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Abstract In this article we prove a generalization of Weyl’s criterion for the essential
spectrum of a self-adjoint operator on a Hilbert space. We then apply this criterion to
the Laplacian on functions over open manifolds and get new results for its essential
spectrum.
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1 Introduction

Let M be a complete noncompact Riemannian manifold of dimension n and denote
by� the Laplacian acting on C∞

0 (M). It is well known that the self-adjoint extension
of � on L2(M) exists and is a unique nonpositive definite and densely defined linear
operator. We will also use � to denote this extension for the remaining paper.

The spectrum of −�, σ(−�), consists of all points λ ∈ C for which�+ λI fails
to be invertible. Since −� is nonnegative definite, its L2-spectrum is contained in
[0,∞). The essential spectrum of −�, σess(−�), consists of the cluster points in the
spectrum and of isolated eigenvalues of infinite multiplicity. The following result is
due to Donnelly [5]: if there exists an infinite dimensional subspace G in the domain
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212 N. Charalambous, Z. Lu

of � such that

‖�u + λu‖L2 ≤ σ‖u‖L2 (1)

for all u ∈ G, then

σess(−�) ∩ (λ− σ, λ+ σ) �= ∅.

The functions u are referred to as the approximate eigenfunctions corresponding to
the eigenvalue λ. The above criterion is simple to apply and has directed the study
of the essential spectrum of the Laplacian for the last three decades. A related result
of the above is as follows: let u be a nonzero smooth function with compact support.
If (1) is satisfied, then

σ(−�) ∩ (λ− σ, λ+ σ) �= ∅.

We remark that for the above criteria to be valid, we do not have to assume the
completeness of the manifold M . They can be applied to both compact and noncompact
manifolds with boundary (with either Dirichlet or Neumann boundary conditions) as
well as complete compact and noncompact manifolds. If M is compact, the criterion
gives the eigenvalue estimates.

In most problems the ideal space to work on is the L2 function space when compared
to the Lq spaces. However, this is not the case when considering the spectrum of the
Laplacian. On a Riemannian manifold, most of the approximate eigenfunctions we can
write out explicitly must be related to the distance function. It is well known however,
that the Laplacian of the distance function is locally bounded in L1, but not in L2.

We can see this in the following simple example. Take M = S1 ×(−∞,∞), letting
(θ, x) be the coordinates. Then the radial function with respect to the point (0,0) is
given by

r =
√

x2 + (min(θ, 2π − θ))2.

A straightforward computation gives

�r = − 2π√
x2 + π2

δ{θ=π} + a smooth function,

where δ{θ=π} is the Delta function along the submanifold {θ = π}. Therefore �r is
not locally L2.

The failure of the L2 integrability of the Laplacian of the distance function was
one of the main difficulties in applying the classical criterion above. In fact, it was
not possible to prove that the L2 essential spectrum of the Laplacian on a manifold
with nonnegative Ricci curvature is [0,∞) by directly computing the L2 spectrum.
Additional assumptions on the curvature and geometry of the manifold were necessary
(see for example [2,6,9,10,13,20]).
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On the spectrum of the Laplacian 213

Donnelly [6] proved that the essential spectrum of the Laplacian is [0,∞) for
manifolds of nonnegative Ricci curvature and maximal volume growth. Wang [19],
by using the seminal theorem of Sturm [18], removed the maximal volume growth
condition. Wang’s result confirms the conjecture that the spectrum of manifolds with
nonnegative Ricci curvature is [0,∞). In [16], Lu-Zhou gave a technical generalization
of Wang’s result which includes the case of manifolds of finite volume.

In this article, we introduce a new method for computing the spectrum of a self-
adjoint operator on a Hilbert space (see Theorem 2.3) which has the following appli-
cation in the case of the Laplacian:

Theorem 1.1 Let M be a Riemannian manifold and let � be the Laplacian. Assume
that for λ ∈ R

+, there exists a nonzero function u in the domain of � such that

‖u‖L∞ · ‖�u + λu‖L1 ≤ δ‖u‖2
L2 (2)

for some positive number δ > 0. Then

σ(−�) ∩ (λ− ε, λ+ ε) �= ∅,

where

ε = min(1, (λ+ 2)δ1/3).

Moreover,

σess(−�) ∩ (λ− ε, λ+ ε) �= ∅,

if for any compact subset K of M, there exists a nonzero function u in the domain of
� satisfying (2) whose support is outside K .

We expect the above result to have many applications in spectrum theory (for
example, on manifolds with corners, where the test functions are usually not smooth).
In this paper, we concentrate on applying the criterion to the computation of the
essential spectrum of complete noncompact manifolds.

Theorem 1.1 proves to be a powerful tool in expanding the set of manifolds for
which the L2 essential spectrum is the nonnegative real line. In the case of shrinking
Ricci solitons, we are able to prove the following result.

Theorem 1.2 The L2 essential spectrum of a complete shrinking Ricci soliton is
[0,∞).

Note that no curvature assumption is needed here.
For a large class of manifolds (for example, the shrinking Ricci solitons), we are

able to control the volume growth about a fixed point, but it is difficult to prove the
uniformness of their volume growth. Without the uniform volume growth property,
the theorem of Sturm does not apply and the results of Wang [19] and Lu-Zhou [16]
cannot be used. Therefore, the following result may be practically useful:
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Theorem 1.3 Let M be a complete noncompact Riemannian manifold. Suppose that,
with respect to a fixed point p, the radial Ricci curvature is asymptotically nonnegative
(see Lemma 5.2). If the volume of the manifold is finite we additionally assume that
its volume does not decay exponentially at p. Then the L2 spectrum of the Laplace
operator on functions is [0,∞).

We shall also use Theorem 1.1 to modify a result of Elworthy-Wang [8] on manifolds
that posses an exhaustion function (Theorem 8.2). We replace the L2 norm assumption
by an L1 norm assumption.

In the last section, we show that it is possible to work with continuous test functions
in Theorem 1.1. By using them instead we avoid the repetitive choosing of cut-off
functions.

The essential spectrum of the Laplacian on noncompact Riemannian manifolds is
interesting and important as it reveals a lot of information about the geometry of the
manifold. Although there are lot of interesting open problems in this direction, the
authors believe that answering the following conjecture is the most important one.

Conjecture 1.4 Let M be a complete noncompact Riemannian manifold with Ricci
curvature bounded below. Then the L2 essential spectrum of the Laplacian on functions
is a connected subset of the real line. In other words, the essential spectrum set is of
the form [a,∞), where a is a nonnegative real number.

As is well-known, the essential spectrum of a Schrödinger operator could be very
complicated (cf. [17, Chapter XIII]) and it certainly need not be a connected set. For
the case of the Laplacian on a complete manifold however, in all known examples the
L2 essential spectrum is a connected set. In this paper, we answer the above conjecture
in some special cases. We believe that the analysis of the wave kernel is needed to
answer the conjecture in full.

2 The Weyl criterion for quadratic forms

Let H be a self-adjoint operator on a Hilbert space H. The norm and inner product
in H are respectively denoted by ‖ · ‖ and (·, ·). Let σ(H), σess(H) be the spectrum
and the essential spectrum of H , respectively. Let D(H) be the domain of H . The
Classical Weyl criterion states that

Theorem 2.1 (Classical Weyl’s criterion) A nonnegative real number λ belongs to
σ(H) if, and only if, there exists a sequence {ψn}n∈N ⊂ D(H) such that

(1) ∀n ∈ N, ‖ψn‖ = 1 ,
(2) (H − λ)ψn → 0, as n → ∞ in H.
Moreover, λ belongs to σess(H) of H if, and only if, in addition to the above properties

(3) ψn → 0 weakly as n → ∞ in H.
Remark 2.2 The above theorem is still true if the convergence in (2) is replaced by
weak convergence, the statement of which can be found (without proof) in [4] and
later in [15]. This version of the Weyl criterion was applied for the first time to the
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On the spectrum of the Laplacian 215

Laplacian on curved Euclidean domains in [15]. The authors are grateful to David
Krejčiřík for informing them of the results.

We have the following functional analytic result, which generalizes the weak Weyl
criterion. To the authors’ knowledge, this result seems to be new.

Theorem 2.3 Let f be a bounded positive continuous function over [0,∞). A non-
negative real number λ belongs to the spectrum σ(H) if, and only if, there exists a
sequence {ψn}n∈N ⊂ D(H) such that

(1) ∀n ∈ N, ‖ψn‖ = 1 ,
(2) ( f (H)(H − λ)ψn, (H − λ)ψn) → 0, as n → ∞ and
(3) (ψn, (H − λ)ψn) → 0, as n → ∞.

Moreover, λ belongs to σess(H) of H if, and only if, in addition to the above properties

(4) ψn → 0, weakly as n → ∞ in H.

Proof Since H is a densely defined self-adjoint operator, the spectral measure E exists
and we can write

H =
∞∫

0

λ d E . (3)

Assume that λ ∈ σ(H). Then by Weyl’s criterion, there exists a sequence {ψn} such
that

‖(H − λ)ψn‖ → 0, ‖ψn‖ = 1

as n → ∞.
We write

ψn =
∞∫

0

d E(t)ψn

as its spectral decomposition. Then

( f (H)(H − λ)ψn, (H − λ)ψn) =
∞∫

0

f (t)(t − λ)2d‖E(t)ψn‖2.

Since f is a bounded positive function, we have

( f (H)(H − λ)ψn, (H − λ)ψn) ≤ C

∞∫

0

(t − λ)2d‖E(t)ψn‖2 = C‖(H − λ)ψn‖2.
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216 N. Charalambous, Z. Lu

Moreover,

(ψn, (H − λ)ψn) ≤ C ‖ψn‖ · ‖(H − λ)ψn‖.

Thus the necessary part of the theorem is proved.
Now assume that λ > 0 and λ /∈ σ(H). Then there is a λ > ε > 0 such that

E(λ+ ε)− E(λ− ε) = 0. We write

ψn = ψ1
n + ψ2

n , (4)

where

ψ1
n =

λ−ε∫

0

d E(t)ψn,

and ψ2
n = ψn − ψ1

n .
Then

( f (H)(H − λ)ψn, (H − λ)ψn)

=
(

f (H)(H − λ)ψ1
n , (H − λ)ψ1

n

)
+

(
f (H)(H − λ)ψ2

n , (H − λ)ψ2
n

)

≥ c1‖ψ1
n ‖2 + ( f (H)(H − λ)ψ2

n , (H − λ)ψ2
n ) ≥ c1‖ψ1

n ‖2,

where the positive number c1 is the infimum of the function f (t)(t −λ)2 on [0, λ−ε].
Therefore

‖ψ1
n ‖ → 0

by (2). On the other hand, we similarly get

(ψn, (H − λ)ψn) ≥ ε‖ψ2
n ‖2 − λ‖ψ1

n ‖2.

If the criteria (2), (3) are satisfied, then, by the two estimates above, we conclude that
both ψ1

n , ψ
2
n go to zero. This contradicts ‖ψn‖ = 1, and the theorem is proved.

Note that for λ = 0, ψ1
n is automatically zero, and the second half of the proof

would give the contradiction. ��
We apply Theorem 2.3 to the Laplacian on functions. In this setting two particular

cases of the function f will be of interest.

Corollary 2.1 A nonnegative real number λ belongs to the spectrum σ(H) if, and
only if, there exists a sequence {ψn}n∈N ⊂ D(H) such that

(1) ∀n ∈ N, ‖ψn‖ = 1 ,
(2) ((H + 1)−1ψn, (H − λ)ψn) → 0, as n → ∞ and
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On the spectrum of the Laplacian 217

(3) (ψn, (H − λ)ψn) → 0, as n → ∞.

Moreover, λ belongs to σess(H) of H if, and only if, in addition to the above properties

(4) ψn → 0, weakly as n → ∞ in H.

Proof We take f (x) = (x + 1)−1. The corollary follows from the identity

(H + 1)−1(H − λ) = 1 − (λ+ 1)(H + 1)−1.

��
In a similar spirit, taking f (x) = (x + α)−(N+1) for a natural number N and a

positive number α > 1, we also obtain the following generalization

Corollary 2.2 A nonnegative real number λ belongs to the spectrum σ(H) if, and
only if, there exists a sequence {ψn}n∈N ⊂ D(H) such that

(1) ∀n ∈ N, ‖ψn‖ = 1 ,
(2) ((H +α)−iψn, (H −λ)ψn) → 0 as n → ∞ for two consecutive natural numbers

i=N, N+1, and
(3) (ψn, (H − λ)ψn) → 0, as n → ∞.

Moreover, λ belongs to σess(H) of H if, and only if, in addition to the above properties

(4) ψn → 0, weakly as n → ∞ in H.

Remark 2.4 Using the Cauchy inequality, the above two corollaries reduce to Don-
nelly’s criterion (1) when we consider the case H = −�.

3 A spectrum estimate result

In this section we will prove a special version of Theorem 2.3 for the Laplacian on
functions. We begin with the fact that its resolvent is always bounded on L∞.

Lemma 3.1 We have

(−�+ 1)−1

is bounded from L∞(M) to itself and the operator norm is no more than 1.

The lemma follows from the proof of Lemma 3.1 in [1]. The resolvent is bounded
on L∞ because the heat kernel is bounded on L∞. This is a property that Davies
proves for any nonnegative self-adjoint operator that satisfies Kato’s inequality like the
Laplacian [3, Theorems 1.3.2, 1.3.3]. It is due to the well-known fact that the Laplacian
on functions is a self-adjoint operator that satisfies Kato’s inequality. Together with
Corollary 2.1 this lemma allows us to obtain an even simpler criterion for the essential
spectrum of the Laplacian on functions:
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218 N. Charalambous, Z. Lu

Proof of Theorem 1.1 Assume that

σ(−�) ∩ (λ− ε, λ+ ε) = ∅.

By the above lemma, we have

|(u, (−�− λ)u)| ≤ ‖u‖L∞ · ‖(−�− λ)u‖L1

|((−�+ 1)−1(−�− λ)u, (−�− λ)u)| ≤ (λ+ 2)‖u‖L∞ · ‖(−�− λ)u‖L1

We write

u = u1 + u2

according to the spectral decomposition of the operator −� (cf. 4). Then we have

ε‖u2‖2
L2 − λ‖u1‖2

L2 ≤ δ‖u‖2
L2;

‖u1‖2
L2 ≤ (λ+ 2)(λ+ 1)

ε2 δ‖u‖2
L2 .

Thus we have

ε‖u2‖2
L2 + ε‖u1‖2

L2 ≤
(
(λ+ 2)(λ+ 1)(λ+ ε)

ε2 + 1

)
δ‖u‖2

L2 .

Since ‖u2‖2
L2 + ‖u1‖2

L2 = ‖u‖2
L2 , we get

ε ≤
(
(λ+ 2)(λ+ 1)(λ+ ε)

ε2 + 1

)
δ

which is a contradiction. The essential spectrum result of the theorem follows from
the classical Weyl criterion (Theorem 2.1, (3)). ��

4 An approximation theorem

Let M be a complete noncompact Riemannian manifold. Let p ∈ M be a fixed point.
Define

r(x) = d(x, p)

to be the radial function on M . It is well known that

(1) r(x) is continuous;
(2) |∇r(x)| = 1 almost everywhere and r(x) is a Lipschitz function;
(3) �r exists on M\{p} in the sense of distribution.
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On the spectrum of the Laplacian 219

In general, it is not possible to find smooth approximations of a Lipschitz function
in the C1 norm. The following Proposition, which is a more precise version of [16,
Proposition 1], implies that this can be done up to a function with small L1 norm.
Such kind of result is essential in Riemannian geometry and should be well-known,
but given that we were not able to find a reference, we include a proof.

Proposition 4.1 For any positive continuous decreasing function η : R
+ → R

+ such
that

lim
r→∞ η(r) = 0,

there exist C∞ functions r̃(x) and b(x) on M such that

(a) ‖b‖L1(M\Bp(R)) ≤ η(R − 1);
(b) ‖∇r̃ − ∇r‖L1(M\Bp(R)) ≤ η(R)

and for any x ∈ M with r(x) > 2

(c) |r̃(x)− r(x)| ≤ η(r(x)) and |∇r̃(x)| ≤ 2;
(d) �r̃(x) ≤ maxy∈Bx (1) �r(y)+ η(r(x))+ |b(x)| in the sense of distribution.

Proof Without loss of generality, we assume that η(r) < 1. Let {Ui } be a locally
finite cover of M and let {ψi } be the partition of unity subordinate to the cover. Let
xi = (x1

i , . . . , xn
i ) be the local coordinates of Ui . Define ri = r |Ui .

Let ξ(x) be a non-negative smooth function on R
n whose support is within the unit

ball. Assume that
∫

Rn

ξ = 1.

Without loss of generality, we assume that each Ui is an open subset of the unit ball
of R

n with coordinates xi. Then for any ε > 0,

ri,ε = 1

εn

∫

Rn

ξ

(
xi − yi

ε

)
ri (yi)dyi

is a smooth function on Ui and hence on M . Let {σi } be a sequence of positive numbers
such that

∑

i

σi (|�ψi (x)| + 4|∇ψi (x)| + ψi (x)) ≤ η(r(x)). (5)

By [11, Lemma 7.1, 7.2], for each i , we can choose εi < 1 small enough so that

|ri,εi (x)− ri (x)| ≤ σi ;
‖∇ri,εi − ∇ri‖L1(Ui )

≤ σi .
(6)
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220 N. Charalambous, Z. Lu

We also have

�ri,εi (x) ≤ max
y∈Bx (1)

�ri (y). (7)

Define

r̃ =
∑

i

ψi ri,εi , b = 2
∑

i

∇ψi · ∇ri,εi .

Since
∑

i (∇ψi · ∇ri ) = (
∑

i ∇ψi ) · ∇r = 0 almost everywhere on M , we have

b = 2
∑

i

∇ψi · (∇ri,εi − ∇ri )

almost everywhere. Thus (a) follows. Similarly, observing that

r̃ − r =
∑

i

ψi (ri,εi − ri ), and |∇ri,εi | < 2,

we obtain (b), (c).
To prove (d), we compute

�r̃ =
∑

i

[(�ψi ) ri,εi + 2∇ψi∇ri,εi + ψi�ri,εi ],

and since

∑

i

(�ψi )ri =
∑

i

(�ψi )r = 0,

we have

�r̃ =
∑

i

[�ψi (ri,εi − ri )+ b + ψi�ri,εi ].

By (7), we obtain (d) and the Proposition is proved. ��

5 Manifolds with �r asymptotically nonpositive

As we have mentioned in the previous section, the Laplacian of the radial function
r(x) = d(x, p) exists in the sense of distribution (except at p). That is, for any
nonnegative smooth function f with compact support in M\{p}, the integral

∫

M

f�r
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is defined. The following simple observation is due to Wang [19] and is crucial in our
estimates.

Lemma 5.1 The function �r is locally integrable away from p.

Proof Let W be any compact set of the form Bp(R) − Bp(r) for R > r > 0. Then
by the Laplacian comparison theorem, there is a constant C , depending only on the
dimension, r, R, and the lower bound of the Ricci curvature on Bp(R), such that

�r ≤ C

on W in the sense of distribution. Thus we have

|�r | = |C −�r − C | ≤ 2C −�r

and therefore
∫

W

|�r | ≤ 2C vol (W )−
∫

W

�r.

Using Stokes’ Theorem, we obtain

∫

W

|�r | ≤ 2C vol (W )−
∫

∂W

∂r

∂n
≤ 2Cvol (W )+ vol (∂W ),

and the lemma is proved. ��
In this section, we study manifolds with the following property

lim
r→∞ �r ≤ 0 (8)

in the sense of distribution, where r(x) is the radial distance of x to a fixed point p.
We shall give a precise estimate of the L1 norm of �r in terms of the volume growth
of the manifold. But before we do that, we first provide an important example where
the above technical condition holds.

We note that for a fixed point p ∈ M the cut locus Cut(p) is a set of measure zero
in M . The manifold can be written as the disjoint union M = � ∪ Cut(p), where
� is star-shaped with respect to p. That is, if x ∈ �, then the geodesic line segment
px ⊂ �. ∂r = ∂/∂r is well defined on �. We have the following result:

Lemma 5.2 Let r(x) be the radial function with respect to p. Suppose that there exists
a continuous function δ(r) on R

+ such that

(i) limr→∞ δ(r) = 0;
(ii) δ(r) > 0 and

(iii) Ric(∂r, ∂r) ≥ −(n − 1)δ(r) on �.

Then (8) is valid in the sense of distribution.
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222 N. Charalambous, Z. Lu

Proof On �, we have the following Bochner formula

0 = 1

2
�|∇r |2 = |∇2r |2 + ∇r · ∇(�r)+ Ric(∂r, ∂r).

Since ∇2r(∂r, ∂r) = 0, using the Cauchy inequality, we have

0 ≥ 1

n − 1
(�r)2 + ∂

∂r
(�r)− (n − 1)δ(r). (9)

Given that� is star-shaped, for any fixed direction ∂/∂r , we obtain (8) by comparing
the above differential inequality with the Riccati equation.

On the points where r is not smooth, we may use the trick of Gromov as in Propo-
sition 1.1 of [14] to conclude the result in the sense of distribution. ��

5.1 Volume comparison theorems

Let p be the fixed point of the manifold. Denote

B(r) = Bp(r), V (r) = vol (Bp(r))

the geodesic ball of radius r at p and its volume respectively.
The following volume comparison theorem is well-known.

Lemma 5.3 Let r(x) be the radial function defined above. Assume that (8) is valid
in the sense of distribution. Then the manifold has subexponential volume growth at
p. In other words, for all ε > 0 there exists a positive constant C(ε), depending only
on ε and the manifold, such that for all R > 0

V (R) ≤ C(ε) eε R .

Proof Let m(r) be a nonnegative continuous function such that

lim
r→∞ m(r) = 0,

and

�r ≤ m(r)

in the sense of distribution. It follows that
∫

B(R)\B(1)

�r ≤
∫

B(R)\B(1)

m(r)

which, by Stokes’ Theorem, implies that
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On the spectrum of the Laplacian 223

vol (∂B(R))− vol (∂B(1)) ≤
∫

B(R)\B(1)

m(r).

Let ε > 0. Then we can find an Rε such that m(r) < ε for r > Rε. Setting
f (R) = V (R), we obtain

f ′(R) ≤ vol (∂B(1))+
∫

B(Rε)\B(1)

m(r)+ ε( f (R)− f (Rε))

for any R > Rε. Thus

(e−εR( f (R)− f (Rε)))
′ ≤ Cεe

−εR

for R > Rε, where Cε is a constant depending on ε and the manifold M . Integrating
from Rε to R, we obtain

f (R) < f (Rε)+ Cεε
−1e−εRεeεR

for R > Rε. Thus for any R, we have

V (R) = f (R) < C(ε)eεR

for

C(ε) = f (Rε)+ Cεε
−1e−εRε .

��
In other words, whenever the Laplacian of the radial function r(x) = d(x, p) is

asymptotically nonnegative in the sense of distribution, the manifold has subexponen-
tial volume growth with respect to the point p. In the case of finite volume for the
manifold M , we will also need an assumption on the decay rate of the volume of a ball
of radius r . We say that the volume of M decays exponentially at p, if there exists an
εo > 0 such that

vol (M)− V (r) ≤ e−εor

for all r large. For the purpose of computing the L2 essential spectrum, we will need
that the volume does not decay exponentially.

5.2 L1 estimates for �r̃

We set r̃ to be the smoothing of r from Proposition 4.1. The following lemma is a
more precise version of [16, Lemma 2].
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Lemma 5.4 Let r(x) be the radial function to a fixed point p on M, and suppose
that (8) is valid in the sense of distribution. Then we have the following two cases

(a) Whenever vol (M) is infinite, for any ε > 0 and r1 > 0 large enough, there exists
a K = K (ε, r1) such that for any r2 > K , we have

∫

B(r2)\B(r1)

|�r̃ | ≤ ε V (r2 + 1); (10)

(b) Whenever vol (M) is finite, for any ε > 0 there exists a K (ε) > 0 such that for
any r2 > K , we have

∫

M\B(r2)

|�r̃ | ≤ ε (vol (M)− V (r2))+ 2vol (∂B(r2)).

Proof By Proposition 4.1 and using the idea in the proof of Lemma 5.1, we obtain

|�r̃(x)| ≤ 2

(
max

y∈Bx (1)
�r(y)+ η(r(x))+ |b(x)|

)
−�r̃(x)

in the sense of distribution. Using our assumptions on �r and η, we see that for any
ε > 0 we can find an r1 > 0 large enough such that whenever r(x) > r1, then

2

(
max

y∈Bx (1)
�r(y)+ η(r(x))

)
< ε/2

also in the sense of distribution. Therefore for r > r1 + 2,

∫

B(r)\B(r1)

|�r̃ | ≤ ε

2
(V (r)− V (r1))+ 2

∫

M\B(r1)

|b| −
∫

B(r)\B(r1)

�r̃ .

Using Stokes’ Theorem, we get

∫

B(r)\B(r1)

|�r̃ | ≤ ε

2
(V (r)− V (r1))+ 2

∫

M\B(r1)

|b| −
∫

∂B(r)

∂ r̃

∂n
+

∫

∂B(r1)

∂ r̃

∂n
,

where ∂/∂n is the outward normal direction on the boundary. Obviously, the above
implies that

∫

B(r)\B(r1)

|�r̃ | ≤ ε

2
(V (r)− V (r1))+ 2

∫

M\B(r1)

|b|

+
∫

∂B(r)

∣
∣
∣
∣
∂ r̃

∂n
− 1

∣
∣
∣
∣ +

∫

∂B(r1)

∂ r̃

∂n
. (11)
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We first consider the case when the volume of M is infinite. By Proposition 4.1,
choosing r1 large enough we obtain

∫

M\B(r1)

|b| < ε

4

and

‖∇r̃ − ∇r‖L1(M\B(r1))
≤ 1 (12)

Since the volume of M is infinite, then there exists K = K (ε, r1) > r1 + 2 such
that whenever r > K

∫

B(r)\B(r1)

|�r̃ | ≤ 3ε

4
(V (r)−V (r1) )+

∫

∂B(r)

∣
∣
∣
∣
∂ r̃

∂n
− 1

∣
∣
∣
∣ . (13)

We choose an r ′ such that |r ′ − r | < 1
2 and

∫

∂B(r ′)

∣
∣
∣
∣
∂ r̃

∂n
− 1

∣
∣
∣
∣ ≤

r+ 1
2∫

r− 1
2

∫

∂B(t)

∣
∣
∣
∣
∂ r̃

∂n
− 1

∣
∣
∣
∣ dt.

By (12), we have
∫

∂B(r ′)

∣
∣
∣
∣
∂ r̃

∂n
− 1

∣
∣
∣
∣ < 2.

Therefore,
∫

B(r ′)\B(r1)

|�r̃ | ≤ 3ε

4
(V (r ′)− V (r1))+ 2.

Choosing a possibly larger K (ε, r1) we get (a).
The proof of (b) is similar. We choose η(r) decreasing to zero so fast so that

∫

M\B(r1)

|b| ≤ ε

8
(vol (M)− V (r1)).

Since the volume of M is finite, sending r → ∞ in (11) we have
∫

M\Bp(r1)

|�r̃ | ≤ ε (vol (M)− V (r1))+
∫

∂Bp(r1)

∂ r̃

∂n
.

Since |∂ r̃/∂n| ≤ 2 by (c) of Proposition 4.1, the lemma follows. ��
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Corollary 5.1 Suppose that (i), (i i), (i i i) hold on M as in Lemma 5.2. Then the same
integral estimates for �r̃ hold as in Lemma 5.4.

6 The L2 spectrum

In this section,we let r̃(x) be the smoothing function defined in Proposition 4.1 of the
radial function r(x) = d(x, p). For each i ∈ N, let xi , yi , Ri , μi be large positive
numbers such that xi > 2Ri > 2μi + 4 and yi > xi + 2Ri . We take the cut-off
functions χi : R

+ → R
+, smooth with support on [xi/Ri − 1, yi/Ri + 1] and such

that χi = 1 on [xi/R, yi/R] and |χ ′
i |, |χ ′′

i | bounded. Let λ > 0 be a positive number.
We let

φi (x) = χi (r̃/Ri ) e
√−1

√
λ r̃ . (14)

Setting φ = φi , R = Ri , x = xi and χ = χi , we compute

�φ + λφ =
(

R−2χ ′′(r̃/R)+ 2i
√
λR−1χ ′(r̃/R)

)
e
√−1

√
λr̃ |∇r̃ |2

− λφ(|∇r̃ |2 − 1)+ (R−1χ ′(r̃/R)+ i
√
λχ)e

√−1
√
λr̃�r̃ .

Then we have

|φ| ≤ 1, |�φ + λφ| ≤ C

R
+ C |�r̃ | + C |∇r̃ − ∇r |, (15)

where C is a constant depending only on λ and M .
Denote the inner product on L2(M) by (· , ·). We have the following key estimates:

Lemma 6.1 Suppose that (8) is valid for the radial function r in the sense of distri-
bution. In the case that the volume of M is finite, we make the further assumption
that its volume does not decay exponentially at p. Then there exist sequences of large
numbers xi , yi , Ri , μi such that the supports of the φi are disjoint and

‖(�+ λ)φi‖L1

(φi , φi )
→ 0

as i → ∞.

Proof The proof is similar to that of [16]. We define xi , yi , Ri , μi inductively. If
(xi−1, yi−1, Ri−1, μi−1) are defined, then we only need to let μi large enough so that
the support of φi is disjoint with the previous φ j ’s. For simplicity we suppress the i in
our notation. The upper bound estimates for |φ| and |�φ + λφ| given in (15) imply
that

123



On the spectrum of the Laplacian 227

∫

M

(φ,�φ + λφ) ≤ C

R
[V (y + R)− V (x − R)]

+ C
∫

B(y+R)\B(x−R)

|�r̃ | + η(x − R). (16)

When the volume of M is infinite, we choose a function η as in Proposition 4.1 such
that η ≤ 1. By Lemma 5.4, if we choose R, x large enough but fixed, then for any
y > 0 large enough we have

∫

M

(φ,�φ + λφ) ≤ 2ε V (y + R + 1).

Since ‖φ‖2
2 ≥ V (y) − V (x), if we choose y large enough, ‖φ‖2

2 ≥ 1
2 V (y). The

subexponential volume growth of M at p that was proved in Lemma 5.3 implies that
there exists a sequence of yk → ∞ such that V (yk + R + 1) ≤ 2 V (yk). If not, then
for a fixed number y and for all k ∈ N we have that

V (y + k(R + 1)) > 2k V (y).

However, by the subexponential volume growth of the manifold

2k V (y) < V (y + k(R + 1)) ≤ C(ε1) eε1 y ek ε1(R+1)

for any ε1 > 0 and k large. This leads to a contradiction when we choose ε1 such that
ε1 R < log 2. Therefore, there exists a y such that

V (y + R + 1) ≤ 2 V (y) ≤ 4‖φ‖2
2.

Combing the above inequalities, we have

∫

M

(φ,�φ + λφ) ≤ 8ε‖φ‖2
2.

We now consider the finite volume case. Using equation (16) and Lemma 5.4 we
obtain for x − R > K (ε)

∫

M

(φ,�φ + λφ) ≤(R−1 + ε) [vol (M)− V (x − R)]

+ 2C vol (∂B(x − R))+ η(x − R).

We set h(r) = vol (M) − V (r), a decreasing function. We choose η(r) as in
Proposition 4.1 so that η(r) ≤ ε

8 h(r). Making ε even smaller and choosing R and
x − R large enough, we get

123



228 N. Charalambous, Z. Lu

∫

M

(φ,�φ + λφ) ≤ ε h(x − R)− 2C h′(x − R).

Given that ‖φ‖2
2 ≥ h(x)− h(y) and the volume of M is finite, we can choose y large

enough so that

‖φ‖2
2 ≥ 1

2
h(x).

We would like to prove in this case that there exists a sequence of xk → ∞ such
that

ε h(xk − R)− 2C h′(xk − R) ≤ 2εh(xk).

If the above inequality does not hold, then for all x large enough

ε h(x − R)− 2C h′(x − R) > 2εh(x).

Replacing ε by ε/2C , we obtain

ε h(x − R)− h′(x − R) > 2εh(x).

This implies that

−(
e−εx h(x − R)

)′
> 2εh(x) e−εx .

Integrating from x to x + R and using the monotonicity of h we have

h(x − R) > 2(1 − e−εR)h(x + R).

Choosing R even larger, we can make 2(1 − e−εR) > 5/4, therefore

h(x − R) >
5

4
h(x + R)

for all x large enough. By iterating this inequality, we get for all positive integers k

h(x − R) >

(
5

4

)k

h(x + (2k − 1)R).

Therefore

vol (M)− V (x − R) >

(
5

4

)k

[vol (M)− V (x + (2k − 1)R)]
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which gives

vol (M)− V (x + (2k − 1)R) ≤
(

4

5

)k

vol (M).

Sending k → ∞ this contradicts the nonexponential decay assumption on the volume.
��

Corollary 5.1 gives

Corollary 6.1 Suppose that (i), (ii), (iii) hold on M as in Lemma 5.2. In the case that
the volume of M is finite, we make the further assumption that its volume does not
decay exponentially at p. Then there exist sequences of large numbers xi , yi , Ri , μi

and cut-off functions χi such that the supports of the φi are disjoint and

‖(�+ λ)φi‖L1

(φi , φi )
→ 0

as i → ∞.

Now we prove Theorem 1.3. In fact we will be able to prove a more general, albeit
more technical result:

Theorem 6.2 Let M be a complete noncompact Riemannian manifold. Suppose that,
with respect to a fixed point p, the radial function r(x) = d(x, p) satisfies

lim
r→∞ �r ≤ 0

in the sense of distribution, and if the volume of the manifold is finite, we additionally
assume that its volume does not decay exponentially at p. Then the L2 spectrum of
the Laplace operator on functions is [0,∞).

Proof Let φi be the sequence of functions as defined in (14). Then by the construction
of the functions and Corollary 6.1, the assumptions of Theorem 1.1 are satisfied. This
completes the proof of the theorem. ��
Remark 6.3 We note that a similar result should hold on warped product manifolds
M = R ×J M̃ with metric g = dρ2 + J 2(ρ, θ) g̃, where (M̃, g̃) is a compact
(n − 1)-dimensional submanifold of M and ρ is the distance function from this sub-
manifold. Under the same asymptotically nonnegative assumption on Ric(∂ρ, ∂ρ) as
in Lemma 5.2, we also get that the L2 spectrum of the Laplace operator on functions
is [0,∞).

7 Complete shrinking Ricci solitons

A noncompact complete Riemannian manifold M with metric g is called a gradient
shrinking Ricci soliton if there exists a smooth function f such that the Ricci tensor
of the metric g is given by
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Ri j + ∇i∇ j f = ρ gi j

for some positive constant ρ > 0. By rescaling the metric we may rewrite the soliton
equation as

Ri j + ∇i∇ j f = 1

2
gi j .

The scalar curvature R of a gradient shrinking Ricci soliton is nonnegative, and the
volume growth of such manifolds (with respect to the Riemannian metric) is Euclidean.
Hamilton [12] proved that the scalar curvature of a gradient shrinking Ricci soliton
satisfies the equations

∇i R = 2 Ri j ∇ j f,

R + |∇ f |2 − f = Co

for some constant Co. We may add a constant to f so that

R + |∇ f |2 − f = 0.

In [16], the authors proved that

(1) the L1 essential spectrum of the Laplacian contains [0,∞);
(2) the L2 essential spectrum of the Laplacian is [0,∞), if the scalar curvature has

sub-quadratic growth.

Using our new Weyl Criterion, we are able to remove the curvature condition.

Proof of Theorem 1.2 It can be shown that f (x) ≥ 0 and the key idea is to use
ρ(x) = 2

√
f (x) as an approximate distance function on the manifold, because of the

special properties that it satisfies.
We define

D(r) = {x ∈ M : ρ(x) < r}

and set V (r) = vol (D(r)). For some positive number y sufficiently large we consider
the cut-off function χ : R

+ → R, smooth with support in [0, y + 2] and such that
χ = 1 on [1, y + 1] and |χ ′|, |χ ′′| ≤ C . For any λ > 0 and large enough constants
b, l we let

φ(ρ) = χ

(
ρ − b

l

)
e
√−1

√
λ ρ

which has support on [b + l, b + l(y + 1)]. Lu and Zhou [16, page 3289] demonstrate
that for sufficiently large l and b

∫

M

|�φ + λφ| ≤ εV (b + (y + 2)l).

123



On the spectrum of the Laplacian 231

At the same time

‖φ‖2
L2 ≥ V (b + (y + 1)l)− V (b + l)

(note that the same holds true for the L1 norm of φ). Arguing as in [16, Theorem 6]
we conclude that there exists a y large enough such that

∫

M

|�φ + λφ| ≤ 4ε‖φ‖2
L2 .

As in the previous section, we may also choose appropriate sequences of bi , li such that
the supports of the ψi are disjoint and condition (2) of Theorem 1.1 holds. Condition
(1) is verified by the estimate above and the fact that ‖φi‖L∞ = 1. ��

8 Exhaustion functions on complete manifolds

From what we have seen so far, it is apparent that two things are important when
computing the essential spectrum of the Laplacian:

(1) The control of the L1 norm of �r ;
(2) The control of the volume growth and decay of geodesic balls.

The same idea can be used for manifolds whose essential spectrum is not the half
real line.

In the spirit of the results above, we are also able to modify a theorem of Elwor-
thy and Wang [8]. We now consider manifolds on which there exists a continuous
exhaustion function γ ∈ C(M) such that

(a) γ is unbounded above and is C2 smooth in the domain {γ > R} for some R > 0
and

(b) vol ({mo < γ < n}) < ∞ for some mo and any n > mo where the volume is
measured with respect to the Riemannian metric.

For t > 0 and c ∈ R we define Bt = {γ (x) < t} and set dvc = e−cγ dv. For t ≥ s,
let Uc(s, t) = vol c(Bt\Bs)where vol c is the volume with respect to the measure dvc.

We begin by stating the result of Elworthy and Wang for the sake of comparison.

Theorem 8.1 ([8, Theorem 1.1]) Suppose that there exists a function γ ∈ C(M) that
satisfies (a) and (b) and a constant c ∈ R such that

lim
s→∞ lim

t→∞ Uc(s, t)−1
∫

Bt \Bs

[(�γ − c)2 + (|∇γ |2 − 1)2] dvc = 0 (17)

and

lim
t→∞ max{Uc(mo, t),Uc(t,∞)−1} e−εt = 0 for any ε > 0. (18)

Then σ(−�) ⊃ [c2/4,∞). When the above hold for c = 0, then σ(−�) = [0,∞).
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Note that condition (18) implies that when c = 0 the volume of the manifold grows
and decays subexponentially, as was the case for us in the previous sections. The
assumption here is that the weighted volume grows and decays subexponentially.

Our result is as follows:

Theorem 8.2 Suppose that there exists a function γ ∈ C(M) that satisfies (a) and
(b) and a constant c ∈ R such that

lim
s→∞ lim

t→∞ Uc(s, t)−1
∫

Bt \Bs

(|�γ − c| + | |∇γ |2 − 1|) dvc = 0 (19)

and

lim
t→∞ max{Uc(mo, t),Uc(t,∞)−1} e−εt = 0 for any ε > 0. (20)

If (19) and (20) hold for c = 0, then σ(−�) = [0,∞).

In the case they hold for c �= 0, we make the additional assumptions that the heat
kernel of the Laplacian satisfies the pointwise bound

pt (x, y) ≤ Ct−m e
− (γ (x)−γ (y))2

4C1 t − d(x,y)2

4C2 t +β1|γ (x)−γ (y)|+β2d(x,y)+β3t
(21)

for some positive constants m,C1,C2, β1, β2, β3, and that the Ricci curvature of the
manifold is bounded below Ric(M) ≥ −(n − 1)K for a nonnegative number K . Then
σ(−�) ⊃ [c2/4,∞).

In the case c = 0, the main difference between our result and Theorem 1.1 of
[8] is that we only need to control the L1 norms of |�γ − c| and ||∇γ |2 − 1| as in
(19), instead of their L2 norms (compare to 17). Our assumption is weaker in various
cases, for example when γ is the radial function where we know that its Laplacian is
not locally L2 integrable whenever the manifold has a cut-locus, but it is locally L1

integrable.
In the case c �= 0, the additional assumption (21) is similar to requiring a uniform

Gaussian bound for the heat kernel, but now with respect to the γ function as well.
Such a bound is certainly true in the case of hyperbolic space with γ the radial function.

The proof uses similar estimates to those of Elworthy and Wang for the measures
of annuli along the exhaustion function γ . We provide an outline of the argument with
the necessary modifications.

Proof Set λ ≥ c2/4 be a fixed number. For any t > s we let χ : R
+ → R

+, be a
smooth cut-off function with support on [s − 1, t + 1] and such that χ = 1 on [s, t]
and |χ ′|, |χ ′′| bounded. Let λc = √

λ− c2/4 and define for s ≥ 0

f (s) = e(iλc−c/2) s .

Consider the test function

φs,t (x) = χ(γ (x)) f (γ (x)).
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We compute

�φs,t + λφs,t = (χ ′′ f + 2χ ′ f ′ + χ f ′′)|∇γ |2 + (χ ′ f + χ f ′)�γ + λχ f.

Using the fact that f ′′ + c f ′ + λ f = 0 we obtain

�φs,t + λφs,t = (χ ′′ f + 2χ ′ f ′)|∇γ |2 + (χ ′ f )�γ + χ f ′(�γ − c|∇γ |2)
+ λχ f (1 − |∇γ |2).

Therefore there exists a constant C such that

|�φs,t + λφs,t | ≤ Ce−c/2γ [
(|�γ − c| + | |∇γ |2 − 1|)1spt(Bt+1\Bs−1)

+ 1spt(χ ′)
]
.

(22)

For the rest of the estimates, we will repeatedly use

lim
s,t→∞(Uc(s − 1, s)+ Uc(t, t + 1))/Uc(s, t) = 0, (23)

which follows from (20).
Using (22), we have

|(φs,t ,�φs,t + λφs,t )| ≤ C
∫

Bt+1\Bs−1

(|�γ − c| + | |∇γ |2 − 1|) dvc

+ C(Uc(s − 1, s)+ Uc(t, t + 1)). (24)

We observe that

1

Uc(s, t)

∫

Bt+1\Bs−1

(|�γ − c| + | |∇γ |2 − 1|) dvc

=
[

1 + Uc(s − 1, s)+ Uc(t, t + 1)

Uc(s, t)

]

· 1

Uc(s − 1, t + 1)

∫

Bt+1\Bs−1

(|�γ − c| + | |∇γ |2 − 1|) dvc,

which tends to zero as s, t → ∞ by (23) and assumption (19). Since ‖φs,t‖2
L2 ≥

Uc(s, t), inequality (24), the above estimate and (23) imply that

lim
s,t→∞ |(φs,t ,�φs,t + λφs,t )|/‖φs,t‖2

L2 = 0. (25)

When c = 0, we choose appropriate sequences of sn, tn → ∞ such that condition
(2) of Theorem 1.1 holds. Condition (1) of the Corollary follows from (25) and the
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fact that the functions φsn ,tn are bounded. Therefore, λ0 = √
λ belongs to the essential

L2 spectrum. Given that λ is any nonnegative number, the result follows.
In the case c �= 0, we will apply Corollary 2.2. For a fixed natural number i > m

and α > 0 we have that the integral kernel of (−�+ α)−i , gi
α(x, y), is given by

gi
α(x, y) = C(n)

∞∫

0

pt (x, y) t i−1 e−αt dt.

On the other hand, it is a property of the exponential function that for any β4, β5 ∈ R

e
− (γ (x)−γ (y))2

4C1 t ≤ e−β4|γ (x)−γ (y)|eC1 β
2
4 t

and

e
− d(x,y)2

4C2 t ≤ e−β5d(x,y)eC2 β
2
5 t .

Combining the above, we have that for any N > m and β4, β5 > 0 there exists an
α > 0 large enough, and a constant C such that

gi
α(x, y) ≤ C e−β4 |γ (x)−γ (y)|−β5d(x,y)

for i = N , N + 1. As a result, for any t > s > 2

∫

Bt+1\Bs−1

gi
α(x, y)e−c/2γ (y)dy ≤ C

∫

Bt+1\Bs−1

e−β4|γ (x)−γ (y)|−β5d(x,y) e−c/2γ (y)dy

≤ C e−c/2γ (x)

after choosing β4 = |c|/2 and β5 >
√

K . This estimate together with (23) also give

|((−�+ α)−iφs,t ,�φs,t + λφs,t )| ≤ C
∫

Bt+1\Bs−1

(|�γ − c| + | |∇γ |2 − 1|) dvc

+ C(Uc(s − 1, s)+ Uc(t, t + 1)).

As a result,

lim
s,t→∞ |((−�+ α)−iφs,t ,�φs,t + λφs,t )|/‖φs,t‖2

L2 = 0. (26)

Choosing appropriate sequences of sn, tn → ∞ and setting ψn = φsn ,tn/‖φsn ,tn ‖L2 ,
conditions (1) and (4) of Corollary 2.2 hold for the functions ψn . That (2) and (3) also
hold follows from (25) and (26) respectively. ��
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9 The use of continuous test functions

In this section we will see that it is not necessary to use cut-off functions in our
test functions. We will do that by first proving yet another version of the generalized
Weyl’s criterion (Corollary 9.1). This version of Weyl’s Criterion sometimes provides
a cleaner method for computing the essential spectrum.

Let D be a bounded domain of M with smooth boundary. We use the notation
C∞

0 (D) to denote the set of smooth functions on the closure D̄ which vanish on the
boundary ∂D. Let ρ : D → R be the distance function to the boundary ∂D.

Definition 9.1 We define C+
0 (D) to be the set of functions f on D with the properties

(1) f is continuous, vanishing on ∂D;
(2) f is Lipschitz, ∇ f is essentially bounded, and |� f | exists in the sense of distri-

bution;
(3) As ε → 0,

∫
{ρ≤ε} | f | ≤ 1

2ε
2(

∫
∂D |∇ f |+o(1)), and

∫
{ρ≤ε} |∇ f | ≤ ε(

∫
∂D |∇ f |+

o(1)).

Let C+
0 (M) be the set of continuous functions whose support is a bounded domain

of M with smooth boundary and

f ∈ C+
0 (supp f ).

We have the following:

Corollary 9.1 A nonnegative real number λ belongs to the spectrum σ(−�), if there
exists a sequence {ψn}n∈N of functions in C+

0 (M) such that

(1)
‖ψn‖L∞(Dn )· (‖(−�−λ)ψn‖L1(Dn )

+‖∇ψn‖L1(∂Dn )
)

‖ψn‖2
L2(Dn )

→ 0, as n → ∞,

where Dn = suppψn. Moreover, λ belongs to σess(−�) of �, if

(2) For any compact subset K of M, there exists an n such that the support of ψn is
outside K .

The above corollary can be proved using the following approximation result:

Proposition 9.1 Let f ∈ C+
0 (M). Then for any ε > 0, there exists a smooth function

h of M such that

(a) supp (h) ⊂ supp ( f );
(b) ‖ f − h‖L1 + ‖ f − h‖L2 ≤ ε;
(c) ‖(−�− λ)h‖L1 ≤ C(‖(−�− λ) f ‖L1(D) + ‖∇ f ‖L1(∂D)),

where C is a constant independent of f , and D = supp ( f ).

Proof Let χ(t) be a cut-off function that vanishes in a neighborhood of 0 and is 1 for
t ≥ 1. Let δ > 0 be a small number. Consider

gδ(x) = χ

(
ρ(x)

δ

)
f (x).
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It is not difficult to prove (a), (b) in the Proposition when we replace h by gδ . To prove
(c) we compute

(−�− λ)gδ = χ(−�− λ) f − 2δ−1χ ′∇ρ∇ f − (δ−2χ ′′ + δ−1χ ′�ρ) f.

Since ∂D is smooth, ρ is a smooth function near ∂D. Therefore by (3) of Definition 9.1
we have

‖(−�− λ)gδ‖L1 ≤ C(‖(−�− λ) f ‖L1(D) + ‖∇ f ‖L1(∂D))

for δ sufficiently small.
The proof that gδ can be approximated by a smooth function is similar to that of

Proposition 4.1. We sketch the proof here.
Let D = ∪Ui be a finite cover of D. Without loss of generality, we assume that

those Ui ’s which intersect with ∂D are outside the support of gδ . Let xi = (x1
i , . . . , xn

i )

be the local coordinates of Ui . Define gi = gδ|Ui .
Let ξ(x) be a non-negative smooth function of R

n whose support is within the unit
ball. Assume that

∫

Rn

ξ = 1.

Without loss of generality, we assume that each Ui is an open subset of the unit ball
of R

n with coordinates xi. Then for any ε > 0,

gi,ε = 1

εn

∫

Rn

ξ

(
xi − yi

ε

)
gi (yi)dyi

is a smooth function on Ui and hence on M . Let {σi } be a sequence of positive numbers
such that

∑

i

σi (|�ψi (x)| + 4|∇ψi (x)| + ψi (x)) (27)

is sufficiently small. By [11, Lemma 7.1, 7.2], for each i , we can choose εi < 1 small
enough so that

|gi,εi (x)− gi (x)| ≤ σi ;
‖∇gi,εi − ∇gi‖L1(Ui )

≤ σi .
(28)

We also have

‖�gi,εi ‖L1 ≤ ‖�gi‖L1 . (29)
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Define

h =
∑

i

ψi gi,εi , b = 2
∑

i

∇ψi · ∇gi,εi .

Since
∑

i (∇ψi · ∇gi ) = (
∑

i ∇ψi ) · ∇gδ = 0 almost everywhere on D, we have

b = 2
∑

i

∇ψi · (∇gi,εi − ∇gi ).

We compute

�h =
∑

i

[(�ψi ) gi,εi + 2∇ψi∇gi,εi + ψi�gi,εi ],

and since

∑

i

(�ψi )gi =
∑

i

(�ψi )gδ = 0,

we have

�h =
∑

i

[�ψi (gi,εi − gi )+ 2
∑

i

∇ψi · (∇gi,εi − ∇gi )+ ψi�gi,εi ].

By (28), (29), we may choose εi to be sufficiently small so that

‖(−�− λ)h‖L1(D) ≤ 2‖(−�− λ)gδ‖L1(D).
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