spin 4-manifold X

with intersection form 2r(−E8)⊕q
(

0 1
1 0

)
and q < 3r . By adding copies of S2 × S2,

we can assume that q = 3r − 1. If π1(X) = 1, then by a theorem of Freedman and
Taylor [11] we can find a decomposition

X = X1 ∪Y1 X2 ∪Y2 · · · ∪Yr−1 Xr (4)

such that:

(a) Yi is an integral homology 3-sphere for all i ;

(b) For 1 ≤ i ≤ r − 1, the manifold Xi has intersection form 2(−E8) ⊕ 3
(

0 1
1 0

)
;

(c) Xr has intersection form 2(−E8) ⊕ 2
(

0 1
1 0

)
.
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On the intersection forms of spin four-manifolds 699

(There are several variations of this; e.g., one could ask for X1 to have intersection

form 2(−E8) ⊕ 4
(

0 1
1 0

)
and for Xr to have intersection for 2(−E8) ⊕

(
0 1
1 0

)
, as

in [4].) If the homology spheres Yi are arbitrary, Theorem 1 (iii) is not sufficient to
preclude the existence of such decompositions. On the other hand, Theorem 3 has the
following immediate consequence:

Theorem 4 There exists no closed four-manifold X with a decomposition of the type
(4), such that all the homology spheres Yi are Floer KG-split.

In view of this result, it would be worthwhile to find topological conditions guar-
anteeing that a homology sphere is Floer KG -split.

2 Equivariant K-theory

2.1 Background

We start by reviewing a few general facts about equivariant K-theory, mostly collected
from [38]; see also [2]. We assume familiarity with ordinary K-theory, as in [1].

Let G be a compact topological group and X a compact G-space. The equivariant
K-theory of X , denoted KG(X), is the Grothendieck group associated to G-equivariant
complex vector bundles on X . When X is a point, R(G) = KG(pt) is the representation
ring of G. In general, KG(X) is an algebra over R(G).

Fact 1 A continuous map f : X → X ′ induces a map f ∗ : KG(X ′) → KG(X).

Fact 2 For every subgroup H ⊆ G, we have functorial restriction maps KG(X) →
K H (X).

Fact 3 If G acts freely on X, then the pull-back map K (X/G) → KG(X) is a ring
isomorphism.

Fact 4 If G acts trivially on X, then the natural map R(G) ⊗ K (X) → KG(X) is an
isomorphism of R(G)-algebras.

Now suppose that X has a distinguished base point, fixed under G. We define the
reduced equivariant K -theory of X , denoted K̃G(X), as the kernel of the restriction
map KG(X) → KG(pt).

Fact 5 If the action of G on X is free away from the basepoint, then the pull-back
map K̃ (X/G) → K̃G(X) is a ring isomorphism.

Fact 6 There is a natural product map K̃G(X) ⊗ K̃G(X ′) → K̃G(X ∧ X ′).

If V is any real representation of G, let ΣV X = V + ∧ X denote the (reduced)
suspension of X by V . When V = nR is a trivial representation, we simply write
Σn X for ΣnR X .
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700 C. Manolescu

Fact 7 If V is a complex representation of G, we have an equivariant Bott periodicity
isomorphism, K̃G(X) ∼= K̃G(ΣV X). This is given by multiplication with a Bott class
bV ∈ K̃G(V +), under the natural map K̃G(V +) ⊗ K̃G(X) → K̃G(ΣV X). The Bott
isomorphism is functorial with respect to based continuous maps f : X → X ′.

Fact 8 Let V be a complex representation of G. The composition of the Bott isomor-
phism with the map K̃G(ΣV X) → K̃G(X) induced by the inclusion X ↪→ ΣV X is a
map K̃G(X) → K̃G(X) given by multiplication with the K-theoretic Euler class

λ−1(V ) =
∑

d

(−1)d [�i V ] ∈ R(G).

Bott periodicity for V = C ∼= R
2 says that K̃G(Σ2 X) ∼= K̃G(X). For i ∈ Z, we

can define the reduced K-cohomology groups of X by

K̃ i
G(X) =

{
K̃G(X) if i is even,

K̃G(Σ X) if i is odd.

Fact 9 If A ⊆ X is a closed G-subspace (containing the base point), there is a long
exact sequence:

→ K̃ i
G(X �A C A) → K̃ i

G(X) → K̃ i
G(A) → K̃ i+1

G (X �A C A) → · · · (5)

where C A denotes the cone on A.

A quick consequence of Fact 9 is:

Fact 10 If X is a wedge sum A ∨ B, then K̃G(X) ∼= K̃G(A) ⊕ K̃G(B).

The augmentation ideal a ⊆ R(G) is defined as the kernel of the forgetful map
(augmentation homomorphism) R(G) ∼= KG(pt) → K (pt) ∼= Z. The following fact
is closely related to the Atiyah-Segal completion theorem; see [3, proof of Proposition
4.3] and [1, 3.1.6]:

Fact 11 If X is a finite, based G-CW complex and the G-action is free away from the
basepoint, then the elements of the augmentation ideal a ⊂ R(G) act nilpotently on
K̃G(X) ∼= K̃ (X/G).

One can also define the equivariant K -groups when X is only locally compact
(see [38]), e.g., for the classifying bundle EG. The following is a consequence of the
Atiyah-Segal completion theorem; see [3, Proposition 4.3] or [27, Section XIV.5]:

Fact 12 The ring KG(EG) ∼= K (BG) is isomorphic to R(G)∧a , the completion of
R(G) at the augmentation ideal. The projection EG → pt induces a map KG(pt) →
KG(EG), which corresponds to the natural map from R(G) to its completion.

The following is an immediate corollary of Fact 12:
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On the intersection forms of spin four-manifolds 701

Fact 13 Let X be a compact space with a free G-action. Let Q = X/G and denote
by π the projection X → pt. The induced map π∗ from R(G) ∼= KG(pt) to K (Q) ∼=
KG(X) can also be described as the composition

R(G) → R(G)∧a ∼= K (BG) → K (Q),

where the first map is completion and the second is induced by the classifying map
Q → BG for X.

2.2 Pin(2)-equivariant K-theory

From now on we specialize to the group G = Pin(2). If H = C ⊕ jC denotes the
algebra of quaternions, recall that Pin(2) can be defined as S1 ∪ j S1 ⊂ H. There is a
short exact sequence

1 −→ S1 −→ G −→ Z/2 −→ 1.

As in [23], we introduce notation for the following real representations of G:

(a) the trivial representation R;
(b) the one-dimensional sign representation R̃ on which S1 ⊂ G acts trivially and j

acts by multiplication by −1;
(c) the quaternions H, acted on by G via left multiplication.

We also denote by C̃ the complexification R̃ ⊗R C; this is isomorphic to R̃
2 as a

real representation.

Fact 14 [19,37] The representation ring R(G) of G = Pin(2) is generated by c̃ = [C̃]
and h = [H], subject to the relations c̃2 = 1 and c̃h = h.

It will be convenient to use the generators:

w = λ−1(C̃) = 1 − c̃, z = λ−1(H) = 2 − h.

We obtain:

R(G) = Z[w, z]/(w2 − 2w, zw − 2w).

The augmentation homomorphism is

R(G) → Z, w, z �→ 0. (6)

Therefore, the augmentation ideal of R(G) is a = (w, z).
Observe also that restriction to the subgroup S1 ⊂ G induces the map

R(G) → R(S1) = Z[θ, θ−1], (7)

w �→ 0,

z �→ 2 − (θ + θ−1),
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702 C. Manolescu

where θ is the class of the standard one-dimensional representation of S1.

3 The equivariant K-theory of spaces of type SWF

In [23, Section 2.3] we defined a class of topological spaces with a Pin(2)-action,
called spaces of type SWF. These appear naturally in the context of finite dimensional
approximation in Seiberg-Witten Floer theory; see Sect. 4 below. In [23], we found
three numerical quantities (denoted a, b, and c) coming from the Pin(2)-equivariant
homology of a space of type SWF. Our goal in this section is to extract another quantity,
denoted k, from the Pin(2)-equivariant K-theory of a space of type SWF.

3.1 A numerical invariant

We recall the following definition from [23, Section 2.3]:

Definition 2 Let s ≥ 0. A space of type SWF (at level s) is a pointed, finite G-CW
complex X with the following properties:

(a) The S1-fixed point set X S1
is G-homotopy equivalent to the sphere (R̃s)+;

(b) The action of G is free on the complement X − X S1
.

We shall focus our attention on spaces of type SWF at an even level. This is because if
s = 2t is even, the S1-fixed point set of X is G-equivalent to the complex representation
sphere (C̃t )+, so we can use equivariant Bott periodicity (Fact 7) to get

K̃G(X S1
) ∼= K̃G(S0) ∼= R(G).

We let ι : X S1 → X denote the inclusion, and let I(X) be the ideal of R(G) with
the property that the image of the induced map ι∗ : K̃G(X) → K̃G(X S1

) is I(X) ·btC̃,
where btC̃ is the Bott class.

Lemma 1 For any space X of type SWF at an even level, there exists k ≥ 0 such that
wk ∈ I(X) and zk ∈ I(X).

Proof Apply the long exact sequence (5) to A = X S1 ⊆ X :

· · · → K̃G(X)
ι∗−→ K̃G(X S1

) → K̃ 1
G(X/X S1

) → · · ·

By the definition of spaces of type SWF, we know that X/X S1
has a free G-action away

from the basepoint. By Fact 11, we know that the elements z, w ∈ a act nilpotently
on K̃ 1

G(X/X S1
) ∼= K̃ 1((X/X S1

)/G).

If k is such that zk and wk act by 0 on K̃ 1
G(X/X S1

), then the exact sequence implies
that zk and wk are in I(X). ��

In R(G) we have w2 = wz = 2w, so w ·wk = w · zk = 2kw. In light of Lemma 1,
we can make the following:
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On the intersection forms of spin four-manifolds 703

Definition 3 Given a space X of type SWF at an even level, we let

k(X) = min{k ≥ 0 | ∃ x ∈ I(X), wx = 2kw}.

Let us understand how the quantity k behaves under suspensions. Note that if X
is a space of type SWF at level 2t , then ΣH X is of type SWF at the same level, and

Σ C̃ X is of type SWF at level 2t + 2.

Lemma 2 If X is a space of type SWF at an even level, then

I(Σ C̃ X) = I(X), I(ΣH X) = z · I(X),

and consequently

k(Σ C̃ X) = k(X), k(ΣH X) = k(X) + 1.

Proof The statements about Σ C̃ X follow from the fact that (Σ C̃ X)S1 = Σ C̃(X S1
),

together with the functoriality of the Bott isomorphism (Fact 7).
To get the statements about ΣH X , note that inclusions of subspaces produce a

commutative diagram

K̃G(ΣH X) −−−−→ K̃G(X)

ι∗2
⏐⏐�

⏐⏐�ι∗1

K̃G((ΣH X)S1
)

∼=−−−−→ K̃G(X S1
).

Since (ΣH X)S1 = X S1
, the bottom horizontal map is just the identity. Under the

Bott isomorphism identification K̃G(ΣH X) ∼= K̃G(X), the top horizontal map is
multiplication by λ−1(H) = z. This implies that

I(ΣH X) = z · I(X) ⊆ R(G).

If we are given x ∈ I(X) with wx = 2kw, we get w(zx) = 2wx = 2k+1w.
Conversely, if we have x ∈ I(X) with w(zx) = 2kw, then 2wx = 2kw, so wx =
2k−1w. Therefore, k(ΣH X) = k(X) + 1. ��

3.2 Examples

The simplest example of a space of type SWF is S0, for which I(S0) = (1) and
k(S0) = 0. From Lemma 2 we get that

I((C̃t ⊕ H
l)+) = (zl) and k((C̃t ⊕ H

l)+) = l.

Further, observe that if X is a space of type SWF at level 2t , and X ′ is a space with
a free G-action away from the basepoint, then the wedge sum X ∨ X ′ is also of type
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704 C. Manolescu

SWF at level 2t . The term K̃G(X ′) in K̃G(X ∨ X ′) ∼= K̃G(X) ⊕ K̃G(X ′) does not
interact with the S1-fixed point set through the map ι∗. Therefore,

I(X ∨ X ′) = I(X) and k(X ∨ X ′) = k(X). (8)

Combining the observations above, we find that if a space X decomposes as a wedge
sum of a representation sphere (C̃t ⊕ H

k)+ and a free G-space, then I(X) is of the
form (zk). We call such spaces split.

We now introduce the following notion, which will play an important role in the
paper:

Definition 4 A space of type SWF at an even level is called KG-split if the ideal
I(X) ⊆ R(G) is of the form (zk) for some k ≥ 0.

Thus, the KG-split spaces are those that are indistinguishable from split spaces in
terms of the ideal I(X).

Let us give two examples of spaces of type SWF that are not KG-split. These
examples were also considered in [23, Section 2.4], and arise from the following
construction. Suppose that G acts freely on a finite G-CW-complex Z , and let Q =
Z/G be the respective quotient. Let

Z̃ = ([0, 1] × Z
)
/(0, z) ∼ (0, z′) and (1, z) ∼ (1, z′) for all z, z′ ∈ Z

denote the unreduced suspension of Z , where G acts trivially on the [0, 1] factor. We
view Z̃ as a pointed G-space, with one of the two cone points being the basepoint.
Then Z̃ is of type SWF at level 0. There is a long exact sequence:

· · · −→ K̃G(Z̃) −→ K̃G(S0) −→ K̃ 1
G(Σ Z+) −→ · · ·

Because G acts freely on Z , we have K̃ 1
G(Σ Z+) ∼= K̃G(Z+) ∼= K (Q), and the above

sequence can be written

0 −→ K 1(Q) −→ K̃G(Z̃)
ι∗−→ R(G)

π∗−−→ K (Q) −→ K̃ 1
G(Z̃) −→ 0. (9)

Here, the map π∗ is the one described in Fact 13. Exactness tells us that the ideal I(Z̃)

is the kernel of π∗.

Example 1 Take Z = G, acting on itself via left multiplication, so that the quotient
Q is a single point. In the exact sequence (9), the map π∗ is the augmentation homo-
morphism R(G) → Z from (6). Therefore,

I(G̃) = (w, z) and k(G̃) = 1.

Further, since K 1(Q) = 0, we can compute

K̃G(G̃) ∼= (w, z) and K̃ 1
G(G̃) = 0.
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Example 2 Now let Z be the torus

T = S1 × j S1 ⊂ C ⊕ jC = H,

with the G-action coming from H. The quotient is Q ∼= S1. Since the inclusion of a
point in S1 induces an isomorphism

K (S1)
∼=−→ K (pt) = Z,

we deduce that the ideal I(T̃ ) is the same as in the previous example, that is,

I(T̃ ) = (w, z) and k(T̃ ) = 1. (10)

Further, from (9), we get that K̃ 1
G(T̃ ) = 0 and K̃G(T̃ ) is an extension of (w, z) by

K 1(Q) ∼= Z. (Here, Z is R(G)/(w, z) as an R(G)-module.)

3.3 Properties

We now turn to some general properties of the invariant k(X).

Lemma 3 Let X and X ′ be spaces of type SWF at even levels. Suppose that there
exists a based, G-equivariant homotopy equivalence from ΣrR X to ΣrR X ′, for some
r ≥ 0. Then, we have I(X) = I(X ′) and k(X) = k(X ′).

Proof By suspending the G-equivalence ΣrR X → ΣrR X ′ with another copy of R

we can assume that r is even, so that U := rR = (r/2)C is a complex representation.
Consider the commutative diagrams

K̃G(X ′)
∼= ��

��

K̃G(ΣU X ′)
∼= ��

��

K̃G(ΣU X)
∼= ��

��

K̃G(X)

��

K̃G
(
(X ′)S1) ∼= �� K̃G

(
(ΣU X ′)S1) ∼= �� K̃G

(
(ΣU X)S1) ∼= �� K̃G

(
(X)S1)

.

Here, in each row, the first map is a Bott isomorphism, the second comes from the
G-equivalence in the hypothesis, and the third is the inverse to a Bott isomorphism.
The vertical arrows are given by restriction. Comparing the first vertical arrow to the
last we obtain the desired conclusions. ��
Lemma 4 Let X and X ′ be spaces of type SWF at the same even level 2t , and suppose
that f : X → X ′ is a G-equivariant map whose S1-fixed point set map is an G-
homotopy equivalence. Then:

k(X) ≤ k(X ′).
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Proof Analyzing the commutative diagram

K̃G(X ′) f ∗
−−−−→ K̃G(X)

(ι′)∗
⏐⏐�

⏐⏐�ι∗

K̃G((X ′)S1
)

∼=−−−−→ K̃G(X S1
),

we see that I(X ′) ⊆ I(X). This implies k(X) ≤ k(X ′). ��
Lemma 5 Let X and X ′ be spaces of type SWF at levels 2t and 2t ′, respectively, such
that t < t ′. Suppose that f : X → X ′ is a G-equivariant map whose G-fixed point
set map is a homotopy equivalence. Then:

k(X) + t ≤ k(X ′) + t ′.

Proof Note that the G-fixed point set of a space of type SWF is homotopy equivalent
to S0. We have commutative diagrams:

K̃G(X ′) f ∗
−−−−→ K̃G(X)

(ι′)∗
⏐⏐�

⏐⏐�ι∗

K̃G((X ′)S1
)

( f S1
)∗−−−−→ K̃G(X S1

)

·wt ′
⏐⏐�

⏐⏐�·wt

K̃G((X ′)G)
·1−−−−→ K̃G(X G).

(11)

The bottom four groups are all isomorphic to R(G), and we identified three of the
maps with multiplications by elements of R(G) using these isomorphisms; see Facts 7
and 8. We deduce that the middle horizontal map ( f S1

)∗ in (11) is multiplication by
an element y ∈ R(G) such that

wt · y = wt ′ . (12)

On the other hand, since t < t ′, in view of Fact 7, the map

( f S1
)∗ : K̃S1((X ′)S1

) → K̃S1(X S1
)

is zero. If we apply restriction maps K̃G → K̃S1 to the middle row in (11) (compare
Fact 2), we see that y must be mapped to 0 under the map R(G) → R(S1) given by
(7). This implies that y = cw for some c ∈ Z, and from (12) we get

2t cw = cwt+1 = wt ′ = 2t ′−1w,

so c = 2t ′−t−1. We deduce that ( f S1
)∗ is multiplication by 2t ′−t−1w.
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Let x ∈ I(X ′) be such that wx = 2k′
w, where k′ = k(X ′). From the top diagram

in (11) we see that

( f S1
)∗(x) = 2t ′−t−1wx = 2k′+t ′−t−1w ∈ I(X).

Since w(2k′+t ′−t−1w) = 2k′+t ′−tw, we get that k(X) ≤ k′ + t ′ − t . ��
In the presence of the KG-split assumption, we can strengthen Lemma 5:

Lemma 6 Let X and X ′ be spaces of type SWF at levels 2t and 2t ′, respectively, such
that t < t ′ and X is KG-split. Suppose that f : X → X ′ is a G-equivariant map
whose G-fixed point set map is a homotopy equivalence. Then:

k(X) + t + 1 ≤ k(X ′) + t ′.

Proof Since X is KG -split, we must have I(X) = (zk) where k = k(X). The
only modification is now in the last step of the proof of Lemma 5. We know that
2k′+t ′−t−1w ∈ I(X). An arbitrary element of I(X) is of the form zk(λw + P(z)) =
λ2kw + zk P(z), where λ ∈ Z and P is a polynomial in z. For such an element to be a
multiple of w we must have P(z) = 0. We get that 2k′+t ′−t−1w = λ2kw, and hence
k′ + t ′ − t − 1 ≥ k. ��

Finally, we mention the behavior of k under equivariant Spanier-Whitehead duality.
Let V be a finite dimensional representation of G. Recall from [27, Section XVI.8] that
two pointed, finite G-spaces X and X ′ are equivariantly V -dual if there exist G-maps
ε : X ′ ∧ X → V + and η : V + → X ∧ X ′ such that the following two diagrams are
stably homotopy commutative:

V + ∧ X
η∧id

��

γ

������������� X ∧ X ′ ∧ X

id ∧ε

��

X ∧ V +

X ′ ∧ V + id ∧η
��

γ

��

X ′ ∧ X ∧ X

ε∧id
��

V + ∧ X ′
r∧id

�� V + ∧ X ′,

where r : V + → V + is the sign map, r(v) = −v, and γ are the transpositions.

Lemma 7 Let X and X ′ be spaces of type SWF at levels 2t resp. 2t ′, such that X and
X ′ are equivariantly V -dual for some V ∼= C̃

s ⊕ H
l , with s, l ≥ 0. Then:

k(X) + k(X ′) ≥ l.

Proof Consider the duality maps ε and η. Their restriction to the S1-fixed point sets
induce a V S1

-duality between X S1 � (C̃t )+ and (X ′)S1 � (C̃t ′)+. Since V S1 ∼=
C̃

s , this implies that t + t ′ = s. Let us view εS1
and ηS1

as G-equivariant (that
is, Z/2-equivariant) maps from the sphere (C̃s)+ to itself. Their restrictions to the
Z/2-fixed point sets induce a duality between S0 and S0, that is, a bijection. This

123



708 C. Manolescu

means that, up to Z/2-equivalence, the maps εS1
and ηS1

are unreduced suspensions
of Z/2-equivariant maps from the unit sphere S(C̃s) to itself. Up to Z/2-equivalence,
such maps S(C̃s) → S(C̃s) are determined by their degree (which must be odd by
the Borsuk-Ulam theorem); see [32]. We conclude that the maps εS1

and ηS1
are

determined (up to G-homotopy equivalences) by their degrees d(εS1
), d(ηS1

) ∈ Z.
The duality diagrams imply that d(εS1

)d(ηS1
) = ±1, so εS1

and ηS1
must be G-

homotopy equivalences. Applying Lemma 4 to both of these maps we deduce that:

k(X ∧ X ′) = k(V +) = l. (13)

Next, recall from Fact 6 that we have a product map K̃G(X)⊗ K̃G(X ′) → K̃G(X ∧
X ′). If x ∈ I(X) and x ′ ∈ I(X ′) are such that wx = 2k(X)w and wx ′ = 2k(X ′)w, then
xx ′ ∈ I(X) and

w(xx ′) = 2k(X)wx ′ = 2k(X)+k(X ′)w.

We deduce that:
k(X ∧ X ′) ≤ k(X) + k(X ′). (14)

Combining this with (13), the conclusion follows. ��
To see an example when the inequality (14) is strict, let X be the space G̃ from

Example 1, and let X ′ be the space T̃ from Example 2. We showed that k(G̃) =
k(T̃ ) = 1, and it is observed in [23, Example 2.14] that G̃ and T̃ are H-dual. From
Equation (13) we get that k(G̃ ∧ T̃ ) = 1 < k(G̃) + k(T̃ ) = 2.

4 Pin(2)-equivariant Seiberg-Witten Floer K-theory

In this section we use the methods in [23,24] to construct Pin(2)-equivariant Seiberg-
Witten Floer K-theory. We will start by working in the setting of rational homology
spheres (equipped with a spin structure), but when we discuss applications we will
specialize to integral homology spheres.

4.1 Finite dimensional approximation

Let us briefly review the construction of equivariant Seiberg-Witten Floer spectra. We
refer to [23,24] for more details.

Let Y be a rational homology three-sphere, g is a metric on Y, s a spin structure on Y ,
and S the spinor bundle for s. Consider the global Coulomb slice in the Seiberg-Witten
configuration space:

V = i ker d∗ ⊕ Γ (S) ⊂ iΩ1(Y ) ⊕ Γ (S).

Using the quaternionic structure on spinors, we find an action of the group G =
Pin(2) on V . Precisely, an element eiθ ∈ S1 takes (a, φ) to (a, eiθφ), whereas j ∈ G
takes (a, φ) to (−a, jφ).
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Let ρ : T Y → End(S) denote the Clifford multiplication, and /∂ : Γ (S) → Γ (S)

the Dirac operator. The Chern–Simons–Dirac functional CSD : C(Y, s) → R, given
by:

CSD(a, φ) = 1

2

⎛
⎝

∫

Y

〈φ, /∂φ + ρ(a)φ〉dvol −
∫

Y

a ∧ da

⎞
⎠ ,

is invariant under the G-action. Its gradient (in a suitable metric) is the Seiberg-Witten
map, which decomposes as a sum

� + c : V → V,

where � is the linearization �(a, φ) = (∗da, /∂φ). We refer to the gradient flow of CSD
as the Seiberg-Witten flow.

The map � is an elliptic, self-adjoint operator. We denote by V ν
τ the finite-

dimensional subspace of V spanned by the eigenvectors of � with eigenvalues in
the interval (τ, ν]. Note that, as a G-representation, V ν

τ decomposes as a direct some
of some copies of R̃ and some copies of H. We write this decomposition as

V ν
τ = V ν

τ (R̃) ⊕ V ν
τ (H).

Next, we consider the gradient flow of the restriction CSD|V ν
τ

, where ν ≥ 0 and
τ � 0. We view this as a finite dimensional approximation to the Seiberg-Witten flow.
The eigenvalue cut-offs ν and τ can be chosen independently. However, for simplicity,
we shall restrict to the case τ = −ν.

We pick R � 0 (independent of ν) such that all the finite energy Seiberg-Witten
flow lines are inside the ball B(R) in a suitable Sobolev completion of V . We then
look at the approximate Seiberg-Witten flow on V ν−ν . It can be shown that the points
lying on trajectories of this flow that stay inside B(R) form an isolated invariant set. To
this set one can associate an equivariant Conley index Iν , which is a pointed G-space,
well-defined up to canonical G-homotopy equivalence. (Roughly, one can think of the
Conley index as the quotient of V ν−ν ∩ B(R) by the subset of V ν−ν ∩ ∂ B(R) where the
flow exits the ball.) The following facts are established in [23,24]:

Proposition 1 (a) The Conley index Iν is a space of type SWF at level dim V 0−ν(R̃).
(b) When we vary the choices in its construction, the Conley index Iν changes as

follows:

(i) When we vary the radius R, it only changes by a G-equivalence;
(ii) When we change the cut-off ν to some ν′ > ν, the space Iν′ is G-equivalent to

the suspension of Iν by the representation V −ν
−ν′ ;

(iii) If we vary the Riemannian metric g by a small homotopy, we can choose a cut-off
ν such that the operator � does not have ν or −ν as an eigenvalue during the
homotopy. Then Iν only changes by a G-equivalence.
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For a fixed metric g, we can build a universe made of the negative eigenspaces of �

(together with infinitely many copies of the trivial G-representation), and construct a
spectrum SWF(Y, s, g) as the formal de-suspension Σ−V 0−ν Iν ; see [23, Section 3.4].
In view of properties (i) and (ii) in Proposition 1(b), the spectrum SWF(Y, s, g) is
independent of R and ν, up to G-equivalence. We call SWF(Y, s, g) the Seiberg-
Witten Floer spectrum of the triple (Y, s, g).

When we vary the metric g, it is difficult to identify the universes that provide
coordinates for our spectra. Note that, for fixed ν, the dimension of V 0−ν changes
according to the spectral flow of the operator � = ∗d ⊕ /∂ . The operator ∗d has trivial
spectral flow, but the Dirac operator has spectral flow given by the formula

S.F.(/∂) = n(Y, s, g0) − n(Y, s, g1). (15)

Here, g0 and g1 are the initial and final metrics, and the quantities

n(Y, s, gi ) ∈ 1
8Z ⊂ Q

are linear combinations of the eta invariants associated to ∗d and /∂ , for each metric.
Alternatively, given a metric g on Y , we can pick a compact spin four-manifold W
with boundary Y , let /D(W ) be the Dirac operator on W (with Atiyah-Patodi-Singer
boundary conditions), and set

n(Y, s, g) = indC
/D(W ) + σ(W )

8
. (16)

Although n(Y, s, g) is in general one-eighth of an integer, as we vary g (and keep
Y and s fixed) it changes by elements of Z. Also, when Y is an integral homology
sphere, we have n(Y, s, g) ∈ Z, and its parity is given by the Rokhlin invariant μ:

n(Y, s, g) mod 2 = μ(Y ) ∈ Z/2. (17)

Looking at (15), one is prompted to consider a formal de-suspension of
SWF(Y, s, g) by n(Y, s, g)/2 copies of the representation H. (The factor of 1/2 comes
from the fact that (15) counts complex dimensions of the eigenspaces of /∂ , rather than
quaternionic dimensions.) This produces an invariant of Y in the form of an equiva-
lence class of formally de-suspended spaces. The relevant definition is given below.

4.2 Stable even equivalence

Consider the set of triples (X, m, n), where X is a space of type SWF at an even level,
m ∈ Z and n ∈ Q. We introduce the following equivalence relation on such triples:

Definition 5 We say that (X, m, n) is stably even equivalent to (X ′, m′, n′) if n −n′ ∈
Z, and there exist M, N , r ≥ 0 and a G-homotopy equivalence

ΣrRΣ(M−m)C̃Σ(N−n)H X
∼−→ ΣrRΣ(M−m′)C̃Σ(N−n′)H X.
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Thus, a triple could be thought of as a “G-equivariant suspension spectrum,” given by
the formal de-suspension of X by m copies of the representation C̃ and n copies of
the representation H.

We denote by E the set of stable even equivalence classes of triples (X, m, n).
Informally, we will refer to the elements of E as spectrum classes.

If (X, m, n) is a triple as above, we define its (reduced) equivariant Borel cohomol-
ogy, with coefficients in an Abelian group A, by

H̃∗
G(X, m, n; A) := H̃∗+2m+4n

G (X; A)

and its (reduced) equivariant K-cohomology by

K̃ ∗
G(X, m, n) := K̃ ∗+2m+4n

G (X).

We also set

k(X, m, n) = k(X) − n,

where k is the invariant defined in Sect. 3.1.

Lemma 8 Let (X, m, n) be a triple as above. Then, the following are invariants of
the spectrum class S = [(X, m, n)] ∈ E:

(a) The isomorphism class of Borel cohomology, H̃∗
G(S; A) := [H̃∗

G(X, m, n; A)],
as a graded module over H∗(BG; A);

(b) The isomorphism class of equivariant K-cohomology, K̃ ∗
G(S) := [K̃ ∗

G(X, m, n)],
as a graded module over R(G);

(c) The quantity k(S) := k(X, m, n) ∈ Q.

Proof The first two statements follow from the invariance of the two theories under
suspensions by complex representations; compare [23, Remark 2.3] and 7.

The third statement follows from the behavior of k under G-equivalences (after
stabilization by copies of R) and under suspensions by C̃ and H. These were established
in Lemma 3 and Lemma 2, respectively. ��
Remark 1 In the definition of stable even equivalence we only allowed de-suspensions
by copies of C̃ = R̃ ⊕ R̃ and H, which are complex representations of G. We did this
because equivariant cohomology and equivariant K-theory are invariant (up to a shift
in degree) under such representations, whereas they are not invariant under suspending
by an arbitrary real representation such as R̃. If we had been interested only in the
equivariant cohomology with Z/2 coefficients (as we were in [23]), then we could
have allowed de-suspensions by R̃, and dropped the condition on X to be at an even
level.

Note also the presence of arbitrary suspensions by R in Definition 5. This is not
necessary for constructing a 3-manifold invariant as a spectrum class (which we do
in Sect. 4.3 below), but it makes computations more accessible. For example, when
we compute some spectrum classes in Sect. 5.2, we will be free to use standard facts
from equivariant stable homotopy.
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4.3 The Seiberg-Witten Floer spectrum class

If Y is a rational homology sphere with a spin structure s, let g, R and ν be as in
Subsect. 4.1. Recall from Proposition 1(a) that the Conley index Iν is a space of type
SWF at level dim V 0−ν(R̃). Define

S(Y, s)

=
⎧
⎨
⎩

[(Iν,
1
2 dim V (R̃)0−ν, dimH V (H)0−ν + 1

2 n(Y, s, g)] if Iν is at an even level,

[(Σ R̃ Iν,
1
2 (dim V (R̃)0−ν + 1), dimH V (H)0−ν + 1

2 n(Y, s, g)] if Iν is at an odd level.

Proposition 2 The spectrum class S(Y, s) ∈ E is an invariant of the pair (Y, s).

Proof This is a consequence of Proposition 1(b) and the formula (15) for the spectral
flow. Compare [24, Theorem 1]. ��

We refer to S(Y, s) as the Seiberg-Witten Floer spectrum class of (Y, s).
In view of Lemma 8 and Proposition 2, we define the G-equivariant Seiberg-Witten

Floer cohomology of (Y, s), with coefficients in an Abelian group A, as

SWFH∗
G(Y, s; A) := H̃∗

G(S(Y, s); A).

(One can also define equivariant Seiberg-Witten Floer homology in a similar manner.)
Further, we define the G-equivariant Seiberg-Witten Floer K-cohomology of (Y, s) as

SWFK∗
G(Y, s) := K̃ ∗

G(S(Y, s)).

This group in degree 2n(Y, s, g) ∈ 1
4Z can be called the G-equivariant Seiberg-Witten

Floer K-theory of (Y, s).
We define:

κ(Y, s) := 2k(S(Y, s)) ∈ 1
8Z ⊂ Q. (18)

We say that the pair (Y, s) is Floer KG-split if, for ν � 0, either Iν or Σ R̃ Iν (depending
on the parity of the level of Iν) is KG -split in the sense of Definition 4; cf. Definition 1
from the introduction.

If Y is an integral homology sphere, then it has a unique spin structure s, which we
drop from the notation. Since n(Y, g) ∈ Z, in this case SWFH∗

G(Y ; A) and SWFK∗
G(Y )

are integer-graded, and we have κ(Y ) ∈ Z.

4.4 Cobordisms

Suppose W is a four-dimensional, oriented cobordism between rational homology
spheres Y0 and Y1, such that b1(W ) = 0. Further, assume W is equipped with a
Riemannian metric g and a spin structure t. It is shown in [24, Section 9] and [23,
Section 3.6] that one can do finite dimensional approximation for the Seiberg-Witten
equations on W to obtain a map:
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f : Σm0R̃Σn0H(I0)ν −→ Σm1R̃Σn1H(I1)ν. (19)

Here, (I0)ν and (I1)ν are the Conley indices for the approximate Seiberg-Witten flows
on Y0 and Y1, respectively, corresponding to an eigenvalue cut-off ν � 0. Let also Vi

denote the global Coulomb slice on Yi , for i = 0, 1. The differences in suspension
indices in (19) are:

m0 − m1 = dimR

(
(V1)

0−ν(R̃)
) − dimR

(
(V0)

0−ν(R̃)
) − b+

2 (W )

and

n0 − n1 = dimH

(
(V1)

0−ν(H)
) − dimH

(
(V0)

0−ν(H)
) + n(Y1, t|Y1, g)/2

−n(Y0, t|Y0 , g)/2 − σ(W )/16.

Moreover, the S1-fixed point set of (19) is induced on the one-point compactifications
by a linear injective map with cokernel of dimension b+

2 (W ).
Note that both the domain and the target of the map (19) are spaces of type SWF.

The difference in their levels is −b+
2 (W ). If both levels happen to be even, then the

difference in the values of k for the domain and the target is

1

2

(
κ(Y0) − κ(Y1) − σ(W )/8

)
.

We can now give the proofs of the main results advertised in the introduction:

Proof of Theorem 1 Part (i) follows from the formula (18) for κ , the definition of the
spectrum class S(Y ), and the fact that n(Y, g) mod 2 is the Rokhlin invariant; cf. (17).

For part (ii), after doing surgery on loops, we can assume without loss of gener-
ality that b1(W ) = 0. Consider the map (19) associated to the cobordism W . Since
b+

2 (W ) = 0, the domain and target of (19) are at the same level. By suspending
the map f with R̃ if necessary, we can arrange that the common level is even. The
conclusion then follows from Lemma 4.

For part (iii), again we can assume that b1(W ) = 0. If the intersection form on W

is p(−E8) ⊕ q
(

0 1
1 0

)
, the difference in levels in (19) is −q. If q = 0, we can simply

apply part (ii). If q > 0 and q is even, since p = −σ(W )/8, by applying Lemma 5 to
(19) we get:

κ(Y0) + p ≤ κ(Y1) + q.

If q > 0 and q is odd, the best we can do is to take the connected sum of W and a copy
of S2 × S2 to reduce to the case of q even. We do this at the expense of weakening the
bound above to: κ(Y0) + p − 1 ≤ κ(Y1) + q. ��
Remark 2 Parts (i) and (ii) of Theorem 1 admit straightforward generalizations to the
case when Y0 and Y1 are rational homology spheres equipped with spin structures.
There is also an analogue of part (iii) which can be used to get constraints on the
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indefinite intersection forms of spin cobordisms between rational homology spheres;
however, these intersection forms are not generally unimodular, so we cannot write

them as p(−E8) ⊕ q
(

0 1
1 0

)
. The bound in (iii) can be expressed instead in terms of

the second Betti number and the signature of X .

Proof of Theorem 3 The same argument as in part (iii) of Theorem 1 applies here,
except that now we can use Lemma 6 instead of Lemma 5. When q is even we get

κ(Y0) + p + 1 ≤ κ(Y1) + q. (20)

By part (i) of Theorem 1 the parity of κ(Y0) − κ(Y1) is the Rokhlin invariant of the
boundary of W , so it is the same as the parity of p. Therefore, for parity reasons we
can improve the inequality (20) to

κ(Y0) + p + 2 ≤ κ(Y1) + q.

When q is odd, we add a copy of S2 × S2 and we are left with the inequality (20).
��

Proof of Corollary 1 In Sect. 5.1 below we will prove that S(S3) = [(S0, 0, 0)], so
S3 is Floer KG-split and κ(S3) = 0. Assuming this, we can apply Theorem 3 to the
complement of a ball in W . ��
Proof of Theorem 4 Suppose such a decomposition exists. Applying Corollary 1 to the
first piece X1 we get κ(Y1) ≥ 2+1−3 = 0. Next, apply Theorem 3 to the pieces Xi for
i = 1, . . . , r − 1. We obtain κ(Yi+1) ≥ κ(Yi ) for all such i , so κ(Yr−1) ≥ κ(Y1) ≥ 0.
On the other hand, by applying Theorem 3 to the complement of a ball in Xr we get
κ(Yr−1) ≤ −1, a contradiction.

A similar argument can be used to exclude any decompositions of X into r spin
pieces, each of signature −16, and glued along Floer KG -split homology spheres. ��

Here is one last result mentioned in passing in the introduction:

Proposition 3 If Y is an oriented homology sphere and −Y is the same manifold with
the reverse orientation, then:

κ(Y ) + κ(−Y ) ≥ 0.

Proof It is shown in [23, proof of Proposition 3.9] that the Conley indices Iν (for Y )
and Īν (for −Y ) are equivariantly (V ν−ν)-dual to each other. The result now follows
from Lemma 7. ��

5 Calculations

In this section we prove Theorem 2 from the introduction, about the values of κ for
S3 and for the Brieskorn spheres ±Σ(2, 3, m) with gcd(m, 6) = 1. We obtain some
concrete bounds on the intersection forms of spin four-manifolds with boundary, and
compare them to the bounds that can be obtained by simpler methods.
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5.1 Positive scalar curvature

If Y is a rational homology sphere admitting a metric g of positive scalar curvature,
by the arguments in [24, Section 10] or [25, Section7.1], we obtain

S(Y, s) = [(S0, 0, n(Y, s, g)/2)]

and therefore

κ(Y, s) = −n(Y, s, g).

In particular, S(S3) = [(S0, 0, 0)] and κ(S3) = 0. This proves part (i) of Theorem 2.

5.2 A family of Brieskorn spheres

We now move to parts (ii) and (iii) of Theorem 2.
We use the arguments in [25, Section 7.2] and [23, Section 3.8] to compute explicitly

the Seiberg-Witten Floer spectrum classes of ±Σ(2, 3, m). The calculations are based
on the description of the monopole solutions on Σ(2, 3, m), which was given by
Mrowka et al. in [28].

We start with the case m = 12n−1. The Seiberg-Witten equations on Σ(2, 3, 12n−
1) have one reducible solution in degree zero, and 2n irreducibles in degree one. The
irreducibles come in n pairs related by the action of the element j ∈ G. Thus, a
representative for S(Σ(2, 3, 12n − 1)) can be constructed by attaching n free cells of
the form ΣG+ to a trivial cell S0. The attaching map for each cell is determined by
a stable homotopy class in {G+, S0}G ∼= {S0, S0} ∼= Z. Together the attaching maps
given an element in Z

n , and the spectrum class is determined by the divisibility of
this element. The fact that it is primitive can be deduced from the calculation of the
S1-equivariant homology of S(Σ(2, 3, 12n − 1)), given in [25, Section 7.2]. (In fact,
it even suffices to know the non-equivariant homology.) We obtain:

S(Σ(2, 3, 12n − 1)) = [(G̃ ∨ ΣG+ ∨ · · · ∨ ΣG+︸ ︷︷ ︸
n−1

, 0, 0)],

where G̃ is the unreduced suspension of G, considered in Example 1. We computed
that k(G̃) = 1, and we know from (8) that k is unchanged by wedging with a free
space. Therefore, we have κ(Σ(2, 3, 12n − 1)) = 2.

The spectrum class of −Σ(2, 3, 12n−1) is dual to that of Σ(2, 3, 12n−1); compare
the proof of Proposition 3. We know from [23, Example 2.14] that G̃ is H-dual to the
space T̃ from Example 2. Furthermore, G+ is stably (Rdim G)-dual to itself by the
Wirthmüller isomorphism.1 Since ΣHG+ � Σ4G+, we can write the dual of ΣG+
as the formal de-suspension of Σ2G+ by H. We deduce that:

1 The Wirthmüller isomorphism [22,41] is usually formulated in equivariant stable homotopy theory built
on a complete universe; that is, by allowing suspensions by arbitrary representations of G. In our setting,
we only use the representations R, R̃ and H. Nevertheless, what is essential is that we can embed G in one

123



716 C. Manolescu

S(−Σ(2, 3, 12n − 1)) = [(T̃ ∨ Σ2G+ ∨ · · · ∨ Σ2G+︸ ︷︷ ︸
n−1

, 0, 1)].

In Example 2 we computed k(T̃ ) = 1, so we find that κ(−Σ(2, 3, 12n − 1)) =
2 · (1 − 1) = 0.

The case of Σ(2, 3, 12n−5) is similar to Σ(2, 3, 12n−1), except now the reducible
is in degree −2 and the irreducibles in degree −1. Thus, S(Σ(2, 3, 12n − 5)) is a
formal de-suspension of S(Σ(2, 3, 12n − 1)) by 1/2 copies of the representation H.
Therefore,

S(Σ(2, 3, 12n − 5)) = [(G̃ ∨ ΣG+ ∨ · · · ∨ ΣG+,︸ ︷︷ ︸
n−1

0, 1/2)].

The spectrum class for −Σ(2, 3, 12n − 5) is the dual of S(Σ(2, 3, 12n − 1)), and the
formal suspension of S(−Σ(2, 3, 12n − 1)) by 1/2 copies of H. Thus,

S(−Σ(2, 3, 12n − 5)) = [(T̃ ∨ Σ2G+ ∨ · · · ∨ Σ2G+︸ ︷︷ ︸
n−1

, 0, 1/2)].

From here we deduce that κ(Σ(2, 3, 12n − 5)) = κ(−Σ(2, 3, 12n − 5)) = 1.

Next, consider the Seiberg-Witten flow for Σ(2, 3, 12n+1). This has one reducible
in degree 0 and 2n irreducibles in degree −1, coming in k pairs related by the action
of j . The attaching maps have to be trivial for homotopical reasons. We get:

S(Σ(2, 3, 12n + 1)) = [(S0 ∨ Σ−1G+ ∨ · · · ∨ Σ−1G+︸ ︷︷ ︸
n

, 0, 0)]. (21)

Strictly speaking, by this we mean the spectrum class of

(H+ ∨ Σ3G+ ∨ · · · ∨ Σ3G+︸ ︷︷ ︸
n

, 0, 1)],

but we write it as in (21) for simplicity. Its dual is:

S(−Σ(2, 3, 12n + 1)) = [(S0 ∨ G+ ∨ · · · ∨ G+︸ ︷︷ ︸
n

, 0, 0)].

We obtain κ(Σ(2, 3, 12n + 1)) = κ(−Σ(2, 3, 12n + 1)) = 0.

Footnote 1 continued
of these representations, in our case H. The Thom space of its normal bundle is then Σ3RG+, which shows
that G+ and Σ3RG+ are H-dual. After suspending by R, we get that G+ and Σ4RG+ ∼= ΣHG+ are
(R ⊕ H)-dual, which shows the Wirthmüller isomorphism explicitly.
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Finally, the Seiberg-Witten flow for Σ(2, 3, 12n + 5) is analogous to that for
Σ(2, 3, 12n + 1), except for an upward shift in dimension by 2. Therefore,

S(Σ(2, 3, 12n + 5)) = [(S0 ∨ Σ−1G+ ∨ · · · ∨ Σ−1G+︸ ︷︷ ︸
n

, 0,−1/2)],

with dual

S(−Σ(2, 3, 12n + 5)) = [(S0 ∨ G+ ∨ · · · ∨ G+︸ ︷︷ ︸
n

, 0, 1/2)].

We deduce that κ(Σ(2, 3, 12n + 5)) = 1 and κ(−Σ(2, 3, 12n + 5)) = −1. This
completes the proof of Theorem 2.

5.3 Explicit bounds

For an integral homology sphere Y , define:

ξ(Y ) = max
{

p − q | p, q ∈ Z, q >1, ∃ X4 spin, ∂ X = Y,

Q(X) ≡ p(−E8) ⊕ q
(

0 1
1 0

)}
,

where Q(X) denotes the intersection form of X .
The simplest way of obtaining an upper bound on ξ(Y ) is to find a compact spin

4-manifold X ′ with ∂ X ′ = −Y , and then apply Furuta’s 10/8 theorem to X ∪Y X ′. If

X ′ has intersection form p′(−E8) ⊕ q ′
(

0 1
1 0

)
, from (2) we get:

ξ(Y ) ≤ q ′ − p′ − 1. (22)

In particular, for Y = S3, by taking X ′ to be a four-ball we get ξ(S3) ≤ −1. Since the

K 3 surface has intersection form 2(−E8) ⊕ 3
(

0 1
1 0

)
, we see that

ξ(S3) = −1.

A more refined way of getting upper bounds on ξ(Y ) is to find a compact, spin
4-dimensional orbifold2 X ′ with ∂ X ′ = −Y . Let t denote the spin structure on X ′. Let

also X be a spin manifold with boundary Y and intersection form p(−E8)⊕q
(

0 1
1 0

)
,

such that q > 0, as in the definition of ξ . Fukumoto and Furuta [16] proved an analogue
of the 10/8-theorem for closed, spin orbifolds. Applying it to X ∪Y X ′, it reads

b+
2 (X ∪Y X ′) ≥ 1 + indC

/D(X ∪Y X ′). (23)

2 Orbifolds were first introduced by Satake [35] under the name of V-manifolds. The term V-manifold is
used in some of the literature, e.g., in [16,36].
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In [16], this is stated under the assumption indC
/D(X ∪Y X ′) > 0. However,

since b+
2 (X ∪Y X ′) = q + b+

2 (X ′) ≥ q ≥ 1, the inequality (23) remains true if
indC

/D(X ∪Y X ′) ≤ 0.
Fukumoto and Furuta defined an invariant

w(−Y, X ′, t) = indC
/D(X ∪Y X ′) + 1

8
σ(X).

This turns out to be independent of X . When X ′ is a plumbed spin orbifold, Saveliev
[36] proved that w(−Y, X ′, t) coincides with the Neumann–Siebenmann invariant
−μ̄(−Y ) = μ̄(Y ) from [29,39]. Thus, in this case, from (23) we obtain:

q + b+
2 (X ′) ≥ 1 + μ̄(Y ) + p.

In particular, if Y is a Seifert fibered homology sphere Σ(a1, . . . , ak) with at least
one of the ai even, we can take X ′ to be the orbifold D2-bundle over S2(a1, . . . , ak)

associated to the Seifert fibration; we choose the orientation of X ′ so that ∂ X ′ = −Y .
Then X ′ has a unique spin structure t, and we have b+

2 (X ′) = 1, b−
2 (X ′) = 0; compare

[15,17]. We get the bound:

ξ(Σ(a1, . . . , ak)) ≤ −μ̄(Σ(a1, . . . , ak)). (24)

Applying the same reasoning to −Y and −X ′ instead of Y and X ′, since b+
2 (−X ′) = 0,

we get the bound:

ξ(−Σ(a1, . . . , ak)) ≤ μ̄(Σ(a1, . . . , ak)) − 1. (25)

The μ̄ invariant for Σ(a1, . . . , ak) can be computed explicitly; see [29,30]. In
particular, for the Brieskorn spheres ±Σ(2, 3, m) with gcd(m, 6) = 0, from (24) and
(25) we get the concrete inequalities:

ξ(Σ(2, 3, 12n − 1)) ≤ 0, ξ(−Σ(2, 3, 12n − 1)) ≤ −1, (26)

ξ(Σ(2, 3, 12n − 5)) ≤ −1, ξ(−Σ(2, 3, 12n − 5)) ≤ 0, (27)

ξ(Σ(2, 3, 12n + 1)) ≤ 0, ξ(−Σ(2, 3, 12n + 1)) ≤ −1, (28)

ξ(Σ(2, 3, 12n + 5)) ≤ 1, ξ(−Σ(2, 3, 12n + 5)) ≤ −2. (29)

This paper provides a new method for obtaining bounds on ξ . Indeed, by Corollary 1,
we have:

ξ(Y ) ≤ κ(Y ) − 1. (30)

Given the values of κ for ±Σ(2, 3, m) computed in Theorem 2, we find that (30) gives
the following bounds:

123



On the intersection forms of spin four-manifolds 719

ξ(Σ(2, 3, 12n − 1)) ≤ 1, ξ(−Σ(2, 3, 12n − 1)) ≤ −1, (31)

ξ(Σ(2, 3, 12n − 5)) ≤ 0, ξ(−Σ(2, 3, 12n − 5)) ≤ 0, (32)

ξ(Σ(2, 3, 12n + 1)) ≤ −1, ξ(−Σ(2, 3, 12n + 1)) ≤ −1, (33)

ξ(Σ(2, 3, 12n + 5)) ≤ 0, ξ(−Σ(2, 3, 12n + 5)) ≤ −2. (34)

Comparing these with (26)–(29), we see that κ gives better bounds in two of the
eight cases: namely, for ξ(Σ(2, 3, 12n + 1)) and ξ(Σ(2, 3, 12n + 5)).

Let us see to what extent the information we get from (22), (26)–(29) and (31)–(34)
allows us to calculate ξ(±Σ(2, 3, m)). We do a case-by-case analysis.

Y = ±�(2, 3, 12n − 1). The Brieskorn sphere −Σ(2, 3, 12n − 1) is the boundary of
the nucleus N (2n) inside the elliptic surface E(2n). The nucleus can be represented
by the Kirby diagram

The intersection form of N (2n) is equivalent to
(

0 1
1 0

)
. By reversing the orientation

of N (n), we obtain a manifold with boundary Σ(2, 3, 12n − 1) and intersection form(
0 1
1 0

)
. From the definition of ξ , we get:

−1 ≤ ξ(±Σ(2, 3, 12n − 1)).

In conjunction with (26), we obtain:

ξ(Σ(2, 3, 12n − 1)) ∈ {0,−1}, ξ(−Σ(2, 3, 12n − 1)) = −1.

We do not know the value of ξ(Σ(2, 3, 12n − 1)) in general. However, for n = 1, the

complement of N (2n) in the K 3 surface has intersection form 2(−E8) ⊕ 2
(

0 1
1 0

)
.

Therefore,

ξ(Σ(2, 3, 11)) = 0.

Y = ±�(2, 3, 12n − 5). The manifold −Σ(2, 3, 12n − 5) is the boundary of the
following plumbing of spheres:

This plumbing has intersection form (−E8)⊕
(

0 1
1 0

)
. If we reverse its orientation,

we obtain a manifold with intersection form E8 ⊕
(

0 1
1 0

)
and boundary Σ(2, 3, 12n−
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5). We deduce that:

−2 ≤ ξ(Σ(2, 3, 12n − 5)), 0 ≤ ξ(−Σ(2, 3, 12n − 5)).

In view of (27), we get:

ξ(Σ(2, 3, 12n − 5)) ∈ {−2,−1}, ξ(−Σ(2, 3, 12n − 5)) = 0.

For n = 1, observe that the complement of the (−E10)-plumbing inside the K 3 surface

has intersection form (−E8) ⊕ 2
(

0 1
1 0

)
. Therefore,

ξ(Σ(2, 3, 7)) = −1.

Y = ±�(2, 3, 12n + 1). The Brieskorn sphere −Σ(2, 3, 12n + 1) is the boundary of
the manifold

with intersection form
(

0 1
1 0

)
. Therefore, we have:

−1 ≤ ξ(±Σ(2, 3, 12n + 1)).

Moreover, when n = 1 or 2, the manifolds Σ(2, 3, 13) and Σ(2, 3, 25) bound homol-
ogy balls, so, by applying (22), we get:

ξ(±Σ(2, 3, 13)) = ξ(±Σ(2, 3, 25)) = −1.

The inequalities in (33) now give the answers for all n:

ξ(±Σ(2, 3, 12n + 1)) = −1.

Note that the result for +Σ(2, 3, 12n +1) was not accessible from (28). This provides
a first example where κ gives a better bound than the one from the filling method.

Y = ±�(2, 3, 12n + 5). The manifold Σ(2, 3, 12n + 5)) is the boundary of the
plumbing

with intersection form (−E8)⊕
(

0 1
1 0

)
. By analogy with the case ±Σ(2, 3, 12n −5),

we obtain

0 ≤ ξ(Σ(2, 3, 12n + 5)), −2 ≤ ξ(−Σ(2, 3, 12n + 5)).
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The right hand side of (29) shows that:

ξ(−Σ(2, 3, 12n + 5)) = −2.

On the other hand, to obtain the answer for ξ(Σ(2, 3, 12n + 5)), we need the new
bound (34), which gives:

ξ(Σ(2, 3, 12n + 5)) = 0.

When n = 1, this could have also been seen by applying the inequality (22) to the
positive definite E8 plumbing with boundary −Σ(2, 3, 12n + 5).

Remark 3 An invariant similar to ξ was considered by Bohr and Lee in [5]:

m(Y ) = max{ 5
4σ(X) − b2(X) | X4 spin, ∂ X = Y }.

This invariant was used in [5] to study Z/2-homology cobordism. We have:

m(−Y )/2=max

{
p−q | p, q ∈Z, ∃ X4 spin, ∂ X =Y, Q(X)≡ p(−E8) ⊕ q

(
0 1
1 0

)}
.

Note that, unlike in the definition of ξ , here we do not assume that q > 0. Nevertheless,
by taking a connected sum with S2 ×S2, we obtain the bound m(−Y )/2 ≤ ξ(Y )+1 ≤
κ(Y ).

6 Relation to homological invariants

In this section we explore the relationship between the invariant κ (constructed using
equivariant K-theory) and the invariant α constructed in [23] using equivariant (Borel)
cohomology with Z/2 coefficients. In the process we define yet another invariant
of homology spheres, αQ; this is constructed using equivariant cohomology with Q

coefficients.

6.1 The Borel homology of spaces of type SWF

Let X be a space of type SWF at an even level 2t . In [23, Section 2.3], we associated to
X three quantities a(X), b(X), c(X) ∈ Z. This can be done by considering either the
Borel homology or the Borel cohomology of X . Let us start by reviewing the definition
using Borel homology.

Let F2 = Z/2 be the field with two elements. The reduced Borel homology
H̃ G∗ (X; F2) is a module over the ring

H∗(BG; F2) = F2[q, v]/(q3),
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where q is in degree 1 and v in degree 4. (Hence, q and v act on homology by lowering
degrees by 1 and 4, respectively.) Consider the long exact sequence

· · · → H̃ G∗ (X S1; F2) → H̃ G∗ (X; F2) → H̃ G∗ (X/X S1; F2) → · · ·

Since the quotient X/X S1
has free G-action away from the basepoint, its homology is

finite dimensional over F2. Therefore, in large enough degrees, the Borel homology
H̃ G∗ (X; F2) looks like that of the fixed point set X S1 ∼ (C̃t )+, which in turn is just
isomorphic to H∗(BG; F2). We find that H̃ G∗ (X; F2) has an infinite “tail” of the form

. . . F2 F2

q
��

F2

q
��

0 F2

v

�� F2

q
��

v

�� F2

q
��

v

�� 0 . . .

v

�� . . .

v

�� . . .

v

��

Formally, the tail can be defined as the submodule

∞H̃ G∗ (X; F2) :=
⋂
l≥0

image
(
vl : H̃ G

∗+4l(X; F2) −→ H̃ G∗ (X; F2)
)
.

If we forget the action of q, the tail decomposes into three “sub-tails,” in degrees
congruent to 2t, 2t+1 and 2t+2 mod 4. We define a(X), b(X), c(X) by asking that the
minimal degrees of nonzero elements in each of the three sub-tails are a(X), b(X)+1
and c(X) + 2, respectively. We will mostly be interested in the first quantity,

a(X) = min{r ≡ 2t (mod 4) | ∃ x, 0 = x ∈ ∞H̃
G
r (X; F2)}.

Let us now consider some variations of this, using Borel homology with coefficients
in Z or Q rather than F2. Since BG is an RP

2-bundle over HP
∞ (see [23, Section

2.1]), we have

H∗(BG; Z) = Z[s, v]/(s2, 2s),

with s in degree 2 and v in degree 4. In large enough degrees H̃ G∗ (X; Z) looks like
the homology H∗(BG; Z), that is,

. . . Z Z/2 0 0 Z

v

�� Z/2

v

�� 0 0 . . .

v

�� . . .

v

�� (35)

with v being an isomorphism between the corresponding groups.
If we use Q coefficients, then H∗(BG; Q) = Q[v] and H̃ G∗ (X; Q) has an infinite

tail of the form

. . . Q 0 0 0 Q

v

�� 0 0 0 . . .

v

��
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For any Abelian group A (in particular, for A = Z or Q), we define

∞H̃ G∗ (X; A) :=
⋂
l≥0

image
(
vl : H̃ G

∗+4l(X; A) −→ H̃ G∗ (X; A)
)
.

Note that ∞H̃ G∗ (X; Q) is supported in degrees congruent to 2t mod 4. We define
an analogue of a(X) using Q coefficients:

aQ(X) = min
{

r | ∃ x, 0 = x ∈ ∞H̃
G
r (X; Q)

}
.

The relationship between a and aQ can be found via Borel homology over Z, using
the universal coefficients theorem. In simple cases we expect that a = aQ, but not so
in general. If we inspect the sub-tail consisting in copies of Z in (35), we observe two
possible things that can “go wrong” towards the end of the sub-tail:

First, the tail may end not in Z but in a torsion group. For example, the last v map
in the tail may be a projection Z → Z/2. If so, the copy of Z/2 survives in Borel
homology with F2 coefficients, but not in Borel homology with Q coefficients, and
we get a(X) < aQ(X).

Example 3 Consider the quaternionic Hopf fibration S(H) ↪→ S(H2) → HP
1. Pull

back this S(H)-bundle under a degree 2 map from HP
1 ∼= S4 to itself, and let Z be

the total space of the resulting bundle. The group G ⊂ S(H) acts freely on Z , and the
quotient Q = Z/G is an RP

2-bundle on S4. The classifying map Q → BG induces
a map on homology, and, if we identify both H4(Q; Z) and H4(BG; Z) with Z, this
map in degree 4 is given by multiplication by ±2. The unreduced suspension Z̃ of Z
is a space of type SWF at level zero. There is a long exact sequence (compare [23,
Section 2.4]):

· · · → H∗(Q; Z) → H∗(BG; Z) → H̃ G∗ (Z̃; Z) → · · · ,

from which we deduce that the sub-tail of ∞H̃∗
G(Z̃; Z) in degrees divisible by 4 ends

with a Z/2 in degree 4. Consequently, we have a(Z̃) = 4 but aQ(Z̃) = 8.

Another thing that can happen at the end of the tail of Z’s in (35) is that the last
nonzero v map ends in a Z summand of H̃∗(X; Z), but this last map has nontrivial
cokernel. For example, suppose that the tail ends in a copy of Z in degree r ≡ 2t
(mod 4), with the last v map having cokernel Z/2. Then, the tail of Borel homology
with Q coefficients ends in degree r as well, but the tail with F2 coefficients ends in
a higher degree a(X) > aQ(X) = r . This situation appears, for instance, for a space
that is equivariantly H

m-dual (for some m) to the space Z̃ from Example 3.
Nevertheless, in many cases neither of the above two anomalies appear. We have:

Proposition 4 Suppose that X is a space of type SWF at an even level 2t , such that,
for any r ≡ 2t (mod 4):

(i) The group ∞H̃ G
r (X; Z) has no 2-torsion elements, and
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(ii) There are no elements x ∈ H G
r (X; Z) such that 0 = 2x ∈ ∞H̃

G
r (X; Z) but

x ∈ ∞H̃
G
r (X; Z).

Then, we have a(X) = aQ(X).

Proof This is an application of the universal coefficients theorem. ��
Observe that the assumptions of Proposition 4 are satisfied for the spaces G̃ and T̃

considered in Example 1 and Example 2.
Let us now mention how the quantities a and aQ can be expressed in terms of Borel

cohomology rather than Borel homology. When A = F2 or Q, the Borel cohomology
H̃∗

G(X; A) has a tail similar to the one in Borel homology, except that the arrows
increase degree. We get

a(X) = min{r ≡ 2t (mod 4) | ∃ x ∈ H̃r
G(X; F2), vl x = 0 for all l ≥ 0}

and
aQ(X) = min{r | ∃ x ∈ H̃r

G(X; Q), vl x = 0 for all l ≥ 0}. (36)

6.2 Equivariant K-theory and Borel cohomology

Let us now explore the connection between aQ(X) and the quantity k(X) introduced in
Definition 3. We will use the fact that, when we use Q coefficients, the Chern character
gives an isomorphism between (non-equivariant) K-cohomology and the completion
of ordinary cohomology.

Recall that k(X) was defined in terms of the ideal I(X) ⊂ R(G), which is the image
of the restriction map K̃∗(X) → K̃∗(X S1

) ∼= R(G). We also have an interpretation
for aQ(X) in terms of the ideal I(X):

Proposition 5 If X is a space of type SWF at an even level 2t , then

aQ(X) = 2t + 4 min{k ≥ 0 | ∃ λ ∈ Z
∗, μ ∈ Z, λzk + μw ∈ I(X)}.

Proof Let F be the pointed space (X/X S1
)/G. The inclusion of X S1

into X gives rise
to a long exact sequence:

· · ·→ H̃∗(F; Q) → H̃∗
G(X; Q) → H̃∗

G(X S1; Q)
f−→ H̃∗+1(F; Q) → · · · (37)

Let us identify H̃∗
G(X S1; Q) with H̃∗−2t (BG; Q) using the equivalence X S1 ∼ (C̃t )+.

By (36) and exactness, we can write

aQ(X) = min{r | ∃ x, 0 = x ∈ H̃r (BG; Q), f (x) = 0}
= 2t + 4 min{k | f (vk) = 0}.
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Similarly, we have a long exact sequence in equivariant K-theory:

· · · → K̃ (F)⊗Q → K̃G(X)⊗Q → K̃G(X S1
)⊗Q

g−→ K̃ 1(F)⊗Q → · · · (38)

and we can identify K̃ ∗
G(X S1

) ⊗ Q with R(G) ⊗ Q by the Bott isomorphism.
The maps f and g from (37) and (38) are the compositions of the maps in the

bottom, resp. top row of the commutative diagram:

R(G) ⊗ Q −−−−→ K (BG) ⊗ Q −−−−→ K̃ 1(F) ⊗ Q

ch

⏐⏐�∼= ch

⏐⏐�∼=

H∗(BG; Q) −−−−→ H∗(BG; Q)∧v −−−−→ H̃odd(F; Q).

Here, the first maps in each row are given by completion: for R(G) with respect to the
augmentation ideal a = (w, z), and for the cohomology H∗(BG; Q) = Q[v] with
respect to the ideal (v). Note that w ∈ R(G) gets sent to zero under completion over Q,
so K (BG)⊗ Q ∼= R(G)∧a ⊗Q is the power series ring Q[[z]]. The isomorphism in the
second column (given by the Chern character) is the map Q[[z]] → Q[[v]], z �→ v.

From the diagram above we find an alternative expression for aQ in terms of the
top row:

aQ(X) = 2t + 4 min{k ≥ 0 | ∃ ε ∈ Q, g(zk + εw) = 0}.

The conclusion now follows from the exactness of (38). ��
In view of this proposition, we can compare the quantities aQ(X) and k(X) simply

by inspecting the ideal I(X). In particular, we have:

Corollary 2 Suppose that X is a space of type SWF at an even level 2t , such that
I(X) is of the form (zk) or (wk, zk) for some k ≥ 0. Then,

aQ(X) = 2t + 4k(X) = 2t + 4k.

6.3 Invariants of homology spheres

Let Y be an integral homology sphere. (The whole discussion here can be extended to
rational homology spheres with spin structures, but we restrict to integral homology
spheres for simplicity.) In [23, Section 3.5], we extracted from the G-equivariant
Seiberg-Witten Floer homology of Y three numerical invariants α(Y ), β(Y ), γ (Y ) ∈
Z. Let us focus on α(Y ), which can be expressed as

α(Y ) = 1
2 min{r ≡ 2μ(Y ) (mod 4) | ∃x, 0 = x ∈ ∞SWFHG

r (Y ; F2)},

where ∞SWFHG
r (Y ; F2) is the “infinite tail” of SWFHG

r (Y ; F2), and μ(Y ) is the
Rokhlin invariant. More concretely, if g is a metric on Y and ν � 0 an eigenvalue
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cut-off as in Sect. 4.1, we have:

α(Y ) = (a(Iν) − dim V 0−ν)/2 − n(Y, g).

We can define a similar invariant using coefficients in Q:

αQ(Y ) = (aQ(Iν) − dim V 0−ν)/2 − n(Y, g).

Next, recall from Sect. 3.1 that we have the Floer K-theoretic invariant

κ(Y ) = 2k(Iν) − (
dimR V 0−ν(H)

)
/2 − n(Y, g).

Proposition 6 Let Y be a homology sphere.

(a) Suppose that, for any r ≡ 2μ(Y ) (mod 4), the group ∞SWFHG
r (X; Z) has no

2-torsion elements, and that there are no elements x ∈ SWFHG
r (X; Z) such that

0 = 2x ∈ ∞SWFHG
r (X; Z) but x ∈ ∞SWFHG

r (X; Z). Then, we have α(Y ) =
αQ(Y ).

(b) Let g be a metric on Y . If for all ν � 0, either the ideal I(Iν) or I(Σ R̃ Iν)
(whichever is well-defined, depending on the parity of the level of the Conley index
Iν) is of one of the types (zk) or (wk, zk) for some k ≥ 0, then αQ(X) = κ(X).

Proof Part (a) follows from Proposition 4. Part (b) follows from Corollary 2, using
the fact that the level of Iν is dim V 0−ν(R̃). ��

Note that all the examples considered in Sects. 5.1 and 5.2 satisfy the hypotheses in
both parts of Proposition 6. Hence, for those manifolds Y we have α(Y ) = αQ(Y ) =
κ(Y ). We expect that this fails in more complicated examples.

Acknowledgments This research was partially supported by NSF grant DMS-1104406. I would like to
thank Mike Hopkins, Peter Kronheimer and Ron Stern for some very enlightening conversations, and the
Simons Center for Geometry and Physics (where part of this work was written) for its hospitality. I am also
grateful to Jianfeng Lin, Brendan Owens and the referee for comments on a previous version of this paper.
Some of the results in this article have been obtained independently by Mikio Furuta and Tian-Jun Li [20].

References

1. Atiyah, M.F.: K -theory. In: Lecture Notes by D. W. Anderson, W. A. Benjamin Inc, New York-
Amsterdam (1967)

2. Atiyah, M.F.: Bott periodicity and the index of elliptic operators. Quart. J. Math. Oxford Ser. (2) 19,
113–140 (1968)

3. Atiyah, M.F., Segal, G.B.: Equivariant K -theory and completion. J. Differ. Geom 3, 1–18 (1969)
4. Bauer, S.: Intersection forms of spin four-manifolds, e-print, arXiv:1211.7092v1
5. Bohr, C., Lee, R.: Homology cobordism and classical knot invariants. Comment. Math. Helv. 77(2),

363–382 (2002)
6. Bryan, J.: Seiberg-Witten theory and Z/2p actions on spin 4-manifolds. Math. Res. Lett. 5(1–2),

165–183 (1998)
7. Crabb, M.C.: Periodicity in Z/4-equivariant stable homotopy theory. In: Algebraic Topology

(Evanston, IL, 1988). Contemporary Mathematics, vol. 96. pp. 109–124. American Mathematical
Society, Providence (1989)

123



On the intersection forms of spin four-manifolds 727

8. Donald, A.: Embedding Seifert manifolds in S4, e-print, arXiv:1203.6008
9. Donaldson, S.K.: An application of gauge theory to four-dimensional topology. J. Differ. Geom. 18(2),

279–315 (1983)
10. Donaldson, S.K.: The orientation of Yang-Mills moduli spaces and 4-manifold topology. J. Differ.

Geom. 26(3), 397–428 (1987)
11. Freedman, M.H., Taylor, L.: �-splitting 4-manifolds. Topology 16(2), 181–184 (1977)
12. Frøyshov, K.A.: The Seiberg-Witten equations and four-manifolds with boundary. Math. Res. Lett.

3(3), 373–390 (1996)
13. Frøyshov, K.A.: Equivariant aspects of Yang-Mills Floer theory. Topology 41(3), 525–552 (2002)
14. Frøyshov, K.A.: Monopole Floer homology for rational homology 3-spheres. Duke Math. J. 155(3),

519–576 (2010)
15. Fukumoto, Y.: The bounded genera and w-invariants. Proc. Amer. Math. Soc. 137(4), 1509–1517

(2009)
16. Fukumoto, Y., Furuta, M.: Homology 3-spheres bounding acyclic 4-manifolds. Math. Res. Lett. 7(5–6),

757–766 (2000)
17. Fukumoto, Y., Furuta, M., Ue, M.: W -invariants and Neumann-Siebenmann invariants for Seifert

homology 3-spheres. Topol. Appl. 116(3), 333–369 (2001)
18. Furuta, M.: Some variants of Floer cohomology. Mat. Contemp. 2, 67–72 (1992). Workshop on the

Geometry and Topology of Gauge Fields (Campinas, 1991)
19. Furuta, M.: Monopole equation and the 11

8 -conjecture. Math. Res. Lett. 8(3), 279–291 (2001)
20. Furuta, M., Li, T.-J.: Intersection forms of spin 4-manifolds with boundary, preprint (2013)
21. Kronheimer, P.B., Mrowka, T.S., Ozsváth, P.S., Szabó, Z.: Monopoles and lens space surgeries. Ann.

Math. (2) 165(2), 457–546 (2007)
22. Lewis, L.G., Jr, May, J.P., Steinberger, M., McClure, J.E.: Equivariant stable homotopy theory. In:

Lecture Notes in Mathematics, vol. 1213. Springer, Berlin (1986) (with contributions by J.E. McClure)
23. Manolescu, C.: Pin(2)-equivariant Seiberg-Witten Floer homology and the triangulation conjecture,

e-print, arXiv:1303.2354v2
24. Manolescu, C.: Seiberg-Witten-Floer stable homotopy type of three-manifolds with b1 = 0. Geom.

Topol. 7, 889–932 (2003) (electronic)
25. Manolescu, C.: A gluing theorem for the relative Bauer-Furuta invariants. J. Differ. Geom. 76(1),

117–153 (2007)
26. Matsumoto, Y.: On the bounding genus of homology 3-spheres. J. Fac. Sci. Univ. Tokyo Sect. IA Math.

29(2), 287–318 (1982)
27. May, J.P.: Equivariant homotopy and cohomology theory. In: CBMS Regional Conference Series in

Mathematics, vol. 91. Published for the Conference Board of the Mathematical Sciences, Washington,
DC (1996) (with contributions by M. Cole, G. Comezaña, S. Costenoble, A.D. Elmendorf, J.P.C.
Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner)

28. Mrowka, T., Ozsváth, P., Yu, B.: Seiberg-Witten monopoles on Seifert fibered spaces. Comm. Anal.
Geom. 5(4), 685–791 (1997)

29. Neumann, W.D.: An invariant of plumbed homology spheres. In: Topology Symposium, Siegen 1979
(Proc. Sympos., Univ. Siegen, Siegen, 1979). Lecture Notes in Mathematics, vol. 788, pp. 125–144.
Springer, Berlin (1980)

30. Neumann, W.D., Raymond, F.: Seifert manifolds, plumbing, μ-invariant and orientation reversing
maps. In: Algebraic and Geometric Topology (Proc. Sympos., Univ. California, Santa Barbara, Calif.,
1977). Lecture Notes in Mathematics, vol. 664, pp. 163–196, Springer, Berlin (1978)

31. Nicolaescu, L.I.: Finite energy Seiberg-Witten moduli spaces on 4-manifolds bounding Seifert fibra-
tions. Comm. Anal. Geom. 8(5), 1027–1096 (2000)

32. Olum, P.: Mappings of manifolds and the notion of degree. Ann. Math. (2) 58, 458–480 (1953)
33. Ozsváth, P.S., Szabó, Z.: Absolutely graded Floer homologies and intersection forms for four-manifolds

with boundary. Adv. Math. 173(2), 179–261 (2003)
34. Rokhlin, V.A.: New results in the theory of four-dimensional manifolds. Doklady Akad. Nauk SSSR

(N.S.) 84, 221–224 (1952)
35. Satake, I.: On a generalization of the notion of manifold. Proc. Nat. Acad. Sci. USA 42, 359–363

(1956)
36. Saveliev, N.: Fukumoto-Furuta invariants of plumbed homology 3-spheres. Pac. J. Math. 205(2), 465–

490 (2002)

123



728 C. Manolescu

37. Schmidt, B.: Spin 4-manifolds and Pin(2)-equivariant homotopy theory, Ph. D. thesis, Universität
Bielefeld (2003)

38. Segal, G.: Equivariant K -theory. Inst. Hautes Études Sci. Publ. Math. 34, 129–151 (1968)
39. Siebenmann, L.: On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3-

spheres. In: Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979). Lecture
Notes in Mathematics, vol. 788, pp. 172–222. Springer, Berlin (1980)

40. Stolz, S.: The level of real projective spaces. Comment. Math. Helv. 64(4), 661–674 (1989)
41. Wirthmüller, K.: Equivariant S-duality. Arch. Math. (Basel) 26(4), 427–431 (1975)

123


	On the intersection forms of spin four-manifolds with boundary
	Abstract
	1 Introduction
	2 Equivariant K-theory
	2.1 Background
	2.2 Pin(2)-equivariant K-theory

	3 The equivariant K-theory of spaces of type SWF
	3.1 A numerical invariant
	3.2 Examples
	3.3 Properties

	4 Pin(2)-equivariant Seiberg-Witten Floer K-theory
	4.1 Finite dimensional approximation
	4.2 Stable even equivalence
	4.3 The Seiberg-Witten Floer spectrum class
	4.4 Cobordisms

	5 Calculations
	5.1 Positive scalar curvature
	5.2 A family of Brieskorn spheres
	5.3 Explicit bounds

	6 Relation to homological invariants
	6.1 The Borel homology of spaces of type SWF
	6.2 Equivariant K-theory and Borel cohomology
	6.3 Invariants of homology spheres

	Acknowledgments
	References


