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Abstract In this paper, we establish global W7 estimates for solutions to the lin-
earized Monge—Ampere equations under natural assumptions on the domain, Monge—
Ampere measures and boundary data. Our estimates are affine invariant analogues of
the global W27 estimates of Winter for fully nonlinear, uniformly elliptic equations,
and also linearized counterparts of Savin’s global W2 ? estimates for the Monge—
Ampere equations.
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1 Introduction and statement of the main results

In this paper we consider the linearized Monge—Ampere equations and investigate
global L? estimates for the second derivatives of their solutions. Let 2 C R” be a
bounded convex domain and ¢ be a locally uniformly convex function on €2. The
linearized Monge—Ampere equation corresponding to ¢ is

n
Lou:= D ®dujj=f inQ, (1.1)

i,j=1

where & = (<I>i/)1<i jen 1= (det D?¢) (D?*¢)~! is the matrix of cofactors of the

Hessian matrix D2¢. As the coefficient matrix & is positive semi-definite, Ly is
a linear elliptic partial differential operator, possibly degenerate. The operator Ly
appears in several contexts including affine maximal surface equation in affine geom-
etry [30-33], Abreu’s equation in the context of existence of Kidhler metric of constant
scalar curvatures in complex geometry [10-13,36], and semigeostrophic equations
in fluid mechanics [1,5,25]. Solutions of many important problems in these con-
texts require a deep understanding of interior and boundary behaviors of solutions
to (1.1).

The regularity theory for the linearized Monge—Ampere equation was initiated in
the fundamental paper [4] by Caffarelli and Gutiérrez. They established an interior
Harnack inequality for nonnegative solutions to the homogeneous equation Lyu =
0 in terms of the pinching of the Hessian determinant A < det D2¢ < A. Their
theory is an affine invariant version of the classical Harnack inequality for uniformly
elliptic equations with measurable coefficients. This result played a crucial role in
Trudinger—Wang’s resolution [31] of Chern’s conjecture in affine geometry concerning
affine maximal hypersurfaces in R? and in Donaldson’s interior estimates for Abreu’s
equation in complex geometry [11]. Another contribution to the regularity theory
comes from [18] where Gutiérrez and Tournier derived interior W2 estimates for
small §. The interior regularity for Eq. (1.1) was further developed by Gutiérrez and
the second author in [16,17] where the (sharp) interior C La and W2P estimates,
respectively, were obtained.

Regarding the global regularity, by using Caffarelli-Gutiérrez’s interior Harnack
estimates and Savin’s localization theorem, Savin and the first author [23] estab-
lished boundary Holder gradient estimates for solutions to the linearized Monge—
Ampere equation. Furthermore, the first author [21] proved global Holder estimates
for solutions to (1.1) in uniformly convex domains, which are the global counterpart
of Caffarelli-Gutiérrez’s interior Holder estimates [4].
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As mentioned above, Gutiérrez and the second author derived in [17] the inte-
rior WP estimates for solutions of (1.1) in terms of the L9-norm of f where
q > max{n, p}, the pinching of the Hessian determinant A < det D2¢ < A and
the continuity of the Monge—Ampére measure det D>¢. The purpose of our paper
is to establish global W7 estimates for solutions to the linearized Monge—Ampére
equation (1.1) under natural assumptions on the domain, Monge—Ampere measures
and boundary data.

Our first main theorem is concerned with global W?? estimates for the linearized
equation (1.1) when the Monge—Ampére measure det D¢ is close to a constant.

Theoreﬂl 1.1 Let Q be a bounded, uniformly convex domain with 8_ QLeC 3, and let
€ C(2) be a convex function satisfying ¢ = 0 on 02. Letu € C(2) N Wz’n(Q) be
loc
the solution to the linearized Monge—Ampeére equation

Lou=f inQ,
u=>0 onos2,

where f € L1(Q2) withn < g < oo. Then, for any p € (1, q), there exist 0 < € < 1
and C > 0 depending only on n, p, q and 2 such that

lullw2.r@y < CllfllLa
provided that the Monge—Ampére measure of ¢ satisfies
l—e<detD*¢ <1+¢ inS.

As a corollary of our method of the proof of Theorem 1.1, we obtain global W27
estimates for Eq. (1.1) when the Monge—Ampére measure det D¢ is continuous. Our
second main theorem states as follows.

Theoreg 1.2 Let Q be a bounded, uniformly convex domain with 02 € C 3 and let
¢ € C(R2) be the convex solution to the Monge—Ampére equation

det D’¢p =g in<Q,
¢=0 onos2,

where gecC (Q) is a continuous function satisfying 0 < A < g(x) < A in Q. Let
ueCnN Wﬁ)’cn (R2) be the solution to the linearized Monge—Ampére equation

Lou=f inQ,
u=gq ono2,

where ¢ € W25(Q), f € L1(Q) withn < q < s < oo. Then, for any p € (1, q),
there exists C > 0depending onlyon i, A, n, p, q, s, Q and the modulus of continuity
of g such that

lullwr gy < C (lellwas @) + 1 lLa)-
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Our estimates are affine invariant analogues of the global W27 estimates of Winter
[35] for fully nonlinear, uniformly elliptic equations, and are also linearized counter-
parts of Savin’s global W2 ? estimates for the Monge—Ampére equation [28]. We note
that the continuity condition on the Monge—Ampere measure in Theorem 1.2 is sharp
in view of Wang’s counterexample [34] for solutions to the Monge—Ampere equation
and the fact that L3¢ = n det D?¢ = ng. The global second derivative estimates in
Theorems 1.1 and 1.2 depend only on the bounds on the Hessian determinant det D¢
and its continuity or closeness to a constant, the geometry of €2 and the quadratic
separation of ¢ from its tangent planes on the boundary 9<2. This quadratic separation
is guaranteed by the C3 character of boundary domain <2, data ¢ |3q and the uniform
convexity of Q (see Proposition 2.4). Under the assumptions in the main theorems,
the linearized Monge—Ampere operator Ly is not uniformly elliptic, i.e., the eigen-
values of ® = (d%/) are not necessarily bounded away from 0 and co. Moreover,
Ly can be possibly singular near the boundary. The degeneracy and singularity of Ly
are the main difficulties in establishing our boundary regularity results. We handle
the degeneracy of L4 by working as in [4,16,17,21,23] with sections of solutions to
the Monge—Ampere equations. These sections have the same role as Euclidean balls
have in the classical theory. To overcome the singularity of L4 near the boundary,
we use a Localization Theorem at the boundary for solutions to the Monge—Ampere
equations which was obtained by Savin [26,27]. In order to obtain the desired global
second derivative estimates for solutions u of L4, we need to have good global decay
estimates for the distribution function of the second derivatives of u. To this end,
we approximate u by solutions of £,, where w solves the standard Monge—Ampere
equation det D>w = 1 with appropriate boundary conditions, and use fine geometric
properties of boundary sections for solutions to the Monge—Ampere equation which
were obtained recently in [22].

Though the statements of our main theorems are rather succinct, their proofs are
quite delicate. There are essentially two main steps for the proof of the main estimates:

Step 1: We consider the quasi distance d(x, x) induced by the solution ¢ to the
Monge—Ampere equation and is defined by d(x, ¥)? = ¢(x) — ¢(F) — Vo(F) -
(x — X). We then bound the distribution function of the second derivative D2u by
the Lebesgue measures of the “bad” sets on whose complements the quasi distance
d(x, x) is comparable to the Euclidean distance |[x — x| in a controllable manner and
the graph of u is touched from above and below by “quasi paraboloids” generated
by the quasi distance. Intuitively, the better the regularity of ¢ is, the faster these
decay estimates can be expected. When ¢ (x) = |x|? /2, the Monge—Ampére measure
det D?¢ is the usual Lebesgue measure and d(x, X) corresponds to the Euclidean
distance. In this step, we establish preliminary power decay estimates for the bad sets
under natural assumptions on the domain €2 and the boundary data of ¢. As a result,
we obtain global W23(Q) estimates for u where § > 0 is small under these natural
assumptions provided that the Monge—Ampere measure det D% is close to a constant.
We also give a more direct proof of global W2-? estimates for solutions to the linearized
Monge—Ampere equations when the Monge—Ampere measure is only assumed to be
bounded away from 0 and oo. This direct proof is based on interior estimates without
resorting to decay estimates of the distribution function of the second derivatives.
These estimates, that are of independent interest, are global counterparts of Gutiérrez-
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Tournier’s interior W24 estimates for solutions to the linearized equation (1.1). Our
idea, which is similar to Savin’s arguments in [28], is rather simple but useful for the
second step and can be roughly described as follows:

local estimates + appropriate covering results = global estimates.

Step 2: We improve the power decay estimates obtained in Step 1 assuming in
addition that det D?¢ is sufficiently close to 1. This will involve two main auxiliary
results:

(1) a global stability of cofactor matrices: we prove that the cofactor matrices of the
Hessian matrices of two convex functions defined on the same domain are close
if their Monge—Ampere measures and boundary values are close in the L°° norm;

(2) aglobal approximation result: we approximate the solution # by smooth solutions
of linearized Monge—Ampere equations associated with convex functions whose
Monge—Ampere measures and boundary data are close to those of ¢.

The main estimates will then follow from a covering theorem for boundary sections
and a strong-type p — p estimate for the maximal function corresponding to boundary
sections.

Without going into details, we now indicate key technical points that entail for
getting global W27 estimates. First, we show that the distribution function |{x :
|D?u| > B} of the second derivatives of the solution u to Lyu = f has some decay of
the form C~" with t > O small and C > 0 depending only on the structural constants
in our equation; see Propositions 3.6 and 3.7. In the next step, we refine these decay
estimates by working in very small regions of the domain and by rescaling our equation
and domain. In this rescaled setting, the constant C above can be improved, roughly
by a factor of | & — W || + (f |f|”)]/”; see Lemma 5.1. Here W is the matrix of the
cofactors of D?w where w is the solution to the standard Monge—Ampére equation
det D?>w = 1 having the same boundary values as ¢ in small regions. When det D¢
is close to 1, the term ||[® — W||z» can be made as small as we want thanks to the
stability of cofactor matrices in Proposition 3.14. The term ( f [ £1"™)Y/7 is invariant
under a rescaling of our equation that almost preserves the L°°-norm of the second
derivative D?u. There are two natural rescalings of our equation to be explained
in Sect. 2 but the aforementioned rescaling is the most crucial. As a consequence,
( f | £/1")!/" can be made as small as we want provided that f has higher integrability
than L", but this is the assumption in our main theorems.

The rest of the paper is organized as follows. In Sect. 2, we recall the main tool
used in our proof: the Localization Theorem at the boundary for solutions to the
Monge—Ampere equation, and state relevant results on the geometry of their sections.
We also discuss properties of solutions to the Monge—Ampere equation and its lin-
earization under suitable rescalings using the Localization Theorem. In addition, we
establish boundary C>¢ estimates for solutions to the standard Monge—Ampeére equa-
tions det D?w = 1 having the same boundary values as ¢ on its rescaled sections at the
boundary. In Sect. 3, we derive preliminary power decay estimates for the distribution
function of the second derivatives of solutions to the linearized Monge—Ampere equa-
tions (1.1). We also establish the global W29 estimates for solutions to (1.1), paving
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the way for proving the global stability of cofactor matrices in Sect. 3.4. Moreover,
applying the global stability of cofactor matrices, we obtain in Sect. 3.5 global W2 1+¢
estimates for convex solutions to the linearized Monge—Ampere equations when the
Monge—Ampere measure is only assumed to be bounded away from zero and infin-
ity. These estimates can be viewed as affine invariant versions of results obtained
by De Phillipis—Figalli-Savin and Schmidt. In Sect. 4.1, we prove the global Holder
continuity property of solutions to (1.1). This property together with the boundary
C?* estimates in Sect. 2 will be instrumental in the global approximation lemmas in
Sect. 4.2. In the last section, Sect. 5, by combining these approximation lemmas with
the preliminary power decay estimates, we obtain density estimates, which improve
the power decay estimates in Sect. 3, when the Monge—Ampére measure det D¢ is
close to a constant. The proofs of the main results will be given at the end of this
section using these density estimates, a covering theorem and a strong-type p — p
estimate for the maximal function with respect to sections.

2 The localization theorem and geometry of the Monge—Ampere equation

The results in this section hold under the following global information on the convex
domain €2 and the convex function ¢. We assume there exists p > 0 such that

QC By/p, and for each y € 9S2 there is a ball B,(z) C €2 that is tangent to 02 at y.
2.1

Letp: Q2 —> R, ¢ € CO1(©) N C%(Q) be a convex function satisfying
detD’¢p =g, O<i<g<A inQ. (2.2)
Assume further that on 92, ¢ separates quadratically from its tangent planes, namely

plx —x0l* < ¢(x) — P(x0) — Vo(xo) - (x —x0) < p~ ' x — x0[%, Vx, xp € 3.
2.3)

The section of ¢ centered at x € Q with height / is defined by
Spr)i={y €@: 90 <@+ V@ - (v —x) +4].

For x € , we denote by A (x) the maximal height of all sections of ¢ centered at x
and contained in €2, that is,

h(x) :=sup{h = 0| Sy(x,h) C Q}.
In this case, S¢ (x, h(x)) is called the maximal interior section of ¢ with center x € .
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Remark 2.1 In this paper, we denote by ¢, ¢, C, C1, C2, 6y, Oy, . . ., positive constants
depending only on p, A, A, n, and their values may change from line to line whenever
there is no possibility of confusion. We refer to such constants as universal constants.
Small universal constants decrease when A decreases and/or A increases. Large uni-
versal constants increase when A decreases and/or A increases, etc. Therefore, when
1 —e <detD?p < 1+ ¢ with0 < € < 1/2, we can suppress the dependence of
universal constants on €.

2.1 The localization theorem

In this subsection, we recall the main tool to study geometric properties of boundary
sections of solutions to the Monge—Ampere equation: the Localization theorem at the
boundary for solution to the Monge—Ampere equation (Theorem 2.2). Throughout this
subsection, we assume that the convex domain €2 and the convex function ¢ satisfy
(2.1)—~(2.3). We now focus on sections centered at a point on the boundary 92 and
describe their geometry. Assume this boundary point to be 0 and by (2.1), we can also
assume that

B,(pey) C Q@ C{x, 20}NB1, 2.4)
)

where p > 0 is the constant given by condition (2.1). After subtracting a linear
function, we can assume further that

¢(0)=0 and V¢(0) =0. 2.5)
If the boundary data has quadratic growth near {x,, = 0} then, as h — 0, S4(0, h)

is equivalent to a half-ellipsoid centered at 0. This is the content of the Localization
Theorem proved by Savin [26,27]. Precisely, this theorem reads as follows.

Theorem 2.2 (Localization Theorem [26,27]) Assume that Q2 satisfies (2.4) and ¢
satisfies (2.2), (2.5), and

plx> < ¢p(x) < p x| ondQ2N {x, < p}.

Then there exists a constant k = k(p, A, A, n) > 0 such that for each h < k there is
an ellipsoid Ej, of volume w,h"!? satisfying

kExNQ C Sp(0,h) C kK 'E,NQ.

Moreover; the ellipsoid Ej, is obtained from the ball of radius h'/? by a linear trans-
formation A;l (sliding along the x, = 0 plane)

AnEn = h'?By, detAp, = 1, Ap(x) = x — Thxn,
T = (11.72,...,Tn—1,0) and |ty| <k '|logh].
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From Theorem 2.2 we also control the shape of sections that are tangent to 92 at
the origin.

Proposition 2.3 Let ¢ and Q2 satisfy the hypotheses of the Localization Theorem 2.2
at the origin. Assume that for some 'y € 2 the section Sy (y, h) C Q is tangent to 02
at 0, i.e., 384 (y, h) N 92 = {0}, for some h < ¢ with ¢ universal. Then there exists a
small positive constant ko < k depending on A, A, p and n such that

Vo(y) = ae, forsome a € [koh'? ky'h'/?,
kOEh C S¢(y3 h) -y C k(;lEh’ k0h1/2 S dlst(y, BQ) S kalhl/z,

with Ej, and k the ellipsoid and constant defined in Theorem 2.2.

Proposition 2.3 is a consequence of Theorem 2.2 and was proved in [28].

The quadratic separation from tangent planes on the boundary for ¢ is a crucial
assumption in the Localization Theorem (Theorem 2.2). This is the case for solu-
tions to the Monge—Ampere equation with the right hand side bounded away from
0 and co on uniformly convex domains and smooth boundary data as proved in
[27, Proposition 3.2].

Proposition 2.4 Let @ C R" be a uniformly convex domain satisfying (2.1) and

10Qllcs < 1/p. Let ¢ : @ — R, ¢ € CON(Q) N CXQ) be a convex function
satisfying ¢ |y C> and

0<i<detD’¢ <A <oo inS.
Then, on 0K2, ¢ separates quadratically from its tangent planes, that is,
polx = xol* < ¢(x) — ¢ (x0) — V$(x0) - (x —x0) < gy ' Ix —x0l*, Vo, x € IR

Jor some constant pg > 0 depending only on n, p, », A, ||@|¢33q) and the uniform
convexity of .

2.2 Properties of the rescaled functions and boundary regularity estimates

In this subsection, we discuss properties of solutions to the Monge—Ampere equation
and its linearization under suitable rescalings and then use these properties to establish
a boundary C>¢ estimates for solutions to the standard Monge—Ampere equation
det D?>w = 1 in our rescaled setting.

Let 2 and ¢ satisfy the hypotheses of the Localization Theorem at the origin. We
know that for all & < k, S4(0, h) satisfies

kEy N C Ss(0,h) Ck'E,NQ, (2.6)
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with Ay, being a linear transformation and

detAp, =1, E,= A;lBhl/Z, Apx =X — ThXx,, Th-e, =0,
14,1, ARl < k" loghl.
This gives for all 4 < k
QNB),; CQNB, C Sp(0,h) c QN BL C B}, 2.7)

ch'/2/[log h| Ch1/2|log h| w3

We denote the rescaled function of ¢ and the rescaled domain of €2 by

" (hlﬂA;‘x)

- and Qp :=h"24,Q. (2.8)

¢n(x) =
The function ¢y, defined in 2, is continuous and solves the Monge—Ampere equation
det D¢, = gu(x), % = gnx) =g (h74;"x) < A.
By (2.6), the section of ¢, centered at the origin and with height 1 satisfies
BF NQy C Sp,(0.1) = h™'2A354(0. h) € BiZ, N Q. (2.9)
In what follows, we denote
Up = Sy, (0, 1). (2.10)
Now, we discuss two natural rescalings for the linearized Monge—Ampere equation
Lou:=du;; = f inQ.

We focus on the boundary section Sy (0, i) in the present setting of Theorem 2.2.
L°°-norm preserving rescaling. Consider the following rescaling of functions:

wn@) = u (h245 ") and  fu0o = hf (1172451x), for x € Q.
Simple computation gives
t t
D¢y = (47") D20A;", Duy=h(4;") DAy,
and

@) 1= (det D21) (D2g)™" = (et D2B)AR(D$) ™ (A)' = And (A1)
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Therefore, we find that
Ly,up = trace(®,D*up) = frin Qy, and |lupllze,) = llullze@).
Thus this rescaling preserves the L°°-norm of u. Since || f3 || .7 (,) = Y2 £l e @) 1s

smallif f € L"(2) and h small, we can expect that uj, has some nice second derivative
estimates, say their boundedness. Given this and as

D> u(h'? A x) = k= (Ay)! D*up(x) Ap,

it is again quite natural to expect that | D?u| behaves like % in some part of the section
S4(0, h). This is what we will prove in Lemma 5.2.

Almost W2 >°-norm preserving rescaling. The next rescaling almost preserves
the L>°-norm of D?u. Under the following rescaling of functions

in() = (B2A7 ) and i) = g (h1245" %) for x € @,

we have Ly, iy = fy in € with

Fla[ =furr.
o Q

by changing variables and recalling that det A, = 1. As
t
D2y (x) = (4;") D (h'247"x) a7,
the present rescaling almost preserves the L*°-norm of D?u since
ID%p Loy < k2 llog h? | D?ull o (g)-

In principle, the L°°-norm preserving rescaling allows us to find some good points
with controlled second derivatives for u. Having found them, we would like to propa-
gate them by finding more similar points near by, maybe at the cost of a slightly larger
bound on the second derivatives. This is the key technical point of the paper and almost
W?2°°_norm preserving rescaling is the means for this; see Lemmas 5.2 and 5.4.

A variant of the L°°-norm preserving rescaling is the following which applies to
sections tangent to the boundary.

L°-norm preserving rescaling in a section tangent to the boundary. Consider
a prototype section Sg(y, h) with h := h(y) < c. By applying Proposition 2.3 to
S¢(y, h), we see that it is equivalent to an ellipsoid Ep, i.e.,

koEp C Sp(y,h) —y C ky ' Ep,
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where
Ep:=h"24;'B) with detA, =1, [|A4ll, 1A'l < Clloghl.
We use the following rescalings:
Qu =h""2A5Q - y),
and for x € th
up(x) :=u (y —l—hl/zA;]x) ,
o) =" g (v + 11245 ) — o) = Vo) - (245 "x) = n].
Then
By, C Uy = S3,(0,1) = h 2 A (Sp(y, h) — y) C By-1.
We have
det D2gy(x) = gn(x) := g (y n hl/ZA,;lx) . n=0o0nds; (0.1)
and

min ¢, = —1 = ¢, (0).
Sq;h((),l)(ph ér(0)

Also
O (iip)ii = falx) = hf( +h'2A1
n\Unh)ij h{X) < y n X))

Some properties of the rescaled function ¢, was established in [27] and [23,
Lemma 4.2, Lemma 5.4]. For later use, we record them here.

Lemma 2.5 There exists a small constant ¢ = c(n, p, A, A) > 0 such that if h < c,
then

(a) forany x, xo € 382, N By we have
Ex =20 = 9100 = 9100~V (x0) - (x —x0) = 4p " lx = w0 21D)
(b) ifr < c small, we have
IVon| < Crllogr|® in ;N B,.

(c) 02y N By is a graph in the e, direction whose C norm is bounded by Ch'/?.
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640 N. Q. Le, T. Nguyen

(d) ¢ satisfies in U, = S¢,(0, 1) the hypotheses of Theorem 2.2 at all points on
aU, N B..

(e) If y € Up N B then the maximal interior section Sy, (y, h(y)) of ¢y in Uy,
satisfies:

¢ > h(y) = kj dist*(y, 9Uy) and Sg, (v, h(y)) C Uy N Be.

Proof [23, Lemma 4.2] contains (a)—(c) while its proof implies (d). The statement
(e) can be proved as in [23, Lemma 5.4] and we give a complete proof here. Let
y € Uy N Be. Then it follows from property (d) and (2.7) that y € Sy, (0, ).
Hence, ¢ (y) < 3. By [22, Lemma 4.1] we obtain Sy, (0, ) c S (v, Boc3) and
consequently

h(y) < 6oc>. (2.12)

Thus, i_z(y) < cif ¢ is small. Since Sy, (y, ﬁ(y)) is balanced around y, we can use
Theorem 3.3.8 in [15] to conclude that

Sey (v, h(y)) C B(y, K h(»)") (2.13)

for some universal constants K, b > 0.

From (2.12) and (2.13) we see that for ¢ small the section S, (, h(y)) is tangent to
02y, Let xg € 95y, (v, h(y)) N3y Applying (2.11) to xg and 0, and using property
(b) and (2.13), we have

E1xo = @1(x0) = 91(3) + Vi (y) - (x0 = ) +h(y)

—_ 2 —_
<+ CK Iyl h(»)’|log|yl|” + h(y).

This together with the assumption |y| < ¢? and (2.12) implies that |xg| < c. Now,
thanks to (d) we can apply Proposition 2.3 at x¢ and obtain

k3dist? (y, 3Up) < h(y) < ko 2dist? (y, 3Up).

Since Sy, (v, 1(y)) — y C ky ' Ej, we find from the definition of Ej, and 2(y) < 6pc>
that
Spn(v-h(y) Cy+ky'EnC B

172 C B,

kg kR | [log h(y)|
if ¢ is universally small. O

Remark 2.6 From now on, we fix a universally small constant ¢ < k/2, ¢ < 1
depending only on n, p, A, A as in the Lemma 2.5.
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The rest of this subsection is devoted to establishing boundary C>¢ estimates for
the convex solution w to the standard Monge—Ampere equation

det D>w =1 in Uy := Sg,(0, 1),

w = ¢y on dUjy,. 2.14)

For this, we first show in the next lemma that w separates quadratically from its tangent
planes on the boundary of Uj,.

Lemma 2.7 Let 2y, ¢ and Uy be asin(2.8) and (2.10) withh < c. Letw € C(U,) be
the convex solution to (2.14). Then there exist universal constants §,0 > 0 depending
onlyonn, p, A, A such that for any xo € 0Uj, N Be,

X1 = P (x0) + (Voby (x0) — 28" "k vy, x — x0) =1 Iy (x)
is a supporting hyperplane in Uy, to w at xo, and

0 x — x01> < w(x) —Ly(x) <0 x —xol® forall x € dU,.  (2.15)

Here vy, denotes the unit inner normal to 02y, at xo.

Proof For xo € 90U, N B, let Iy (x) = ¢n(x0) + Vép(xo) - (x — xp). Then by
Lemma 2.5(a),

4
§|x —x0|* < Pn(x) — Lyy(x) < ;|x —x0)> Vx €dU,NoQy,.  (2.16)

By Lemma 2.5(d) and a consequence of the Localization Theorem 2.2 (see (2.7)),
there is 7o > O universally small depending only on n, p, A, A such that

k — _
Sey, (x0,70) C B (XO, 5) NU, C BrNUy.

This gives ¢y, (x) > Iy, (x) + ro for all x € 0U,\9£2p,, and consequently, by (2.9)

k2
Br(x) = Ly () + O = ol Vi € 0U;\Os. 2.17)

Define

W) 1= L () + 8 [ 1x = 0 = | = x0) - v

+51" [|(x — x0) - on|2 — 2k~ (x — xp) - on] Vx € Uy,
where

. [p K?ro
§:=min{—, —t.
4" 4
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Then w™ is a convex function in Uy, satisfying D*w™ =28 [[ + (87" — 1) Vg @ Vyy 1
Therefore,

det D’w™ = (28)"8 " =2" > 1 =det D*w in Uj. (2.18)

Forx € dU, N9y, we obtain from 0 < (x —xp) - vy, < 2k~ and the first inequality
in (2.16) that

W () < Ly (0)+8]x — x0]* < ¢ (x) — §|x — xoP+81x — x0l? < dn(x) = w(x).

On the other hand, for x € U}, \9<2;, by using (2.17) we have

_ 2 kz”O 2
W (x) = Ly (x) 4 8]x — xo Slxo(x)+T|x—XO| = dn(x) = wx).

Therefore, w > w™ on ﬂ]h. It follows from this, (2.18) and the comparison principle
that w(x) > w~ (x) in Uy,. Hence,

W) = Ly (6) + 8 [1x = x0l? = 0 = x0) - vig 2] 467 10 = x0) - vy

> Ly (X) 4 8|x — x0|* in U, (2.19)

In particular, w(x) > l_xo (x) for all x € Uy,. Since l_xo (x0) = ¢n(x0) = w(xp), we then
conclude that x,, 1 = [ xo (x) 18 a supporting hyperplane in Uy, to w at xo.

We now show the second inequality in (2.15). For this, we firstrecall that0 < ¢y, < 1
in U, and by Lemma 2.5(b), we find that for M := 1 + 2k~ 'C ¢ [log cl?,

Gn(x) < dn(x0) + Vu(xo) - (x —x0) + M =ly(x) + M Vx € Up.  (2.20)
We now compare w with w™ defined by
wH(x) 1= Ly () + 20k~ (x — x0) - vyy + O [|x — %0 = |(x — x0) - vx()lz] Vx € Uy,

where

o 4 4M
:=max{—, — {.
p’ k2

Clearly, w™ is a convex function in U}, satisfying
det D’wt =0 < 1 =det D*w inUj,. (2.21)
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For x € aU;, N 02, we obtain from the second inequality in (2.16) and ® > j—) that

wh () = Ly (x) + Olx — xo* + @[2k—1 (x — x0) - vy — | (x — x0) - va|2]

4 2 2 _
> op(x) — ;Ix —x0l” + Olx —x0|” = Pn(x) = w(x).

For x € aUj\0%2;,, we have |x — xo| > k/2 and thus, by using (2.20) we obtain

+ 2 [SC)
W (x) = Ly (x) + Olx —xol” = ¢p(x) — M + 7 Z én(x) = w(x).

Therefore, w < w_+ on Uy, It follows from this, (2.21) and the comparison principle
that w < w™ in U}, In particular,

w(x) =< lxo(x) + 2®k_1 ()C _XO) . on + ® |X - )C0|2
= L) + 2k~ (817" + ©) (x — x0) - vy, + O |x — x0|* Vx € Up.

We then use Lemma 2.5(c) for x € dUj, N 92y, and the fact thatk/2 < |x —xo| <2/k
for x € AU, \0R2y,, to conclude that

w(x) < Ly (x) + Clx —x0|> Vx € 3U,.

This together with (2.19) gives the quadratic separation in (2.15). O

Thanks to the quadratic separation property of w in Lemma 2.7, we can now apply
Savin’s boundary C>¢ estimates for solutions to the Monge—Ampére equations [27]
to get boundary C%® estimates for w when 92 N B, and ¢ lagns, are C2%% and h is
small.

Proposition 2.8 Let Q2 and ¢ satisfy the hypotheses of the Localization Theorem 2.2
at the origin. Assume in addition that 9Q N B, is C%>Y and ¢ € C**(HQ N B))
for some a € (0, 1). Let Qp, ¢p, Up and w be as in Lemma 2.7. Then there exists
ho > 0 depending onn, A, A, p, o, |02 N Byl c2.a and ”(b“cZ,a(aQan) such that for
any h < ho, we have

lwllc2egrm, <co' and coly < D*w <cg'I, in B-NU,  (2.22)

for some co > 0 depending only on n, A, A, @ and p.

Now, let us assume in addition that 92 and ¢|sq are C>“ at the origin for some
a € (0, 1), that is, we assume that for x = (x/, x,,) € 9Q N B,, we have

24« 2+a

= @] = M and g - pa] = M P

where p(x") and g (x’) are homogeneous quadratic polynomials.

If 4 is sufficiently small, then the corresponding rescaling ¢, satisfies the hypotheses
of ¢ in which the constant M is replaced by an arbitrary small constant o.
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Lemma 2.9 ([27,Lemma7.4]) Givenany o > 0, there exists a small positive constant
h=ho(M,o,a,n,x, A, p) such that on 0, N By-1, we have

w = an (| <o |7 anG)| <0 and g — pGH| < o |7

where g, (x') := h'/2q(x") is a homogeneous quadratic polynomial.

Remark 2.10 By inspecting the proof of Lemma 7.4 in [27], we see that the following
more precise statement holds true: There exists C = C(M, n, A, A, p) > 0 such that
forany i < ¢, on 92, N By—1 we have

2+« 2+«

bon = an ] < ChE Y (gD <Chand gy — p)| < Ch ||

Proof of Proposition 2.8. Let M := max{||8£2 N Byllc2a, ||¢||Cz,a(mm3p)} and let
ho be the small constant in Lemma 2.9 corresponding to M and o = 1. Then by our
assumptions, Lemma 2.9, Remark 2.10 and Lemma 2.7, we can apply [27, Corol-
lary 7.2] to conclude that there exist C,§ > 0 depending on n, A, A, « and p such
that

lwll c2.ecynpso) = Cs

where Cp := {x € R, : |x/| < x,} is the cone at the origin with opening 6 = /4.
By varying the point under consideration, we then conclude in the similar fashion
that

lwllc2ec, By < € Vo € 32 N Be. (2.23)

Here Cy, := {x € R} : |x — x0l2 < 2|(x — xp) - va|2} is the cone at xg with
opening 6 = 7 /4 and in the direction of v,,, the unit inner normal to 9€2;, at xo. As a
consequence of (2.23) and Caffarelli’s interior C 2. estimates [2], we obtain the first
estimate in (2.22) from which the second estimate in (2.22) follows. O

2.3 The classes Pj A, p,c,0 and Py A p i,
Fixn, p, A, A, k and o. We define the classes Py A p,c,o and Pj A p i+ consisting of

the triples (€2, ¢, U) satisfying the following sets of conditions (i)—(vii) and (i)—(vi),
respectively:

(i) 0 €0R,U c 2 C R" are bounded convex domains such that

BfnQcUcB , NnQ.
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(ii) ¢ : @ — Rt is convex satisfying ¢ = 1 on U N Q and

#(0)=0, Vp(0) =0, r<detD%p <A in Q,
IAN{p <1} =dUN{p < 1}.

(iii) (quadratic separation)

§ I — x0l2 < ¢(x) — ¢ (x0) — Vep(x0) - (x — x0)

4
f—lx—xol2 Vx,xOEBQﬂB%.
P

(iv) (flatness)
R”N{p <1} C G C{x, <k}
where G C By is a graph in the e, direction and its C L1 norm is bounded by «-.

(v) (localization and gradient estimates) ¢ satisfies in U the hypotheses of the Local-
ization Theorem 2.2 at all points on dU N B, and

IV¢| < Co inUN B..

(vi) (Maximal sections around the origin) If y € U N B> then the maximal interior
section of ¢ in U satisfies:

¢ > h(y) > k3 dist*(y, 0U) and Sy, (y, h(y)) C U N Be.
(vii) (Pogorelov estimates)
18U N Bellc2a < ¢y

and if w is the convex solution to

detD>*w=1 inU
w=¢ ondU,

(2.24)
then
lwllc2egrgy < ¢ and coly < D*w <c¢j'lyin B.NU.

The constants &, ko, ¢, Co above depend only on n, p, A, A and ¢y depends also on «.

Remark 2.11 1f (2, ¢, U) € Py a,p.c,» then the Pogorelov estimates in (vii) might
not hold. However, ¢ satisfies in U the hypotheses of the Localization Theorem 2.2 at
all points on U N B.. Thus, if w is the convex solution to (2.24), then by inspecting
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the proof of Lemma 2.7, we see that w separates quadratically from its tangent planes
at any point xo € 0U N B, that is,

0 x — xo|> < w(x)—w(xg)—Vw(xg) - (x — x0) <0 ' |x — xo|> forallx € aU.

We summarize the discussion at the end of Sect. 2.2, Lemmas 2.5, 2.9 and Propo-
sition 2.8 in the following proposition.

Proposition 2.12 Let 2 and ¢ satisfy the hypotheses of Theorem 2.2 at the origin.
Assume in addition that 9Q N B, is C>* and ¢ € C**Q N B,) for some a €
(0, 1). Then there exists ho > 0 depending onlyonn, ., A, p,a, 02N B,||c2.« and
¢l c2aaans,) such that for h < ho we have

(. bn. S9, (0. 1) € Py pcnirg and 118Qk N Bijellcre < C'h'V2.

Here C depends onlyonn, &, A and p; C' depends onlyonn, 1, A, p, [[0QNB, | c2.a.
and || @l c2.a3anB,)-

2.4 Geometric properties of boundary sections of solutions to Monge—Ampere
equation

In this subsection, we recall some important properties of boundary sections of
solutions to the Monge—Ampere equations established in [22]: the engulfing and
dichotomic properties, volume estimates, a covering theorem and strong type p — p
estimates for the maximal functions corresponding to small sections including bound-
ary ones.

The engulfing property and volume estimates are summarized in the following
theorem.

Theorem 2.13 Assume that Q2 and ¢ satisfy (2.1)—(2.3). Then,
a. (Engulfing property) There exists 6, > 0 depending only on p, A, A and n such
thatify € Sy(x,t) withx € Q and t > 0, then Sy(x, 1) C Sp(y, Ox1).

b. (Volume estimates) There exist constants cy, C1, Co depending only on p, A, A
and n such that for any section Sy(x,t) withx € Q andt < ¢y, we have

Ci"? < |Sp(x, )] < Cat"2.

Our next property is a dichotomy for sections of solutions to the Monge—Ampere
equations: any section is either an interior section or included in a boundary section
with a comparable height.

Proposition 2.14 (Dichotomy) Assume that 2 and ¢ satisfy (2.1)~(2.3). Let Sg(x, 1)
be a section of ¢ with x € Q andt > 0. Then one of the following is true:

(i) Sg¢(x,2t) is an interior section, that is, Sy (x,2t) C Q;
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(ii) Sg(x,2t) is included in a boundary section with comparable height, that is,
there exists z € 0K such that S¢(x,2t) C Sg(z,ct) for some constant
c=c(p, A, A,n)>0.

Our covering theorem states as follows.

Theorem 2.15 (Covering theorem) Assume Q and ¢ satisfy (2.1)—(2.3). Let O C Q
be a Lebesgue measurable set and € > 0 small. Suppose that for each x € O a section
Sy (x, ty) is given with

Sp(x, 1) N O]
[Sp(x, t)|

Then if sup{ty, : x € O} <oo, there exists a countable subfamily of sections
{Sp ok, 1) }72 | satisfying

oo o0
O c | Sk t0) and 0] < Ve || S, )]
k=1 k=1

Finally, we have the following global strong-type p — p estimates for the maximal
function corresponding to small sections.

Theorem 2.16 (Strong-type p-p estimates) Assume that Q2 and ¢ satisfy (2.1)—(2.3).
For f € LY(Q), define

1
MO = sup o / If )l dy Vx € Q.
S¢(x,t)

Then, forany 1 < p < oo, there exists C, > 0 depending on p, p, A, A andn such
that

MO llr) < Cpll fllLr -

3 Global power decay and W-? estimates

In this section, we establish preliminary power decay estimates for the distribution
function of the second derivatives of solutions to the linearized Monge—Ampere equa-
tions and also their global W2 estimates. We also show under suitable geometric
conditions, the cofactor matrices of the Hessian matrices of two convex functions
defined on the same domain are close if their Monge—Ampere measures and boundary
values are close in the L°° norm.

We begin this section by recalling the definitions, introduced in [17], of the quasi
distance d(x, xo) generated by a convex function ¢ and the set G s (u, 2) where the
function u is touched from above and below by “quasi paraboloids” generated by this
quasi distance.
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Definition 3.1 Let ©2 be a bounded convex set in R” and let ¢ € C1(Q) be a convex
function. For any x € Q and x¢ € €2, we define the quasi distance d(x, xg) by

d(x, x0)% 1= ¢ (x) — ¢ (x0) — Vo (x0) - (x — x0).

Definition 3.2 Let Q and ¢ be as in Definition 3.1. For u € C(2) and M > 0, we
define

Gu(u, Q) = [)E € Q : u is differentiable at x and |u(x) — u(x) — Vu(x) - (x — x)|
M
< ?d(x,i)z\?’x € Q] )

We call %d (x, %)% and —%d (x, X)? quasi paraboloids of opening M generated
by ¢. When we would like to emphasize the dependence of d(x, xo) on ¢, we write
dg(x, xo). Likewise, we write Gy (u, 2, ¢) to indicate the dependence on ¢ of the set
Gy (u, Q). Notice that for ¢ (x) = Ix|?, we have d(x, X) = |x — x| is the Euclidean
distance.

In the nextlemma, we show that if the quasi distance d (x, xq) is bounded from below
by the Euclidean distance |x — x¢| around xg then it is also bounded from above by a
multiple of this Euclidean distance around xg. This lemma is a slight modification of
[15, Lemma 6.2.1].

Lemma 3.3 Assume Q satisfies (2.1) and let ¢ € C(Q) be a convex function satisfying
A < det D2¢ < AinQand ¢ = 0 on 02. There exists c = c(n, A, A, p) > 0 such
that if xo € Q and

d(x,xo)2 >0 |x — xo|2 in B.(xo) C Q forsomer > 0,
then for all x in a small neighborhood of xo, we have

2

d(x, x0)? < lx — xol*.

Proof Let ¢(x) := ¢(x) — ¢p(x0) — Vo (x0) - (x — x0). Then the strict convex-
ity of ¢ implies that there exists § > 0 such that Sy(x9,8) = {x € Q

¢(x) < 8} C Br(xp). Therefore by the proof of Lemma 6.2.1 in [15], we have
p(x) < Cn, A, A, p)o~ " |x —xg|* forall x € Q satisfying ¢(x) < §, which gives
the conclusion of the lemma. O

The following lemma allows us to estimate the distribution function of D?u. It is
the starting point for our proofs of Theorems 1.1 and 1.2 and the global version of [17,
Lemma 2.7].

Lemma 3.4 Let 2, ¢ and ¢ be as in Lemma 3.3, and u € C3(Q). Define

Affc = {xo € Q:d(x,x0)> > o |x — xol?, for all x in some neighborhood ofxo}.
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Then for any m > 1 and B > 0, we have

{x e Q:|IDjju)|>p"}C Q\ aloc =t U(Q\Gpu, Q). (G.1)

()

m—
2

Proof Lety = B"T .If i € A°° | N Gg(u, Q). then
(cy)n=T

—gd(x,i)z <u(x) —u(x) — Vu(x) - (x —x) < gd(x,i)z

for each x € Q. Since ¥ € A€ _ | these together with Lemma 3.3 yield
1

(cy)n=

2

2
—ﬂ%lx —3? <u@x) —u(®) — Vu(x) - (x — %) < %pc — i]?

for all x in a small neighborhood of x, and so | D;;ju(x)| < By? = B™. Thus we have
proved that

Al NGy, @) c {x e IDyju)| < B, fori, j=1,...,n)
(cy)n-1

and the lemma follows by taking complements. O

3.1 Power decay estimates

In order to derive global W7 estimates for solutions u to the linearized Monge—
Ampere equation, we will need to estimate the distribution function

F(B) := |{x € Q: |Djju(x)| > "}

for some suitable choice of m > 1. It follows from Lemma 3.4 that this can be done
if one can get appropriate decay estimates for

w1 -2 | and  F2(B) :=|Q\ Gg(u, Q)|.

Fi(B) =12\ Al%° |
(B T )]

Notice that the function F7(8) involves only the solution ¢ of the Monge—Ampere
equation and its power decay is given in the next theorem.

Theorem 3.5 Assume Q satisfies (2.1) and 0Q2 € C L1 Jet ¢ € C(Q) be a convex
function such that 1 —e < det D*¢ < 14¢ in Q and (2.3) holds, where 0 < € < 1/2.
Then there exists a positive constant M depending only on n and p such that
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InA/Ce
|9\Af‘3§| <C'(e,n, p,|0Qc11) s WM forall s> 0. (3.2)

—1 1
In particular, for s = (cﬂmT)m, we get

In ——

_ m—1
Fi(B) < C'(e,n, p, 18RI c11) p 2D Ve VB > 0.

The small power decay estimates for F>(f) are given in the following proposition.
It is the boundary version of Proposition 3.4 in [17].

Proposition 3.6 Assume that Q and ¢ satisfy the assumgtions (2.1)—(2.3). Assume
in addition that 9Q € CU1. Suppose u € C'(Q) N W (Q), lu| < 1 in Q and

Lou = fin Qwith || fllzr) < 1. Then there existt = t(n, X, A, p) € (0, 1/2) and
C=C(p, A, A, n, ||0R2]|c1.1) > O such that

F>(B) = |Q\ Gpu, Q)| < ﬂc—r forall B> 0.

The next result is a variant of Proposition 3.6 which will be important for the density
and improved power decay estimates in Sect. 5.1.

Proposition 3.7 Let (2, ¢, U) be in the class Py A, p,icx. Suppose u € C(2) N
cln WIZO’C"(U), lu] < 1in Qand Lou = f in U with || fllzrwnB,) < 1. Then
there existt = t(n, A, A, p) € (0,1/2) and C = C(n, A, A, p, k) > 0 such that

C
|(UNB2)\ Gplu, )| < i \UNBz| forall B> 0.

The above inequality also holds if U N B2 is replaced by S4(0, r) for any universal
constant r satisfying r < c®.

As aconsequence of the power decay estimates for F|(8) and F>(8) in Theorem 3.5
and Proposition 3.6, we find that the decay for F(8) when 0 < € < 1/2 is given by

_ m—1 1
F(B) < Cle.n. p. |0 c1) B~ 20000 " Jee 4 g

Since m In — 00 as € — 0, we obtain global W23 estimates for all

1
VCe
8 < t/m < 1/2 for solutions to the linearized Monge—Ampere equation Lyu = f
provided that f € L"(2) and € is small, that is, det D2¢ is close to a constant.
However, in the next subsection, we offer a more direct proof of global W29 estimates
based on interior estimates without resorting to decay estimates of the distribution
function of the second derivatives. Another advantage of this proof is that it works for

all Monge—Ampere measures det D2¢ bounded away from 0 and co.

Remark 3.8 Tt is now clear that the obstruction to higher integrability of | D?u| is the
small exponent 7 in the decay estimates for |S2 \ Gg(u, Q)| given by Proposition 3.6.
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Most of the paper is devoted to developing tools to improve the decay estimates for
|SZ\G pu, Q)‘. In particular, the global stability of cofactor matrices and an approxi-
mation lemma in the next two sections will be employed for this purpose.

3.2 Global W29 estimates

In this subsection, we obtain global W23(Q) estimates (8 > 0 small) for solutions
to the linearized Monge—Ampere equation Lyu = f when det D?¢ is only bounded
away from 0 and oo and under natural assumptions on the domain €2 and the boundary
data of ¢.

Our main theorem in this subsection is the following.

Theorem 3.9 Assume Q and_ ¢ satisfy the assumptions (2.1)—(2.3). Assume in addition
that 9Q € C1L. Letu € C(Q) N C1(Q) N W"(Q) be a solution of

loc

Lou=f inQ,

u=>0 ond2.
Then there exist p = p(p, A, A,n) > 0and C = C(p, A, A, n, |02 c11) > 0 such
that

ID*ullLr) < Cllf lLr (-

The rest of this subsection is devoted to proving this theorem. The idea is to cover
2 by maximal interior sections whose shapes are under control by Proposition 2.3 and
then apply the interior W2-® estimates of Gutiérrez and Tournier [ 18] in these sections.
Furthermore, since we can control the number of these sections within certain height
due to the C!! regularity of the boundary 82, the global estimates follow by adding
interior ones.

For reader’s convenience, we recall Gutiérrez-Tournier’s W24 estimates.

Theorem 3.10 ([18, Theorem 6.3]) Let 2 be a convex domain such that By, C Q2 C
Bk(;l. Let ¢ € C*(2) be a convex function satisfying A < det D*¢ < A in Q and

¢=0o0n Q. Letu € CL(Q)N Wl%;c" (2) be a solution of Lyu = f in Q. Then, given
ao € (0, 1), there exist positive constants § and C depending only on oy, ko, A, A and
n such that

2 . < ( 0o n )
1D M||L5(S¢(xo,fao¢(xo))) = C{llullze + 1 f e )

where xo € Q is such that ming ¢ = ¢ (xp).

Let 0 < p < min{s, %} where § = 8(p, A, A, n) > 0is a small number appear-
ing in Theorem 3.10 corresponding to a9 = 1/2 and kg = ko(p, n, A, A) given by
Proposition 2.3.

We will show that the conclusion of Theorem 3.9 holds for the above choice of p.
To achieve this, we first estimate the LP? norm of D?u in the interior of each maximal
interior section.
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Lemma 3.11 Assume 2 and ¢ satisfy the assumptions (2.1)—(2.3). Letu € C @ n
cln W[i’: (R2) be a solution of

Lou=fin Q, and u=0 on Q.

Then, there exists a constant C > 0 depending only on p, p, A, A and n such that

2 )
D ulle(Sd)(y’@))

7o Nge—1 7 2 7172
= CROYH ™ 110g O (1l (5, 1) + 5OV 1F (5,0 700))

forall y € Q satisfying h(y) < c.

Proof Let h = }_z(X) with }_z(y)~§ c. We now define the rescaled domain €2, and
rescaled functions ¢y, u; and fj as in Sect. 2.2 that preserve the L°°-norm in a

section tangent to the boundary. For simplicity, let us denote S,(0) := S B (0, ) for
t > 0. Then by Theorem 3.10, we have

D% | (S (O)) < C(p,p.» An) (||ﬁh||msl<o» + 11 fin ||Ln(gl(0))). (3.3)
Using the fact

D%u (y + hl/zA,jlx) = b= (A D2iiy(x) Ay,

we obtain

/ |D?u(z)|P dz = h2~P / |A}, D%iip(x) Ap” dx

()

< Chi P |logh|? / | D%iip ()| dx.

510

[~

It follows that
1Dl i) = Ch¥ og hP 1 D%all 5. - (3.4)
Lr(sy(>.4)) Lr(3,0)

Moreover, we have

- 1 -
||fh||Ln(§|(0)) =h? ”f”L”(S(p(y,h)) and ||Mh||LOO(§|(())) = ||M||L°°(S¢(y,h))~ (3.5)

Combining (3.3)—(3.5), we obtain the desired estimate stated in our lemma. O
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Finally, we will use the following Vitali covering lemma proved by Savin in [28];
see also [22, Lemma 2.5] for a more general covering result.

Lemma 3.12 ([28, Lemma 2.3]) Assume Q2 and ¢ satisfy the assumptions 2.1)-
(2.3). Then there exists a sequence of disjoint sections Sy (y;, doh(y;)) with 89 =
do(A, A, n) > 0 such that

h(yi
QCUS¢(y,, (Zy)).

i=1

Proof of Theorem 3.9. It follows from Proposition 2.3 (see also [28, Lemma 2.2]) that
if y € Q with 2(y) < c then

Ss(y.h(y)) Cy+ky " En C Dejyiyyiro

- {x € Q: dist(x, 9Q) < cﬁ(y)lﬂ}, C = 2k2.

By Lemma 3.12, we have

/|D2 |de<2 / |Du|Pdx.
S¢(v, h(y,))

There is a finite number of sections S (y;, h( yi)) with h( yi) > cand, by Theorem 3.10,
we have in each such section

/ |D*ul? < C (Il + I fllne)”-
Sq&()l h(y; ))

Now, for d < ¢ we consider the family F4 of sections Sy (i, h(y;)/2) such that
d/2 < h(y;) <d.Let M; be the number of sections in F;. We claim that

n

My < Cpd>™5 (3.6)
for some constant C depending only on p, n, A, A and ||0€2]c1.1. Indeed, we first
note that, by [15, Corollary 3.2.4] (see also Theorem 2.13(b)), there exists a constant
C =C(n, A, A, p) > 0such that

15 (vi- 0h(y))| = Ch(y)"/* = Ca"'>.

Since Sy (yi, (SQE(y,-)) C D¢ 1,2 are disjoint, we find that

MaCd"* < " |S(vi. 80h(3))| < |Degin| < Cod'?
ieFy
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for some constant C. depending only on n and ||02||~1.1. Thus (3.6) holds.
It follows from Lemma 3.11 and (3.6) that

n__ P
> / |DulP < CMyd?~"|logd|*” (||u||mm + IIfIILn(Q))
ieFy .o
5¢(yi’@)
3-p 2p P
< Cd2""|logd| (||M||L°°<sz) + ||f||L"(§2)) :
Adding these inequalities for the sequence d = 2% k=0,1,2,...,and noting that

lullzoo) < Cn, p, &y, M fliLn),

by the ABP estimate, we obtain the desired global L? estimate for D?u. O

3.3 Proofs of the power decay estimates

Proof of Theorem 3.5. Let {Sy(yi, h(y;)/2)} be the sequence of sections covering £2
given by Lemma 3.12. In what follows we will use the notations as in the proof of
Lemma 3.11. We then have

[\ S| < 3718501 01/ \ A%

i=1

<D [Ssu ki /) \ AL

k:Oie]—'cz,k
+ D0 ISeGi kN A = 111, (3.7)
i:}_z(y,-)>c

Let us first estimate the summation / corresponding to sections with h(y) < c.
Consider a prototype section Sy (y, h) with & := h(y) < c. Proposition 2.3 tells us
that Sy (y, h) is equivalent to an ellipsoid Ej, i.e.,

koEn C Sp(y,h) —y C ky ' Ep,
where

Ej:=h"2A; "By, with detA, =1, [lAull, 14" ] <k '[loghl.

Here k, ko depend only on n and p. Let T'(x) := h=Y2Ap,(x — y). Define Uy =
T (Sy(y. h)) and

(@) =~ [T 1) = () = V() - (T 7'z =) = h] forz € Ty
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Then By, C Uy = S5, (0, 1) C B 1—e < det D*¢p, <1+ einU,and gy =0
on BUh. By [15, Theorem 3.3.10], there exists no = no(n, p) > 0 such that

S;,(x.1) € Uy forallx € 53 (0.1/2) and 1 < o
Now, let
1
D2 = {x € 85, (0.1/2) : S5 (x.1) C Blx,s¥/1), Vi < no}.

Then, by [17, Theorem 2.8], we obtain

1S5,(0,1/2)\ D | <

In+/Ce

where p. == — 1
n

with C, M > 0 is a constant depending only on n and p. Let

A, = {z €Up:dn2) = (D) + V(@) - -2 +0olz -2, Vze Uh}.

_1 -
Since D} = Sd;h (0,1/2) N A;—2 by [15, Theorem 6.2.2], we can rewrite the above
inequality as

T (Sp(v. h/2)) \ Ag-2| < Cle,n, p)s™Pe. (3.8)

Let us relate A, to A€ Since |x — ¥| < A, AR (x — 5)| < k~'h'/2|log Al
|Tx — Tx|, we have

Ag2 =T {x € Sp(y. h) : $u(Tx) = ¢u(T%) + Vy(TX) - (Tx — TX)
572 |Tx — TE, Y € Sp(y, h)}

CT{X e Sy, h):¢(x) = ¢ + Vo(X) - (x — X)

F s Togh) ™2 x — 712, Vx € Sp(y, h)}
loc
T (Sp ) VAR, gy 2)

We infer from this and (3.8) that

1S5 B/ \ AL, g2l < Clen, )l det T~ 577

= C(e,n, p) W2 s7Pe s > 0,
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or equivalently,
1Sp(v, h/2)\ Al| < C(e, n, p) "/?|log h|Pe s™P< Vs > 0.

Thus the summation 7 in (3.7) can be estimated as follows

o0

I<Cle,n p)s > D h(y)"*|logh(y)|"

k=0ieF ,—k

o
< Clen, p)s ™7 D" (27" log(c2 7 1) [P My
k=0

o
< CsPe Z (2712 log(c27* 1) |Pe < Cs7Pe. (3.9)
k=0

Note that C depends on €, nn, p and [|0€2|| 1.1, and we have used the bound (3.6) for
M to obtain the third inequality.

Next let us estimate the summation // corresponding to sections Sy (i, h(yi)/2)
with /1(y;) > c. Since the family {Sy(y, 80/2(y;))} is disjoint, we infer from the lower
bound on volume of sections and 2 C By, that

#{i 1 h(y;) > ¢} < C(n, p).

Also, by using the standard normalization for interior sections and [17, Theorem 2.8]
we get

|S¢(yi,iz(y,-)/2)\A§9§| < C(e,n,p)s P foralli with h(y;)) > c.
Therefore,

IT <#{i:h(y) > c) [C(e, n, p) s_”f] <C(e,n,p)s P Vs >0. (3.10)
By combining (3.7), (3.9) and (3.10) we obtain

|\ Al < 1411 < Cle,n, p, 10201 c11) s

In+/Ce
=C(e,n, p, [0 c11) s InM .

O
The proof of Theorem 3.5 can also be employed to give the proof of Proposition 3.6.

Proof of Proposition 3.6. Let {S4(yi, h(y:)/2)} be the sequence of sections covering
2 given by Lemma 3.12. Then we have
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h(y;
Q\ G| < > is¢(yl, (i) )\G,g< o)

i:ﬁ(y,-)>c

00 }_1 i
+2 D |S¢(yi,(Ty))\G,s(u,Q)|. (3.11)

k=0 i€F -k

By using [17, Proposition 3.4] and arguing as in estimating the term 7/ in the proof
of Theorem 3.5, we see that there exist constants C, T > 0 depending only on n, A, A
and p with < 1/2 such that

> |S¢()’la (yl)\Gﬂ( Q)= > ﬂc—r=§#{z E(yi>>c}s§.

i:ﬁ(y,-)>c i ’_l()’i)>5
(3.12)

To estimate the last expression in (3.11), let us consider a prototype section Sy (y, 1)
with h = i_z(y) < c¢. We now define the rescaled domains fzh, Uh and rescaled
functions ¢y, iy, and fh as in Sect. 2.2 that preserve the L°°-norm in a section tangent
to the boundary. Then

1Al gy = 21 encsy oy < B2 fllney < 1. (3.13)
Therefore, we can apply [17, Proposition 3.4] to obtain for 7' (x) := 124, (x — y)
|T(Sp(vs h/2)\ G an, Qs di)| =[Sz, 0, 1/2)\ Gplan, Qs dn)|
C
< — forall 8 >0.
’31'
But as i, € C'(Uy) and dg, (Tx, Tx)?> =h'd(x,x)? forall x, X € Q, we get

T(Sp(y. h/2)) N\ Gpliin, . dp) = T(S¢(y, h/2) N G gy, Q)).

Thus we infer from the above inequality that
C -1 C n
[S60- B/D\ Gy (e, D] < o] det TI™ = Zoh2,
or equivalently,

C u_
1S3 (v, h/2)\ Gp(u, Q)|§Eh2 * forall B> 0.
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This together with the estimate (3.6) for M yields

S 1Ss00 hG0/D\ Gplu, )|

k=0ieF , &
C ad - n_ C > ki c’ - N c’
sﬁz > h()? fsEZ@z )? ’Mcz-ksﬂ—,Z@z 2T =g
k=0ieF k=0 k=0

(3.14)

provided that T < 1/2. Here C’ also depends on [|d€2||~1,1. The desired estimate is
now obtained by combining (3.11), (3.12) and (3.14). O

To prove Proposition 3.7, we use the following localized version at the boundary
of Lemma 3.12.

Lemma 3.13 Assume (2, ¢, U) € Py A, p«,« and let w be the solution to (2.24). Let
Y denote one of the functions ¢ and w. Then there exists a sequence of disjoint sections
{Sy (i, Soh(yi))}2 |, where 8o = 8o(n, A, A), yi € U N B and Sy (yi, h(y;)) is the
maximal interior section of ¥ in U, such that

°° h(yi)
UNB.cC U1 Sy (yi, Tl) : (3.15)
1=
Moreover, we have
Sy (i h(y)) CUN B, h(y) <c. (3.16)

Ifwe let Mcll“ denote the number of sections Sy (y;, h(y;)/2) suchthatd/2 < h(y;) <
d <c, then

n

Ml < Cpdr ™t (3.17)
for some constant Cj, depending only on p,n, ., A and |02 N B,|lc1.1.

Proof By Remark 2.11, we can use Proposition 2.3 to get the same conclusion as in
Lemma 2.5(e) for sections of y with centers in U N B . All these sections thus satisfy
(3.16) and are equivalent to ellipsoids. In particular, i is strictly convex in U N B..
Furthermore,

Sy (i h(yi) C {x € B.NU : dist(x, 32 N aU) < 2k0_1ﬁ(y,~)1/2}.

With this in mind and assuming that the sequence {Sy (y;, Soh( y,'))}fi1 is disjoint and
satisfies (3.15), we argue similarly as in deriving the estimate (3.6) for M, to obtain
3.17).
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It remains to establish the covering (3.15). The crucial point in the proof of
Lemma 3.12 is the engulfing property of interior sections which hold for strictly
convex solution to the Monge—Ampere equation with bounded right hand side. By our
discussion above, ¥ is strictly convex in U N B, and thus we obtain (3.15). For com-
pleteness, we include the proof here, taken almost verbatim from [28]. By the engulfing
property of interior sections of strictly convex solution to the Monge—Ampere equa-
tion with bounded right hand side, we can choose §y depending only on n, A, A with
the following property. If y, z € B.. N U with

Sy (v, 80h () N Sy (z,80h(2)) # ¥ and 2h(y) = h(2)
then
Sy (2, 80h(2)) C Sy (v, h()/2).
We choose Sy (y1, Soh(y1)) from all sections Sy (y, Soh(»)),y e UN B> such that

_ 1 _
h(y1) = Esuph()’)
y

then choose Sy (y2, Soh(y2)) as above but only from the remaining sections
Sy (¥, 8oh(y)) that are disjoint from Sy, (y1, o/ (1)), then Sy (y3, o (¥3)), etc. Con-
sequently, we easily obtain

o
UnBac |J Sy.soh(y) c | SyGi.doh(yi)).
yeUNB , i=1

]

Proof of Proposition 3.7. Our proof is similar to that of Proposition 3.6 using
Lemma 3.13. In the proof of Proposition 3.6, we replace Q\Gg(u, 2) by (U N
B2)\Gg(u, 2), the covering of € using Lemma 3.12 by the covering of U N B2
using Lemma 3.13. By (3.16), the first term of the right hand side of (3.11) disap-
pears. For the second term of the right hand side of (3.11), we estimate as in the rest of
the proof of Proposition 3.6. Note that, since all sections in the covering for U N B »
satisfy Sy (yi, h(y;)) C B. N U, instead of (3.13), we now have

1Pz = 121 F sy <A Flrwnsy < 1.
In (3.14), we replace M, by Mff” and use (3.17) to estimate it. The conclusion of

Proposition 3.7 follows. Note that by (2.7), we have S4(0,7) CUN B ifr < ¢® and
the last remark of the proposition follows. O

3.4 Global stability of cofactor matrices

In this subsection, we prove that, under suitable geometric conditions, the cofactor
matrices of the Hessian matrices of two convex functions defined on the same domain
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are close if their Monge—Ampére measures and boundary values are close in the L™
norm.

We first start with a stability result at the boundary for the second derivatives and
the cofactor matrices of functions in the class P.

Proposition 3.14 Assume (2, ¢, U) € Pi_¢ 14e pi - Let w € C(U) be the convex
solution to

detD*w=1 inU
w=¢ ondU.

Then the following statements hold.

(i) Forany p > 1, there exist eg = €p(p,n, p) > 0and C = C(p,n, p, k) > 0such
that

5
ID?*¢ — Dzw”u?(gczmu) < Ce"@-d foralle < €.

(ii) Assume in addition that (2, ¢, U) € Pi—c 14 p.c,a- Then for any g > 1, there
exist g = €g(q,n, p) > 0and C = C(q, n, p, k, ®) > 0 such that

(n—1)§
P — WllLas,nuy < Ce"@a=0 foralle < €.

Here § = 8(n, p) > 0, and ®, W are the matrices of cofactors of D*¢ and D*w,
respectively.

Proof (1) Our conclusion follows from the following claims.
Claim 1. There exist €9 = €o(p, n, p) > 0 small and Cy = Co(p, n, p, k) > 0 such
that

2 2
1D ¢||sz(3“2mu) + || D wIIsz(Bcsz) < Cp whenever € < ¢.

Claim 2. There exist § = &(n, p) € (0, 1/2) and C = C(n, p, k) > 0 such that
1
ID*¢ — D*wll s ,nyy < Ce'/" forall e < 5 (3.18)

Indeed, let 6 € (0, 1) be such that

1 0 1-6

P 2 8
Then 1 — 6 = §/(2p — §) and by the interpolation inequality we get
1D%¢ — D*wlLrs 00y < 1070 = D*wliyzy g, 1026 = D*wl5ly )

1-6 _5
<Cen =Cemmb,

We now turn to the proofs of the claims.
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Claim 1 is essentially Savin’s global W27 estimates for the Monge—Ampére equations
[28]. For the proof in our setting, we use Lemma 3.13 and follow his arguments. For
completeness, we include the proof here. Let ¢ denote one of the functions ¢ and w.
Then by Lemma 3.13, there exists a sequence of disjoint sections {Sy (i, Soh(y)) 1720

where y; € U N B2 and Sy (y;, h( yi)) is the maximal interior section of i in U, such
that

h(y;
U0302CUS¢(y,, (;)).

i=1

Moreover, we have
Sy (i, h(yi)) CUNBe, h(y) <c.

We will prove that: There exist g = €o(p, p,n) > Osmalland C = C(p, p,n) > 0
such that for € < ¢, we have

2 — n -
[ |p]" =ciminogiont weunga a9
SV( h(}))

Given this, we can complete the proof of Claim 1 as follows. We have

2p
/\Dz‘/f\ Z / D% ZZ / o2y [",
k=0ieF ,_i
UNB Sw (y,u Ay )) 2= s (y,-, Ry ))

(3.20)

where F; is the family of sectior}s Sy (i, @) such that d/2 < h(y;) <d < c. By
(3.19), we have for each Sy (y;, @) e Fa4,

2 2p 4 -
|D2y| ™ < Cllogd [y (i, 80k )|
(04
and since
Sy (vi, 80h(y)) C {x € B. N U : dist(x, 32 N V) < 2k, 'd"/?)

are disjoint, we find

> / ‘D%p‘ < Cy llogd|*? d'/?

lejd
S I
1//()’1', 1(2} ))
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where C; now depends also on « which is the upper bound for [|0$2 N B.|/c1.1.
Therefore, Claim 1 easily follows from (3.20) by adding these inequalities for
d=c2% k=0,1,....

It remains to prove (3.19). Let i := h(y). Then i < c. By applying Proposition 2.3
to Sy (y, h), we find that it is equivalent to an ellipsoid Ep, i.e.,

koEn C Sy(y,h) —y C kg "En,

where Ej, := h'/2A; ' By with det A, = Land | A4, [|A; ']l < C|logh|. We use the
following rescalings similar to those in Sect. 2.2:

Qu=h""2ARQ - y),
and for x € €,
i) = h [ (v B4 ) = ) = Ve - (07245 x) = i)
Then
By, C S;,(0,1) = Y2 A (Sp(yv, h) — y) C© By
We have
det D, (x) = det D*yr (y + h1/2A,;1x) and Y, =0 on 38y (0, 1).

For simplicity, we denote S, (0) := S% (0,1)fort > 0.If = ¢ then by Caffarelli’s

interior W27 estimates for the Monge—Ampére equation [2], we have

[ o<

510

[S]

if € < € small depending only on p, p and n. If ¥ = w then as det D?*w = 1, the
above inequality obviously holds. Using the fact

Dy (y + hl/zAglx) = Al DX (x) Ay,
we obtain (3.19) from
/ DXy (2)*P dz = h? / |AY D> (x) Ap|*P dx
So(0:4) $O

< Ch? |logh|* / ID*P(x)|P < Ch? [logh|*.

510

[S]
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Finally, we verify Claim 2 by proving (3.18). As in [16, Lemma 3.4], we note
that the difference v := ¢ — w is a subsolution (supersolution) of linearized Monge—
Ampere equations with bounded right hand side, corresponding to the potentials w
and ¢ respectively. We cover U N B2 by sections of w and ¢ using Lemma 3.13. In
each of these sections, we can use the one-sided W29 estimates of Gutiérrez-Tournier
[18]. Then, adding these estimates as in the proof of Theorem 3.9, we get (3.18). The
details are as follows.

Consider the operator Mu := (det D?>u)!'/" and its linearized operator

A 1
L,v:= —(det Dzu)l/”trace((Dzu)_lD2v).
n
Notice that £, v and the operator £,v defined in (1.1) are related by
L, v = n(det Dzu)nn;lﬁuv.
Let v := ¢ — w and g := det D?¢. Since M is concave, we obtain
gl/”—lz./\/ld)—./\/lwfﬁwv
and hence
2.\l A 1/n
Lyv =n(det D°w) = Lyv > —n|g’" —1]. (3.21)
We also have Lid)v < M¢p — Mw < |g'/" — 1] and thus
Loy — PNy nel A/n In _
oV =n(det D°¢) = Lyv <n(l4+¢€) " |g 1| <2n|g 1]. (3.22)
On the other hand, it follows from the maximum principle ([19, Lemma 3.1]) that
Wl < Codiam (U)[1g"" = 1] 12w)- (3.23)
We cover U N B> by sections of w using Lemma 3.13. From (3.21) and (3.23), we
can use Gutiérrez-Tournier’s one-sided W29 estimates [18] instead of Theorem 3.10
in each of these sections to estimate the L® norm of (D%v)*. After that, we argue

as in the proof of Theorem 3.9, and taking into account Lemma 3.13 again to obtain
81 =61(n,p) € (0,1/2) and C; = C1(n, p, k) > 0 such that

||(D2v)+||le(Uchz) <C (”U”LOO(UHBC) + ||(»va)_||L"(UﬁBc))
< Cillg"" = Ul ). (3.24)
Similarly, from (3.22), (3.23) and by covering U N B2 by sections of ¢, we obtain

1D20) i wnsay < Co(I0lliewns + 1Ce0)F lnwns,)

< Clg"" = Ulnw). (3.25)
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Let 6 := min{§;, 6,}. Then, from (3.24) and (3.25), we obtain (3.18) as desired since

10?0l s wnp,) < Cllg™™ = i) < Ce''™.
(i1) The key to the proof is the following estimate

[® = Wlizewns,,)

2 2 2
< Co (€ + 10wl g ) 1020 = D2wllal iy ) ) 1020152 s )

(3.26)
which can be deduced from the proof of Lemma 3.5 in [16].
As in Claim 1 in the proof of part (i), we have
ID*¢ll Lo b, < Co foralle < e, (3.27)
where €y = €9(gq, n, p) > 0 small and Cy = Co(q, n, p, k) > 0.
On the other hand, by (vii) in the definition of the class P, we have
ID*wl|LwnB ) < Ci(n, e, p). (3.28)

Putting (3.26)—(3.28) together, we obtain for € < €

1P — WllLa@wn,) < Cn (e + 17D = DYwlL) 2)) cp".

By applying part (i) of this proposition to p = gn, we then get the desired conclusion.
]

We also obtain the following global stability of matrices of cofactors.

Lemma 3.15 (Global stability of cofactor matrices) Let Q@ C R" be a uniformly
convex domain satisfying (2.1) and ||0R2||c3 < 1/p. For any q > 1, there exist

C, €y > 0 depending only on q, n and p with the following property. If ¢, w € C ()
are convex functions satisfying

1—e§detD2¢§1+e in Q2 and detD>’w=1 inQ
¢=0 on a2 w=20 on €2,

then for some small constant § > 0 depending only on n and p, we have

n—1)8
[® — WllLa@) < Ceitid forall € < co.

Proof The proof follows the lines of the proof of Proposition 3.14 using
Proposition 2.4. Here we choose U = €2, replace U N B> by €2 and use the covering
Lemma 3.12. The estimate (3.28) is now a classical result of Caffarelli-Nirenberg—
Spruck [6]. |
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3.5 Global W21+€ estimates for convex solutions

In this subsection, we establish the global W2 1+€ estimates for convex solutions to
the linearized Monge—Ampere equations. These estimates are simple consequence of
the global stability of cofactor matrices in Sect. 3.4.

Theorem 3.16 Let 2 be a uniformly convex domain satisfying (2.1) with 92 € C 3,
Letp e C(Q)NC 2(Q) be a convex function satisfying

O<Ai<detD*¢ <A in Q and ¢ =0 on 99.

Let v be the convex solution to

CDile'j = f in Q,
v=>0 on o0<2,

where f € L°°(Q). Then, there exist y > 1 and C > 0 depending only on A, A, n
and 2 such that

1Dy @) < CIlf (- (3.29)

Remark 3.17 (i) De Phillipis—Figalli-Savin [9] and Schmidt [29] discovered the inte-
rior W2 17¢ estimates for convex solution ¢ to the Monge—Ampére equation

det D’¢p = g inQ2, and ¢ =0 ond,
with 0 < A < g < A. In these works, the convexity Q_f ¢ plays a crucial role,
especially in giving a bound for | D?¢| by A¢. Since ®/ ¢;; = ndet D*¢p = ng,
our theorem is a natural extension of De Phillipis—Figalli-Savin’s and Schmidt’s

estimates.
(i) The convexity of v and standard arithmetic-geometric inequality give

f = @Y v;; = trace(® D*v) > n(det ®)'/"(det D*v)!/" > 0.

(iii) It would be interesting to remove the convexity of v in the statement of
Theorem 3.16.

Now, we proceed with the proof of Theorem 3.16. To do this, we first establish the
following Sobolev stability result.

Proposition 3.18 (Sobolev stability estimates) Let 2 be a uniformly convex domain
with 3Q € C3. Let dreC(2) ﬂCZ(Q) (k=1, 2) be convex Aleksandrov solutions of

det D’¢p = gi in2, and ¢ =0 ond,

with) < A < g < Ain Q. Then thereexisty > 1, a € (0, 1) and C > 0 depending
only onn, A, A and 2 such that

@ Springer



666 N. Q. Le, T. Nguyen

ID*¢1 = D*hallr () < Cligi — 8211} q)- (3.30)

Proof The interior counterpart of our proposition was established by De Phillipis—
Figalli [8]. Here, we will prove the boundary version with a different method. Our
proof relies on the W28 estimates of Gutiérrez-Tournier [18] for solutions to the
linearized Monge—Ampere equation.

First, using Proposition 2.4, [19, Lemma 3.1] and arguing as in the proof of (3.18)
in Proposition 3.14, we find a small § > 0 and C; > 0 depending only on n, A, A and
€2 such that

1 1 1
ID*p1 — Dl ooy < Cillg] — 85 lney < Cillgr — &2ll}1 ) (33D

Second, using De Phillipis—Figalli-Savin’s and Schmidt’s interior W2 1*€ estimates
for solutions to the Monge—Ampere equation [9,29] and arguing as in [28], we obtain
the following global W?!1*¢ estimates

ID*¢1llLn @) + ID*¢2llLn (@) < Ca, (3.32)

where y; > 1 and C; > 0 depend only on n, A, A, and .
We now choose o € (0, 1) sufficiently close to 0 so that

1 o l—«a
— ==+ <1,

Y s V1

i.e., ¥ > 1. Then by the interpolation inequality, we obtain
ID*¢1 — D*allir ) < ID*¢1 — D*¢all§s o, ID*d1 — D2l

which together with (3.31) and (3.32) yields the estimate (3.30). O

Proof of Theorem 3.16. For any t € (0, ||f||zolo(9)], we have ¢ = ¢ + fv on 92 and,
by the convexity of v, ¢ > ¢ + tv in Q. Thus

A < det D¢ < det D*(¢ + tv).

Moreover by the concavity of the map ¢ — log det D?¢, we obtain

f
detD%p’

logdet D*(¢ + tv) < log det D*¢ + t¢"/v;; = log det D*¢p + ¢
Therefore,
tf
0 < det D*(¢ + 1v) — det D*¢ < (det D?¢) (edelDzd’ — 1) < A(e% —1) inQ.

Applying the stability result in Proposition 3.18, we can find o, C > 0, y > 1 depend-
ing only on n, A, A and €2 such that

@ Springer



Global WP estimates 667

2 2 2 0 1 %
l#D?vl1v (@) < Clldet D*(@ + 1v) — det D*$]17, o < CIAGeF = DIIJ, .
The estimate (3.29) follows by taking r = ||f||zolo(9). O

4 Global Holder estimates and approximation lemma

In this section, we establish global Holder continuity estimates for solutions to the lin-
earized Monge—Ampere equation under natural assumptions on the domain, Monge—
Ampere measure and Holder continuous boundary data. We then use these Holder
estimates to prove approximation lemmas allowing us to approximate the solution
u to Leu = f by smooth solutions of linearized Monge—Ampere equations
associated with convex functions w whose Monge—Ampere measures are close to
that of ¢.

4.1 Global Holder estimates

In this subsection, we derive global Holder estimates for solutions to the linearized
Monge—Ampere equation in convex domains when the right hand side is assumed
to be in L" and the boundary data is Holder continuous. These estimates extend the
global Holder estimates in [21] where the domains are assumed to be uniformly convex.

Our first main theorem is concerned with Holder estimates in a neighborhood of a
boundary point. Its precise statement is as follows.

Theorem 4.1 Assume Q2 and ¢ satisfy (2.1), (2.2), (2.4) and if xo € 02 N B, then

plx —xol* < ¢(x) — p(x0) — Vo(x0) - (x — x0) < p~ ' |x — xo|?, Vx € 0.
“.1)

Letu € C(B,NQ)N lea’:,'(Bp N Q) be a solution to

QVu;; = f inB,NQ,
Uu=q ondQ N B,

where ¢ € C*(0Q2 N B,) for some a € (0, 1). Then, there exist constants $,C > 0
depending only on A, A, n, « and p such that

jue) — u)| = Clx — y1 (lulle@ns, + lelceaans, + 1flr@ns,))-
Vx,y € QN0 Byp.

As an immediate consequence of Theorem 4.1, we obtain the following estimates
which are the global counterparts of Caffarelli-Gutiérrez’s interior Holder estimates
for solutions to the linearized Monge—Ampére equation [4].
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Theorem 4.2 Assume Q and ¢ satisfy (2.1)~(2.3). Let u € C(Q) N Wli’: () be a
solution to

CIDijuij =finQ, and u=¢ onodS2,

where ¢ € C*(0R) for some a € (0, 1). Then, there exist constants B,C > 0
depending only on A, A, n, o and p such that

lu(x) —u(y)| < Clx — Y|ﬂ(||M||L°0(sz) + llellceao) + ||f||L"(Q)), Vx,y € Q.

The key to the proof of Theorem 4.1 is the following boundary Holder estimates.

Proposition 4.3 Let ¢ and u be as in Theorem 4.1. Then, there exist §, C depending
onlyon X, A, n,a, p such that, for any xo € 02N B, /2, we have

lu(x) —u(xo)| < Clx — xp|et3n (||M||L°°(Qﬂ8p) + llellce@ens,) + ||f||L"(Qan))»
Vx € QN Bs(xg).

Proof of Theorem 4.1. The boundary Holder estimates in Proposition 4.3 combined
with the interior Holder continuity estimates of Caffarelli-Gutiérrez [4] and Savin’s
Localization Theorem [26-28] gives the global Holder estimates in Theorem 4.1. The
precise arguments are almost the same as the proof of [21, Theorem 1.4]. Since [21,
Theorem 1.4] is a global result and our theorem is local, we indicate some differences
in the arguments. It suffices to prove the theorem for x, y € B.. N Q. We use the
quadratic separation (4.1) and Proposition 2.3 to show that if y € Q2 N B> then the
maximal interior section S (y, h(y)) is contained in € N B, and so tangent to 9
at xg € 02 N B, (see Lemma 2.5(e)). Using this fact, Caffarelli-Gutiérrez’s interior
Holder estimates [4] and Proposition 4.3, we obtain as in [21]

lu(z1) — u(z2)| < |21 — 22” (”u”LOO(QﬂBp) + llellceens,) + ||f||L"(mB,,))

h
Vz1,22 € Sy (y, %) .

The rest of the argument is the same as in [21]. O

The proof of Proposition 4.3 is based on a construction of suitable barriers. Assume
¢ and 2 satisfy the assumptions in the proposition. We also assume for simplicity that
¢(0) =0 and V¢ (0) = 0. We now construct a supersolution as in [23, Lemma 6.2].

Lemma 4.4 (Supersolution) Given § universally small (§ < p), define

.8 2nIAT A"
§:=— and Ms .= = — .
2 )Ln—l 53n—3 (k5)"_1
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Then the function

l ,_ RS2 A" 2 l re)
ws(x', xp,) 1= Msx, + ¢ — 5|x'| (}Lg)n_lxn for (x',x,) € Q

satisfies
Ly(ws) := DY (ws);j < —nA ing,

and

83
ws >0 on (2N Bs), ws > = on 2N dBs.

Proof We recall from (2.7) that

o + o +
Qn Bch1/2/|logh| C S840,y Cc QN BChl/z\loghI'
The first inclusion gives ¢ < h in QN BT and hence for x close to the origin,

ch1/2 /|log h|
¢(x) < Clx|* log x|I*.
Similarly, the second inclusion gives
¢(0) = clx? flogx|| 7 = |x [
for x close to the origin. In conclusion, we have
x> < ¢(x) = Clxl? Jlog x| I? 42)

if |x| < § for § universally small. Therefore, the choice of 5 gives
~ ~ 1 ~
dx) = 8Ix' P> = x> =8 x> > 3 x> =8 on QN aBs.

On the other hand, the choice of M; implies that

n
,%20 on 2 N By.

Msx, —

()\S)n—lx

Hence, ws > Son QN 0 Bs while on 92 N Bg, the quadratic separation (4.1) and
8 < p give

ws > ¢ —S|x'|* > 0.

As a consequence, we obtain the desired inequalities for ws on d(€2 N By).
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It remains to prove that L4 (ws) < —nA in Q. If we denote

1 (< 72 A" 2)
x) = |o|x' |+ — P I
g(x) (| P+ 5

[\

then

n ~
, qu > 451

2, —
det D°g = T

Using the matrix inequality
trace(AB) > n(det A det B)l/" for A, B symmetric > 0,

we get

An l/n
Lyq = trace(® D*q) > n(det(®) det D>¢)V/" =n ((det D%)”‘lm) > nA.

Since Lgx, = 0, we find

Lows = Ly(Msx, + ¢ —29) = Y/ ¢hij — 2Lyq
= ndet D*¢ — 2Lpq < —nA inQ.

O

Proof of Proposition 4.3. Our proof follows closely the proof of Proposition 2.1 in

[21]. We can suppose that K := |lullL>~@ns,) + ll¢llce@ans,) + | fllLr@ns,) is
finite. By working with the function v := u /K instead of u, we can assume in addition

that

lullL=@ns,) + llelice@ans,) + I fllLr@ns,) <1
and need to show that the inequality

lu(x) — u(xo)| < Clx — xo|@% Vx € 2N Bs(xo) (4.3)
holds for all xo € 2N B, >, where § and C depends only on A, A, n, a and p.

We prove (4.3) for xo = 0. However, our arguments apply to all points xo €
2 N B/, with obvious modifications. For any ¢ € (0, 1), we consider the functions

he(x) :=u(x) —u(0) e+ S%wgz
2

in the region

A = QN B, (0),
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where & is small to be chosen later and the function ws, is as in Lemma 4.4. We
remark that ws, > 0 in A by the maximum principle. Observe that if x € 92 with
|x| < 81(€) := €7@ then,

lu(x) —u0)] = lp(x) — 0] < [x|* <e. 4.4

On the other hand, if x € M d Bs, then from Lemma 4.4, we obtain S%wgz (x)>3.1t
2
follows that, if we choose 8> < §; then from (4.4) and |u(x) — u(0) £ €| < 3, we get

h_ <0, hy >0 ondA.
Also from Lemma 4.4, we have
Lohy < f, Logh— > f inA.
Hence the ABP estimate applied in A gives
h_ < Ci(n, Mdiam(A)| fliLra) = Ci(n, 1)z in A 4.5

and

hy = =Ci(n, Mdiam(A)|| fliLra) = —Ci(n, 1)d2 in A. (4.6)
By restricting € < Cy(n, k)%, we can assume that

Soeles €
— Ci(n, M)

Then, for 6, < 81, we have C;(n, A)§, < € and thus, for all x € A, we obtain from
(4.5) and (4.6) that

6
lu(x) —u(0)] < 2¢ + 6—3w32(X)~
2

Note that, by construction and the estimate (4.2) for the function ¢, we have in A
ws, (x) < My, %, + ¢(x) < Ms, |x| + C |x| [log |x||> < 2Ms, |x].
Therefore, choosing é, = §; and recalling the choice of Ms,, we get

12M Ca(n, 1, A
() — uO)] < 26+ 22 |y = 9e 4 21N

53 83"

x| = 2€ + Cae "/%|x|

“4.7)
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for all x, € satisfying the following conditions
x| <8i(e) =€/, e <Cin, )T =i cy. (4.8)

Finally, let us choose € = |x| @+ _ It satisfies the conditions in (4.8) if

a+3n
|x] < min [cl @, 1] =:4.
Then, by (4.7), we have [u(x) — u(0)] < (24 Cy)|x|#% forall x € QN Bs(0). O

4.2 Global approximation lemma

In this subsection, we prove an approximation lemma that allows us to compare the
solution u to the linearized Monge—Ampere equation Lyu = f to smooth solutions
h of linearized Monge—Ampere equations L£,,/4 = 0 associated with convex functions
w satisfying det D?>w = 1. We will estimate the difference u — h in terms of the
L"-norms of f and ® — W where ® = (®/) and W = (W¥) are the matrices of
cofactors of D%¢ and D?w, respectively. Therefore, in light of the global stability of
cofactor matrices in Sect. 3.4, u is well-approximated by & provided that det D?¢ is
close to 1. This approximation lemma will play a key role in Sect. 5 where we use it
to get power decay estimates for the distribution function of the second derivatives of
u that are more refined than those provided by Proposition 3.7.

Our approximation lemma, relevant for data of the type (Qh, ®n, S¢, (0, 1)) , states
as follows.

Lemma 4.5 Assume (2,¢,U) € 73% 3

z,p,l(,()t'
Remark 2.6. Suppose that u € cC@U) N WIZO’C"(U) is a solution of <I>ijuij = f in
U N By, with

Let r := c%/4 where c is as in

lullL=wnpy) + lullc2epunp,) < 1-
Let w be defined as in (vii) of the definition of the class P. Assume h is a solution of

Wihij =0 in By NU
h=u on d(Ba NU).

Then, there exist C > 0 and y € (0, 1) depending only on n, p and « such that
Il g < C. (4.9)
and if | © — W|| By, ) < r* then
lu — hllzoosnvy + ILf — trace([® — WID*1) | 1,0

= {1+ Mlereunsa,) 19 = Wil gy 00, + 1 lrwnsy,) | -
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Proof Observe first that by (vii) in the definition of the class P, the following Ccre
and Pogorelov estimates hold

10UNBarllc2e < 5" Wil o @agr < €5 s coln < D*w < ¢yl in ByyNU.
(4.10)

Therefore, Wi/ 9; ;j is a uniformly elliptic differential operator with C* coefficients.
Hence, we can employ the standard boundary C>“-estimates for linear uniformly
elliptic equation and obtain (4.9) since

1Bl e gam) < Ihllcza@ag < €O o, @) (lullLss,nuy + 1l c2apung,,))
<C(n,p,a).

Next, since (2, ¢, U) € 73% 3 puwar by Remark 2.11, the domain U and function ¢

satisfy (2.1), (2.2) and (2.4) and (4.1). Therefore, it follows from Theorem 4.1 with
C!/2 boundary data that there exist constants C > 0 and 8 € (0, 1) depending only
on n and p such that

lullcr rmm) = C(IIMIILOO(B4,mU) + llullcrzungs,) + ||f||L"(B4,.mU)) <CO,
@.11)

where

O:=1+ lullcr2ung,,) + I fllr (B0 -
In view of (4.10), (4.11), and the standard global Holder estimates for linear uni-
formly elliptic equations (see [14, Corollary 9.29], [3, Proposition 4.13] and [35,

Theorem 1.10]), we can find constants C > 0 and 8" € (0, B) depending only on n, p
and o such that

”h”cﬁ’(m) = C(||h||L°°(BZ,ﬂU) + ||M||cﬁ(3(Um32,))) < CO. 4.12)
Now let 0 < 6 < r. Then we claim that
lu = hll o o8y, oy < €8P0, (4.13)
and
ID?hll LB, 50y < C8F 2776. (4.14)
To prove (4.13), we verify that |(u — h)(x)| < C8#'® for all x € d(Bar_s N U).
Indeed, if x € d(Ba—s N U) then we can find y € d(B, N U) such that |x — y| < 8.

Since u —h = 0on d(By- NU), we get from (4.11) and (4.12) that

= h))] = [ = h)(x) = = B < Ju@) —u)| + [h(x) — h(y)| < C8# O,

@ Springer



674 N. Q. Le, T. Nguyen

To prove (4.14), let xo € Byr—s N U. If Bsj2(x0) C By NU, then we can apply
interior C!-!-estimates to 1 — h(x) in Bs /2(x0) and use (4.12) to get

I D*h(xo)|| < C52||h — h(x0)||Lw( ) < csf 2.

B (x0)
2

In case Bs/2(x0)Z Bor N U, then there exists zg € Byr—s N dU C 92 such that
X0 € Bs/2(z0). Hence since Bs(z0) N U C B N U and by applying boundary C 2,
estimates to h — h(xp) in Bs/2(z0) N U we obtain

ID*(h = h(xo)llce(B; znu)
2

2
=8 (I1h = hGx0) LBy conen+ D 8 IDH = hxo) e aurmeon )
k=1

< Cs~ 2t (5/3/@ + 5”“) < csf 2,

It follows that || D%h(xo)|| < C8#'~27%®, and thus (4.14) is proved.
Having (4.13) and (4.14), we now complete the proof of the lemma. Observe that
u—he WIZO’Z’ (By- NU) is a solution of

O (u—hyij = f— 0 hij = f—[®) —Wh;j = F inBy NU.
The ABP estimate together with (4.13) and (4.14) gives

l — hllLoo(Byr_snUy + 1 F N L2 (Byy—_snU)
< llu = hllL>@(By_sn)) + Cull FllLn(By_sn0)
< llu = hll LBy _sny) + Cull D*hll oo By s 1D — Wl 118y 00
+Cull fllLrwng,y)
= C(87 + 87 721@ = Wllnmyn0)) © + Call fllnwoma).

1
If ||® — W|[1n(p,nuy < r* then by taking § = ||® — W”z#(tgz,mu)’ we obtain the

desired inequality with y = B’/(2 + «) since

B
lu — hllLes,nv) + 1 FllLnB.nvy < ClI1P — Wlliﬁ?Bsz)® + Cull f LBy
B
= {1+ Il @unn) 19 = Wi, a) + 1/ lrwn) |

]

We end this subsection with a result allowing us to estimate the measure of the set
where the quasi distance generated by ¢ is bounded from below by certain multiple

@ Springer



Global WP estimates 675

of the Euclidean distance. This set, when restricted to sections of ¢, has almost full
measure if the Monge—Ampére measure det D¢ is close to a constant. Its precise
statement is as follows.

Lemma 4.6 Assume that (2, ¢, U) € Pi_¢ 14¢,p,c,a Where 0 < € < 1/2. Define

Api=[F e U190 2 (D) + V4@ - (x =D+ 2 v~ iP, Vxe BanU].

(4.15)
Then there existc = o (n, p,) > 0and C = C(n, p, a, k) > 0 such that
S50, ¢?)\ Ao | < Ce' /371840, ).
Proof We first note that (2.7) implies
1S4(0,¢%)| > |[BeNU| > C. (4.16)

Let w be defined as in (vii) in the definition of the class P. Then the following
boundary Pogorelov estimates hold

coly < D*w < ¢5'l, in B2NU. (4.17)

Let I" be the convex envelope of ¢ — 7 in U N B_2. We claim that there exists C > 0
depending only on n, p, o and « such that

w
fr=o- S} 086(0.¢%)] = (1= ce s, 0. ). (4.18)
Assume this claim for a moment. Then by using (4.17) and arguing as in the proof of
[15, Theorem 6.1.1], we obtain the desired conclusion. For completeness, we include

the proof.
Let the contact set be

C .= [erﬂBCz:F(x)zqﬁ(x)—@}.

We assert that for o := ¢(/2, we have
CNSp(0,¢%) C Ay N Sy0, 7).
It then follows from (4.18) that
160, )\ Ag| < [S5(0, ") \ C| < Ce'*S4(0, 7).
We now proceed with the proof of the claim. Let xo € C N S4(0, c9), and let /,, be a

supporting hyperplane to I' at xg. Since xg € C, we have [, (xg) = ¢ (xg) — %w(xo)
and
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@(x) = Ly (x) + @ forallx € U N B. (4.19)

On the other hand, if x € U N B then the Taylor formula and the first inequality in
the Pogorelov estimates (4.17) give

w(x) — w(xg) — Vw(xo) - (x — Xo)

11
= /t/(D2w(xo + 0t (x — x0)) - (x — x0), x — x0)dOdt
0 0
1

€0
z/tco Ix — xol*dt = > Ix — xol?.
0

Combining this with (4.19), we deduce that

$(0) = 1(x) + 64—0 Ix — x> VxeUnBa,

where [(x) is the supporting hyperplane to ¢ at xo in U N B> given by

1 1
[(x) =l (x) + Ew(xo) + va(xo) - (x — x0).

Therefore xo € A, with o = ¢o/2, proving the assertion.

Itremains to prove (4.18). The idea is to compare the image of the gradient mappings
of convex functions which are close in L°°-norms. This idea goes back to Caffarelli
(see [2, Lemma 2] and also [24, Lemma 6.2]). Since our setting near the boundary is
a bit different, we sketch the proof.

By (4.16), it suffices to consider the case € < 1. By the maximum principle ([19,
Lemma 3.1]), we have

¢ — wll ey < Cpdiam (U)|l(det D*¢)/™ — 1| pnyy < Ce'/" = €.

Therefore,

w+€ inUNBe

| =

_ w
w—és¢— =

N —

and since w is convex, we have
w+€ inUNB..
Let

Vi = {x € UNB,.: dist(x, d(U N B)) > 5}.

@ Springer



Global WP estimates 677

Then, using (4.17), we will show that for 1 3> § > € to be chosen later, we have
w
‘{r=¢—5}mv1‘z(1—c5)|vl| (4.20)
for some C depends on n, p, « and «. Indeed, let
Vo =[x eUnBa: dist(x, 00U N Be)) > 28},
For xo € V,, consider
* 1 = 2 2
vi(x) = Ew(x)—e—i—ﬁ(r — |x — xo| )

where

S=2ve~elP s> 5

Then B(xgp,r) C Vi and

* * : 2e
v"* <T on 0B(xg,r) and v*>T in B |xp,r — 5 )
r

It follows that Vv* (B (xo, r— %) C VI'(B(xp, r)). Hence
Vu*(Va) € VI (V). (4.21)
From the C2 bound on w in (4.17), we have
D*v* = %D2w — 281, = %(1 —4cy ') D*w + 28(cy ' D*w — 1)

1
> (1= 4cy'8) D?w.
Therefore, using det D?*w = 1, we obtain

1
IVv*(Vo)| = /det Dv* > (2—n — C18) [Va]. (4.22)
V2

Next, as I' is convex with I € Cl’l(U N B,2) and det D?T" = 0 ae. outside C, we
have

IVI[(V)| = |[VT(V; N0O)| = / det D’T.. (4.23)

vinC
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We now estimate det D>T" from above. For this, observe that for any x € C, the function
¢ — %w — I' attains its local minimum value O at x. Hence,

D’I'(x) < D? (¢ — %w) (x)

at any twice differentiable point of I" and ¢. Therefore, this inequality holds fora.e x €
C by Aleksandrov theorem. Note that for symmetric, nonnegative matrices A and B,
we have

(det(A + B)Y/" > (det A)Y/" + (det B)'/".
Thus, for a.e x € C, we have
(det DT (x)!/" < (det D? (¢ — %w) (x))l/n
< (det D*¢)/" — (det D? (%w) (x))l/n
<(1+e" -

=<

+

S|

N =
| =

Combining with (4.23) gives
1
VPV < (2— + Cze) vinel.

We infer from this, (4.21) and (4.22) that

1-2"Cé

VinCl =z ————
1 +2"Cae

V2| = (I = C36) [Va (4.24)

for € < g with ¢ is a small universal constant.
By (iv) in the definition of the class P, we have || B..NoU ||-11 < k. Consequently,

|(UNB2)\Va| < C48 and  [Va] = |Vi| — C48
for some C4 > 0 depending only on 7, p and x. Combining the above inequalities

with (4.24), we easily obtain (4.20).
It follows from (4.20), the inclusion {I" < ¢ — %} C U N B and (4.16) that

w 9
Hr <¢— 5} N 55(0. ¢ )‘
< Hr <¢—%}OV1‘+I(UﬂBcz)\V1| < C8|Vi| + C48
< Cs8 < C81S4(0, ”)| < Ce'P"[54(0, 7).

This gives the claim (4.18) and the proof is complete. O
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5 Density and global W27 estimates

In this section we will prove global W>” estimates for solutions to the linearized
Monge—Ampere equations as stated in the introduction. The key tools are density
estimates and a covering lemma.

5.1 Density estimates

In this subsection, by using the approximation lemma in Sect. 4.2 together with the
stability of cofactor matrices established in Sect. 3.4, we improve density estimates
obtained in Sect. 3 when the Monge—Ampére measure det D¢ is close to 1.

Our first lemma improves the power decay estimates in Proposition 3.7 which say
thatfor (2, ¢, U) € Py A, p,c.+ the quantity [ Sy (0, 1)\ Gy (1, )| decays like CN .

1
Here, we improve C by roughly a factor of [|® — W) + (JCU 1" dx) " when

% is replaced by &, A and A are close to 1, and W is the matrix of cofactors of D’w
of the solution to the Monge—Ampere equation det D?w = 1 with the same boundary
values as ¢. The precise statement is as follows.

Lemma 5.1 Assume (2,¢,U) € Pi—c 1+¢,p,0,0 Where 0 < € < 1/2. Letr = c2/4.
Suppose u € C() N CLU) N W>"(U) is a solution of Lou = [ in U that satisfies

loc
lullLeewy + Nullc2eunp,,) < 1.
and has at most quadratic growth in the sense that
lu(x)| < C*[1+d(x,x0)%] in Q\U for some xo € BypNU. (5.1)

Then there exist T = t(n, p) > 0 and N9 = No(C*,n, p,a) > 0 such that for
N > Ny we have

GG, )NS50, M) = {1 = (N85 + ) ] 15,0,

provided that | ® — W||n(p,,nv) < r*. Here C = C(n, p,o, k) >0, W, y are from
Lemma 4.5, and

n

8o := (1 + lullc12unsg)) 19 = WlEn gy o) + ][mn dx
U

Proof Let h be the solution of

W9hi;=01in By NU, and h=u ond(By NU).
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By Lemma 4.5 and since U C Bj-1, there exists Cp depending only on n, p and o
such that

||h||C1"(W) < (o, 5.2)
lu — Rl oo gmg + ILf — trace([® — W]Dzh)llL,,(W) < Codo=:8). (53)
We now consider /| g ny and then extend 4 outside B, N U continuously such that

hx) =u(x) Vx e Q\ (By NU),
lu —hllLo(@) = llu — hllLeB.n0)-

The maximum principle gives ||| zo(p,nty < llullL~@w) < 1, and thus
ux) —2<h(x) <u(x)+2 forallx € Q. 5.4)

We claim that if N > N, then
(B% n U) NA, C Gy(h, Q) (5.5)

where 0 = o(n, p, @) > 0 is the constant given by Lemma 4.6 and the set A, is
defined by (4.15).
Indeed, let x € (B% NU)N As. By (5.2) we have

lh(x) — [h(x) + VA(X) - (x — X)]| < Colx — )E|2 forallx € B, NU,
and since x € A,

d(x, ) =¢(x) = [¢(F) + V() - (x —%)] > —|x —i|* Vx e By NU. (5.6)

o
2
Therefore,

|h(x) = [h(X) + Vh(X) - (x = 0)]| < 2ﬂd(x,)z)z Vxe B, NU. (5.7)
o

We next show that by increasing the constant on the right hand side of (5.7), that the
resulting inequality holds for all x in €.

To see this, we first observe that by the maximum principle maxy ¢ = maxyy ¢ = 1
and by the gradient estimates (v) in the definition of the class P and xo € U N B, 2,
we have

d(x, x0)* = d(x,%)* + [¢(X) — ¢ (x0) — (Vo (x0), ¥ — x0)]
+(V(X) — Vo (x0), x — )
<d(x, 5>+ Ci(1+|x—x|) forall x € Q (5.8)

for some universal C; depending only on 7 and p.
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Next, we observe that if c; = or/4 then
d(x,5)? >cilx —%| VxeQ\ B, NU. (5.9)

Indeed, by (5.6) and the fact that x € B% N U, the above inequality holds for all

x € UNJB,. Now for x € §\Br N U we can choose x € U N 3B, and A € (0, 1)
satisfying £ = Ax + (1 — A)X. Then since d(%, X)> > c1|% — x| and the function
z > d(z, )E)2 is convex, we obtain

Ad(x, %) 4+ (1 — (X, %) > ci|Ax + (1 — )X — X| = c1A|x — X|
which gives d (x, %)? > ¢1|x — %| and hence (5.9) is proved.
We are ready to show that (5.7) holds for all x € €2 but with a bigger constant on

the right hand side. Let x € Q2 \ B, N U. Then, recalling x € B% N U and by (5.9),
we have

d(x, )2)2 >cr/2 =: cp.
We can estimate using (5.2) and (5.4),

|h(x) — [A(X) + VA(X) - (x = 0)]| = |h(x) — h(X)| + Colx — X|
< lu@)|+ Co(lx — x|+ 1). (5.10)
Consider the following cases:

Casel: x € ﬁ\ B, NU. Using (5.10) and the above lower bound for d (x, )2, we
obtain

14 Co(lx —X|+ 1) < 1+ Co2k™ ' + 1)

|h(x) — [h(X) + VA(X) - (x —2)]| <
< Crd(x, ©)%.

Case 2: x € Q\ U. Using (5.10), (5.1), (5.8), (5.9) and the bound d (x, )2 > e,
we find that

lh(x) = [h(Z) + VAE) - (x — D)1 < C*[1 +d(x, x0)*] + Co(|x — X[ + 1)
< C*d(x, %)+ C3(lx —%|+ 1) < Cad(x, %)

Therefore if we choose
4Cy
No :=max { —,2C»,2C4 ¢,
o

then it follows from the above considerations and (5.7) that
- - - No =2
[h(x) — [h(X) + VR(X) - (x — X)]| < Td(x,x) forallx € Q.
This means x € Gy, (h, 2) C Gy (h, Q) for all N > Ny. Thus claim (5.5) is proved.
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Next let

(u —h)(x)

N
u'(x) = 5(/)

, forx e Q.
We infer from (5.3) and the way & was initially defined and extended that

1
lu'l| Lo ) = 8_’”M — hllL~B,nvy <1,
0
1 1
Lo’ = - [Lou — Loh] = 5_’[f ~ trace([® — W]Dzh)] — f'(x) inB, NU.
0 0

Notice that || /|| L»B,nvy < 1 by (5.3). Thus we can apply Proposition 3.7 to get

/

550, I\ G, ] <C (5—0) 1S40, 7).
5% N

AsGny (W, Q) = Gy(u — h, Q), we then conclude
%

8 T
1S5(0, )| — |G (u — h, ) N Sp(0, %) < C (ﬁo) 154(0, ¢%)|

yielding

| )" 9 9
—C ) [ 1560 < 1GN@—h 2 NS0,
< |G —h, Q) N5y, °) N Ag| + [Sp(0. %) \ Ao

< |GN (=, Q) NS5y, °) N Ag| + Ce'/784(0, %),

where the last inequality is by Lemma 4.6. Consequently,
(S T
|G —h, 2) N S50, %) N Ag| > [1—C[ (ﬁo) + e1/3”” 1S5(0,¢)]. (5.11)

Next observe that Gy (u — h, ) N Sy (0, ANNA; CGNyu—h, NGy, Q) by
(5.5). Therefore,

Gy —h, 2N Ss0,c%) N Ay C Gan(u, 2) N Sy(0, )

which together with (5.11) gives the conclusion of the lemma. O

Having the improved decay estimates in Lemma 5.1, we can now proceed with
density estimates when det D?¢ is close to a constant. Our next lemma is concerned
with second derivative estimates for solutions to Lyu = f. It roughly says that in each
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section Sy (x, t) with small height 7, we can find a very large portion (as close to the
full measure as we want) where u has second derivatives bounded in a controllable
manner. The bound on D?u is made more precise by using the openings of the quasi
paraboloids that touch u from below and above. So far, we have no a priori information
on the boundedness of D?u. However, we can still hope for a bound of order % for
|D%u|in S¢(x, t) as explained in Sect. 2.2 using an L°°-norm rescaling of our solution.

This heuristic idea explains the factor % in the estimate of Lemma 5.2 and the way
the solution is rescaled in the proof.

Lemma 5.2 Assume Q satisfies (2.1) and ¢ € C%'(Q) is a convex function satisfying
(2.3) and

1—¢€ fdetqub <l+e¢€ inQ.
Assume in addition that 3Q € C*>® and ¢ € C>*(9Q) for some o« € (0,1). Let
ue Cl(Qn Wl%)’:(Q) be a solution of Lou = f in Q withu = 0 on 92 and

lullpo@) < 1. Let O < €y < 1. Then there exists € > O depending only on €q, n, p
and o such that for any x € Q andt < ¢ we have

VIN©
Gﬂmmﬂ%&Jﬂzp—@—C(ﬁ)Hﬂm@|%uJHVNZM.

(5.12)

Here v = t(n, p); C and Ny depend only on n, p and a; c1 > 0 is small depending
onlyonn, p,a, |02 c2e and |||l c2.« 50

Proof If € is small then by the global W2 P estimates for solutions to the Monge-
Ampere equations [28, Theorem 1.2], we have ¢ € W22 () and hence ¢ € C'(Q).
Let us first consider the case x € d€2. We can assume that x = 0, ¢(0) = 0 and
V¢ (0) = 0. By the Localization Theorem 2.2, we have
kE,NQ C S40,1) ck'E NG,
where E; := A,_IB,1/2 with A;x = x — ;x, and

Toen =0, A7 1A <k logel.

We now define the rescaled domains €2, U; and rescaled functions ¢, and u, as in
Sect. 2.2 that preserve the L°°-norm of u. We have

Loui(y) =1f(T7y) =: fily)
where T :=t~1/2A, and

luillLo) = lullpo@ <1, u; =0 ondU; N By.
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Moreover, we have from Proposition 2.12 that

(le ¢l" Ul) € P]—g’l-}—gp’cﬂ/z’a C P176,1+€,p,1,(1

if + < ¢, where ¢ > 0 is a small constant depending only on n, p, «, |02/ -2« and

Pl c2aaq)-
Now, applying Lemma 5.1 with C* = 1, we obtain

(G, R, 60 1 55,0, )] = {1 = C(NVT78F +€')} 15,0,

for any N > No = No(n, p, ). Here

1
n

80 := | — W, " + f|fz|" dy | (5.13)
L”(Bcz ﬁU;)
7 Ut

y is given by Lemma 4.5, w; is the function in (vii) in the definition of the class P
associated with the triple (€2, ¢;, U;) and W; is the cofactor matrix of D%w,. This
together with the stability of cofactor matrices in Proposition 3.14 implies the existence

of € = €(eg, n, p, @) > 0 such that for r := ¢, we have
IGN (s, 2, ) N Sy, (0,7)] = 11 —€gf —CNT flle" dy [S¢, (0, 7)]
Ut
t\° '
—di—qp-c (ﬁ) Fourax| sl
Sp(0,1)

where B = f(n, p) < 1 is a universal constant to be chosen later.
As 8¢, (0,r) = T(S54(0, rt)), it is easy to see that for Gy (u, 2, ¢) = Gy (u, Q2),

Gy, Q. ) N Sy, (0, 7) = T(Gg(u, Q. $) N 5,0, n)).

Therefore we conclude that

z
n

‘T(Gg(u,Q)HS(p(O,rt)))z l—ﬂeo—C(%)r ][ | FI" dx
% (0,1)

|T(Sg(0, r1))| Vt <é.
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This is equivalent to

S

v

G (u, Q)N Sy (x,1) 1—eoﬂ—c(1\i,) ][ | £ dx |Sp(x, 1)

6 (x.7)
(5.14)

giving (5.12) for any N > Ny = Norandt < ré.
Next we consider the situation that x € 2. We then have the following possibilities:
Case 1: 1 < h/2, where h := h(x).
If h > ¢ where c is defined in Proposition 2.3 then the estimate (5.12) is an easy
consequence of the interior density estimates [17, Lemma 4.3] which we now recall.

Lemma 5.3 ([17, Lemma 4.2]) Let 0 < a9 < 1 and Q2 be a convex dom_a_in in R"
satisfying By, C Q C Bko—l andu € CH(Q) N WIZO’C"(Q) be a solution of ®Yu;; = f

in Q with ||ullp=) < 1, where ¢ € C () is a convex function satisfying ¢ = 0 on
092. Let 0 < €g < 1. There exists € > 0 depending only on €, ag, ko and n such that

if

l—e<detD*’¢p <1l+e€ inSQ,

then for any section Sg(xo, ;—00) C Qupt1 :={xeQ:¢(x) <1 -— %) ming ¢},
2
we have
0 ’ n
|Gy (u, 2) N Sy (xo,t0)| > 11 —€0 —C N [f] [S4 (x0, 10)]
0]

5o )

for every N > Nyo. Here C, t, Ny are positive constants depending only on o, n
and kg.

Now we consider the remaining situation in Case 1 when & < c. We define the
rescaled domain Qh and rescaled functions q?h, uy, and fh as in Sect. 2.2 that preserve
the L°°-norm in a section tangent to the boundary. Now, we apply Lemma 5.3 to
the domain Sd;h (0,1) with g = 3/4, xo = O and 19 = t/h < 1/2, noting that
(Séh 0, 1)y = S(ih (0, @) for all @ > 0. Thus,

~ ~ t
‘GN,h (iin- S5,0.10.61) 08, (0, 5)‘

O WAL

S (0’%’1)

Sl

n t
‘S¢~,h (0, E)’ . (5.15)
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Let Ty :=h~'2A;(y — x). Then

G (i, S5,0.1).61) NS, (o, %) =T (G (4, @) N Sy(x, ).

Changing variables in (5.15) gives

T/n

|G (u, )N Se(x, )] = 11 —€0—C (%) ][ LfI" 1Sg (x, 1)]

Sp(x.4)

and hence (5.12) holds.

Case 2: h/2 <t < rc¢/c = c¢; where ¢ > 1 is the constant in Proposition 2.14.
Then by Proposition 2.14, we know that Sy (x, 2t) C Sg(z, ct) for some z € 9€2, and
by Theorem 2.13(b),

C11"? < |Sp(x,1)| < Cat"? Vit < cy.

Using these inequalities and the estimate (5.14) in the case of boundary section, we
get

IA

S¢(x,t)\G¥(u,Q)‘ ’ng(z,ét)\G%(u,Q)’

n

eB+C (g) ][ | fI" dx |S¢(z, ct)

IA

N
»(z,Ct/1r)

[60,3 +C (%?) ||f||;,,(9)} 1Sp(x. 1) €123

IA

This implies (5.12) as desired by choosing 8 = C1C2_15_Tn and ¢ = ré/¢c = %¢/c.
O
The next lemma is a key technical ingredient in our global W27 estimates. It
propagates a point in a given section where the solution u of Lgu = f has bounded
second derivative to almost all points in that section. More precisely, it says that if in
a small section Sy (x, #) we can find a point where u is touched from above and below
by quasi paraboloids of opening y generated by ¢ then on a set of nearly full measure
of S¢(x, 1), u is touched from above and below by quasi paraboloids of opening Ny
for some controllable constant N, provided that det D2¢ is close to a constant.

Lemma 5.4 Assume Q is uniformly convex satisfying (2.1) and ¢ € C%V(Q) is a
convex function satisfying (2.3) and

l—e<detD*¢ <1+e¢ inQ.
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Assume in addition that 92 € C>* and ¢ € C>*(dQ) for some a € (0, 1). Let
ue Cl(Qn Wi)’:’(Q) be a solution of Lou = f in Q and u = 0 on 9. Let
0 < €9 < 1. Then there exists € > 0 depending only on €gy, n, p and « such that for
any x € Q, t <cyand Sp(x,1) NGy (u, Q) # 0 we have

Gy (. ) N Sy )] = 11— e — CNp) ][Ifl"dx 15x. )]
5 (%.01)
(5.16)

forallx € Sy(x,t) and N > N,. Here t and © depend only on n and p; C, ¢z and
N> depend only on n, p, &, the uniform convexity of Q, |02 c2.« and (Pl c2.ehq)-

Proof As explained in the proof of Lemma 5.2, we have ¢ € C Q) NWwr(Q) if e
is small.

Let us first consider the case x € 2. We can assume that x = 0, ¢(0) = 0 and
V@) = 0. Let h = 0t where 6 = 0(n, p) > 1 will be chosen later. Let Aj, be the
affine transformation as in the Localization Theorem 2.2. We now define the rescaled
domains 2, U, and rescaled functions ¢y,, i1, and fh as in Sect. 2.2 that almost
preserve the L®-norm of D*u.Let T = h™1/2Ay,.

Letx € §4(0,1) NG (u, 2) and y := Tx. Then

—yd(x, %) <u(x) —u@) — Vu@) - (x — %) < yd(x, %), VxeQ.

By changing variables and recalling that Q2 = T (), u;(y) = h_lu(T_ly), we get

d(T~ 'y, T715)?

IR A Pa— <up(y) —up(y) — Vup(y) - (y —y)
d T—] ,T_l_ 2
Sy%, Vy € Q. (5.17)

Since x € S4(0, 1) C S¢(0, 0t), we have by the engulfing property of sections in The-
orem 2.13(a) Sy (0, 01) C Sy (%, 6%1). It follows that d(x, ¥)* < 6%t for x € S4(0, 61)
yielding d(T 'y, T7'5)? < 6%t for all y € Uy, := T(S4(0, h)). Consequently, if we
define

1
v(y) = oy [in (V) — @ () = V() - (v = 9], v € @, (5.18)

then |v| < 1 in Uy,. Thanks to Lemma 5.5 below we get for t < ¢4

||U||c2va(au,,mBk) < Cq, (5.19)

@ Springer



688 N. Q. Le, T. Nguyen

where ¢4, Co depend only on n, p, «, the uniform convexity of 2, [|0€2||2« and
¢l c2e(aq)- By (5.17) we have

WO = o d T T3 < 2y (037 ¥y €T@), (520
where we recall 6 = h and
dg, (v, )* == (y) — ¢ () — Vo (3) - (v =) =h~ " d(T ™'y, T7'§)%.
Moreover
Lyv = Oy) " Loiin = Oy) " fi = O)" FT 7y = F).

Because x € S4(0,17), wehave y = Tx € S¢~)(0, (%). Hence, we can choose 6 > 1

depending on 7, p, k such that § € B> N U. With this choice of 6, we have by
T

Proposition 2.12

(Q2n, On, Un) € Pi_civep.cnt2a C Pl-eltep.la
if + < ¢, where ¢ > 0 is a small constant depending only on n, p, «, |02/ 2.« and
@1l c2.¢(9g)- Here we can choose ¢ < cq, and hence it also depends on the uniform

convexity of Q.
Thus, using (5.19) and (5.20), we can apply Lemma 5.1 to v := v/C, to obtain

IGN @, ) 1 S50,¢M) = {1 = (N85 + P ] 55,0,

for any N > Ny, where § is as in (5.13). This together with the stability of cofactor
matrices in Proposition 3.14 implies the existence of € = €(€g, n, p, @) > 0 such that

|GN (U, Qp, dr) N Sy, (0, 1)

Sl

v

1—€p—CNT fﬁww 1S4, (0, 1)
Uh

z
n

1 T
_ wa—C(@W) f 1 dx | 18000,

54(0,60)

where for simplicity we have denoted
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and 8 = B(n, p) < 1 is a universal constant to be chosen later. It follows that

1S9, (0, 1) \ Gn (0, 2p, D)

T

n

1 T
= q6p+C (6)/_N) 7[ |fI" dx S, (0, )]
S4(0,01)

As Sy, (0, 1) = T (S (0, 6r1)) and i (y) =

)?)], it is easy to see that

ey [T ) —u(@) = Vu@) - (T~ y—

G (3. @, dn) 1S5, 0,7) = T (Gewoy (0, 2 01550, r60)).
Therefore, by the volume estimates in Theorem 2.13(b), we conclude that

160, r1) \ Gy noy (u, )]
= 1840, r00) \ G, noy (1, )]

z
n

n 1 T
<{ci'Cbiep+C (c GyN) ][ | fI" dx |Sp (0, r1)| .
“ Sp(0,01)

By setting N' = Co, N6, B/ = C1_1C29"/2ﬂ, we can rewrite this as

|Gy (u, Q)N S (x, 1)

3

/ 1 ‘ n
> l—eo,B—C(yN/) ][ | £1" dx |Spx, )| (5.21)

Sp(x.21)

forany N’ > N> = CoNob and r < r¢. From Theorem 2.13(a) we have S (x, gl) -
Se (X, %t) for any X € Sg(x, t). Therefore, by Theorem 2.13(b), we see that (5.21)
yields (5.16).

Next we consider the situation that x € 2. We then have the following possibilities:

Case 1: + < h/2, where h := ﬁ(x). This case can be handled as Case 1 of
Lemma 5.2, using now [17, Lemma 4.5] and affine transformations similar to the
ones at the beginning of the proof of this lemma.

Case 2: h/2 <t < rc/c = cp, where ¢ > 1 is the constant in Proposition 2.14.
Then by Proposition 2.14, we know that Sy (x, 2t) C Sy(z, ct) for some z € 9.
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Thus, by the estimate (5.21) in the case of boundary section, we get

|Sp(e, )\ Gy (u, Q)| < [Sp(z, &) \ Gy (u, Q)|

EIE

IA

1 T
60;3’+C(V—N) ][ |fI" dx |Sp(z, )|
S¢(z,%t)
(5.22)

Forany X € Sg(x,1) C Sy(z, %t),we get Sy (z, ?t) C Sg(X, G*r%t) by the engulfing

property in Theorem 2.13. Now, using (5.22) and the volume estimates in this theorem,
we find that

|S¢(-xv t) \ GN)/(Ma Q)|

. 1\°
< eoﬂ/Cf1C252+C(y—N) ][ | fI" dx |Sp(x, 1)

Sp (%, 2081
This gives (5.16) with ® := 0,6c/r if we choose B such that ,B’CI_ICQE"/2 =
BC2C3(06)? = 1. o

In the next lemma we prove that the function v defined as in the proof of Lemma 5.4
has uniform C% bound on U}, N By.

Lemma 5.5 Let v be defined as in (5.18). There exist Cy, cq > 0 depending only on
n, p, o, the uniform convexity of Q, |02||c2.« and ||@|lc2.«y) such that for t < cq,
we have

”v”Cl“(BUf.ﬂB;) < Cy. (5.23)

Proof Since 92 is C>¢ at the origin and €2 is uniformly convex, we have

+a

X —q(x")| < M !x/|2 forx = (x, x,) € 9Q N By,

where ¢ (x’) is a homogeneous quadratic polynomial with
DYq = C7 ',y (5.24)
Recall i = 6¢. Then it follows from the definition of U, and Proposition 2.12 that

xp —h'2q()| < ch' |¥ P onduy 0 B} (5.25)
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if h < hg, where hg, C depend only on n, p, o and the C?%“ norms of 92 and dlaq at
the origin. Hence by combining with (5.24), we see that if 7 < hg (hp now depends
also on the uniform convexity of €2) then on dU; N B,:“ R

1
S 2a0) < xn < 20129 (). (5.26)
Let
—1 o o _
I(y) = W[Mh()’) + Viip(y) - (y — 9]
Then I(y) = v(y) for y € 3U, N B} Since |v| < 1 in Uy, we find that
|
L(y) —1(z)| = oy IViip(3) - (v —2)| <2 Vy,ze€ dUy N B, (5.27)

All constants in this lemma, unless otherwise indicated, depend only on #n, p, «,
the uniform convexity of Q and the C>* norms of 32 and ¢|5q.

We now divide the proof into three steps.

Step 1./ is uniformly Lipschitz at the origin: there exists L > 0 such that

1)~ 1) < LIzl Vz e Uy N B,

Takez € AU, N B;E\{O}. Let C be the curve which is the intersection of U, N B,j
and the vertical plane (P) passing through z and the origin. Let p and g be the
intersection of C with SBZ' . We now have a plane curve C in (P) which can be
assumed to be the usual xy-plane. It is easy to see from (5.24)—(5.26) that C is a graph
in the y-direction C = {(x, ¢(x))} with C! norm comparable to h'/2, that is

C'n'? <" (x) < Ch'/2.

Note that, this also follows from the proof of [23, Lemma 4.2] for the case of uniformly
convex domains €2.
Since |p| = |g| = k, we find that

1/2 1/2

yp~h' Yy, ~h

, x| ~ Kk, xg| ~ k.
xp| ~ k. g ~ &

Without loss of generality, we can assume that y, < y, and x, < 0 < x,, that
is, p is on the left half-plane while ¢ is on the right half-plane. The horizontal line
through p intersects C at another point ¢ . Since ¢ < Ch'/? and Yy =Vp ™~ hl/2,

we must have Xy~ k. In particular, z lies on the arc qu,. We can assume that z

lies on the arc Oq/. Now, take a ray emanating from q/ and parallel to Oz. This ray is
exactly g O when z = ¢ anditis g p when z — 0. Thus, by continuity, there must be
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a point m on the arc 0p such that q/m is parallel to Oz. Clearly, q/ - m‘ > X, ™~ k.

Using z = —2— (¢ — m), we find from (5.27) that

i
q —m

1 1 /
1) =101 = 5 Vin(3) 21 = ﬁ@ Viine) - @ —m)

IA

< L]|z|.

g —m|
Thus, / is Lipschitz at 0.
Step 2. Let %vah(y) = (d’, ap). Then

la'| <2L and |a,|h'/* < CL.

First, we note that the projection of U, N By on {x,, = 0} contains a ball of radius
comparable to k. By rotating coordinates in {x, = 0}, we can assume that ¢’ =
(A,0,...,0). Take a curve C = {(x,0,...,0,(x)) | —k* < x < k*}in aU;, N By
that lies in the x| x,, plane. Note that ¢ (x) ~ h'/>x2. By the Lipschitz property of  in
Step 1, we have

%|V’7ih@) 2(x,0,...,0,000)| = |Ax + anp(x)| < LVx? + (p(x))? < 2L |x|.
Dividing the above inequalities by x and then letting x — 0, we get the desired bound
la'| = 1A <2L.
As a consequence, we have
lanp(x)| < |Ax| +2L |x| < 4L |x].
Using the lower bound on the growth of ¢ and evaluating at |x| ~ k%, we obtain
la,| h'/? < CL.
Step 3. We have
Ivllc2e(au,n87) = Il c2e(aunpty < C-
Recall from (5.25) that dUj, N By is a graph in the ¢, direction, that is,
UL N By ={(x", Y (x) : x| < i},
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with the following properties:

1+a
(@) IV |l + | D*¥ i < ChY2, (b) ID*Y|lce < Ch 2.

For y € 0U;, N By, we have y = (x, ¥ (x')) and
.
I(y) =1(0) — @vuh(}’) sy =10)—d - x" —a,¥x)

where /(0) is a constant bounded by 1. Clearly, the C 2% pound for / on dUj, N Bx now
follows from (a) — (b) and Step 2. O

5.2 Global W2? estimates

In this subsection we will use the density estimates established in Sect. 5.1 to derive
global WP -estimates for solution u of the linearized equation Lyu = f when f €
L9(S2) for some g > n as stated in Theorems 1.1 and 1.2.

Proof of Theorem 1.1. The assumptions on €2 and ¢ in the statement of our theorem
imply that €2 satisfy (2.1) for some p > 0 and, by Proposition 2.4, ¢ satisfies (2.3).
Thus, €2 and ¢ satisfy the conditions of Lemmas 5.2 and 5.4.

By the ABP estimate, it suffices to establish our W7 estimates in the form

ID?ullLr (@) < C(IIMIILOO(Q) + ||f||Lq(sz))-

€u

€llullLe@) + 1 fllLe@)
instead of u, it is enough to show that there exist €, C > 0 depending only on p, g, n
and Q such thatif | —e <det D’¢ < 1 +e€inQ, ¢ =u=00ndQ, Lyu = finQ,
lullLe@) < Land [ fllLe@) < €, then

We first observe that by working with the function v :=

ID*ullLrg) < C. (5.28)

Notice that u € Wi’g (2) forany n < s < g as a consequence of Wi)’cp estimates in
[17].

Let N, = max{Nj, N2} where N| and N, are the large constants in Lemmas 5.2
and 5.4 and ¢ = min{cy, ¢c»} where ¢| and ¢, are the small constants in the above
lemmas. Fix M > N, sothat 1/M < ¢. Next select 0 < €y < 1/2 such that

M9\/2ey = l

2

and € = €(egp, n, Q) = €(p, q, n, L) be the smallest of the constants in Lemmas 5.2
and 5.4. With this choice of €, we are going to show that (5.28) holds. Applying
Lemma 5.2 to the function u and using || f||La(@) < € we obtain
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[Sp(x. )N G (u, Q)] = (1 — €0 — Ce) |85(x. 1)

as long as x € Q and ¢ < ¢. By taking € even smaller if necessary we can assume
Ce’ < €. Then it follows from the above inequality that

|Sp(x, )\ Gu (u, Q)| <260 1Sp(x,1)| foranyx € Q, t <é. (5.29)
t
Let1/h < ¢. Forx € Q\ Gppy(u, Q2), define

[(Q\ Ghu(u, ) N S(x, 1)
1S (x, 1)

gt) =

We have lim; ¢ g(#) = 1. Also, if 1/h <t < ¢, then (5.29) gives

[(Q2\ Gam (u, ) N Sp(x, D] < [Sp(x, 1)\ Grm (u, Q)]
=18 (x, )\ Gye(u, Q)| < 2€0 [Sp(x, 1)].

Therefore g(t) < 2¢q for ¢t € [1/h, ¢]. Then by continuity of g, there exists ty < 1/h
such that g () = 2e¢.
Thus for any x € Q \ Gpp(u, Q) there is 1, < 1/h < ¢ satisfying

[(2\ Grp (u, ) N Sp(x, t)| = 260 |Sg(x, 1) (5.30)
We now claim that (5.30) implies
Sp(x. 1) C (Q\ Gu(u, Q) U{z € Q: M(f")(2) > (c*Mh)"},  (5.31)

where ¢* = (%O)I/T, and

1 _

M(F =sup — / F dy VzeQ.

(F)(2) tl;? 155G 0] [F(y)ldy Vz
Se(z,1)

Indeed, since otherwise there exists x € Sg(x, £y) N G (1, ) such that M(f")(x) <
(c*Mh)". Note also that ¢, < ¢. Then by Lemma 5.4 applied to u we get
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S (x, ) N Grar (u, Q)| > (1 — 2€0) |Sg (x, 1)
yielding
[(R\ G (u, ) N Sg(x, 12)] < [|Sp (6, 1) \ Grar (e, Q)| < 260 S (x, 1)

This is a contradiction with (5.30) and so (5.31) is proved. We infer from (5.30), (5.31)
and Theorem 2.15 that

1\Gw (1, )| < v20 [|\Gau, D)1 + [{x € Q= M) > (*Mm)"|],
(5.32)

aslongas 1/h <¢.
Fork =0,1,...,set

ap =19\ Gy (u, Q)| and by = |{x € Q: M(f")(x) > (*MM*)"}|.

Let h = M, then we get from (5.32) that ap < /2€p(a; + b1). Next let h = M2,
then a3 < +/2¢€p(az + ba) < 2e€pa; + 2€9b1 + +/2€p by. Continuing in this way we
conclude that

k .
k (k+1)—i
1Q\G it (t, Q)| = g1 < (,/260) art+> (,/260) b fork=1,2, ...
i=l1

(5.33)

We are now ready to prove (5.28). We have

oo
/|D,»,~u|P dx = p/zP*1|{x € Q: |Djju(x)| > t}| dt
Q 0

q
P

=p | "7 x € Q:|Diju(x)| > t}| dt

o—_x

qk+1)
P

o M
+pY, P {x € Q: IDyjux)| >t} | dr
k=1

gk
M P

o0
< QM7 + (M7 - 1) ZM‘I"
k=1

qk
[x € Q: [Djju(x)| > MIT’”
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[o¢] o0
< |QM7 + (M7 —1) | > Mek|@\ Al o |+ D M QN G (u, Q)
k=1 (C,‘,,"("zi;’”)"f1 k=1
o0 q nﬁ o0
< |QIM? + (M7-1) |:C(n,6, Q)ZM"(‘“(Z e )+Zqu|Q\GMk(u, Q)|i| :
P k=1

where we used (3.1) with m = ¢g/p > 1 and B = M* in the second inequal-
ity and used (3.2) in the last inequality. Since € > 0 is small, the first summation
in the last expression is finite and hence (5.28) will follow if we can show that
z,fil Mk |\ G (1, )| < C. For this, let us employ (5.33) to obtain

Zqu|Q\GMk(u, Q)|

k=1
> k-1 X0 -t k—i
<> M (\/%) +°> Mk ( 26()) b
k=1 k=1 i=0
oo 9] o0
= 612160 Z (Mq\/%) + |:Z (Mq\/zTO)J |:Z Mip :|
k=1 j=1 i=0

o (0.¢] o0 o0
ajl —k . ; aij ;
= 27" + 27/ M'ib; | = + M'9b;.
V2€0 ]; Z |:Z l:| 2€0 Z '
= j=1 i=0 i=0
Butas f" € Li (2) and g > n, by the strong-type estimate in Theorem 2.16 we have

q
" dx

/|M(f">(x) "dx < C(n,q,m/ £ (x)
Q Q

< Cn.q. P flTaq < Cn.q,p)
implying 3%, (M™)'ib; < C. Thus 3.2, M*|Q\ Gy (u, Q)| < C and (5.28) is
proved. O
Finally, we prove Theorem 1.2.
Proof of Theorem 1.2. 1t suffices to prove the theorem for the case ¢ = 0 since i :=
u—peCnN Wi)’f (£2) is the solution to the linearized Monge—Ampere equation

£¢ﬁ:fin Q, and =0 on 0%,

where f = f—CIDi-/tpij € L9(R2). Indeed, since g € C(Q), we have ¢ €
(n—1)gs

W2 (Q) by Savin’s global W estimates [28]. Thus ®"/ € L%(Q) for all
i, jand hence f := f — ®/¢;; € LI(Q).
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In view of Theorem 1.1 and the interior W2 ? estimates obtained in [17], the theorem
follows by localizing boundary sections of ¢ using Theorem 2.2. For completeness,
we sketch the proof.

The assumptions on 2 and ¢ imply that 2 satisfies (2.1) for some p > 0 and ¢
satisfies (2.3). Let € be the small constant given by an analogous version of Theorem 1.1
which will be explained later. In particular, € depends only on n, p, g, A, A, p and «.
Let ¢ be as in Remark 2.6.

Since g € C(RQ), we can find m < ¢ depending only on €, A and the modulus of
continuity of g such that

lg(x) — g(y)| < xe forall x,y e Q satisfying |x — y| < m.
Hence it follows from (2.7) that for s < m> and any boundary point y € 92, we have
lg(x) — g(y)| < Ae forall x € Sy(y,s). (5.34)
Let us consider a boundary point y € 92 and for simplicity we assume that y = 0.
We can assume further that 2 satisfies (2.5), ¢ (0) = 0 and V¢ (0) = 0. Then by the
Localization Theorem, there is a linear map T; = s~1/2 A, such that

QN B C Ty(Sp(0,5) C QN By, (5.35)

where det A; = 1 and || A, [|A; '] < k~!|logs|. By working with the function
g(O)%¢(x) instead of ¢ (x) and using (5.34), we can also assume that g(0) = 1 and

l—e<g=<1l+e€ in S§40,s).
We now define the rescaled domains U := T;(S54(0, 5)), Q2 := T;(2) and the rescaled

functions ¢, us :=u o Ts’l, fs as in Sect. 2.2 that preserve the L°°-norm of u. We
claim that

1Dl (5, 0.0 = € (sl + 1l zsws). (5.36)

where C > 0 depends only on p, ¢, n, p, A, A, @, the uniform convexity of 92,
10€2]| 2.« and || || C2e(hQ)- Then by rescaling back as in the proof of Lemma 3.11 we
obtain

o nel 1
I1D2ul < s logsPllull Loy + Cs 27~ | log s |l £l Laca)

L7 (Sy(y.%))
< C(@s) (lullze@ + 1 fllLa) Yy €99. (5.37)

Let§ := ¢’s. By (2.7), we know that Sy (y, 8) D QN B(y, §*/3). Therefore if we
let

Qg3 = {x € Q : dist(x, 0Q) > §2/3},
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then we can cover the §2/3 neighborhood of 2, that is £\Qs2/3, by a finite num-
ber of boundary sections {Sy(y;, 8)}?/:1. Then by adding (5.37) over the family

{Se(yj, 8)}9’:1, we arrive at the W27 estimate at the boundary

||D2M||Lp(g\962/3) < C(lullze + I1fllia)-
On the other hand, by the interior estimate in [17, Theorem 1.1], we also have

ID%ull ey < Cllullo@) + 1 flla@)-

Our Theorem 1.2 follows from the above inequalities.
We now indicate how to obtain the claim (5.36). The proof consists of reviewing
the proof of Theorem 1.1. By (2.7), we have

S4,(0,¢%) C Uy N Ba.

We use Lemma 3.13 to cover Ug N B.2. We restrict our estimates on the distribution
function for the second derivatives in Lemma 3.4 to Ug N B.2. Lemma 5.2 holds with
obvious changes for the data (€2, ¢5, Uy). Sodoes Lemma 5.4 provided that we have an
analogous version of Lemma 5.5 for our data (€2, ¢, Uy). Precisely, let Sy (yo, 1) be
a section of ¢ in Uy such that yo € dUs; N B3 and Sy, (o, h) N Gy (ug, Us, ¢5) # 9
for some y > 0 (say, y € Sy, (yo. ) N Gy (ug, Us, ¢5) ). By Lemma 2.5 and the
Localization Theorem 2.2, there exists an affine map Th such that

Th(yo) = yo and Uy N Br(yo) C Uy := Ty(Sp, (yo, 0h)) C Uy N By (o).

Here 6 > 1 is the same constant at the beginning of the proof of Lemma 5.4. We need
to show that the C% norm on the boundary dUj, N By (yp) of the following function

_ Lo i I i
8@ = g [0 10— @) = V() (@ e = 9] 2 e Ty

is bounded by a constant which is independent of the uniform convexity of Us. The
function v is defined in a similar way to the definition of the function v in (5.18).
We note that the uniform convexity of the boundary 9€2 plays a key role in the proof
of Lemma 5.5. Thus we can not obtain the desired result by repeating the proof of
Lemma 5.5 for our data (€2, ¢5, Uy) since the uniform convexity of d€2; deteriorates
as s — 0. However, we can get away from this as follows.

Let T := f‘h o Ts. Then T normalizes the section S(/)(TS’1 Y0, 0hs), and

TN < k=20hs)” "% |log (9h)| |logs|, 1T~ <k 2(@hs)"/? |log (0h)||log s|.

Moreover, X := T, (3) € Sp(T;" yo. 0hs) N G -1 (u, Q. ¢) and
T (85T 0. 0h5)) = (S, (0, 61) = Uy,
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Therefore, by reviewing the proof of Lemma 5.5 we see that the function

v(y) = @™ —u(®) = Vu® - (17'y D). yeT®@

1
O(ys—hs

satisfies

”U”C-z_a (aﬁhmBk(fh()’o))) < Cot (538)

with C, depending on the uniform convexity of . But since 7}, (yo) = yoand U =v
on Uy, as us(y) = u(T,” 1'y), we conclude that the C%% norm of ¥ on U, N Bi(vo0)
is bounded by the same constant C, in (5.38). Hence the claim (5.36) follows as
explained above. O
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