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Abstract In this paper, we establish global W 2,p estimates for solutions to the lin-
earized Monge–Ampère equations under natural assumptions on the domain, Monge–
Ampère measures and boundary data. Our estimates are affine invariant analogues of
the global W 2,p estimates of Winter for fully nonlinear, uniformly elliptic equations,
and also linearized counterparts of Savin’s global W 2,p estimates for the Monge–
Ampère equations.
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1 Introduction and statement of the main results

In this paper we consider the linearized Monge–Ampère equations and investigate
global L p estimates for the second derivatives of their solutions. Let 	 ⊂ R

n be a
bounded convex domain and φ be a locally uniformly convex function on 	. The
linearized Monge–Ampère equation corresponding to φ is

Lφu :=
n∑

i, j=1

�i j ui j = f in	, (1.1)

where � = (
�i j
)

1≤i, j≤n := (det D2φ) (D2φ)−1 is the matrix of cofactors of the

Hessian matrix D2φ. As the coefficient matrix � is positive semi-definite, Lφ is
a linear elliptic partial differential operator, possibly degenerate. The operator Lφ
appears in several contexts including affine maximal surface equation in affine geom-
etry [30–33], Abreu’s equation in the context of existence of Kähler metric of constant
scalar curvatures in complex geometry [10–13,36], and semigeostrophic equations
in fluid mechanics [1,5,25]. Solutions of many important problems in these con-
texts require a deep understanding of interior and boundary behaviors of solutions
to (1.1).

The regularity theory for the linearized Monge–Ampère equation was initiated in
the fundamental paper [4] by Caffarelli and Gutiérrez. They established an interior
Harnack inequality for nonnegative solutions to the homogeneous equation Lφu =
0 in terms of the pinching of the Hessian determinant λ ≤ det D2φ ≤ �. Their
theory is an affine invariant version of the classical Harnack inequality for uniformly
elliptic equations with measurable coefficients. This result played a crucial role in
Trudinger–Wang’s resolution [31] of Chern’s conjecture in affine geometry concerning
affine maximal hypersurfaces in R

3 and in Donaldson’s interior estimates for Abreu’s
equation in complex geometry [11]. Another contribution to the regularity theory
comes from [18] where Gutiérrez and Tournier derived interior W 2,δ estimates for
small δ. The interior regularity for Eq. (1.1) was further developed by Gutiérrez and
the second author in [16,17] where the (sharp) interior C1,α and W 2,p estimates,
respectively, were obtained.

Regarding the global regularity, by using Caffarelli–Gutiérrez’s interior Harnack
estimates and Savin’s localization theorem, Savin and the first author [23] estab-
lished boundary Hölder gradient estimates for solutions to the linearized Monge–
Ampère equation. Furthermore, the first author [21] proved global Hölder estimates
for solutions to (1.1) in uniformly convex domains, which are the global counterpart
of Caffarelli–Gutiérrez’s interior Hölder estimates [4].
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Global W 2,p estimates 631

As mentioned above, Gutiérrez and the second author derived in [17] the inte-
rior W 2,p estimates for solutions of (1.1) in terms of the Lq -norm of f where
q > max{n, p}, the pinching of the Hessian determinant λ ≤ det D2φ ≤ � and
the continuity of the Monge–Ampère measure det D2φ. The purpose of our paper
is to establish global W 2,p estimates for solutions to the linearized Monge–Ampère
equation (1.1) under natural assumptions on the domain, Monge–Ampère measures
and boundary data.

Our first main theorem is concerned with global W 2,p estimates for the linearized
equation (1.1) when the Monge–Ampère measure det D2φ is close to a constant.

Theorem 1.1 Let 	 be a bounded, uniformly convex domain with ∂	 ∈ C3, and let
φ ∈ C(	) be a convex function satisfying φ = 0 on ∂	. Let u ∈ C(	)∩ W 2,n

loc (	) be
the solution to the linearized Monge–Ampère equation

{Lφu = f in	,
u = 0 on ∂	,

where f ∈ Lq(	) with n < q <∞. Then, for any p ∈ (1, q), there exist 0 < ε < 1
and C > 0 depending only on n, p, q and 	 such that

‖u‖W 2,p(	) ≤ C‖ f ‖Lq (	)

provided that the Monge–Ampère measure of φ satisfies

1 − ε ≤ det D2φ ≤ 1 + ε in	.

As a corollary of our method of the proof of Theorem 1.1, we obtain global W 2,p

estimates for Eq. (1.1) when the Monge–Ampère measure det D2φ is continuous. Our
second main theorem states as follows.

Theorem 1.2 Let 	 be a bounded, uniformly convex domain with ∂	 ∈ C3, and let
φ ∈ C(	) be the convex solution to the Monge–Ampère equation

{
det D2φ = g in	,
φ = 0 on ∂	,

where g ∈ C(	) is a continuous function satisfying 0 < λ ≤ g(x) ≤ � in 	. Let
u ∈ C(	) ∩ W 2,n

loc (	) be the solution to the linearized Monge–Ampère equation

{Lφu = f in	,
u = ϕ on ∂	,

where ϕ ∈ W 2,s(	), f ∈ Lq(	) with n < q < s < ∞. Then, for any p ∈ (1, q),
there exists C > 0 depending only on λ,�, n, p, q, s,	 and the modulus of continuity
of g such that

‖u‖W 2,p(	) ≤ C
(‖ϕ‖W 2,s (	) + ‖ f ‖Lq (	)

)
.
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Our estimates are affine invariant analogues of the global W 2,p estimates of Winter
[35] for fully nonlinear, uniformly elliptic equations, and are also linearized counter-
parts of Savin’s global W 2,p estimates for the Monge–Ampère equation [28]. We note
that the continuity condition on the Monge–Ampère measure in Theorem 1.2 is sharp
in view of Wang’s counterexample [34] for solutions to the Monge–Ampère equation
and the fact that Lφφ = n det D2φ = ng. The global second derivative estimates in
Theorems 1.1 and 1.2 depend only on the bounds on the Hessian determinant det D2φ

and its continuity or closeness to a constant, the geometry of 	 and the quadratic
separation of φ from its tangent planes on the boundary ∂	. This quadratic separation
is guaranteed by the C3 character of boundary domain ∂	, data φ |∂	 and the uniform
convexity of 	 (see Proposition 2.4). Under the assumptions in the main theorems,
the linearized Monge–Ampère operator Lφ is not uniformly elliptic, i.e., the eigen-
values of � = (�i j ) are not necessarily bounded away from 0 and ∞. Moreover,
Lφ can be possibly singular near the boundary. The degeneracy and singularity of Lφ
are the main difficulties in establishing our boundary regularity results. We handle
the degeneracy of Lφ by working as in [4,16,17,21,23] with sections of solutions to
the Monge–Ampère equations. These sections have the same role as Euclidean balls
have in the classical theory. To overcome the singularity of Lφ near the boundary,
we use a Localization Theorem at the boundary for solutions to the Monge–Ampère
equations which was obtained by Savin [26,27]. In order to obtain the desired global
second derivative estimates for solutions u of Lφ , we need to have good global decay
estimates for the distribution function of the second derivatives of u. To this end,
we approximate u by solutions of Lw where w solves the standard Monge–Ampère
equation det D2w = 1 with appropriate boundary conditions, and use fine geometric
properties of boundary sections for solutions to the Monge–Ampère equation which
were obtained recently in [22].

Though the statements of our main theorems are rather succinct, their proofs are
quite delicate. There are essentially two main steps for the proof of the main estimates:

Step 1: We consider the quasi distance d(x, x̄) induced by the solution φ to the
Monge–Ampère equation and is defined by d(x, x̄)2 := φ(x) − φ(x̄) − ∇φ(x̄) ·
(x − x̄). We then bound the distribution function of the second derivative D2u by
the Lebesgue measures of the “bad” sets on whose complements the quasi distance
d(x, x̄) is comparable to the Euclidean distance |x − x̄ | in a controllable manner and
the graph of u is touched from above and below by “quasi paraboloids” generated
by the quasi distance. Intuitively, the better the regularity of φ is, the faster these
decay estimates can be expected. When φ(x) = |x |2 /2, the Monge–Ampère measure
det D2φ is the usual Lebesgue measure and d(x, x̄) corresponds to the Euclidean
distance. In this step, we establish preliminary power decay estimates for the bad sets
under natural assumptions on the domain 	 and the boundary data of φ. As a result,
we obtain global W 2,δ(	) estimates for u where δ > 0 is small under these natural
assumptions provided that the Monge–Ampère measure det D2φ is close to a constant.
We also give a more direct proof of global W 2,δ estimates for solutions to the linearized
Monge–Ampère equations when the Monge–Ampère measure is only assumed to be
bounded away from 0 and ∞. This direct proof is based on interior estimates without
resorting to decay estimates of the distribution function of the second derivatives.
These estimates, that are of independent interest, are global counterparts of Gutiérrez-
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Global W 2,p estimates 633

Tournier’s interior W 2,δ estimates for solutions to the linearized equation (1.1). Our
idea, which is similar to Savin’s arguments in [28], is rather simple but useful for the
second step and can be roughly described as follows:

local estimates + appropriate covering results 
⇒ global estimates.

Step 2: We improve the power decay estimates obtained in Step 1 assuming in
addition that det D2φ is sufficiently close to 1. This will involve two main auxiliary
results:

(1) a global stability of cofactor matrices: we prove that the cofactor matrices of the
Hessian matrices of two convex functions defined on the same domain are close
if their Monge–Ampère measures and boundary values are close in the L∞ norm;

(2) a global approximation result: we approximate the solution u by smooth solutions
of linearized Monge–Ampère equations associated with convex functions whose
Monge–Ampère measures and boundary data are close to those of φ.

The main estimates will then follow from a covering theorem for boundary sections
and a strong-type p− p estimate for the maximal function corresponding to boundary
sections.

Without going into details, we now indicate key technical points that entail for
getting global W 2,p estimates. First, we show that the distribution function |{x :
|D2u| > β}| of the second derivatives of the solution u to Lφu = f has some decay of
the form Cβ−τ with τ > 0 small and C > 0 depending only on the structural constants
in our equation; see Propositions 3.6 and 3.7. In the next step, we refine these decay
estimates by working in very small regions of the domain and by rescaling our equation
and domain. In this rescaled setting, the constant C above can be improved, roughly
by a factor of ‖�− W‖Ln + (ffl | f |n)1/n ; see Lemma 5.1. Here W is the matrix of the
cofactors of D2w where w is the solution to the standard Monge–Ampère equation
det D2w = 1 having the same boundary values as φ in small regions. When det D2φ

is close to 1, the term ‖� − W‖Ln can be made as small as we want thanks to the
stability of cofactor matrices in Proposition 3.14. The term (

ffl | f |n)1/n is invariant
under a rescaling of our equation that almost preserves the L∞-norm of the second
derivative D2u. There are two natural rescalings of our equation to be explained
in Sect. 2 but the aforementioned rescaling is the most crucial. As a consequence,
(
ffl | f |n)1/n can be made as small as we want provided that f has higher integrability

than Ln , but this is the assumption in our main theorems.
The rest of the paper is organized as follows. In Sect. 2, we recall the main tool

used in our proof: the Localization Theorem at the boundary for solutions to the
Monge–Ampère equation, and state relevant results on the geometry of their sections.
We also discuss properties of solutions to the Monge–Ampère equation and its lin-
earization under suitable rescalings using the Localization Theorem. In addition, we
establish boundary C2,α estimates for solutions to the standard Monge–Ampère equa-
tions det D2w = 1 having the same boundary values as φ on its rescaled sections at the
boundary. In Sect. 3, we derive preliminary power decay estimates for the distribution
function of the second derivatives of solutions to the linearized Monge–Ampère equa-
tions (1.1). We also establish the global W 2,δ estimates for solutions to (1.1), paving
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the way for proving the global stability of cofactor matrices in Sect. 3.4. Moreover,
applying the global stability of cofactor matrices, we obtain in Sect. 3.5 global W 2,1+ε
estimates for convex solutions to the linearized Monge–Ampère equations when the
Monge–Ampère measure is only assumed to be bounded away from zero and infin-
ity. These estimates can be viewed as affine invariant versions of results obtained
by De Phillipis–Figalli–Savin and Schmidt. In Sect. 4.1, we prove the global Hölder
continuity property of solutions to (1.1). This property together with the boundary
C2,α estimates in Sect. 2 will be instrumental in the global approximation lemmas in
Sect. 4.2. In the last section, Sect. 5, by combining these approximation lemmas with
the preliminary power decay estimates, we obtain density estimates, which improve
the power decay estimates in Sect. 3, when the Monge–Ampère measure det D2φ is
close to a constant. The proofs of the main results will be given at the end of this
section using these density estimates, a covering theorem and a strong-type p − p
estimate for the maximal function with respect to sections.

2 The localization theorem and geometry of the Monge–Ampère equation

The results in this section hold under the following global information on the convex
domain 	 and the convex function φ. We assume there exists ρ > 0 such that

	⊂ B1/ρ, and for each y ∈ ∂	 there is a ball Bρ(z) ⊂ 	 that is tangent to ∂	 at y.

(2.1)

Let φ : 	→ R, φ ∈ C0,1(	) ∩ C2(	) be a convex function satisfying

det D2φ = g, 0 < λ ≤ g ≤ � in	. (2.2)

Assume further that on ∂	, φ separates quadratically from its tangent planes, namely

ρ |x − x0|2 ≤ φ(x)− φ(x0)− ∇φ(x0) · (x − x0) ≤ ρ−1 |x − x0|2 , ∀x, x0 ∈ ∂	.
(2.3)

The section of φ centered at x ∈ 	 with height h is defined by

Sφ(x, h) :=
{

y ∈ 	 : φ(y) < φ(x)+∇φ(x) · (y − x)+ h
}
.

For x ∈ 	, we denote by h̄(x) the maximal height of all sections of φ centered at x
and contained in 	, that is,

h̄(x) := sup
{
h ≥ 0| Sφ(x, h) ⊂ 	

}
.

In this case, Sφ(x, h̄(x)) is called the maximal interior section of φ with center x ∈ 	.
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Global W 2,p estimates 635

Remark 2.1 In this paper, we denote by c, c̄,C,C1,C2, θ0, θ∗, . . ., positive constants
depending only on ρ, λ,�, n, and their values may change from line to line whenever
there is no possibility of confusion. We refer to such constants as universal constants.
Small universal constants decrease when λ decreases and/or � increases. Large uni-
versal constants increase when λ decreases and/or � increases, etc. Therefore, when
1 − ε ≤ det D2φ ≤ 1 + ε with 0 < ε < 1/2, we can suppress the dependence of
universal constants on ε.

2.1 The localization theorem

In this subsection, we recall the main tool to study geometric properties of boundary
sections of solutions to the Monge–Ampère equation: the Localization theorem at the
boundary for solution to the Monge–Ampère equation (Theorem 2.2). Throughout this
subsection, we assume that the convex domain 	 and the convex function φ satisfy
(2.1)–(2.3). We now focus on sections centered at a point on the boundary ∂	 and
describe their geometry. Assume this boundary point to be 0 and by (2.1), we can also
assume that

Bρ(ρen) ⊂ 	 ⊂ {xn ≥ 0} ∩ B 1
ρ
, (2.4)

where ρ > 0 is the constant given by condition (2.1). After subtracting a linear
function, we can assume further that

φ(0) = 0 and ∇φ(0) = 0. (2.5)

If the boundary data has quadratic growth near {xn = 0} then, as h → 0, Sφ(0, h)
is equivalent to a half-ellipsoid centered at 0. This is the content of the Localization
Theorem proved by Savin [26,27]. Precisely, this theorem reads as follows.

Theorem 2.2 (Localization Theorem [26,27]) Assume that 	 satisfies (2.4) and φ
satisfies (2.2), (2.5), and

ρ|x |2 ≤ φ(x) ≤ ρ−1|x |2 on ∂	 ∩ {xn ≤ ρ}.

Then there exists a constant k = k(ρ, λ, λ, n) > 0 such that for each h ≤ k there is
an ellipsoid Eh of volume ωnhn/2 satisfying

k Eh ∩	 ⊂ Sφ(0, h) ⊂ k−1 Eh ∩	.

Moreover, the ellipsoid Eh is obtained from the ball of radius h1/2 by a linear trans-
formation A−1

h (sliding along the xn = 0 plane)

Ah Eh = h1/2 B1, det Ah = 1, Ah(x) = x − τh xn,

τh = (τ1, τ2, . . . , τn−1, 0) and |τh | ≤ k−1| log h|.
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From Theorem 2.2 we also control the shape of sections that are tangent to ∂	 at
the origin.

Proposition 2.3 Let φ and 	 satisfy the hypotheses of the Localization Theorem 2.2
at the origin. Assume that for some y ∈ 	 the section Sφ(y, h) ⊂ 	 is tangent to ∂	
at 0, i.e., ∂Sφ(y, h) ∩ ∂	 = {0}, for some h ≤ c with c universal. Then there exists a
small positive constant k0 < k depending on λ, �, ρ and n such that

∇φ(y) = aen for some a ∈ [k0h1/2, k−1
0 h1/2],

k0 Eh ⊂ Sφ(y, h)− y ⊂ k−1
0 Eh, k0h1/2 ≤ dist(y, ∂	) ≤ k−1

0 h1/2,

with Eh and k the ellipsoid and constant defined in Theorem 2.2.

Proposition 2.3 is a consequence of Theorem 2.2 and was proved in [28].
The quadratic separation from tangent planes on the boundary for φ is a crucial

assumption in the Localization Theorem (Theorem 2.2). This is the case for solu-
tions to the Monge–Ampère equation with the right hand side bounded away from
0 and ∞ on uniformly convex domains and smooth boundary data as proved in
[27, Proposition 3.2].

Proposition 2.4 Let 	 ⊂ R
n be a uniformly convex domain satisfying (2.1) and

‖∂	‖C3 ≤ 1/ρ. Let φ : 	 → R, φ ∈ C0,1(	) ∩ C2(	) be a convex function
satisfying φ |∂	∈ C3 and

0 < λ ≤ det D2φ ≤ � <∞ in	.

Then, on ∂	, φ separates quadratically from its tangent planes, that is,

ρ0 |x − x0|2 ≤ φ(x)− φ(x0)− ∇φ(x0) · (x − x0) ≤ ρ−1
0 |x − x0|2 , ∀x0, x ∈ ∂	

for some constant ρ0 > 0 depending only on n, ρ, λ,�, ‖φ‖C3(∂	) and the uniform
convexity of 	.

2.2 Properties of the rescaled functions and boundary regularity estimates

In this subsection, we discuss properties of solutions to the Monge–Ampère equation
and its linearization under suitable rescalings and then use these properties to establish
a boundary C2,α estimates for solutions to the standard Monge–Ampère equation
det D2w = 1 in our rescaled setting.

Let 	 and φ satisfy the hypotheses of the Localization Theorem at the origin. We
know that for all h ≤ k, Sφ(0, h) satisfies

k Eh ∩	 ⊂ Sφ(0, h) ⊂ k−1 Eh ∩	, (2.6)
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with Ah being a linear transformation and

det Ah = 1, Eh = A−1
h Bh1/2 , Ah x = x − τh xn, τh · en = 0,

‖A−1
h ‖, ‖Ah‖ ≤ k−1| log h|.

This gives for all h ≤ k

	 ∩ B+
h2/3 ⊂ 	 ∩ B+

ch1/2/|log h| ⊂ Sφ(0, h) ⊂ 	 ∩ B+
Ch1/2|log h| ⊂ B+

h1/3 . (2.7)

We denote the rescaled function of φ and the rescaled domain of 	 by

φh(x) :=
φ
(

h1/2 A−1
h x
)

h
and 	h := h−1/2 Ah	. (2.8)

The function φh , defined in	h , is continuous and solves the Monge–Ampère equation

det D2φh = gh(x), λ ≤ gh(x) := g
(

h1/2 A−1
h x
)
≤ �.

By (2.6), the section of φh centered at the origin and with height 1 satisfies

B+
k ∩	h ⊂ Sφh (0, 1) = h−1/2 Ah Sφ(0, h) ⊂ B+

k−1 ∩	h . (2.9)

In what follows, we denote

Uh = Sφh (0, 1). (2.10)

Now, we discuss two natural rescalings for the linearized Monge–Ampère equation

Lφu := �i j ui j = f in	.

We focus on the boundary section Sφ(0, h) in the present setting of Theorem 2.2.
L∞-norm preserving rescaling. Consider the following rescaling of functions:

uh(x) := u
(

h1/2 A−1
h x
)

and fh(x) := h f
(

h1/2 A−1
h x
)
, for x ∈ 	h .

Simple computation gives

D2φh =
(

A−1
h

)t
D2φA−1

h , D2uh = h
(

A−1
h

)t
D2u A−1

h ,

and

�h :=
(

det D2φh

)
(D2φh)

−1 = (det D2φ)Ah(D
2φ)−1(Ah)

t = Ah�(Ah)
t .
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Therefore, we find that

Lφh uh = trace(�h D2uh) = fh in 	h, and ‖uh‖L∞(	h) = ‖u‖L∞(	).

Thus this rescaling preserves the L∞-norm of u. Since ‖ fh‖Ln(	h) = h1/2‖ f ‖Ln(	) is
small if f ∈ Ln(	) and h small, we can expect that uh has some nice second derivative
estimates, say their boundedness. Given this and as

D2u(h1/2 A−1
h x) = h−1(Ah)

t D2uh(x) Ah,

it is again quite natural to expect that |D2u| behaves like 1
h in some part of the section

Sφ(0, h). This is what we will prove in Lemma 5.2.
Almost W 2,∞-norm preserving rescaling. The next rescaling almost preserves

the L∞-norm of D2u. Under the following rescaling of functions

ũh(x) := h−1u
(

h1/2 A−1
h x
)

and f̃h(x) := f
(

h1/2 A−1
h x
)

for x ∈ 	h,

we have Lφh ũh = f̃h in 	h with

 

	h

∣∣∣ f̃h

∣∣∣
n =

 

	

| f |n ,

by changing variables and recalling that det Ah = 1. As

D2ũh(x) =
(

A−1
h

)t
D2u

(
h1/2 A−1

h x
)

A−1
h ,

the present rescaling almost preserves the L∞-norm of D2u since

‖D2ũh‖L∞(	h) ≤ k−2 |log h|2 ‖D2u‖L∞(	).

In principle, the L∞-norm preserving rescaling allows us to find some good points
with controlled second derivatives for u. Having found them, we would like to propa-
gate them by finding more similar points near by, maybe at the cost of a slightly larger
bound on the second derivatives. This is the key technical point of the paper and almost
W 2,∞-norm preserving rescaling is the means for this; see Lemmas 5.2 and 5.4.

A variant of the L∞-norm preserving rescaling is the following which applies to
sections tangent to the boundary.

L∞-norm preserving rescaling in a section tangent to the boundary. Consider
a prototype section Sφ(y, h) with h := h̄(y) ≤ c. By applying Proposition 2.3 to
Sφ(y, h), we see that it is equivalent to an ellipsoid Eh , i.e.,

k0 Eh ⊂ Sφ(y, h)− y ⊂ k−1
0 Eh,
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Global W 2,p estimates 639

where

Eh := h1/2 A−1
h B1 with det Ah = 1, ‖Ah‖, ‖A−1

h ‖ ≤ C | log h|.

We use the following rescalings:

	̃h := h−1/2 Ah(	− y),

and for x ∈ 	̃h

ũh(x) := u
(

y + h1/2 A−1
h x
)
,

φ̃h(x) := h−1
[
φ
(

y + h1/2 A−1
h x
)
− φ(y)−∇φ(y) ·

(
h1/2 A−1

h x
)
− h
]
.

Then

Bk0 ⊂ Ũh ≡ Sφ̃h
(0, 1) ≡ h−1/2 Ah

(
Sφ(y, h)− y

) ⊂ Bk−1
0
.

We have

det D2φ̃h(x) = g̃h(x) := g
(

y + h1/2 A−1
h x
)
, φ̃h = 0 on ∂Sφ̃h

(0, 1)

and

min
S
φ̃h
(0,1)

φ̃h = −1 = φ̃h(0).

Also

�̃
i j
h (ũh)i j = f̃h(x) := h f

(
y + h1/2 A−1

h x
)
.

Some properties of the rescaled function φh was established in [27] and [23,
Lemma 4.2, Lemma 5.4]. For later use, we record them here.

Lemma 2.5 There exists a small constant c = c(n, ρ, λ,�) > 0 such that if h ≤ c,
then

(a) for any x, x0 ∈ ∂	h ∩ B2/k we have

ρ

4
|x − x0|2 ≤ φh(x)− φh(x0)−∇φh(x0) · (x − x0) ≤ 4ρ−1 |x − x0|2 . (2.11)

(b) if r ≤ c small, we have

|∇φh | ≤ Cr | log r |2 in 	h ∩ Br .

(c) ∂	h ∩ B2/k is a graph in the en direction whose C1,1 norm is bounded by Ch1/2.
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(d) φh satisfies in Uh ≡ Sφh (0, 1) the hypotheses of Theorem 2.2 at all points on
∂Uh ∩ Bc.

(e) If y ∈ Uh ∩ Bc2 then the maximal interior section Sφh (y, h̄(y)) of φh in Uh

satisfies:

c ≥ h̄(y) ≥ k2
0 dist2(y, ∂Uh) and Sφh (y, h̄(y)) ⊂ Uh ∩ Bc.

Proof [23, Lemma 4.2] contains (a)–(c) while its proof implies (d). The statement
(e) can be proved as in [23, Lemma 5.4] and we give a complete proof here. Let
y ∈ Uh ∩ Bc2 . Then it follows from property (d) and (2.7) that y ∈ Sφh (0, c3).
Hence, φh(y) ≤ c3. By [22, Lemma 4.1] we obtain Sφh (0, c3) ⊂ Sφh (y, θ0c3) and
consequently

h̄(y) ≤ θ0c3. (2.12)

Thus, h̄(y) ≤ c if c is small. Since Sφh (y, h̄(y)) is balanced around y, we can use
Theorem 3.3.8 in [15] to conclude that

Sφh (y, h̄(y)) ⊂ B(y, K h̄(y)b) (2.13)

for some universal constants K , b > 0.
From (2.12) and (2.13) we see that for c small the section Sφh (y, h̄(y)) is tangent to

∂	h . Let x0 ∈ ∂Sφh (y, h̄(y))∩ ∂	h . Applying (2.11) to x0 and 0, and using property
(b) and (2.13), we have

ρ

4
|x0|2 ≤ φh(x0) = φh(y)+ ∇φh(y) · (x0 − y)+ h̄(y)

≤ c3 + C K |y| h̄(y)b
∣∣ log |y|∣∣2 + h̄(y).

This together with the assumption |y| < c2 and (2.12) implies that |x0| < c. Now,
thanks to (d) we can apply Proposition 2.3 at x0 and obtain

k2
0dist2(y, ∂Uh) ≤ h̄(y) ≤ k−2

0 dist2(y, ∂Uh).

Since Sφh (y, h̄(y))− y ⊂ k−1
0 Eh , we find from the definition of Eh and h̄(y) ≤ θ0c3

that

Sφh (y, h̄(y)) ⊂ y + k−1
0 Eh ⊂ B

c2+k−1
0 k−1

∣∣h̄(y)
∣∣1/2∣∣log h̄(y)

∣∣ ⊂ Bc

if c is universally small. ��

Remark 2.6 From now on, we fix a universally small constant c ≤ k/2, c � 1
depending only on n, ρ, λ,� as in the Lemma 2.5.
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The rest of this subsection is devoted to establishing boundary C2,α estimates for
the convex solution w to the standard Monge–Ampère equation

{
det D2w = 1 in Uh := Sφh (0, 1),
w = φh on ∂Uh .

(2.14)

For this, we first show in the next lemma thatw separates quadratically from its tangent
planes on the boundary of Uh .

Lemma 2.7 Let	h, φh and Uh be as in (2.8) and (2.10) with h ≤ c. Letw ∈ C(Uh) be
the convex solution to (2.14). Then there exist universal constants δ, θ > 0 depending
only on n, ρ, λ,� such that for any x0 ∈ ∂Uh ∩ Bc,

xn+1 = φh(x0)+ 〈∇φh(x0)− 2δ1−nk−1νx0 , x − x0〉 =: l̄x0(x)

is a supporting hyperplane in Uh to w at x0, and

θ |x − x0|2 ≤ w(x)− l̄x0(x) ≤ θ−1 |x − x0|2 for all x ∈ ∂Uh . (2.15)

Here νx0 denotes the unit inner normal to ∂	h at x0.

Proof For x0 ∈ ∂Uh ∩ Bc, let lx0(x) := φh(x0) + ∇φh(x0) · (x − x0). Then by
Lemma 2.5(a),

ρ

4
|x − x0|2 ≤ φh(x)− lx0(x) ≤

4

ρ
|x − x0|2 ∀x ∈ ∂Uh ∩ ∂	h . (2.16)

By Lemma 2.5(d) and a consequence of the Localization Theorem 2.2 (see (2.7)),
there is r0 > 0 universally small depending only on n, ρ, λ,� such that

Sφh (x0, r0) ⊂ B

(
x0,

k

2

)
∩ Uh ⊂ Bk ∩ Uh .

This gives φh(x) ≥ lx0(x)+ r0 for all x ∈ ∂Uh\∂	h , and consequently, by (2.9)

φh(x) ≥ lx0(x)+
k2r0

4
|x − x0|2 ∀x ∈ ∂Uh\∂	h . (2.17)

Define

w−(x) := lx0(x)+ δ
[
|x − x0|2 − |(x − x0) · νx0 |2

]

+δ1−n
[
|(x − x0) · νx0 |2 − 2k−1(x − x0) · νx0

]
∀x ∈ Uh,

where

δ := min

{
ρ

4
,

k2r0

4

}
.
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Thenw− is a convex function in Uh satisfying D2w− = 2δ [I + (δ−n − 1) νx0 ⊗ νx0 ].
Therefore,

det D2w− = (2δ)nδ−n = 2n > 1 = det D2w in Uh . (2.18)

For x ∈ ∂Uh ∩ ∂	h , we obtain from 0 ≤ (x − x0) · νx0 ≤ 2k−1 and the first inequality
in (2.16) that

w−(x) ≤ lx0(x)+δ|x − x0|2 ≤ φh(x)− ρ

4
|x − x0|2+δ|x − x0|2 ≤ φh(x) = w(x).

On the other hand, for x ∈ ∂Uh\∂	h by using (2.17) we have

w−(x) ≤ lx0(x)+ δ|x − x0|2 ≤ lx0(x)+
k2r0

4
|x − x0|2 ≤ φh(x) = w(x).

Therefore, w ≥ w− on ∂Uh . It follows from this, (2.18) and the comparison principle
that w(x) ≥ w−(x) in Uh . Hence,

w(x) ≥ l̄x0(x)+ δ
[
|x − x0|2 − |(x − x0) · νx0 |2

]
+ δ1−n |(x − x0) · νx0 |2

≥ l̄x0(x)+ δ|x − x0|2 in Uh . (2.19)

In particular,w(x) ≥ l̄x0(x) for all x ∈ Uh . Since l̄x0(x0) = φh(x0) = w(x0), we then
conclude that xn+1 = l̄x0(x) is a supporting hyperplane in Uh to w at x0.

We now show the second inequality in (2.15). For this, we first recall that 0 ≤ φh ≤ 1
in Uh and by Lemma 2.5(b), we find that for M := 1 + 2k−1C c |log c|2 ,

φh(x) ≤ φh(x0)+∇φh(x0) · (x − x0)+ M ≡ lx0(x)+ M ∀x ∈ Uh . (2.20)

We now compare w with w+ defined by

w+(x) := lx0(x)+ 2�k−1 (x − x0) · νx0 +�
[
|x − x0|2 − |(x − x0) · νx0 |2

]
∀x ∈ Uh,

where

� := max

{
4

ρ
,

4M

k2

}
.

Clearly, w+ is a convex function in Uh satisfying

det D2w+ = 0 < 1 = det D2w in Uh . (2.21)
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For x ∈ ∂Uh ∩ ∂	h , we obtain from the second inequality in (2.16) and � ≥ 4
ρ

that

w+(x) = lx0(x)+�|x − x0|2 +�
[
2k−1 (x − x0) · νx0 − |(x − x0) · νx0 |2

]

≥ φh(x)− 4

ρ
|x − x0|2 +�|x − x0|2 ≥ φh(x) = w(x).

For x ∈ ∂Uh\∂	h , we have |x − x0| ≥ k/2 and thus, by using (2.20) we obtain

w+(x) ≥ lx0(x)+�|x − x0|2 ≥ φh(x)− M + k2�

4
≥ φh(x) = w(x).

Therefore, w ≤ w+ on ∂Uh . It follows from this, (2.21) and the comparison principle
that w ≤ w+ in Uh . In particular,

w(x) ≤ lx0(x)+ 2�k−1 (x − x0) · νx0 +� |x − x0|2
= l̄x0(x)+ 2k−1(δ1−n +�) (x − x0) · νx0 +� |x − x0|2 ∀x ∈ Uh .

We then use Lemma 2.5(c) for x ∈ ∂Uh ∩∂	h and the fact that k/2 ≤ |x − x0| ≤ 2/k
for x ∈ ∂Uh\∂	h, to conclude that

w(x) ≤ l̄x0(x)+ C |x − x0|2 ∀x ∈ ∂Uh .

This together with (2.19) gives the quadratic separation in (2.15). ��
Thanks to the quadratic separation property of w in Lemma 2.7, we can now apply

Savin’s boundary C2,α estimates for solutions to the Monge–Ampère equations [27]
to get boundary C2,α estimates for w when ∂	 ∩ Bρ and φ |∂	∩Bρ are C2,α and h is
small.

Proposition 2.8 Let 	 and φ satisfy the hypotheses of the Localization Theorem 2.2
at the origin. Assume in addition that ∂	 ∩ Bρ is C2,α and φ ∈ C2,α(∂	 ∩ Bρ)
for some α ∈ (0, 1). Let 	h, φh, Uh and w be as in Lemma 2.7. Then there exists
h0 > 0 depending on n, λ,�, ρ, α, ‖∂	∩ Bρ‖C2,α and ‖φ‖C2,α(∂	∩Bρ) such that for
any h ≤ h0, we have

‖w‖C2,α(Bc∩Uh)
≤ c−1

0 and c0 In ≤ D2w ≤ c−1
0 In in Bc ∩ Uh (2.22)

for some c0 > 0 depending only on n, λ,�, α and ρ.

Now, let us assume in addition that ∂	 and φ|∂	 are C2,α at the origin for some
α ∈ (0, 1), that is, we assume that for x = (x ′, xn) ∈ ∂	 ∩ Bρ , we have

∣∣xn − q(x ′)
∣∣ ≤ M

∣∣x ′
∣∣2+α and

∣∣φ − p(x ′)
∣∣ ≤ M

∣∣x ′
∣∣2+α ,

where p(x ′) and q(x ′) are homogeneous quadratic polynomials.
If h is sufficiently small, then the corresponding rescalingφh satisfies the hypotheses

of φ in which the constant M is replaced by an arbitrary small constant σ .
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Lemma 2.9 ([27, Lemma 7.4]) Given anyσ > 0, there exists a small positive constant
h = h0(M, σ, α, n, λ,�, ρ) such that on ∂	h ∩ Bk−1 , we have

∣∣xn − qh(x
′)
∣∣ ≤ σ

∣∣x ′
∣∣2+α ,

∣∣qh(x
′)
∣∣ ≤ σ and

∣∣φh − p(x ′)
∣∣ ≤ σ

∣∣x ′
∣∣2+α ,

where qh(x ′) := h1/2q(x ′) is a homogeneous quadratic polynomial.

Remark 2.10 By inspecting the proof of Lemma 7.4 in [27], we see that the following
more precise statement holds true: There exists C = C(M, n, λ,�, ρ) > 0 such that
for any h ≤ c, on ∂	h ∩ Bk−1 we have

∣∣xn − qh(x
′)
∣∣ ≤ Ch

1+α
2
∣∣x ′
∣∣2+α ,

∣∣qh(x
′)
∣∣ ≤ Ch

1
2 and

∣∣φh − p(x ′)
∣∣ ≤ Ch

α
2
∣∣x ′
∣∣2+α .

Proof of Proposition 2.8. Let M := max
{‖∂	 ∩ Bρ‖C2,α , ‖φ‖C2,α(∂	∩Bρ)

}
and let

h0 be the small constant in Lemma 2.9 corresponding to M and σ = 1. Then by our
assumptions, Lemma 2.9, Remark 2.10 and Lemma 2.7, we can apply [27, Corol-
lary 7.2] to conclude that there exist C, δ > 0 depending on n, λ,�, α and ρ such
that

‖w‖C2,α(C0∩Bδ(0)) ≤ C,

where C0 := {x ∈ R
n+ : |x ′| ≤ xn} is the cone at the origin with opening θ = π/4.

By varying the point under consideration, we then conclude in the similar fashion
that

‖w‖C2,α(Cx0∩Bδ(x0))
≤ C ∀x0 ∈ ∂	h ∩ Bc. (2.23)

Here Cx0 := {x ∈ R
n+ : |x − x0|2 ≤ 2|(x − x0) · νx0 |2} is the cone at x0 with

opening θ = π/4 and in the direction of νx0 , the unit inner normal to ∂	h at x0. As a
consequence of (2.23) and Caffarelli’s interior C2,α estimates [2], we obtain the first
estimate in (2.22) from which the second estimate in (2.22) follows. ��

2.3 The classes Pλ,�,ρ,κ,α and Pλ,�,ρ,κ,∗

Fix n, ρ, λ,�, κ and α. We define the classes Pλ,�,ρ,κ,α and Pλ,�,ρ,κ,∗ consisting of
the triples (	, φ,U ) satisfying the following sets of conditions (i)–(vi i) and (i)–(vi),
respectively:

(i) 0 ∈ ∂	,U ⊂ 	 ⊂ R
n are bounded convex domains such that

B+
k ∩	 ⊂ U ⊂ B+

k−1 ∩	.
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(ii) φ : 	→ R
+ is convex satisfying φ = 1 on ∂U ∩	 and

φ(0) = 0, ∇φ(0) = 0, λ ≤ det D2φ ≤ � in 	,

∂	 ∩ {φ < 1} = ∂U ∩ {φ < 1}.

(iii) (quadratic separation)

ρ

4
|x − x0|2 ≤ φ(x)− φ(x0)−∇φ(x0) · (x − x0)

≤ 4

ρ
|x − x0|2 ∀x, x0 ∈ ∂	 ∩ B 2

k
.

(iv) (flatness)

∂	 ∩ {φ < 1} ⊂ G ⊂ {xn ≤ κ}

where G ⊂ B2/k is a graph in the en direction and its C1,1 norm is bounded by κ .

(v) (localization and gradient estimates)φ satisfies in U the hypotheses of the Local-
ization Theorem 2.2 at all points on ∂U ∩ Bc and

|∇φ| ≤ C0 in U ∩ Bc.

(vi) (Maximal sections around the origin) If y ∈ U ∩ Bc2 then the maximal interior
section of φ in U satisfies:

c ≥ h̄(y) ≥ k2
0 dist2(y, ∂U ) and Sφh (y, h̄(y)) ⊂ U ∩ Bc.

(vii) (Pogorelov estimates)

‖∂U ∩ Bc‖C2,α ≤ c−1
0

and if w is the convex solution to

{
det D2w = 1 in U
w = φ on ∂U,

(2.24)

then

‖w‖C2,α(Bc∩U ) ≤ c−1
0 and c0 In ≤ D2w ≤ c−1

0 In in Bc ∩ U.

The constants k, k0, c,C0 above depend only on n, ρ, λ,� and c0 depends also on α.

Remark 2.11 If (	, φ,U ) ∈ Pλ,�,ρ,κ,∗ then the Pogorelov estimates in (vi i) might
not hold. However, φ satisfies in U the hypotheses of the Localization Theorem 2.2 at
all points on ∂U ∩ Bc. Thus, if w is the convex solution to (2.24), then by inspecting
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the proof of Lemma 2.7, we see that w separates quadratically from its tangent planes
at any point x0 ∈ ∂U ∩ Bc, that is,

θ |x − x0|2 ≤ w(x)−w(x0)−∇w(x0) · (x − x0) ≤ θ−1 |x − x0|2 for all x ∈ ∂U.

We summarize the discussion at the end of Sect. 2.2, Lemmas 2.5, 2.9 and Propo-
sition 2.8 in the following proposition.

Proposition 2.12 Let 	 and φ satisfy the hypotheses of Theorem 2.2 at the origin.
Assume in addition that ∂	 ∩ Bρ is C2,α and φ ∈ C2,α(∂	 ∩ Bρ) for some α ∈
(0, 1). Then there exists h0 > 0 depending only on n, λ,�, ρ, α, ‖∂	∩ Bρ‖C2,α and
‖φ‖C2,α(∂	∩Bρ) such that for h ≤ h0 we have

(
	h, φh, Sφh (0, 1)

) ∈ Pλ,�,ρ,Ch1/2,α and ‖∂	h ∩ B1/k‖C2,α ≤ C ′ h1/2.

Here C depends only on n, λ,� and ρ; C ′ depends only on n, λ,�, ρ, ‖∂	∩Bρ‖C2,α ,

and ‖φ‖C2,α(∂	∩Bρ).

2.4 Geometric properties of boundary sections of solutions to Monge–Ampère
equation

In this subsection, we recall some important properties of boundary sections of
solutions to the Monge–Ampère equations established in [22]: the engulfing and
dichotomic properties, volume estimates, a covering theorem and strong type p − p
estimates for the maximal functions corresponding to small sections including bound-
ary ones.

The engulfing property and volume estimates are summarized in the following
theorem.

Theorem 2.13 Assume that 	 and φ satisfy (2.1)–(2.3). Then,

a. (Engulfing property) There exists θ∗ > 0 depending only on ρ, λ,� and n such
that if y ∈ Sφ(x, t) with x ∈ 	 and t > 0, then Sφ(x, t) ⊂ Sφ(y, θ∗t).

b. (Volume estimates) There exist constants c∗,C1,C2 depending only on ρ, λ,�
and n such that for any section Sφ(x, t) with x ∈ 	 and t ≤ c∗, we have

C1tn/2 ≤ |Sφ(x, t)| ≤ C2tn/2.

Our next property is a dichotomy for sections of solutions to the Monge–Ampère
equations: any section is either an interior section or included in a boundary section
with a comparable height.

Proposition 2.14 (Dichotomy) Assume that 	 and φ satisfy (2.1)–(2.3). Let Sφ(x, t)
be a section of φ with x ∈ 	 and t > 0. Then one of the following is true:

(i) Sφ(x, 2t) is an interior section, that is, Sφ(x, 2t) ⊂ 	;
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(ii) Sφ(x, 2t) is included in a boundary section with comparable height, that is,
there exists z ∈ ∂	 such that Sφ(x, 2t) ⊂ Sφ(z, c̄t) for some constant
c̄ = c̄(ρ, λ,�, n) > 0.

Our covering theorem states as follows.

Theorem 2.15 (Covering theorem) Assume 	 and φ satisfy (2.1)–(2.3). Let O ⊂ 	

be a Lebesgue measurable set and ε > 0 small. Suppose that for each x ∈ O a section
Sφ(x, tx ) is given with

|Sφ(x, tx ) ∩ O|
|Sφ(x, tx )| = ε.

Then if sup{tx : x ∈ O}<∞, there exists a countable subfamily of sections
{Sφ(xk, tk)}∞k=1 satisfying

O ⊂
∞⋃

k=1

Sφ(xk, tk) and |O| ≤ √
ε
∣∣

∞⋃

k=1

Sφ(xk, tk)
∣∣.

Finally, we have the following global strong-type p − p estimates for the maximal
function corresponding to small sections.

Theorem 2.16 (Strong-type p-p estimates) Assume that 	 and φ satisfy (2.1)–(2.3).
For f ∈ L1(	), define

M( f )(x) = sup
t≤c

1

|Sφ(x, t)|
∫

Sφ(x,t)

| f (y)| dy ∀x ∈ 	.

Then, for any 1 < p <∞, there exists C p > 0 depending on p, ρ, λ, � and n such
that

‖M( f )‖L p(	) ≤ C p ‖ f ‖L p(	).

3 Global power decay and W2,δ estimates

In this section, we establish preliminary power decay estimates for the distribution
function of the second derivatives of solutions to the linearized Monge–Ampère equa-
tions and also their global W 2,δ estimates. We also show under suitable geometric
conditions, the cofactor matrices of the Hessian matrices of two convex functions
defined on the same domain are close if their Monge–Ampère measures and boundary
values are close in the L∞ norm.

We begin this section by recalling the definitions, introduced in [17], of the quasi
distance d(x, x0) generated by a convex function φ and the set G M (u,	) where the
function u is touched from above and below by “quasi paraboloids” generated by this
quasi distance.
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Definition 3.1 Let 	 be a bounded convex set in R
n and let φ ∈ C1(	) be a convex

function. For any x ∈ 	 and x0 ∈ 	, we define the quasi distance d(x, x0) by

d(x, x0)
2 := φ(x)− φ(x0)−∇φ(x0) · (x − x0).

Definition 3.2 Let 	 and φ be as in Definition 3.1. For u ∈ C(	) and M > 0, we
define

G M (u,	) =
{

x̄ ∈ 	 : u is differentiable at x̄ and |u(x)− u(x̄)−∇u(x̄) · (x − x̄)|

≤ M

2
d(x, x̄)2 ∀x ∈ 	

}
.

We call M
2 d(x, x̄)2 and −M

2 d(x, x̄)2 quasi paraboloids of opening M generated
by φ. When we would like to emphasize the dependence of d(x, x0) on φ, we write
dφ(x, x0). Likewise, we write G M (u,	, φ) to indicate the dependence on φ of the set
G M (u,	). Notice that for φ(x) = |x |2, we have d(x, x̄) = |x − x̄ | is the Euclidean
distance.

In the next lemma, we show that if the quasi distance d(x, x0) is bounded from below
by the Euclidean distance |x − x0| around x0 then it is also bounded from above by a
multiple of this Euclidean distance around x0. This lemma is a slight modification of
[15, Lemma 6.2.1].

Lemma 3.3 Assume	 satisfies (2.1) and letφ ∈ C(	) be a convex function satisfying
λ ≤ det D2φ ≤ � in 	 and φ = 0 on ∂	. There exists c = c(n, λ,�, ρ) > 0 such
that if x0 ∈ 	 and

d(x, x0)
2 ≥ σ |x − x0|2 in Br (x0) ⊂ 	 for some r > 0,

then for all x in a small neighborhood of x0, we have

d(x, x0)
2 ≤ 1

c2σ n−1 |x − x0|2.

Proof Let ϕ(x) := φ(x) − φ(x0) − ∇φ(x0) · (x − x0). Then the strict convex-
ity of φ implies that there exists δ > 0 such that Sφ(x0, δ) := {x ∈ 	 :
ϕ(x) < δ} ⊂ Br (x0). Therefore by the proof of Lemma 6.2.1 in [15], we have
ϕ(x) ≤ C(n, λ,�, ρ)σ−n+1 |x − x0|2 for all x ∈ 	 satisfying ϕ(x) ≤ δ, which gives
the conclusion of the lemma. ��

The following lemma allows us to estimate the distribution function of D2u. It is
the starting point for our proofs of Theorems 1.1 and 1.2 and the global version of [17,
Lemma 2.7].

Lemma 3.4 Let 	,φ and c be as in Lemma 3.3, and u ∈ C2(	). Define

Aloc
σ :=

{
x0 ∈ 	 : d(x, x0)

2 ≥ σ |x − x0|2, for all x in some neighborhood of x0

}
.
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Then for any m > 1 and β > 0, we have

{
x ∈ 	 : |Di j u(x)| > βm} ⊂

⎛

⎜⎝	 \ Aloc
(

cβ
m−1

2

) −2
n−1

⎞

⎟⎠ ∪ (	 \ Gβ(u,	)
)
. (3.1)

Proof Let γ := β
m−1

2 . If x̄ ∈ Aloc
(cγ )

−2
n−1

∩ Gβ(u,	), then

−β
2

d(x, x̄)2 ≤ u(x)− u(x̄)− ∇u(x̄) · (x − x̄) ≤ β

2
d(x, x̄)2

for each x ∈ 	. Since x̄ ∈ Aloc
(cγ )

−2
n−1

, these together with Lemma 3.3 yield

−βγ
2

2
|x − x̄ |2 ≤ u(x)− u(x̄)− ∇u(x̄) · (x − x̄) ≤ βγ 2

2
|x − x̄ |2

for all x in a small neighborhood of x̄ , and so |Di j u(x̄)| ≤ βγ 2 = βm . Thus we have
proved that

Aloc
(cγ )

−2
n−1

∩ Gβ(u,	) ⊂
{

x ∈ 	 : |Di j u(x)| ≤ βm, for i, j = 1, . . . , n
}

and the lemma follows by taking complements. ��

3.1 Power decay estimates

In order to derive global W 2,p estimates for solutions u to the linearized Monge–
Ampère equation, we will need to estimate the distribution function

F(β) := ∣∣{x ∈ 	 : |Di j u(x)| > βm}∣∣

for some suitable choice of m > 1. It follows from Lemma 3.4 that this can be done
if one can get appropriate decay estimates for

F1(β) := |	 \ Aloc
(cβ

m−1
2 )

−2
n−1

| and F2(β) := |	 \ Gβ(u,	)|.

Notice that the function F1(β) involves only the solution φ of the Monge–Ampère
equation and its power decay is given in the next theorem.

Theorem 3.5 Assume 	 satisfies (2.1) and ∂	 ∈ C1,1. Let φ ∈ C(	) be a convex
function such that 1−ε ≤ det D2φ ≤ 1+ε in	 and (2.3) holds, where 0 < ε < 1/2.
Then there exists a positive constant M depending only on n and ρ such that
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∣∣	 \ Aloc
s−2

∣∣ ≤ C ′(ε, n, ρ, ‖∂	‖C1,1) s

ln
√

Cε

ln M for all s > 0. (3.2)

In particular, for s = (cβ
m−1

2 )
1

n−1 , we get

F1(β) ≤ C ′(ε, n, ρ, ‖∂	‖C1,1) β
− m−1

2(n−1) ln M ln 1√
Cε ∀β > 0.

The small power decay estimates for F2(β) are given in the following proposition.
It is the boundary version of Proposition 3.4 in [17].

Proposition 3.6 Assume that 	 and φ satisfy the assumptions (2.1)–(2.3). Assume
in addition that ∂	 ∈ C1,1. Suppose u ∈ C1(	) ∩ W 2,n

loc (	), |u| ≤ 1 in 	 and
Lφu = f in	 with ‖ f ‖Ln(	) ≤ 1. Then there exist τ = τ(n, λ,�, ρ) ∈ (0, 1/2) and
C = C(ρ, λ,�, n, ‖∂	‖C1,1) > 0 such that

F2(β) =
∣∣	 \ Gβ(u,	)

∣∣ ≤ C

βτ
for all β > 0.

The next result is a variant of Proposition 3.6 which will be important for the density
and improved power decay estimates in Sect. 5.1.

Proposition 3.7 Let (	, φ,U ) be in the class Pλ,�,ρ,κ,∗. Suppose u ∈ C(	) ∩
C1(U ) ∩ W 2,n

loc (U ), |u| ≤ 1 in 	 and Lφu = f in U with ‖ f ‖Ln(U∩Bc) ≤ 1. Then
there exist τ = τ(n, λ,�, ρ) ∈ (0, 1/2) and C = C(n, λ,�, ρ, κ) > 0 such that

∣∣(U ∩ Bc2) \ Gβ(u,	)
∣∣ ≤ C

βτ
|U ∩ Bc2 | for all β > 0.

The above inequality also holds if U ∩ Bc2 is replaced by Sφ(0, r) for any universal
constant r satisfying r ≤ c6.

As a consequence of the power decay estimates for F1(β) and F2(β) in Theorem 3.5
and Proposition 3.6, we find that the decay for F(β) when 0 < ε < 1/2 is given by

F(β) ≤ C(ε, n, ρ, ‖∂	‖C1,1) β
− m−1

2(n−1) ln M ln 1√
Cε + Cβ−τ .

Since m−1
2(n−1) ln M ln 1√

Cε
→ ∞ as ε → 0, we obtain global W 2,δ estimates for all

δ < τ/m < 1/2 for solutions to the linearized Monge–Ampère equation Lφu = f
provided that f ∈ Ln(	) and ε is small, that is, det D2φ is close to a constant.
However, in the next subsection, we offer a more direct proof of global W 2,δ estimates
based on interior estimates without resorting to decay estimates of the distribution
function of the second derivatives. Another advantage of this proof is that it works for
all Monge–Ampère measures det D2φ bounded away from 0 and ∞.

Remark 3.8 It is now clear that the obstruction to higher integrability of |D2u| is the
small exponent τ in the decay estimates for

∣∣	 \ Gβ(u,	)
∣∣ given by Proposition 3.6.
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Most of the paper is devoted to developing tools to improve the decay estimates for∣∣	\Gβ(u,	)
∣∣. In particular, the global stability of cofactor matrices and an approxi-

mation lemma in the next two sections will be employed for this purpose.

3.2 Global W 2,δ estimates

In this subsection, we obtain global W 2,δ(	) estimates (δ > 0 small) for solutions
to the linearized Monge–Ampère equation Lφu = f when det D2φ is only bounded
away from 0 and ∞ and under natural assumptions on the domain	 and the boundary
data of φ.

Our main theorem in this subsection is the following.

Theorem 3.9 Assume	 andφ satisfy the assumptions (2.1)–(2.3). Assume in addition
that ∂	 ∈ C1,1. Let u ∈ C(	) ∩ C1(	) ∩ W 2,n

loc (	) be a solution of

{Lφu = f in	,
u = 0 on ∂	.

Then there exist p = p(ρ, λ,�, n) > 0 and C = C(ρ, λ,�, n, ‖∂	‖C1,1) > 0 such
that

‖D2u‖L p(	) ≤ C‖ f ‖Ln(	).

The rest of this subsection is devoted to proving this theorem. The idea is to cover
	 by maximal interior sections whose shapes are under control by Proposition 2.3 and
then apply the interior W 2,δ estimates of Gutiérrez and Tournier [18] in these sections.
Furthermore, since we can control the number of these sections within certain height
due to the C1,1 regularity of the boundary ∂	, the global estimates follow by adding
interior ones.

For reader’s convenience, we recall Gutiérrez-Tournier’s W 2,δ estimates.

Theorem 3.10 ([18, Theorem 6.3]) Let 	 be a convex domain such that Bk0 ⊂ 	 ⊂
Bk−1

0
. Let φ ∈ C2(	) be a convex function satisfying λ ≤ det D2φ ≤ � in 	 and

φ = 0 on ∂	. Let u ∈ C1(	)∩W 2,n
loc (	) be a solution of Lφu = f in	. Then, given

α0 ∈ (0, 1), there exist positive constants δ and C depending only on α0, k0, λ,� and
n such that

‖D2u‖
Lδ
(

Sφ(x0,−α0φ(x0))
) ≤ C

(
‖u‖L∞(	) + ‖ f ‖Ln(	)

)
,

where x0 ∈ 	 is such that min	 φ = φ(x0).

Let 0 < p < min{δ, 1
2 } where δ = δ(ρ, λ,�, n) > 0 is a small number appear-

ing in Theorem 3.10 corresponding to α0 = 1/2 and k0 = k0(ρ, n, λ,�) given by
Proposition 2.3.

We will show that the conclusion of Theorem 3.9 holds for the above choice of p.
To achieve this, we first estimate the L p norm of D2u in the interior of each maximal
interior section.
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Lemma 3.11 Assume 	 and φ satisfy the assumptions (2.1)–(2.3). Let u ∈ C(	) ∩
C1(	) ∩ W 2,n

loc (	) be a solution of

Lφu = f in 	, and u = 0 on ∂	.

Then, there exists a constant C > 0 depending only on p, ρ, λ,� and n such that

‖D2u‖
L p
(

Sφ
(

y, h̄(y)
2

))

≤ Ch̄(y)
n

2p −1| log h̄(y)|2
(
‖u‖

L∞
(

Sφ(y,h̄(y))
) + h̄(y)1/2‖ f ‖

Ln
(

Sφ(y,h̄(y))
)
)

for all y ∈ 	 satisfying h̄(y) ≤ c.

Proof Let h := h̄(y) with h̄(y) ≤ c. We now define the rescaled domain 	̃h and
rescaled functions φ̃h , ũh and f̃h as in Sect. 2.2 that preserve the L∞-norm in a
section tangent to the boundary. For simplicity, let us denote S̃t (0) := Sφ̃h

(0, t) for
t > 0. Then by Theorem 3.10, we have

‖D2ũh‖
L p

(
S̃ 1

2
(0)

) ≤ C(p, ρ, λ,�, n)
(
‖ũh‖L∞(S̃1(0))

+ ‖ f̃h‖Ln(S̃1(0))

)
. (3.3)

Using the fact

D2u
(

y + h1/2 A−1
h x
)
= h−1(Ah)

t D2ũh(x) Ah,

we obtain
∫

Sφ
(

y, h
2

)
|D2u(z)|p dz = h

n
2 −p

∫

S̃ 1
2
(0)

|At
h D2ũh(x) Ah |p dx

≤ C h
n
2 −p | log h|2p

∫

S̃ 1
2
(0)

|D2ũh(x)|p dx .

It follows that

‖D2u‖
L p
(

Sφ
(

y, h
2

)) ≤ Ch
n

2p −1| log h|2 ‖D2ũh‖L p
(

S̃ 1
2
(0)
). (3.4)

Moreover, we have

‖ f̃h‖Ln(S̃1(0))
= h

1
2 ‖ f ‖Ln(Sφ(y,h)) and ‖ũh‖L∞(S̃1(0))

= ‖u‖L∞(Sφ(y,h)). (3.5)

Combining (3.3)–(3.5), we obtain the desired estimate stated in our lemma. ��
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Finally, we will use the following Vitali covering lemma proved by Savin in [28];
see also [22, Lemma 2.5] for a more general covering result.

Lemma 3.12 ([28, Lemma 2.3]) Assume 	 and φ satisfy the assumptions (2.1)–
(2.3). Then there exists a sequence of disjoint sections Sφ(yi , δ0h̄(yi )) with δ0 =
δ0(λ,�, n) > 0 such that

	 ⊂
∞⋃

i=1

Sφ

(
yi ,

h̄(yi )

2

)
.

Proof of Theorem 3.9. It follows from Proposition 2.3 (see also [28, Lemma 2.2]) that
if y ∈ 	 with h̄(y) ≤ c then

Sφ(y, h̄(y)) ⊂ y + k−1
0 Eh ⊂ DCh̄(y)1/2

:=
{

x ∈ 	 : dist(x, ∂	) ≤ Ch̄(y)1/2
}
, C := 2k−2

0 .

By Lemma 3.12, we have

∫

	

|D2u|pdx ≤
∞∑

i=1

∫

Sφ

(
yi ,

h̄(yi )
2

)
|D2u|pdx .

There is a finite number of sections Sφ(yi , h̄(yi ))with h̄(yi ) ≥ c and, by Theorem 3.10,
we have in each such section

∫

Sφ

(
yi ,

h̄(yi )
2

)
|D2u|p ≤ C

(‖u‖L∞(	) + ‖ f ‖Ln(	)

)p
.

Now, for d ≤ c we consider the family Fd of sections Sφ(yi , h̄(yi )/2) such that
d/2 < h̄(yi ) ≤ d. Let Md be the number of sections in Fd . We claim that

Md ≤ Cbd
1
2− n

2 (3.6)

for some constant Cb depending only on ρ, n, λ,� and ‖∂	‖C1,1 . Indeed, we first
note that, by [15, Corollary 3.2.4] (see also Theorem 2.13(b)), there exists a constant
C = C(n, λ,�, ρ) > 0 such that

|Sφ(yi , δ0h̄(yi ))| ≥ Ch̄(yi )
n/2 ≥ Cdn/2.

Since Sφ(yi , δ0h̄(yi )) ⊂ DCd1/2 are disjoint, we find that

MdCdn/2 ≤
∑

i∈Fd

|Sφ(yi , δ0h̄(yi ))| ≤ |DCd1/2 | ≤ C∗d1/2
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for some constant C∗ depending only on n and ‖∂	‖C1,1 . Thus (3.6) holds.
It follows from Lemma 3.11 and (3.6) that

∑

i∈Fd

∫

Sφ

(
yi ,

h̄(yi )
2

)
|D2u|p ≤ C Mdd

n
2 −p| log d|2p

(
‖u‖L∞(	) + ‖ f ‖Ln(	)

)p

≤ Cd
1
2−p| log d|2p

(
‖u‖L∞(	) + ‖ f ‖Ln(	)

)p
.

Adding these inequalities for the sequence d = c2−k, k = 0, 1, 2, . . . , and noting that

‖u‖L∞(	) ≤ C(n, ρ, λ,�)‖ f ‖Ln(	),

by the ABP estimate, we obtain the desired global L p estimate for D2u. ��

3.3 Proofs of the power decay estimates

Proof of Theorem 3.5. Let {Sφ(yi , h̄(yi )/2)} be the sequence of sections covering 	
given by Lemma 3.12. In what follows we will use the notations as in the proof of
Lemma 3.11. We then have

∣∣	 \ Aloc
s−2

∣∣ ≤
∞∑

i=1

∣∣Sφ(yi , h̄(yi )/2) \ Aloc
s−2

∣∣

≤
∞∑

k=0

∑

i∈Fc2−k

∣∣Sφ(yi , h̄(yi )/2) \ Aloc
s−2

∣∣

+
∑

i : h̄(yi )>c

∣∣Sφ(yi , h̄(yi )/2) \ Aloc
s−2

∣∣ =: I + I I. (3.7)

Let us first estimate the summation I corresponding to sections with h̄(yi ) ≤ c.
Consider a prototype section Sφ(y, h) with h := h̄(y) ≤ c. Proposition 2.3 tells us
that Sφ(y, h) is equivalent to an ellipsoid Eh , i.e.,

k0 Eh ⊂ Sφ(y, h)− y ⊂ k−1
0 Eh,

where

Eh := h1/2 A−1
h B1, with det Ah = 1, ‖Ah‖, ‖A−1

h ‖ ≤ k−1| log h|.

Here k, k0 depend only on n and ρ. Let T (x) := h−1/2 Ah(x − y). Define Ũh :=
T (Sφ(y, h)) and

φ̃h(z) := h−1
[
φ(T−1z)− φ(y)−∇φ(y) · (T−1z − y)− h

]
for z ∈ Ũh .
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Then Bk0 ⊂ Ũh ≡ Sφ̃h
(0, 1) ⊂ Bk−1

0
, 1 − ε ≤ det D2φ̃h ≤ 1 + ε in Ũh and φ̃h = 0

on ∂Ũh . By [15, Theorem 3.3.10], there exists η0 = η0(n, ρ) > 0 such that

Sφ̃h
(x, t) � Ũh for all x ∈ Sφ̃h

(0, 1/2) and t ≤ η0.

Now, let

D̃
1
2
s :=

{
x ∈ Sφ̃h

(0, 1/2) : Sφ̃h
(x, t) ⊂ B(x, s

√
t), ∀t ≤ η0

}
.

Then, by [17, Theorem 2.8], we obtain

|Sφ̃h
(0, 1/2) \ D̃

1
2
s | ≤ |Ũh |

(Cε)2
s−pε ,

where pε := − ln
√

Cε

ln M
with C,M > 0 is a constant depending only on n and ρ. Let

Ãσ :=
{

z̄ ∈ Ũh : φ̃h(z) ≥ φ̃h(z̄)+ ∇φ̃h(z̄) · (z − z̄)+ σ |z − z̄|2, ∀z ∈ Ũh

}
.

Since D̃
1
2
s = Sφ̃h

(0, 1/2) ∩ Ãs−2 by [15, Theorem 6.2.2], we can rewrite the above
inequality as

|T (Sφ(y, h/2)
) \ Ãs−2 | ≤ C(ε, n, ρ) s−pε . (3.8)

Let us relate Ãs−2 to Aloc
σ . Since |x − x̄ | ≤ ‖A−1

h ‖ |Ah(x − x̄)| ≤ k−1h1/2| log h|
|T x − T x̄ |, we have

Ãs−2 = T
{

x̄ ∈ Sφ(y, h) : φ̃h(T x) ≥ φ̃h(T x̄)+∇φ̃h(T x̄) · (T x − T x̄)

+s−2 |T x − T x̄ |2, ∀x ∈ Sφ(y, h)
}

⊂ T
{

x̄ ∈ Sφ(y, h) : φ(x) ≥ φ(x̄)+ ∇φ(x̄) · (x − x̄)

+(k−1s| log h|)−2 |x − x̄ |2, ∀x ∈ Sφ(y, h)
}

⊂ T
(

Sφ(y, h) ∩ Aloc
(k−1s| log h|)−2

)
.

We infer from this and (3.8) that

|Sφ(y, h/2) \ Aloc
(k−1s| log h|)−2 | ≤ C(ε, n, ρ)| det T |−1 s−pε

= C(ε, n, ρ) hn/2 s−pε ∀s > 0,
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or equivalently,

|Sφ(y, h/2) \ Aloc
s−2 | ≤ C(ε, n, ρ) hn/2| log h|pε s−pε ∀s > 0.

Thus the summation I in (3.7) can be estimated as follows

I ≤ C(ε, n, ρ)s−pε
∞∑

k=0

∑

i∈Fc2−k

h̄(yi )
n/2| log h̄(yi )|pε

≤ C(ε, n, ρ)s−pε
∞∑

k=0

(c2−k)n/2| log(c2−k−1)|pε Mc2−k

≤ C s−pε
∞∑

k=0

(c2−k)1/2| log(c2−k−1)|pε ≤ C s−pε . (3.9)

Note that C depends on ε, n, ρ and ‖∂	‖C1,1 , and we have used the bound (3.6) for
Md to obtain the third inequality.

Next let us estimate the summation I I corresponding to sections Sφ(yi , h̄(yi )/2)
with h̄(yi ) > c. Since the family {Sφ(yi , δ0h̄(yi ))} is disjoint, we infer from the lower
bound on volume of sections and 	 ⊂ B1/ρ that

#{i : h̄(yi ) > c} ≤ C(n, ρ).

Also, by using the standard normalization for interior sections and [17, Theorem 2.8]
we get

|Sφ(yi , h̄(yi )/2) \ Aloc
s−2 | ≤ C(ε, n, ρ) s−pε for all i with h̄(yi ) > c.

Therefore,

I I ≤ #{i : h̄(yi ) > c} [C(ε, n, ρ) s−pε
] ≤ C(ε, n, ρ) s−pε ∀s > 0. (3.10)

By combining (3.7), (3.9) and (3.10) we obtain

∣∣	 \ Aloc
s−2

∣∣ ≤ I + I I ≤ C(ε, n, ρ, ‖∂	‖C1,1) s−pε

= C(ε, n, ρ, ‖∂	‖C1,1) s

ln
√

Cε

ln M .

��
The proof of Theorem 3.5 can also be employed to give the proof of Proposition 3.6.

Proof of Proposition 3.6. Let {Sφ(yi , h̄(yi )/2)} be the sequence of sections covering
	 given by Lemma 3.12. Then we have
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∣∣	 \ Gβ(u,	)
∣∣ ≤

∑

i : h̄(yi )>c

∣∣Sφ
(

yi ,
h̄(yi )

2

)
\ Gβ(u,	)

∣∣

+
∞∑

k=0

∑

i∈Fc2−k

∣∣Sφ
(

yi ,
h̄(yi )

2

)
\ Gβ(u,	)

∣∣. (3.11)

By using [17, Proposition 3.4] and arguing as in estimating the term I I in the proof
of Theorem 3.5, we see that there exist constants C, τ > 0 depending only on n, λ,�
and ρ with τ < 1/2 such that

∑

i : h̄(yi )>c

∣∣Sφ
(

yi ,
h̄(yi )

2

)
\Gβ(u,	)

∣∣≤
∑

i : h̄(yi )>c

C

βτ
= C

βτ
#{i : h̄(yi ) > c} ≤ C

βτ
.

(3.12)

To estimate the last expression in (3.11), let us consider a prototype section Sφ(y, h)
with h := h̄(y) ≤ c. We now define the rescaled domains 	̃h, Ũh and rescaled
functions φ̃h , ũh and f̃h as in Sect. 2.2 that preserve the L∞-norm in a section tangent
to the boundary. Then

‖ f̃h‖Ln(Ũh)
= h1/2‖ f ‖Ln(Sφ(y,h)) ≤ h1/2‖ f ‖Ln(	) ≤ 1. (3.13)

Therefore, we can apply [17, Proposition 3.4] to obtain for T (x) := h−1/2 Ah(x − y)

∣∣T (Sφ(y, h/2)) \ Gβ(ũh, 	̃h, φ̃h)
∣∣ = ∣∣Sφ̃h

(0, 1/2) \ Gβ(ũh, 	̃h, φ̃h)
∣∣

≤ C

βτ
for all β > 0.

But as ũh ∈ C1(Ũh) and dφ̃h
(T x, T x̄)2 = h−1d(x, x̄)2 for all x, x̄ ∈ 	, we get

T (Sφ(y, h/2)) ∩ Gβ(ũh, 	̃h, φ̃h) = T
(

Sφ(y, h/2) ∩ Gβh−1(u,	)
)
.

Thus we infer from the above inequality that

∣∣Sφ(y, h/2) \ Gβh−1(u,	)
∣∣ ≤ C

βτ
| det T |−1 = C

βτ
h

n
2 ,

or equivalently,

∣∣Sφ(y, h/2) \ Gβ(u,	)
∣∣ ≤ C

βτ
h

n
2 −τ for all β > 0.
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This together with the estimate (3.6) for Md yields

∞∑

k=0

∑

i∈Fc2−k

∣∣Sφ(yi , h̄(yi )/2) \ Gβ(u, 	)
∣∣

≤ C

βτ

∞∑

k=0

∑

i∈Fc2−k

h̄(yi )
n
2 −τ ≤ C

βτ

∞∑

k=0

(c2−k)
n
2 −τ Mc2−k ≤ C ′

βτ

∞∑

k=0

(c2−k)
1
2−τ ≤ C ′

βτ

(3.14)

provided that τ < 1/2. Here C ′ also depends on ‖∂	‖C1,1 . The desired estimate is
now obtained by combining (3.11), (3.12) and (3.14). ��

To prove Proposition 3.7, we use the following localized version at the boundary
of Lemma 3.12.

Lemma 3.13 Assume (	, φ,U ) ∈ Pλ,�,ρ,κ,∗ and let w be the solution to (2.24). Let
ψ denote one of the functions φ andw. Then there exists a sequence of disjoint sections
{Sψ(yi , δ0h̄(yi ))}∞i=1, where δ0 = δ0(n, λ,�), yi ∈ U ∩ Bc2 and Sψ(yi , h̄(yi )) is the
maximal interior section of ψ in U, such that

U ∩ Bc2 ⊂
∞⋃

i=1

Sψ

(
yi ,

h̄(yi )

2

)
. (3.15)

Moreover, we have

Sψ(yi , h̄(yi )) ⊂ U ∩ Bc, h̄(yi ) ≤ c. (3.16)

If we let Mloc
d denote the number of sections Sψ(yi , h̄(yi )/2) such that d/2 < h̄(yi ) ≤

d ≤ c, then

Mloc
d ≤ Cbd

1
2− n

2 (3.17)

for some constant Cb depending only on ρ, n, λ,� and ‖∂	 ∩ Bρ‖C1,1 .

Proof By Remark 2.11, we can use Proposition 2.3 to get the same conclusion as in
Lemma 2.5(e) for sections ofψ with centers in U ∩ Bc2 . All these sections thus satisfy
(3.16) and are equivalent to ellipsoids. In particular, ψ is strictly convex in U ∩ Bc.

Furthermore,

Sψ(yi , h̄(yi )) ⊂
{

x ∈ Bc ∩ U : dist(x, ∂	 ∩ ∂U ) ≤ 2k−1
0 h̄(yi )

1/2
}
.

With this in mind and assuming that the sequence {Sψ(yi , δ0h̄(yi ))}∞i=1 is disjoint and
satisfies (3.15), we argue similarly as in deriving the estimate (3.6) for Md to obtain
(3.17).
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It remains to establish the covering (3.15). The crucial point in the proof of
Lemma 3.12 is the engulfing property of interior sections which hold for strictly
convex solution to the Monge–Ampère equation with bounded right hand side. By our
discussion above, ψ is strictly convex in U ∩ Bc and thus we obtain (3.15). For com-
pleteness, we include the proof here, taken almost verbatim from [28]. By the engulfing
property of interior sections of strictly convex solution to the Monge–Ampère equa-
tion with bounded right hand side, we can choose δ0 depending only on n, λ,� with
the following property. If y, z ∈ Bc2 ∩ U with

Sψ(y, δ0h̄(y)) ∩ Sψ(z, δ0h̄(z)) �= ∅ and 2h̄(y) ≥ h̄(z)

then

Sψ(z, δ0h̄(z)) ⊂ Sψ(y, h̄(y)/2).

We choose Sψ(y1, δ0h̄(y1)) from all sections Sψ(y, δ0h̄(y)), y ∈ U ∩ Bc2 such that

h̄(y1) ≥ 1

2
sup

y
h̄(y)

then choose Sψ(y2, δ0h̄(y2)) as above but only from the remaining sections
Sψ(y, δ0h̄(y)) that are disjoint from Sψ(y1, δ0h̄(y1)), then Sψ(y3, δ0h̄(y3)), etc. Con-
sequently, we easily obtain

U ∩ Bc2 ⊂
⋃

y∈U∩Bc2

Sψ(y, δ0h̄(y)) ⊂
∞⋃

i=1

Sψ(yi , δ0h̄(yi )).

��
Proof of Proposition 3.7. Our proof is similar to that of Proposition 3.6 using
Lemma 3.13. In the proof of Proposition 3.6, we replace 	\Gβ(u,	) by (U ∩
Bc2)\Gβ(u,	), the covering of 	 using Lemma 3.12 by the covering of U ∩ Bc2

using Lemma 3.13. By (3.16), the first term of the right hand side of (3.11) disap-
pears. For the second term of the right hand side of (3.11), we estimate as in the rest of
the proof of Proposition 3.6. Note that, since all sections in the covering for U ∩ Bc2

satisfy Sφ(yi , h̄(yi )) ⊂ Bc ∩ U , instead of (3.13), we now have

‖ f̃ ‖Ln(T (Sφ(y,h))) = h1/2‖ f ‖Ln(Sφ(y,h)) ≤ h1/2‖ f ‖Ln(U∩Bc) ≤ 1.

In (3.14), we replace Md by Mloc
d and use (3.17) to estimate it. The conclusion of

Proposition 3.7 follows. Note that by (2.7), we have Sφ(0, r) ⊂ U ∩ Bc2 if r ≤ c6 and
the last remark of the proposition follows. ��

3.4 Global stability of cofactor matrices

In this subsection, we prove that, under suitable geometric conditions, the cofactor
matrices of the Hessian matrices of two convex functions defined on the same domain
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are close if their Monge–Ampère measures and boundary values are close in the L∞
norm.

We first start with a stability result at the boundary for the second derivatives and
the cofactor matrices of functions in the class P .

Proposition 3.14 Assume (	, φ,U ) ∈ P1−ε,1+ε,ρ,κ,∗. Let w ∈ C(U ) be the convex
solution to

{
det D2w = 1 in U
w = φ on ∂U.

Then the following statements hold.

(i) For any p > 1, there exist ε0 = ε0(p, n, ρ) > 0 and C = C(p, n, ρ, κ) > 0 such
that

‖D2φ − D2w‖L p(Bc2∩U ) ≤ Cε
δ

n(2p−δ) for all ε ≤ ε0.

(ii) Assume in addition that (	, φ,U ) ∈ P1−ε,1+ε,ρ,κ,α . Then for any q ≥ 1, there
exist ε0 = ε0(q, n, ρ) > 0 and C = C(q, n, ρ, κ, α) > 0 such that

‖�− W‖Lq (Bc2∩U ) ≤ Cε
(n−1)δ

n(2nq−δ) for all ε ≤ ε0.

Here δ = δ(n, ρ) > 0, and �,W are the matrices of cofactors of D2φ and D2w,
respectively.

Proof (i) Our conclusion follows from the following claims.
Claim 1. There exist ε0 = ε0(p, n, ρ) > 0 small and C0 = C0(p, n, ρ, κ) > 0 such
that

‖D2φ‖L2p(Bc2∩U ) + ‖D2w‖L2p
(
Bc2∩U

) ≤ C0 whenever ε ≤ ε0.

Claim 2. There exist δ = δ(n, ρ) ∈ (0, 1/2) and C = C(n, ρ, κ) > 0 such that

‖D2φ − D2w‖Lδ(Bc2∩U ) ≤ Cε1/n for all ε <
1

2
. (3.18)

Indeed, let θ ∈ (0, 1) be such that

1

p
= θ

2p
+ 1 − θ

δ
.

Then 1 − θ = δ/(2p − δ) and by the interpolation inequality we get

‖D2φ − D2w‖L p(Bc2∩U ) ≤ ‖D2φ − D2w‖θL2p(Bc2∩U )‖D2φ − D2w‖1−θ
Lδ(Bc2∩U )

≤ Cε
1−θ

n = Cε
δ

n(2p−δ) .

We now turn to the proofs of the claims.
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Claim 1 is essentially Savin’s global W 2,p estimates for the Monge–Ampère equations
[28]. For the proof in our setting, we use Lemma 3.13 and follow his arguments. For
completeness, we include the proof here. Let ψ denote one of the functions φ and w.
Then by Lemma 3.13, there exists a sequence of disjoint sections {Sψ(yi , δ0h̄(yi ))}∞i=1,
where yi ∈ U ∩ Bc2 and Sψ(yi , h̄(yi )) is the maximal interior section of ψ in U , such
that

U ∩ Bc2 ⊂
∞⋃

i=1

Sψ

(
yi ,

h̄(yi )

2

)
.

Moreover, we have

Sψ(yi , h̄(yi )) ⊂ U ∩ Bc, h̄(yi ) ≤ c.

We will prove that: There exist ε0 = ε0(p, ρ, n) > 0 small and C = C(p, ρ, n) > 0
such that for ε ≤ ε0, we have

∫

Sψ
(

y, h̄(y)
2

)

∣∣∣D2ψ

∣∣∣
2p ≤ C h̄(y)

n
2 | log h̄(y)|4p ∀y ∈ U ∩ Bc2 . (3.19)

Given this, we can complete the proof of Claim 1 as follows. We have

∫

U∩Bc2

∣∣∣D2ψ

∣∣∣
p ≤

∞∑

i=1

∫

Sψ

(
yi ,

h̄(yi )
2

)

∣∣∣D2ψ

∣∣∣
2p =

∞∑

k=0

∑

i∈Fc2−k

∫

Sψ

(
yi ,

h̄(yi )
2

)

∣∣∣D2ψ

∣∣∣
2p
,

(3.20)

where Fd is the family of sections Sψ(yi ,
h̄(yi )

2 ) such that d/2 < h̄(yi ) ≤ d ≤ c. By

(3.19), we have for each Sψ(yi ,
h̄(yi )

2 ) ∈ Fd ,

∫

Sψ
(

y, h̄(y)
2

)

∣∣∣D2ψ

∣∣∣
2p ≤ C |log d|4p

∣∣Sψ(yi , δ0h̄(yi ))
∣∣

and since

Sψ(yi , δ0h̄(yi )) ⊂ {x ∈ Bc ∩ U : dist(x, ∂	 ∩ ∂U ) ≤ 2k−1
0 d1/2}

are disjoint, we find

∑

i∈Fd

∫

Sψ

(
yi ,

h̄(yi )
2

)

∣∣∣D2ψ

∣∣∣
2p ≤ C1 |log d|4p d1/2
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where C1 now depends also on κ which is the upper bound for ‖∂	 ∩ Bc‖C1,1 .
Therefore, Claim 1 easily follows from (3.20) by adding these inequalities for
d = c2−k, k = 0, 1, . . . .

It remains to prove (3.19). Let h := h̄(y). Then h ≤ c. By applying Proposition 2.3
to Sψ(y, h), we find that it is equivalent to an ellipsoid Eh , i.e.,

k0 Eh ⊂ Sψ(y, h)− y ⊂ k−1
0 Eh,

where Eh := h1/2 A−1
h B1 with det Ah = 1 and ‖Ah‖, ‖A−1

h ‖ ≤ C | log h|.We use the
following rescalings similar to those in Sect. 2.2:

	̃h := h−1/2 Ah(	− y),

and for x ∈ 	̃h

ψ̃h(x) := h−1
[
ψ
(

y + h1/2 A−1
h x
)
− ψ(y)−∇ψ(y) ·

(
h1/2 A−1

h x
)
− h
]
.

Then

Bk0 ⊂ Sψ̃h
(0, 1) ≡ h−1/2 Ah

(
Sφ(y, h)− y

) ⊂ Bk−1
0
.

We have

det D2ψ̃h(x) = det D2ψ
(

y + h1/2 A−1
h x
)

and ψ̃h = 0 on ∂Sψ̃h
(0, 1).

For simplicity, we denote S̃t (0) := Sψ̃h
(0, t) for t > 0. Ifψ = φ then by Caffarelli’s

interior W 2,p estimates for the Monge–Ampère equation [2], we have
∫

S̃ 1
2
(0)

∣∣∣D2ψ̃h

∣∣∣
2p ≤ C

if ε ≤ ε0 small depending only on p, ρ and n. If ψ = w then as det D2w = 1, the
above inequality obviously holds. Using the fact

D2ψ
(

y + h1/2 A−1
h x
)
= At

h D2ψ̃h(x) Ah,

we obtain (3.19) from
∫

Sφ
(

y, h
2

)
|D2ψ(z)|2p dz = h

n
2

∫

S̃ 1
2
(0)

|At
h D2ψ̃h(x) Ah |2p dx

≤ C h
n
2 | log h|4p

∫

S̃ 1
2
(0)

|D2ψ̃h(x)|p ≤ C h
n
2 | log h|4p.
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Finally, we verify Claim 2 by proving (3.18). As in [16, Lemma 3.4], we note
that the difference v := φ −w is a subsolution (supersolution) of linearized Monge–
Ampère equations with bounded right hand side, corresponding to the potentials w
and φ respectively. We cover U ∩ Bc2 by sections of w and φ using Lemma 3.13. In
each of these sections, we can use the one-sided W 2,δ estimates of Gutiérrez-Tournier
[18]. Then, adding these estimates as in the proof of Theorem 3.9, we get (3.18). The
details are as follows.

Consider the operator Mu := (det D2u)1/n and its linearized operator

L̂uv := 1

n
(det D2u)1/n trace

(
(D2u)−1 D2v

)
.

Notice that L̂uv and the operator Luv defined in (1.1) are related by

Luv = n(det D2u)
n−1

n L̂uv.

Let v := φ − w and g := det D2φ. Since M is concave, we obtain

g1/n − 1 = Mφ − Mw ≤ L̂wv

and hence

Lwv = n(det D2w)
n−1

n L̂wv ≥ −n|g1/n − 1|. (3.21)

We also have L̂φv ≤ Mφ − Mw ≤ |g1/n − 1| and thus

Lφv = n(det D2φ)
n−1

n L̂φv ≤ n(1 + ε) n−1
n |g1/n − 1| ≤ 2n|g1/n − 1|. (3.22)

On the other hand, it follows from the maximum principle ([19, Lemma 3.1]) that

‖v‖L∞(U ) ≤ Cndiam (U )‖g1/n − 1‖Ln(U ). (3.23)

We cover U ∩ Bc2 by sections of w using Lemma 3.13. From (3.21) and (3.23), we
can use Gutiérrez-Tournier’s one-sided W 2,δ estimates [18] instead of Theorem 3.10
in each of these sections to estimate the Lδ norm of (D2v)+. After that, we argue
as in the proof of Theorem 3.9, and taking into account Lemma 3.13 again to obtain
δ1 = δ1(n, ρ) ∈ (0, 1/2) and C1 = C1(n, ρ, κ) > 0 such that

‖(D2v)+‖Lδ1 (U∩Bc2 )
≤ C1

(
‖v‖L∞(U∩Bc) + ‖(Lwv)−‖Ln(U∩Bc)

)

≤ C1‖g1/n − 1‖Ln(U ). (3.24)

Similarly, from (3.22), (3.23) and by covering U ∩ Bc2 by sections of φ, we obtain

‖(D2v)−‖Lδ2 (U∩Bc2 )
≤ C2

(
‖v‖L∞(U∩Bc) + ‖(Lφv)+‖Ln(U∩Bc)

)

≤ C2‖g1/n − 1‖Ln(U ). (3.25)
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Let δ := min{δ1, δ2}. Then, from (3.24) and (3.25), we obtain (3.18) as desired since

‖D2v‖Lδ(U∩Bc2 )
≤ C‖g1/n − 1‖Ln(U ) ≤ Cε1/n .

(ii) The key to the proof is the following estimate

‖�− W‖Lq (U∩Bc2 )

≤ Cn

(
ε + ‖D2w‖n−1

L∞(U∩Bc2 )
‖D2φ − D2w‖n−1

Lqn(U∩Bc2 )

)
‖D2φ‖n−1

Lqn(U∩Bc2 )

(3.26)

which can be deduced from the proof of Lemma 3.5 in [16].
As in Claim 1 in the proof of part (i), we have

‖D2φ‖Lqn(U∩Bc2 ) ≤ C0 for all ε ≤ ε0, (3.27)

where ε0 = ε0(q, n, ρ) > 0 small and C0 = C0(q, n, ρ, κ) > 0.
On the other hand, by (vii) in the definition of the class P , we have

‖D2w‖L∞(U∩Bc2 ) ≤ C1(n, α, ρ). (3.28)

Putting (3.26)–(3.28) together, we obtain for ε ≤ ε0

‖�− W‖Lq (U∩Bc2 ) ≤ Cn

(
ε + Cn−1

1 ‖D2φ − D2w‖n−1
Lqn
(
U∩Bc2

)
)

Cn−1
0 .

By applying part (i) of this proposition to p = qn,we then get the desired conclusion.
��

We also obtain the following global stability of matrices of cofactors.

Lemma 3.15 (Global stability of cofactor matrices) Let 	 ⊂ R
n be a uniformly

convex domain satisfying (2.1) and ‖∂	‖C3 ≤ 1/ρ. For any q ≥ 1, there exist
C, ε0 > 0 depending only on q, n and ρ with the following property. If φ, w ∈ C(	)
are convex functions satisfying

{
1 − ε ≤ det D2φ ≤ 1 + ε in	
φ = 0 on ∂	

and

{
det D2w = 1 in	
w = 0 on ∂	,

then for some small constant δ > 0 depending only on n and ρ, we have

‖�− W‖Lq (	) ≤ Cε
(n−1)δ

n(2nq−δ) for all ε ≤ ε0.

Proof The proof follows the lines of the proof of Proposition 3.14 using
Proposition 2.4. Here we choose U = 	, replace U ∩ Bc2 by 	 and use the covering
Lemma 3.12. The estimate (3.28) is now a classical result of Caffarelli–Nirenberg–
Spruck [6]. ��
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3.5 Global W 2,1+ε estimates for convex solutions

In this subsection, we establish the global W 2,1+ε estimates for convex solutions to
the linearized Monge–Ampère equations. These estimates are simple consequence of
the global stability of cofactor matrices in Sect. 3.4.

Theorem 3.16 Let 	 be a uniformly convex domain satisfying (2.1) with ∂	 ∈ C3.
Let φ ∈ C(	) ∩ C2(	) be a convex function satisfying

0 < λ ≤ det D2φ ≤ � in 	 and φ = 0 on ∂	.

Let v be the convex solution to
{
�i jvi j = f in	,
v = 0 on ∂	,

where f ∈ L∞(	). Then, there exist γ > 1 and C > 0 depending only on λ,�, n
and 	 such that

‖D2v‖Lγ (	) ≤ C‖ f ‖L∞(	). (3.29)

Remark 3.17 (i) De Phillipis–Figalli–Savin [9] and Schmidt [29] discovered the inte-
rior W 2,1+ε estimates for convex solution φ to the Monge–Ampère equation

det D2φ = g in	, and φ = 0 on ∂	,

with 0 < λ ≤ g ≤ �. In these works, the convexity of φ plays a crucial role,
especially in giving a bound for |D2φ| by �φ. Since �i jφi j = n det D2φ = ng,
our theorem is a natural extension of De Phillipis–Figalli–Savin’s and Schmidt’s
estimates.

(ii) The convexity of v and standard arithmetic-geometric inequality give

f = �i jvi j = trace(� D2v) ≥ n(det�)1/n(det D2v)1/n ≥ 0.

(iii) It would be interesting to remove the convexity of v in the statement of
Theorem 3.16.

Now, we proceed with the proof of Theorem 3.16. To do this, we first establish the
following Sobolev stability result.

Proposition 3.18 (Sobolev stability estimates) Let 	 be a uniformly convex domain
with ∂	∈C3. Let φk ∈C(	)∩C2(	) (k=1, 2) be convex Aleksandrov solutions of

det D2φk = gk in	, and φk = 0 on ∂	,

with 0 < λ ≤ gk ≤ � in	. Then there exist γ > 1, α ∈ (0, 1) and C > 0 depending
only on n, λ,� and 	 such that
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‖D2φ1 − D2φ2‖Lγ (	) ≤ C‖g1 − g2‖
α
n
L1(	)

. (3.30)

Proof The interior counterpart of our proposition was established by De Phillipis–
Figalli [8]. Here, we will prove the boundary version with a different method. Our
proof relies on the W 2,δ estimates of Gutiérrez-Tournier [18] for solutions to the
linearized Monge–Ampère equation.

First, using Proposition 2.4, [19, Lemma 3.1] and arguing as in the proof of (3.18)
in Proposition 3.14, we find a small δ > 0 and C1 > 0 depending only on n, λ,� and
	 such that

‖D2φ1 − D2φ2‖Lδ(	) ≤ C1‖g
1
n
1 − g

1
n
2 ‖Ln(	) ≤ C1‖g1 − g2‖

1
n
L1(	)

. (3.31)

Second, using De Phillipis–Figalli–Savin’s and Schmidt’s interior W 2,1+ε estimates
for solutions to the Monge–Ampère equation [9,29] and arguing as in [28], we obtain
the following global W 2,1+ε estimates

‖D2φ1‖Lγ1 (	) + ‖D2φ2‖Lγ1 (	) ≤ C2, (3.32)

where γ1 > 1 and C2 > 0 depend only on n, λ,�, and 	.
We now choose α ∈ (0, 1) sufficiently close to 0 so that

1

γ
:= α

δ
+ 1 − α

γ1
< 1,

i.e., γ > 1. Then by the interpolation inequality, we obtain

‖D2φ1 − D2φ2‖Lγ (	) ≤ ‖D2φ1 − D2φ2‖αLδ(	)‖D2φ1 − D2φ2‖1−α
Lγ1 (	)

which together with (3.31) and (3.32) yields the estimate (3.30). ��
Proof of Theorem 3.16. For any t ∈ (0, ‖ f ‖−1

L∞(	)], we have φ = φ + tv on ∂	 and,
by the convexity of v, φ ≥ φ + tv in 	. Thus

λ ≤ det D2φ ≤ det D2(φ + tv).

Moreover by the concavity of the map φ �→ log det D2φ, we obtain

log det D2(φ + tv) ≤ log det D2φ + tφi jvi j = log det D2φ + t
f

det D2φ
.

Therefore,

0 ≤ det D2(φ + tv)− det D2φ ≤ (det D2φ)

(
e

t f
det D2φ − 1

)
≤ �

(
e

1
λ − 1

)
in	.

Applying the stability result in Proposition 3.18, we can find α,C > 0, γ > 1 depend-
ing only on n, λ,� and 	 such that
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‖t D2v‖Lγ (	) ≤ C‖ det D2(φ + tv)− det D2φ‖
α
n
L1(	)

≤ C‖�(e 1
λ − 1)‖

α
n
L1(	)

.

The estimate (3.29) follows by taking t = ‖ f ‖−1
L∞(	). ��

4 Global Hölder estimates and approximation lemma

In this section, we establish global Hölder continuity estimates for solutions to the lin-
earized Monge–Ampère equation under natural assumptions on the domain, Monge–
Ampère measure and Hölder continuous boundary data. We then use these Hölder
estimates to prove approximation lemmas allowing us to approximate the solution
u to Lφu = f by smooth solutions of linearized Monge–Ampère equations
associated with convex functions w whose Monge–Ampère measures are close to
that of φ.

4.1 Global Hölder estimates

In this subsection, we derive global Hölder estimates for solutions to the linearized
Monge–Ampère equation in convex domains when the right hand side is assumed
to be in Ln and the boundary data is Hölder continuous. These estimates extend the
global Hölder estimates in [21] where the domains are assumed to be uniformly convex.

Our first main theorem is concerned with Hölder estimates in a neighborhood of a
boundary point. Its precise statement is as follows.

Theorem 4.1 Assume 	 and φ satisfy (2.1), (2.2), (2.4) and if x0 ∈ ∂	 ∩ Bρ then

ρ |x − x0|2 ≤ φ(x)− φ(x0)−∇φ(x0) · (x − x0) ≤ ρ−1 |x − x0|2 , ∀x ∈ ∂	.
(4.1)

Let u ∈ C
(
Bρ ∩	

) ∩ W 2,n
loc (Bρ ∩	) be a solution to

{
�i j ui j = f in Bρ ∩	,
u = ϕ on ∂	 ∩ Bρ,

where ϕ ∈ Cα(∂	 ∩ Bρ) for some α ∈ (0, 1). Then, there exist constants β,C > 0
depending only on λ,�, n, α and ρ such that

|u(x)− u(y)| ≤ C |x − y|β
(
‖u‖L∞(	∩Bρ) + ‖ϕ‖Cα(∂	∩Bρ) + ‖ f ‖Ln(	∩Bρ)

)
,

∀x, y ∈ 	 ∩ Bρ/2.

As an immediate consequence of Theorem 4.1, we obtain the following estimates
which are the global counterparts of Caffarelli–Gutiérrez’s interior Hölder estimates
for solutions to the linearized Monge–Ampère equation [4].
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Theorem 4.2 Assume 	 and φ satisfy (2.1)–(2.3). Let u ∈ C(	) ∩ W 2,n
loc (	) be a

solution to

�i j ui j = f in	, and u = ϕ on ∂	,

where ϕ ∈ Cα(∂	) for some α ∈ (0, 1). Then, there exist constants β,C > 0
depending only on λ,�, n, α and ρ such that

|u(x)− u(y)| ≤ C |x − y|β
(
‖u‖L∞(	) + ‖ϕ‖Cα(∂	) + ‖ f ‖Ln(	)

)
, ∀x, y ∈ 	.

The key to the proof of Theorem 4.1 is the following boundary Hölder estimates.

Proposition 4.3 Let φ and u be as in Theorem 4.1. Then, there exist δ,C depending
only on λ,�, n, α, ρ such that, for any x0 ∈ ∂	 ∩ Bρ/2, we have

|u(x)− u(x0)| ≤ C |x − x0| α
α+3n

(
‖u‖L∞(	∩Bρ) + ‖ϕ‖Cα(∂	∩Bρ) + ‖ f ‖Ln(	∩Bρ)

)
,

∀x ∈ 	 ∩ Bδ(x0).

Proof of Theorem 4.1. The boundary Hölder estimates in Proposition 4.3 combined
with the interior Hölder continuity estimates of Caffarelli–Gutiérrez [4] and Savin’s
Localization Theorem [26–28] gives the global Hölder estimates in Theorem 4.1. The
precise arguments are almost the same as the proof of [21, Theorem 1.4]. Since [21,
Theorem 1.4] is a global result and our theorem is local, we indicate some differences
in the arguments. It suffices to prove the theorem for x, y ∈ Bc2 ∩ 	. We use the
quadratic separation (4.1) and Proposition 2.3 to show that if y ∈ 	 ∩ Bc2 then the
maximal interior section Sφ(y, h̄(y)) is contained in 	 ∩ Bc and so tangent to ∂	
at x0 ∈ ∂	 ∩ Bc (see Lemma 2.5(e)). Using this fact, Caffarelli–Gutiérrez’s interior
Hölder estimates [4] and Proposition 4.3, we obtain as in [21]

|u(z1)− u(z2)| ≤ |z1 − z2|β
(
‖u‖L∞(	∩Bρ) + ‖ϕ‖Cα(∂	∩Bρ) + ‖ f ‖Ln(	∩Bρ)

)

∀z1, z2 ∈ Sφ

(
y,

h̄(y)

2

)
.

The rest of the argument is the same as in [21]. ��
The proof of Proposition 4.3 is based on a construction of suitable barriers. Assume

φ and	 satisfy the assumptions in the proposition. We also assume for simplicity that
φ(0) = 0 and ∇φ(0) = 0. We now construct a supersolution as in [23, Lemma 6.2].

Lemma 4.4 (Supersolution) Given δ universally small (δ ≤ ρ), define

δ̃ := δ3

2
and Mδ := 2n−1�n

λn−1

1

δ3n−3 ≡ �n

(λδ̃)n−1
.
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Then the function

wδ(x
′, xn) := Mδxn + φ − δ̃|x ′|2 − �n

(λδ̃)n−1
x2

n for (x ′, xn) ∈ 	

satisfies

Lφ(wδ) := �i j (wδ)i j ≤ −n� in	,

and

wδ ≥ 0 on ∂(	 ∩ Bδ), wδ ≥ δ3

2
on 	 ∩ ∂Bδ.

Proof We recall from (2.7) that

	 ∩ B+
ch1/2/|log h| ⊂ Sφ(0, h) ⊂ 	 ∩ B+

Ch1/2|log h|.

The first inclusion gives φ ≤ h in 	∩B+
ch1/2/|log h| and hence for x close to the origin,

φ(x) ≤ C |x |2 |log |x ||2 .

Similarly, the second inclusion gives

φ(x) ≥ c |x |2 |log |x ||−2 ≥ |x |3

for x close to the origin. In conclusion, we have

|x |3 ≤ φ(x) ≤ C |x |2 |log |x ||2 (4.2)

if |x | ≤ δ for δ universally small. Therefore, the choice of δ̃ gives

φ(x)− δ̃|x ′|2 ≥ |x |3 − δ̃ |x |2 ≥ 1

2
|x |3 = δ̃ on 	 ∩ ∂Bδ.

On the other hand, the choice of Mδ implies that

Mδxn − �n

(λδ̃)n−1
x2

n ≥ 0 on	 ∩ Bδ.

Hence, wδ ≥ δ̃ on 	 ∩ ∂Bδ while on ∂	 ∩ Bδ , the quadratic separation (4.1) and
δ ≤ ρ give

wδ ≥ φ − δ̃|x ′|2 ≥ 0.

As a consequence, we obtain the desired inequalities for wδ on ∂(	 ∩ Bδ).
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It remains to prove that Lφ(wδ) ≤ −n� in 	. If we denote

q(x) := 1

2

(
δ̃|x ′|2 + �n

(λδ̃)n−1
x2

n

)
,

then

det D2q = �n

λn−1 , D2q ≥ δ̃ I.

Using the matrix inequality

trace(AB) ≥ n(det A det B)1/n for A, B symmetric ≥ 0,

we get

Lφq = trace(� D2q) ≥ n(det(�) det D2q)1/n = n

(
(det D2φ)n−1 �

n

λn−1

)1/n

≥ n�.

Since Lφxn = 0, we find

Lφwδ = Lφ(Mδxn + φ − 2q) = �i jφi j − 2Lφq

= n det D2φ − 2Lφq ≤ −n� in	.

��
Proof of Proposition 4.3. Our proof follows closely the proof of Proposition 2.1 in
[21]. We can suppose that K := ‖u‖L∞(	∩Bρ) + ‖ϕ‖Cα(∂	∩Bρ) + ‖ f ‖Ln(	∩Bρ) is
finite. By working with the function v := u/K instead of u, we can assume in addition
that

‖u‖L∞(	∩Bρ) + ‖ϕ‖Cα(∂	∩Bρ) + ‖ f ‖Ln(	∩Bρ) ≤ 1

and need to show that the inequality

|u(x)− u(x0)| ≤ C |x − x0| α
α+3n ∀x ∈ 	 ∩ Bδ(x0) (4.3)

holds for all x0 ∈ 	 ∩ Bρ/2, where δ and C depends only on λ,�, n, α and ρ.
We prove (4.3) for x0 = 0. However, our arguments apply to all points x0 ∈

	 ∩ Bρ/2 with obvious modifications. For any ε ∈ (0, 1), we consider the functions

h±(x) := u(x)− u(0)± ε ± 6

δ3
2

wδ2

in the region

A := 	 ∩ Bδ2(0),
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where δ2 is small to be chosen later and the function wδ2 is as in Lemma 4.4. We
remark that wδ2 ≥ 0 in A by the maximum principle. Observe that if x ∈ ∂	 with
|x | ≤ δ1(ε) := ε1/α then,

|u(x)− u(0)| = |ϕ(x)− ϕ(0)| ≤ |x |α ≤ ε. (4.4)

On the other hand, if x ∈ 	∩ ∂Bδ2 then from Lemma 4.4, we obtain 6
δ3

2
wδ2(x) ≥ 3. It

follows that, if we choose δ2 ≤ δ1 then from (4.4) and |u(x)− u(0)± ε| ≤ 3, we get

h− ≤ 0, h+ ≥ 0 on ∂A.

Also from Lemma 4.4, we have

Lφh+ ≤ f, Lφh− ≥ f in A.

Hence the ABP estimate applied in A gives

h− ≤ C1(n, λ)diam(A)‖ f ‖Ln(A) ≤ C1(n, λ)δ2 in A (4.5)

and

h+ ≥ −C1(n, λ)diam(A)‖ f ‖Ln(A) ≥ −C1(n, λ)δ2 in A. (4.6)

By restricting ε ≤ C1(n, λ)
−α
1−α , we can assume that

δ1 = ε1/α ≤ ε

C1(n, λ)
.

Then, for δ2 ≤ δ1, we have C1(n, λ)δ2 ≤ ε and thus, for all x ∈ A, we obtain from
(4.5) and (4.6) that

|u(x)− u(0)| ≤ 2ε + 6

δ3
2

wδ2(x).

Note that, by construction and the estimate (4.2) for the function φ, we have in A

wδ2(x) ≤ Mδ2 xn + φ(x) ≤ Mδ2 |x | + C |x |2 |log |x ||2 ≤ 2Mδ2 |x | .

Therefore, choosing δ2 = δ1 and recalling the choice of Mδ2 , we get

|u(x)− u(0)| ≤ 2ε + 12Mδ2

δ3
2

|x | = 2ε + C2(n, λ,�)

δ3n
2

|x | = 2ε + C2ε
−3n/α|x |

(4.7)
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for all x, ε satisfying the following conditions

|x | ≤ δ1(ε) := ε1/α, ε ≤ C1(n, λ)
−α
1−α =: c1. (4.8)

Finally, let us choose ε = |x | α
α+3n . It satisfies the conditions in (4.8) if

|x | ≤ min

{
c
α+3n
α

1 , 1

}
=: δ.

Then, by (4.7), we have |u(x)− u(0)| ≤ (2 + C2)|x | α
α+3n for all x ∈ 	 ∩ Bδ(0). ��

4.2 Global approximation lemma

In this subsection, we prove an approximation lemma that allows us to compare the
solution u to the linearized Monge–Ampère equation Lφu = f to smooth solutions
h of linearized Monge–Ampère equations Lwh = 0 associated with convex functions
w satisfying det D2w = 1. We will estimate the difference u − h in terms of the
Ln-norms of f and � − W where � = (�i j ) and W = (Wi j ) are the matrices of
cofactors of D2φ and D2w, respectively. Therefore, in light of the global stability of
cofactor matrices in Sect. 3.4, u is well-approximated by h provided that det D2φ is
close to 1. This approximation lemma will play a key role in Sect. 5 where we use it
to get power decay estimates for the distribution function of the second derivatives of
u that are more refined than those provided by Proposition 3.7.

Our approximation lemma, relevant for data of the type
(
	h, φh, Sφh (0, 1)

)
, states

as follows.

Lemma 4.5 Assume (	, φ,U ) ∈ P 1
2 ,

3
2 ,ρ,κ,α

. Let r := c2/4 where c is as in

Remark 2.6. Suppose that u ∈ C(U ) ∩ W 2,n
loc (U ) is a solution of �i j ui j = f in

U ∩ B4r with

‖u‖L∞(U∩B4r ) + ‖u‖C2,α(∂U∩B4r )
≤ 1.

Let w be defined as in (vi i) of the definition of the class P . Assume h is a solution of

{
Wi j hi j = 0 in B2r ∩ U
h = u on ∂(B2r ∩ U ).

Then, there exist C > 0 and γ ∈ (0, 1) depending only on n, ρ and α such that

‖h‖C1,1(Br∩U ) ≤ C, (4.9)

and if ‖�− W‖Ln(B2r∩U ) ≤ r4 then

‖u − h‖L∞(Br∩U ) + ‖ f − trace([�− W]D2h)‖Ln(Br∩U )

≤ C
{(

1 + ‖u‖C1/2(∂U∩B4r )

) ‖�− W‖γLn(B2r∩U ) + ‖ f ‖Ln(U∩B4r )

}
.
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Proof Observe first that by (vi i) in the definition of the class P , the following C2,α

and Pogorelov estimates hold

‖∂U∩B4r‖C2,α ≤ c−1
0 , ‖w‖C2,α(U∩B4r )

≤ c−1
0 , c0 In ≤ D2w ≤ c−1

0 In in B4r ∩ U.

(4.10)

Therefore, W i j∂i j is a uniformly elliptic differential operator with Cα coefficients.
Hence, we can employ the standard boundary C2,α-estimates for linear uniformly
elliptic equation and obtain (4.9) since

‖h‖C1,1(Br∩U ) ≤ ‖h‖C2,α(Br∩U ) ≤ C(n, ρ, α)
(‖u‖L∞(B2r∩U ) + ‖u‖C2,α(∂U∩B2r )

)

≤ C(n, ρ, α).

Next, since (	, φ,U ) ∈ P 1
2 ,

3
2 ,ρ,κ,α

, by Remark 2.11, the domain U and function φ
satisfy (2.1), (2.2) and (2.4) and (4.1). Therefore, it follows from Theorem 4.1 with
C1/2 boundary data that there exist constants C > 0 and β ∈ (0, 1) depending only
on n and ρ such that

‖u‖Cβ (B2r∩U ) ≤ C
(
‖u‖L∞(B4r∩U ) + ‖u‖C1/2(∂U∩B4r )

+ ‖ f ‖Ln(B4r∩U )

)
≤ C�,

(4.11)

where

� := 1 + ‖u‖C1/2(∂U∩B4r )
+ ‖ f ‖Ln(B4r∩U ).

In view of (4.10), (4.11), and the standard global Hölder estimates for linear uni-
formly elliptic equations (see [14, Corollary 9.29], [3, Proposition 4.13] and [35,
Theorem 1.10]), we can find constants C > 0 and β ′ ∈ (0, β) depending only on n, ρ
and α such that

‖h‖Cβ′ (B2r∩U ) ≤ C
(
‖h‖L∞(B2r∩U ) + ‖u‖Cβ (∂(U∩B2r ))

)
≤ C�. (4.12)

Now let 0 < δ < r . Then we claim that

‖u − h‖L∞(∂(B2r−δ∩U )) ≤ Cδβ
′
�, (4.13)

and

‖D2h‖L∞(B2r−δ∩U ) ≤ Cδβ
′−2−α�. (4.14)

To prove (4.13), we verify that |(u − h)(x)| ≤ Cδβ
′
� for all x ∈ ∂(B2r−δ ∩ U ).

Indeed, if x ∈ ∂(B2r−δ ∩ U ) then we can find y ∈ ∂(B2r ∩ U ) such that |x − y| ≤ δ.
Since u − h = 0 on ∂(B2r ∩ U ), we get from (4.11) and (4.12) that

|(u − h)(x)| = |(u − h)(x)− (u − h)(y)| ≤ |u(x)− u(y)| + |h(x)− h(y)| ≤ Cδβ
′
�.
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To prove (4.14), let x0 ∈ B2r−δ ∩ U . If Bδ/2(x0) ⊂ B2r ∩ U , then we can apply
interior C1,1-estimates to h − h(x0) in Bδ/2(x0) and use (4.12) to get

‖D2h(x0)‖ ≤ Cδ−2‖h − h(x0)‖
L∞
(

B δ
2
(x0)

) ≤ Cδβ
′−2�.

In case Bδ/2(x0) �⊂B2r ∩ U , then there exists z0 ∈ B2r−δ ∩ ∂U ⊂ ∂	 such that
x0 ∈ Bδ/2(z0). Hence since Bδ(z0) ∩ U ⊂ B2r ∩ U and by applying boundary C2,α-
estimates to h − h(x0) in Bδ/2(z0) ∩ U we obtain

‖D2(h − h(x0))‖Cα(B δ
2
(z0)∩U )

≤Cδ−(2+α)
(
‖h − h(x0)‖L∞(Bδ(z0)∩U )+

2∑

k=1

δk+α‖Dk(u − h(x0))‖Cα(∂U∩Bδ(z0))

)

≤ Cδ−(2+α)
(
δβ

′
�+ δ1+α) ≤ Cδβ

′−2−α�.

It follows that ‖D2h(x0)‖ ≤ Cδβ
′−2−α�, and thus (4.14) is proved.

Having (4.13) and (4.14), we now complete the proof of the lemma. Observe that
u − h ∈ W 2,n

loc (B2r ∩ U ) is a solution of

�i j (u − h)i j = f −�i j hi j = f − [�i j − Wi j ]hi j =: F in B2r ∩ U.

The ABP estimate together with (4.13) and (4.14) gives

‖u − h‖L∞(B2r−δ∩U ) + ‖F‖Ln(B2r−δ∩U )

≤ ‖u − h‖L∞(∂(B2r−δ∩U )) + Cn‖F‖Ln(B2r−δ∩U )

≤ ‖u − h‖L∞(∂(B2r−δ∩U )) + Cn‖D2h‖L∞(B2r−δ∩U )‖�− W‖Ln(B2r∩U )

+Cn‖ f ‖Ln(U∩B2r )

≤ C
(
δβ

′ + δβ ′−2−α‖�− W‖Ln(B2r∩U )

)
�+ Cn‖ f ‖Ln(U∩B2r ).

If ‖� − W‖Ln(B2r∩U ) ≤ r4 then by taking δ = ‖� − W‖
1

2+α
Ln(B2r∩U ), we obtain the

desired inequality with γ = β ′/(2 + α) since

‖u − h‖L∞(Br∩U ) + ‖F‖Ln(Br∩U ) ≤ C‖�− W‖
β′

2+α
Ln(B2r∩U )�+ Cn‖ f ‖Ln(U∩B2r )

≤ C
{(

1 + ‖u‖C1/2(∂U∩B4r )

) ‖�− W‖
β′

2+α
Ln(B2r∩U ) + ‖ f ‖Ln(U∩B4r )

}
.

��
We end this subsection with a result allowing us to estimate the measure of the set

where the quasi distance generated by φ is bounded from below by certain multiple
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of the Euclidean distance. This set, when restricted to sections of φ, has almost full
measure if the Monge–Ampère measure det D2φ is close to a constant. Its precise
statement is as follows.

Lemma 4.6 Assume that (	, φ,U ) ∈ P1−ε,1+ε,ρ,κ,α where 0 < ε < 1/2. Define

Aσ :=
{

x̃ ∈ U : φ(x) ≥ φ(x̃)+ ∇φ(x̃) · (x − x̃)+ σ

2
|x − x̃ |2, ∀x ∈ Bc2 ∩ U

}
.

(4.15)

Then there exist σ = σ(n, ρ, α) > 0 and C = C(n, ρ, α, κ) > 0 such that

∣∣Sφ(0, c9) \ Aσ
∣∣ ≤ Cε1/3n |Sφ(0, c9)|.

Proof We first note that (2.7) implies

|Sφ(0, c9)| ≥ |Bc6 ∩ U | ≥ C. (4.16)

Let w be defined as in (vi i) in the definition of the class P . Then the following
boundary Pogorelov estimates hold

c0 In ≤ D2w ≤ c−1
0 In in Bc2 ∩ U. (4.17)

Let � be the convex envelope of φ − w
2 in U ∩ Bc2 . We claim that there exists C > 0

depending only on n, ρ, α and κ such that

∣∣∣
{
� = φ − w

2

}
∩ Sφ

(
0, c9)∣∣ ≥ (1 − Cε1/3n)∣∣Sφ

(
0, c9)

∣∣∣ . (4.18)

Assume this claim for a moment. Then by using (4.17) and arguing as in the proof of
[15, Theorem 6.1.1], we obtain the desired conclusion. For completeness, we include
the proof.

Let the contact set be

C :=
{

x ∈ U ∩ Bc2 : �(x) = φ(x)− w(x)

2

}
.

We assert that for σ := c0/2, we have

C ∩ Sφ(0, c9) ⊂ Aσ ∩ Sφ(0, c9).

It then follows from (4.18) that

|Sφ(0, c9) \ Aσ | ≤ |Sφ(0, c9) \ C| ≤ Cε1/3n|Sφ(0, c9)|.

We now proceed with the proof of the claim. Let x0 ∈ C ∩ Sφ(0, c9), and let lx0 be a
supporting hyperplane to � at x0. Since x0 ∈ C, we have lx0(x0) = φ(x0) − 1

2w(x0)

and
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φ(x) ≥ lx0(x)+
w(x)

2
for all x ∈ U ∩ Bc2 . (4.19)

On the other hand, if x ∈ U ∩ Bc2 then the Taylor formula and the first inequality in
the Pogorelov estimates (4.17) give

w(x)− w(x0)−∇w(x0) · (x − x0)

=
1∫

0

t

1∫

0

〈D2w(x0 + θ t (x − x0)) · (x − x0), x − x0〉dθdt

≥
1∫

0

tc0 |x − x0|2 dt = c0

2
|x − x0|2 .

Combining this with (4.19), we deduce that

φ(x) ≥ l(x)+ c0

4
|x − x0|2 ∀x ∈ U ∩ Bc2 ,

where l(x) is the supporting hyperplane to φ at x0 in U ∩ Bc2 given by

l(x) := lx0(x)+
1

2
w(x0)+ 1

2
∇w(x0) · (x − x0).

Therefore x0 ∈ Aσ with σ = c0/2, proving the assertion.
It remains to prove (4.18). The idea is to compare the image of the gradient mappings

of convex functions which are close in L∞-norms. This idea goes back to Caffarelli
(see [2, Lemma 2] and also [24, Lemma 6.2]). Since our setting near the boundary is
a bit different, we sketch the proof.

By (4.16), it suffices to consider the case ε � 1. By the maximum principle ([19,
Lemma 3.1]), we have

‖φ − w‖L∞(U ) ≤ Cndiam (U )‖(det D2φ)1/n − 1‖Ln(U ) ≤ C ε1/n ≡ ε̄.

Therefore,

1

2
w − ε̄ ≤ φ − w

2
≤ 1

2
w + ε̄ in U ∩ Bc2

and since w is convex, we have

1

2
w − ε̄ ≤ � ≤ 1

2
w + ε̄ in U ∩ Bc2 .

Let

V1 =
{

x ∈ U ∩ Bc2 : dist
(
x, ∂(U ∩ Bc2)

)
> δ
}
.
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Then, using (4.17), we will show that for 1 � δ > ε̄ to be chosen later, we have

∣∣∣
{
� = φ − w

2

}
∩ V1

∣∣∣ ≥ (1 − Cδ)|V1| (4.20)

for some C depends on n, ρ, α and κ . Indeed, let

V2 =
{

x ∈ U ∩ Bc2 : dist
(
x, ∂(U ∩ Bc2)

)
> 2δ

}
.

For x0 ∈ V2, consider

v∗(x) := 1

2
w(x)− ε̄ + δ

(
r2 − |x − x0|2

)

where

δ = 2 3
√
ε̄ ∼ ε1/3n, δ > r >

√
2ε̄

δ
.

Then B(x0, r) ⊂ V1 and

v∗ ≤ � on ∂B(x0, r) and v∗ ≥ � in B

(
x0, r − 2ε̄

δr

)
.

It follows that ∇v∗(B(x0, r − 2ε̄
δr

) ⊂ ∇�(B(x0, r)
)
. Hence

∇v∗(V2) ⊂ ∇�(V1). (4.21)

From the C2 bound on w in (4.17), we have

D2v∗ = 1

2
D2w − 2δ In = 1

2

(
1 − 4c−1

0 δ
)
D2w + 2δ

(
c−1

0 D2w − In
)

≥ 1

2

(
1 − 4c−1

0 δ
)
D2w.

Therefore, using det D2w = 1, we obtain

|∇v∗(V2)| =
∫

V2

det D2v∗ ≥
(

1

2n
− C1δ

)
|V2|. (4.22)

Next, as � is convex with � ∈ C1,1(U ∩ Bc2) and det D2� = 0 a.e. outside C, we
have

|∇�(V1)| = |∇�(V1 ∩ C)| =
∫

V1∩C
det D2�. (4.23)

123



678 N. Q. Le, T. Nguyen

We now estimate det D2� from above. For this, observe that for any x ∈ C, the function
φ − 1

2w − � attains its local minimum value 0 at x . Hence,

D2�(x) ≤ D2
(
φ − 1

2
w

)
(x)

at any twice differentiable point of� and φ. Therefore, this inequality holds for a.e x ∈
C by Aleksandrov theorem. Note that for symmetric, nonnegative matrices A and B,
we have

(det(A + B))1/n ≥ (det A)1/n + (det B)1/n .

Thus, for a.e x ∈ C, we have

(det D2�(x))1/n ≤
(

det D2
(
φ − 1

2
w

)
(x)

)1/n

≤ (det D2φ)1/n −
(

det D2
(

1

2
w

)
(x)

)1/n

≤ (1 + ε)1/n − 1

2
≤ 1

2
+ ε

n
.

Combining with (4.23) gives

|∇�(V1)| ≤
(

1

2n
+ C2ε

)
|V1 ∩ C|.

We infer from this, (4.21) and (4.22) that

|V1 ∩ C| ≥ 1 − 2nC1δ

1 + 2nC2ε
|V2| ≥ (1 − C3δ) |V2| (4.24)

for ε ≤ ε0 with ε0 is a small universal constant.
By (iv) in the definition of the class P , we have ‖Bc2 ∩∂U‖C1,1 ≤ κ.Consequently,

∣∣(U ∩ Bc2)\V2
∣∣ ≤ C4δ and |V2| ≥ |V1| − C4δ

for some C4 > 0 depending only on n, ρ and κ . Combining the above inequalities
with (4.24), we easily obtain (4.20).

It follows from (4.20), the inclusion {� < φ − w
2 } ⊂ U ∩ Bc2 and (4.16) that

∣∣∣
{
� < φ − w

2

}
∩ Sφ(0, c9)

∣∣∣

≤
∣∣∣
{
� < φ − w

2

}
∩ V1

∣∣∣+ |(U ∩ Bc2)\V1| ≤ Cδ|V1| + C4δ

≤ C5δ ≤ Cδ|Sφ(0, c9)| ≤ Cε1/3n|Sφ(0, c9)|.

This gives the claim (4.18) and the proof is complete. ��
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5 Density and global W2, p estimates

In this section we will prove global W 2,p estimates for solutions to the linearized
Monge–Ampère equations as stated in the introduction. The key tools are density
estimates and a covering lemma.

5.1 Density estimates

In this subsection, by using the approximation lemma in Sect. 4.2 together with the
stability of cofactor matrices established in Sect. 3.4, we improve density estimates
obtained in Sect. 3 when the Monge–Ampère measure det D2φ is close to 1.

Our first lemma improves the power decay estimates in Proposition 3.7 which say
that for (	, φ,U ) ∈ Pλ,�,ρ,κ,∗, the quantity |Sφ(0, r)\G N (u,	)| decays like C N−τ .

Here, we improve C by roughly a factor of ‖� − W‖Ln(U ) +
( ffl

U | f |n dx
) 1

n
when

∗ is replaced by α, λ and � are close to 1, and W is the matrix of cofactors of D2w

of the solution to the Monge–Ampère equation det D2w = 1 with the same boundary
values as φ. The precise statement is as follows.

Lemma 5.1 Assume (	, φ,U ) ∈ P1−ε,1+ε,ρ,κ,α where 0 < ε < 1/2. Let r = c2/4.
Suppose u ∈ C(	) ∩ C1(U ) ∩ W 2,n

loc (U ) is a solution of Lφu = f in U that satisfies

‖u‖L∞(U ) + ‖u‖C2,α(∂U∩B4r )
≤ 1,

and has at most quadratic growth in the sense that

|u(x)| ≤ C∗ [1 + d(x, x0)
2] in 	\U for some x0 ∈ Br/2 ∩ U. (5.1)

Then there exist τ = τ(n, ρ) > 0 and N0 = N0(C∗, n, ρ, α) > 0 such that for
N ≥ N0 we have

|G N (u,	) ∩ Sφ(0, c9)| ≥
{

1 − C
(
N−τ δτ0 + ε1/3n)} |Sφ(0, c9)|

provided that ‖�− W‖Ln(B2r∩U ) ≤ r4. Here C = C(n, ρ, α, κ) > 0, W, γ are from
Lemma 4.5, and

δ0 := (1 + ‖u‖C1/2(∂U∩B4r )

) ‖�− W‖γLn(B2r∩U ) +
⎛

⎝
 

U

| f |n dx

⎞

⎠

1
n

.

Proof Let h be the solution of

Wi j hi j = 0 in B2r ∩ U, and h = u on ∂(B2r ∩ U ).
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By Lemma 4.5 and since U ⊂ Bk−1 , there exists C0 depending only on n, ρ and α
such that

‖h‖C1,1(Br∩U ) ≤ C0, (5.2)

‖u − h‖L∞(Br∩U ) + ‖ f − trace([�− W]D2h)‖Ln(Br∩U ) ≤ C0 δ0 =: δ′0. (5.3)

We now consider h|Br∩U and then extend h outside Br ∩U continuously such that

{
h(x) = u(x) ∀x ∈ 	 \ (B2r ∩ U ),
‖u − h‖L∞(	) = ‖u − h‖L∞(Br∩U ).

The maximum principle gives ‖h‖L∞(Br∩U ) ≤ ‖u‖L∞(U ) ≤ 1, and thus

u(x)− 2 ≤ h(x) ≤ u(x)+ 2 for all x ∈ 	. (5.4)

We claim that if N ≥ N0, then

(
B r

2
∩ U

)
∩ Aσ ⊂ G N (h,	) (5.5)

where σ = σ(n, ρ, α) > 0 is the constant given by Lemma 4.6 and the set Aσ is
defined by (4.15).

Indeed, let x̄ ∈ (B r
2
∩ U ) ∩ Aσ . By (5.2) we have

|h(x)− [h(x̄)+ ∇h(x̄) · (x − x̄)]| ≤ C0|x − x̄ |2 for all x ∈ Br ∩ U ,

and since x̄ ∈ Aσ

d(x, x̄)2 = φ(x)− [φ(x̄)+ ∇φ(x̄) · (x − x̄)] ≥ σ

2
|x − x̄ |2 ∀x ∈ B4r ∩ U. (5.6)

Therefore,

∣∣h(x)− [h(x̄)+ ∇h(x̄) · (x − x̄)]∣∣ ≤ 2C0

σ
d(x, x̄)2 ∀x ∈ Br ∩ U . (5.7)

We next show that by increasing the constant on the right hand side of (5.7), that the
resulting inequality holds for all x in 	.

To see this, we first observe that by the maximum principle maxU φ = max∂U φ = 1
and by the gradient estimates (v) in the definition of the class P and x0 ∈ U ∩ Br/2,
we have

d(x, x0)
2 = d(x, x̄)2 + [φ(x̄)− φ(x0)− 〈∇φ(x0), x̄ − x0〉]

+ 〈∇φ(x̄)−∇φ(x0), x − x̄〉
≤ d(x, x̄)2 + C1(1 + |x − x̄ |) for all x ∈ 	 (5.8)

for some universal C1 depending only on n and ρ.
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Next, we observe that if c1 = σr/4 then

d(x, x̄)2 ≥ c1|x − x̄ | ∀x ∈ 	 \ Br ∩ U . (5.9)

Indeed, by (5.6) and the fact that x̄ ∈ B r
2
∩ U , the above inequality holds for all

x ∈ U ∩ ∂Br . Now for x ∈ 	 \ Br ∩ U we can choose x̂ ∈ U ∩ ∂Br and λ ∈ (0, 1)
satisfying x̂ = λx + (1 − λ)x̄ . Then since d(x̂, x̄)2 ≥ c1|x̂ − x̄ | and the function
z �→ d(z, x̄)2 is convex, we obtain

λd(x, x̄)2 + (1 − λ)d(x̄, x̄)2 ≥ c1|λx + (1 − λ)x̄ − x̄ | = c1λ|x − x̄ |

which gives d(x, x̄)2 ≥ c1|x − x̄ | and hence (5.9) is proved.
We are ready to show that (5.7) holds for all x ∈ 	 but with a bigger constant on

the right hand side. Let x ∈ 	 \ Br ∩ U . Then, recalling x̄ ∈ B r
2
∩ U and by (5.9),

we have

d(x, x̄)2 ≥ c1r/2 =: c2.

We can estimate using (5.2) and (5.4),

|h(x)− [h(x̄)+∇h(x̄) · (x − x̄)]| ≤ |h(x)− h(x̄)| + C0|x − x̄ |
≤ |u(x)| + C0(|x − x̄ | + 1). (5.10)

Consider the following cases:
Case 1: x ∈ U \ Br ∩ U . Using (5.10) and the above lower bound for d(x, x̄)2, we

obtain

|h(x)− [h(x̄)+∇h(x̄) · (x − x̄)]| ≤ 1 + C0(|x − x̄ | + 1) ≤ 1 + C0(2k−1 + 1)

≤ C2 d(x, x̄)2.

Case 2: x ∈ 	 \ U . Using (5.10), (5.1), (5.8), (5.9) and the bound d(x, x̄)2 ≥ c2,
we find that

|h(x)− [h(x̄)+∇h(x̄) · (x − x̄)]| ≤ C∗ [1 + d(x, x0)
2] + C0(|x − x̄ | + 1)

≤ C∗ d(x, x̄)2 + C3(|x − x̄ | + 1) ≤ C4 d(x, x̄)2.

Therefore if we choose

N0 := max

{
4C0

σ
, 2C2, 2C4

}
,

then it follows from the above considerations and (5.7) that

|h(x)− [h(x̄)+ ∇h(x̄) · (x − x̄)]| ≤ N0

2
d(x, x̄)2 for all x ∈ 	.

This means x̄ ∈ G N0(h,	) ⊂ G N (h,	) for all N ≥ N0. Thus claim (5.5) is proved.
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Next let

u′(x) := (u − h)(x)

δ′0
, for x ∈ 	.

We infer from (5.3) and the way h was initially defined and extended that

‖u′‖L∞(	) = 1

δ′0
‖u − h‖L∞(Br∩U ) ≤ 1,

Lφu′ = 1

δ′0
[Lφu − Lφh] = 1

δ′0

[
f − trace([�− W]D2h)

]
=: f ′(x) in Br ∩ U.

Notice that ‖ f ′‖Ln(Br∩U ) ≤ 1 by (5.3). Thus we can apply Proposition 3.7 to get

∣∣Sφ(0, c9) \ G N
δ′0
(u′,	)

∣∣ ≤ C

(
δ′0
N

)τ
|Sφ(0, c9)|.

As G N
δ′0
(u′,	) = G N (u − h,	), we then conclude

|Sφ(0, c9)| − |G N (u − h,	) ∩ Sφ(0, c9)| ≤ C

(
δ0

N

)τ
|Sφ(0, c9)|

yielding
{

1 − C

(
δ0

N

)τ}
|Sφ(0, c9)| ≤ |G N (u − h, 	) ∩ Sφ(0, c9)|

≤ |G N (u − h, 	) ∩ Sφ(0, c9) ∩ Aσ | +
∣∣∣Sφ(0, c9) \ Aσ

∣∣∣

≤ |G N (u − h, 	) ∩ Sφ(0, c9) ∩ Aσ | + Cε1/3n |Sφ(0, c9)|,

where the last inequality is by Lemma 4.6. Consequently,

|G N (u − h,	) ∩ Sφ(0, c9) ∩ Aσ |≥
{

1−C
[(δ0

N

)τ
+ ε1/3n

]}
|Sφ(0, c9)|. (5.11)

Next observe that G N (u − h,	) ∩ Sφ(0, c9) ∩ Aσ ⊂ G N (u − h,	) ∩ G N (h,	) by
(5.5). Therefore,

G N (u − h,	) ∩ Sφ(0, c9) ∩ Aσ ⊂ G2N (u,	) ∩ Sφ(0, c9)

which together with (5.11) gives the conclusion of the lemma. ��
Having the improved decay estimates in Lemma 5.1, we can now proceed with

density estimates when det D2φ is close to a constant. Our next lemma is concerned
with second derivative estimates for solutions to Lφu = f . It roughly says that in each

123



Global W 2,p estimates 683

section Sφ(x, t) with small height t , we can find a very large portion (as close to the
full measure as we want) where u has second derivatives bounded in a controllable
manner. The bound on D2u is made more precise by using the openings of the quasi
paraboloids that touch u from below and above. So far, we have no a priori information
on the boundedness of D2u. However, we can still hope for a bound of order 1

t for
|D2u| in Sφ(x, t) as explained in Sect. 2.2 using an L∞-norm rescaling of our solution.
This heuristic idea explains the factor N

t in the estimate of Lemma 5.2 and the way
the solution is rescaled in the proof.

Lemma 5.2 Assume	 satisfies (2.1) and φ ∈ C0,1(	) is a convex function satisfying
(2.3) and

1 − ε ≤ det D2φ ≤ 1 + ε in	.

Assume in addition that ∂	 ∈ C2,α and φ ∈ C2,α(∂	) for some α ∈ (0, 1). Let
u ∈ C1(	) ∩ W 2,n

loc (	) be a solution of Lφu = f in 	 with u = 0 on ∂	 and
‖u‖L∞(	) ≤ 1. Let 0 < ε0 < 1. Then there exists ε > 0 depending only on ε0, n, ρ
and α such that for any x ∈ 	 and t ≤ c1 we have

∣∣∣G N
t
(u,	) ∩ Sφ(x, t)

∣∣∣ ≥
{

1 − ε0 − C

(√
t

N

)τ
‖ f ‖τLn(	)

}
∣∣Sφ(x, t)

∣∣ ∀N ≥ N1.

(5.12)

Here τ = τ(n, ρ); C and N1 depend only on n, ρ and α; c1 > 0 is small depending
only on n, ρ, α, ‖∂	‖C2,α and ‖φ‖C2,α(∂	).

Proof If ε is small then by the global W 2,p estimates for solutions to the Monge–
Ampère equations [28, Theorem 1.2], we have φ ∈ W 2,2n(	) and hence φ ∈ C1(	).

Let us first consider the case x ∈ ∂	. We can assume that x = 0, φ(0) = 0 and
∇φ(0) = 0. By the Localization Theorem 2.2, we have

k Et ∩	 ⊂ Sφ(0, t) ⊂ k−1 Et ∩	,

where Et := A−1
t Bt1/2 with At x = x − τt xn and

τt · en = 0, ‖A−1
t ‖, ‖At‖ ≤ k−1| log t |.

We now define the rescaled domains 	t ,Ut and rescaled functions φt and ut as in
Sect. 2.2 that preserve the L∞-norm of u. We have

Lφt ut (y) = t f (T−1 y) =: ft (y)

where T := t−1/2 At and

‖ut‖L∞(	t ) = ‖u‖L∞(	) ≤ 1, ut = 0 on ∂Ut ∩ Bk .
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Moreover, we have from Proposition 2.12 that

(	t , φt ,Ut ) ∈ P1−ε,1+ε,ρ,Ct1/2,α ⊂ P1−ε,1+ε,ρ,1,α

if t ≤ c̃, where c̃ > 0 is a small constant depending only on n, ρ, α, ‖∂	‖C2,α and
‖φ‖C2,α(∂	).

Now, applying Lemma 5.1 with C∗ = 1, we obtain

|G N (ut ,	t , φt ) ∩ Sφt (0, c9)| ≥
{

1 − C
(
N−τ δτ0 + ε1/3n)} |Sφt (0, c9)|

for any N ≥ N0 = N0(n, ρ, α). Here

δ0 := ‖�t − Wt‖γ
Ln

(
B c2

2
∩Ut

) +
⎛

⎜⎝
 

Ut

| ft |n dy

⎞

⎟⎠

1
n

, (5.13)

γ is given by Lemma 4.5, wt is the function in (vi i) in the definition of the class P
associated with the triple (	t , φt ,Ut ) and Wt is the cofactor matrix of D2wt . This
together with the stability of cofactor matrices in Proposition 3.14 implies the existence
of ε = ε(ε0, n, ρ, α) > 0 such that for r := c9, we have

|G N (ut ,	t , φt ) ∩ Sφt (0, r)| ≥

⎧
⎪⎪⎨

⎪⎪⎩
1 − ε0β − C N−τ

⎛

⎜⎝
 

Ut

| ft |n dy

⎞

⎟⎠

τ
n

⎫
⎪⎪⎬

⎪⎪⎭
|Sφt (0, r)|

=

⎧
⎪⎪⎨

⎪⎪⎩
1 − ε0β − C

(
t

N

)τ
⎛

⎜⎝
 

Sφ(0,t)

| f |n dx

⎞

⎟⎠

τ
n

⎫
⎪⎪⎬

⎪⎪⎭
|Sφt (0, r)|,

where β = β(n, ρ) < 1 is a universal constant to be chosen later.
As Sφt (0, r) = T (Sφ(0, r t)), it is easy to see that for G N (u,	, φ) = G N (u,	),

G N (ut ,	t , φt ) ∩ Sφt (0, r) = T
(

G N
t
(u,	, φ) ∩ Sφ(0, r t)

)
.

Therefore we conclude that

∣∣∣T
(

G N
t
(u,	) ∩ Sφ(0, r t)

)∣∣∣ ≥

⎧
⎪⎪⎨

⎪⎪⎩
1 − βε0 − C

(
t

N

)τ
⎛

⎜⎝
 

Sφ(0,t)

| f |n dx

⎞

⎟⎠

τ
n

⎫
⎪⎪⎬

⎪⎪⎭
∣∣T (Sφ(0, r t))

∣∣ ∀t ≤ c̃.
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This is equivalent to

∣∣∣∣G N
′

t

(u, 	) ∩ Sφ(x, t)

∣∣∣∣ ≥

⎧
⎪⎪⎨

⎪⎪⎩
1 − ε0β − C

(
t

N ′

)τ
⎛

⎜⎝
 

Sφ(x, t
r )

| f |n dx

⎞

⎟⎠

τ
n

⎫
⎪⎪⎬

⎪⎪⎭

∣∣Sφ(x, t)
∣∣

(5.14)

giving (5.12) for any N
′ ≥ N1 ≡ N0r and t ≤ r c̃.

Next we consider the situation that x ∈ 	. We then have the following possibilities:
Case 1: t ≤ h/2, where h := h̄(x).
If h ≥ c where c is defined in Proposition 2.3 then the estimate (5.12) is an easy

consequence of the interior density estimates [17, Lemma 4.3] which we now recall.

Lemma 5.3 ([17, Lemma 4.2]) Let 0 < α0 < 1 and 	 be a convex domain in R
n

satisfying Bk0 ⊂ 	 ⊂ Bk−1
0

and u ∈ C1(	) ∩ W 2,n
loc (	) be a solution of �i j ui j = f

in 	 with ‖u‖L∞(	) ≤ 1, where φ ∈ C(	) is a convex function satisfying φ = 0 on
∂	. Let 0 < ε0 < 1. There exists ε > 0 depending only on ε0, α0, k0 and n such that
if

1 − ε ≤ det D2φ ≤ 1 + ε in	,

then for any section Sφ(x0,
t0
α0
) ⊂ 	α0+1

2
:= {x ∈ 	 : φ(x) < (1 − α0+1

2 )min	 φ},
we have

|G N
t0
(u,	) ∩ Sφ(x0, t0)| ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − ε0 − C

(
t0
N

)τ
⎛

⎜⎜⎜⎝

 

Sφ
(

x0,
t0
α0

)
| f |n

⎞

⎟⎟⎟⎠

τ
n

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

|Sφ(x0, t0)|

for every N ≥ N0. Here C, τ, N0 are positive constants depending only on α0, n
and k0.

Now we consider the remaining situation in Case 1 when h ≤ c. We define the
rescaled domain 	̃h and rescaled functions φ̃h , ũh and f̃h as in Sect. 2.2 that preserve
the L∞-norm in a section tangent to the boundary. Now, we apply Lemma 5.3 to
the domain Sφ̃h

(0, 1) with α0 = 3/4, x0 = 0 and t0 = t/h ≤ 1/2, noting that
(Sφ̃h

(0, 1))α = Sφ̃h
(0, α) for all α > 0. Thus,

∣∣∣∣G Nh
t

(
ũh, Sφ̃h

(0, 1), φ̃h

)
∩ Sφ̃h

(
0,

t

h

)∣∣∣∣

≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − ε0 − C

(
t

hN

)τ
⎛

⎜⎜⎜⎝

 

S
φ̃h

(
0, 4t

3h

)

∣∣∣ f̃h

∣∣∣
n

⎞

⎟⎟⎟⎠

τ
n

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

∣∣∣∣Sφ̃h

(
0,

t

h

)∣∣∣∣ . (5.15)
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Let T y := h−1/2 Ah(y − x). Then

G Nh
t

(
ũh, Sφ̃h

(0, 1), φ̃h

)
∩ Sφ̃h

(
0,

t

h

)
= T

(
G N

t
(u,	) ∩ Sφ(x, t)

)
.

Changing variables in (5.15) gives

|G N
t
(u,	) ∩ Sφ(x, t)| ≥

⎧
⎪⎪⎨

⎪⎪⎩
1 − ε0 − C

(
t

N

)τ
⎛

⎜⎜⎝

 

Sφ(x,
4t
3 )

| f |n
⎞

⎟⎟⎠

τ/n⎫⎪⎪⎬

⎪⎪⎭
|Sφ(x, t)|

and hence (5.12) holds.
Case 2: h/2 < t ≤ r c̃/c̄ ≡ c1 where c̄ > 1 is the constant in Proposition 2.14.

Then by Proposition 2.14, we know that Sφ(x, 2t) ⊂ Sφ(z, c̄t) for some z ∈ ∂	, and
by Theorem 2.13(b),

C1tn/2 ≤ |Sφ(x, t)| ≤ C2tn/2 ∀t ≤ c0.

Using these inequalities and the estimate (5.14) in the case of boundary section, we
get

∣∣∣Sφ(x, t) \ G N
t
(u,	)

∣∣∣ ≤
∣∣∣Sφ(z, c̄t) \ G N

c̄t
(u,	)

∣∣∣

≤

⎧
⎪⎪⎨

⎪⎪⎩
ε0β + C

(
c̄t

N

)τ
⎛

⎜⎝
 

Sφ(z,c̄t/r)

| f |n dx

⎞

⎟⎠

τ
n

⎫
⎪⎪⎬

⎪⎪⎭
|Sφ(z, c̄t)|

≤
{
ε0β + C

(√
t

N

)τ
‖ f ‖τLn(	)

}
|Sφ(x, t)|C−1

1 C2c̄
n
2 .

This implies (5.12) as desired by choosing β = C1C−1
2 c̄

−n
2 and c1 = r c̃/c̄ = c9c̃/c̄.

��
The next lemma is a key technical ingredient in our global W 2,p estimates. It

propagates a point in a given section where the solution u of Lφu = f has bounded
second derivative to almost all points in that section. More precisely, it says that if in
a small section Sφ(x, t) we can find a point where u is touched from above and below
by quasi paraboloids of opening γ generated by φ then on a set of nearly full measure
of Sφ(x, t), u is touched from above and below by quasi paraboloids of opening Nγ
for some controllable constant N , provided that det D2φ is close to a constant.

Lemma 5.4 Assume 	 is uniformly convex satisfying (2.1) and φ ∈ C0,1(	) is a
convex function satisfying (2.3) and

1 − ε ≤ det D2φ ≤ 1 + ε in	.
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Assume in addition that ∂	 ∈ C2,α and φ ∈ C2,α(∂	) for some α ∈ (0, 1). Let
u ∈ C1(	) ∩ W 2,n

loc (	) be a solution of Lφu = f in 	 and u = 0 on ∂	. Let
0 < ε0 < 1. Then there exists ε > 0 depending only on ε0, n, ρ and α such that for
any x ∈ 	, t ≤ c2 and Sφ(x, t) ∩ Gγ (u,	) �= ∅ we have

∣∣G Nγ (u,	) ∩ Sφ(x, t)
∣∣ ≥

⎧
⎪⎪⎨

⎪⎪⎩
1 − ε0 − C(Nγ )−τ

⎛

⎜⎝
 

Sφ(x̃,�t)

| f |n dx

⎞

⎟⎠

τ
n

⎫
⎪⎪⎬

⎪⎪⎭

∣∣Sφ(x, t)
∣∣

(5.16)

for all x̃ ∈ Sφ(x, t) and N ≥ N2. Here τ and � depend only on n and ρ; C, c2 and
N2 depend only on n, ρ, α, the uniform convexity of 	, ‖∂	‖C2,α and ‖φ‖C2,α(∂	).

Proof As explained in the proof of Lemma 5.2, we have φ ∈ C1(	) ∩ W 2,2n(	) if ε
is small.

Let us first consider the case x ∈ ∂	. We can assume that x = 0, φ(0) = 0 and
∇φ(0) = 0. Let h = θ t where θ = θ(n, ρ) > 1 will be chosen later. Let Ah be the
affine transformation as in the Localization Theorem 2.2. We now define the rescaled
domains 	h,Uh and rescaled functions φh, ũh and f̃h as in Sect. 2.2 that almost
preserve the L∞-norm of D2u. Let T = h−1/2 Ah .

Let x̄ ∈ Sφ(0, t) ∩ Gγ (u,	) and ȳ := T x̄ . Then

−γ d(x, x̄)2 ≤ u(x)− u(x̄)−∇u(x̄) · (x − x̄) ≤ γ d(x, x̄)2, ∀x ∈ 	.

By changing variables and recalling that 	h = T (	), ũh(y) = h−1u(T−1 y), we get

− γ d(T−1 y, T−1 ȳ)2

θ t
≤ ũh(y)− ũh(ȳ)− ∇ũh(ȳ) · (y − ȳ)

≤ γ
d(T−1 y, T−1 ȳ)2

θ t
, ∀y ∈ 	h . (5.17)

Since x̄ ∈ Sφ(0, t) ⊂ Sφ(0, θ t),we have by the engulfing property of sections in The-
orem 2.13(a) Sφ(0, θ t) ⊂ Sφ(x̄, θ2t). It follows that d(x, x̄)2 ≤ θ2t for x ∈ Sφ(0, θ t)
yielding d(T−1 y, T−1 ȳ)2 ≤ θ2t for all y ∈ Uh := T (Sφ(0, h)). Consequently, if we
define

v(y) := 1

θγ

[
ũh(y)− ũh(ȳ)− ∇ũh(ȳ) · (y − ȳ)

]
, y ∈ 	h, (5.18)

then |v| ≤ 1 in Uh . Thanks to Lemma 5.5 below we get for t ≤ cα

‖v‖C2,α(∂Uh∩Bk )
≤ Cα, (5.19)
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where cα,Cα depend only on n, ρ, α, the uniform convexity of 	, ‖∂	‖C2,α and
‖φ‖C2,α(∂	). By (5.17) we have

|v(y)| ≤ 1

θ2t
d(T−1 y, T−1 ȳ)2 ≤ 1

θ
dφh (y, ȳ)2 ∀y ∈ T (	), (5.20)

where we recall θ t = h and

dφh (y, ȳ)2 := φh(y)− φh(ȳ)−∇φh(ȳ) · (y − ȳ) = h−1 d(T−1 y, T−1 ȳ)2.

Moreover

Lφhv = (θγ )−1Lφh ũh = (θγ )−1 f̃h ≡ (θγ )−1 f (T−1 y) =: f̃ (y).

Because x̄ ∈ Sφ(0, t), we have ȳ = T x̄ ∈ Sφ̃(0,
1
θ
). Hence, we can choose θ > 1

depending on n, ρ, k such that ȳ ∈ B c2
8
∩ Ũ . With this choice of θ , we have by

Proposition 2.12

(	h, φh,Uh) ∈ P1−ε,1+ε,ρ,Ch1/2,α ⊂ P1−ε,1+ε,ρ,1,α

if t ≤ c̃, where c̃ > 0 is a small constant depending only on n, ρ, α, ‖∂	‖C2,α and
‖φ‖C2,α(∂	). Here we can choose c̃ ≤ cα , and hence it also depends on the uniform
convexity of 	.

Thus, using (5.19) and (5.20), we can apply Lemma 5.1 to v̄ := v/Cα to obtain

|G N (v̄, 	h, φh) ∩ Sφ̃ (0, c9)| ≥
{

1 − C
(
N−τ δτ0 + ε1/3n)} |Sφh (0, c9)|

for any N ≥ N0, where δ0 is as in (5.13). This together with the stability of cofactor
matrices in Proposition 3.14 implies the existence of ε = ε(ε0, n, ρ, α) > 0 such that

|G N (v̄, 	h, φh) ∩ Sφh (0, r)|

≥

⎧
⎪⎪⎨

⎪⎪⎩
1 − ε0β − C N−τ

⎛

⎜⎝
 

Uh

| f̃ |n dy

⎞

⎟⎠

τ
n

⎫
⎪⎪⎬

⎪⎪⎭
|Sφh (0, r)|

=

⎧
⎪⎪⎨

⎪⎪⎩
1 − ε0β − C

(
1

θγ N

)τ
⎛

⎜⎝
 

Sφ(0,θ t)

| f |n dx

⎞

⎟⎠

τ
n

⎫
⎪⎪⎬

⎪⎪⎭
|Sφh (0, r)|,

where for simplicity we have denoted

r := c9
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and β = β(n, ρ) < 1 is a universal constant to be chosen later. It follows that

|Sφh (0, r) \ G N (v̄, 	h, φh)|

≤

⎧
⎪⎪⎨

⎪⎪⎩
ε0β + C

(
1

θγ N

)τ
⎛

⎜⎝
 

Sφ(0,θ t)

| f |n dx

⎞

⎟⎠

τ
n

⎫
⎪⎪⎬

⎪⎪⎭
|Sφh (0, r)|.

As Sφh (0, r) = T (Sφ(0, θr t)) and v̄(y) = 1
Cαθ2γ t

[
u(T−1 y)−u(x̄)−∇u(x̄)·(T−1 y−

x̄)
]
, it is easy to see that

G N (v̄, 	h, φh) ∩ Sφh (0, r) = T
(

GCαNθγ (u,	) ∩ Sφ(0, rθ t)
)
.

Therefore, by the volume estimates in Theorem 2.13(b), we conclude that

|Sφ(0, r t) \ GCαNθγ (u,	)|
≤ |Sφ(0, rθ t) \ GCαNθγ (u,	)|

≤

⎧
⎪⎪⎨

⎪⎪⎩
C−1

1 C2θ
n
2 ε0β + C

(
1

Cαθγ N

)τ
⎛

⎜⎝
 

Sφ(0,θ t)

| f |n dx

⎞

⎟⎠

τ
n

⎫
⎪⎪⎬

⎪⎪⎭

∣∣Sφ(0, r t)
∣∣ .

By setting N ′ = CαNθ , β ′ = C−1
1 C2θ

n/2β, we can rewrite this as

∣∣G N ′γ (u,	) ∩ Sφ(x, t)
∣∣

≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
1 − ε0β

′ − C

(
1

γ N ′

)τ
⎛

⎜⎜⎝

 

Sφ(x,
θ
r t)

| f |n dx

⎞

⎟⎟⎠

τ
n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

∣∣Sφ(x, t)
∣∣ (5.21)

for any N ′ ≥ N2 ≡ CαN0θ and t ≤ r c̃. From Theorem 2.13(a) we have Sφ(x,
θ
r t) ⊂

Sφ(x̃,
θ∗θ
r t) for any x̃ ∈ Sφ(x, t). Therefore, by Theorem 2.13(b), we see that (5.21)

yields (5.16).
Next we consider the situation that x ∈ 	. We then have the following possibilities:
Case 1: t ≤ h/2, where h := h̄(x). This case can be handled as Case 1 of

Lemma 5.2, using now [17, Lemma 4.5] and affine transformations similar to the
ones at the beginning of the proof of this lemma.

Case 2: h/2 < t ≤ r c̃/c̄ ≡ c2, where c̄ > 1 is the constant in Proposition 2.14.
Then by Proposition 2.14, we know that Sφ(x, 2t) ⊂ Sφ(z, c̄t) for some z ∈ ∂	.
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Thus, by the estimate (5.21) in the case of boundary section, we get

∣∣Sφ(x, t) \ G Nγ (u,	)
∣∣ ≤ ∣∣Sφ(z, c̄t) \ G Nγ (u,	)

∣∣

≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε0β
′ + C

(
1

γ N

)τ
⎛

⎜⎜⎜⎝

 

Sφ
(

z, θ c̄
r t
)
| f |n dx

⎞

⎟⎟⎟⎠

τ
n

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

∣∣Sφ(z, c̄t)
∣∣ .

(5.22)

For any x̃ ∈ Sφ(x, t) ⊂ Sφ(z,
θ c̄
r t), we get Sφ(z,

θ c̄
r t) ⊂ Sφ(x̃,

θ∗θ c̄
r t) by the engulfing

property in Theorem 2.13. Now, using (5.22) and the volume estimates in this theorem,
we find that

∣∣Sφ(x, t) \ G Nγ (u,	)
∣∣

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
ε0β

′C−1
1 C2c̄

n
2 + C

(
1

γ N

)τ
⎛

⎜⎜⎝

 

Sφ(x̃,
θ∗θ c̄

r t)

| f |n dx

⎞

⎟⎟⎠

τ
n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

∣∣Sφ(x, t)
∣∣ .

This gives (5.16) with � := θ∗θ c̄/r if we choose β such that β ′C−1
1 C2c̄n/2 =

βC−2
1 C2

2 (θ c̄)n/2 = 1. ��
In the next lemma we prove that the function v defined as in the proof of Lemma 5.4

has uniform C2,α bound on ∂Uh ∩ Bk .

Lemma 5.5 Let v be defined as in (5.18). There exist Cα, cα > 0 depending only on
n, ρ, α, the uniform convexity of 	, ‖∂	‖C2,α and ‖φ‖C2,α(∂	) such that for t ≤ cα ,
we have

‖v‖C2,α(∂Uh∩B+
k )

≤ Cα. (5.23)

Proof Since ∂	 is C2,α at the origin and 	 is uniformly convex, we have

∣∣xn − q(x ′)
∣∣ ≤ M

∣∣x ′
∣∣2+α for x = (x ′, xn) ∈ ∂	 ∩ Bρ,

where q(x ′) is a homogeneous quadratic polynomial with

D2
x ′q ≥ C−1 In−1. (5.24)

Recall h = θ t. Then it follows from the definition of Uh and Proposition 2.12 that

∣∣∣xn − h1/2q(x ′)
∣∣∣ ≤ Ch

1+α
2
∣∣x ′
∣∣2+α on ∂Uh ∩ B+

k (5.25)
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if h ≤ h0, where h0,C depend only on n, ρ, α and the C2,α norms of ∂	 and φ|∂	 at
the origin. Hence by combining with (5.24), we see that if h ≤ h0 (h0 now depends
also on the uniform convexity of 	) then on ∂Uh ∩ B+

k ,

1

2
h1/2q(x ′) ≤ xn ≤ 2h1/2q(x ′). (5.26)

Let

l(y) = −1

θγ

[
ũh(ȳ)+∇ũh(ȳ) · (y − ȳ)

]
.

Then l(y) = v(y) for y ∈ ∂Uh ∩ B+
k . Since |v| ≤ 1 in Uh , we find that

|l(y)− l(z)| = 1

θγ
|∇ũh(ȳ) · (y − z)| ≤ 2 ∀y, z ∈ ∂Uh ∩ B+

k . (5.27)

All constants in this lemma, unless otherwise indicated, depend only on n, ρ, α,
the uniform convexity of 	 and the C2,α norms of ∂	 and φ|∂	.

We now divide the proof into three steps.
Step 1. l is uniformly Lipschitz at the origin: there exists L > 0 such that

|l(z)− l(0)| ≤ L |z| ∀z ∈ ∂Uh ∩ B+
k2 .

Take z ∈ ∂Uh ∩ B+
k2\{0}. Let C be the curve which is the intersection of ∂Uh ∩ B+

k
and the vertical plane (P) passing through z and the origin. Let p and q be the
intersection of C with ∂B+

k . We now have a plane curve C in (P) which can be
assumed to be the usual xy-plane. It is easy to see from (5.24)–(5.26) that C is a graph
in the y-direction C = {(x, ϕ(x))} with C1,1 norm comparable to h1/2, that is

C−1h1/2 ≤ ϕ
′′
(x) ≤ Ch1/2.

Note that, this also follows from the proof of [23, Lemma 4.2] for the case of uniformly
convex domains 	.

Since |p| = |q| = k, we find that

yp ∼ h1/2, yq ∼ h1/2,
∣∣x p
∣∣ ∼ k,

∣∣xq
∣∣ ∼ k.

Without loss of generality, we can assume that yp ≤ yq and x p < 0 < xq , that
is, p is on the left half-plane while q is on the right half-plane. The horizontal line
through p intersects C at another point q

′
. Since ϕ

′′ ≤ Ch1/2 and yq ′ = yp ∼ h1/2,

we must have xq ′ ∼ k. In particular, z lies on the arc p0q
′
. We can assume that z

lies on the arc 0q
′
. Now, take a ray emanating from q

′
and parallel to 0z. This ray is

exactly q
′
0 when z ≡ q

′
and it is q

′
p when z → 0. Thus, by continuity, there must be
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a point m on the arc 0p such that q
′
m is parallel to 0z. Clearly,

∣∣∣q ′ − m
∣∣∣ ≥ xq ′ ∼ k.

Using z = |z|∣∣∣q ′−m
∣∣∣
(q

′ − m), we find from (5.27) that

|l(z)− l(0)| = 1

θγ
|∇ũh(ȳ) · z| = |z|∣∣q ′ − m

∣∣
1

θγ

∣∣∣∇ũh(ȳ) · (q ′ − m)
∣∣∣

≤ |z|∣∣q ′ − m
∣∣ ≤ L |z| .

Thus, l is Lipschitz at 0.

Step 2. Let 1
θγ

∇ũh(ȳ) = (a′, an). Then

∣∣a′∣∣ ≤ 2L and |an| h1/2 ≤ C L .

First, we note that the projection of ∂Uh ∩ Bk on {xn = 0} contains a ball of radius
comparable to k. By rotating coordinates in {xn = 0}, we can assume that a′ =
(A, 0, . . . , 0). Take a curve C = {(x, 0, . . . , 0, ϕ(x)) | −k2 ≤ x ≤ k2

}
in ∂Uh ∩ Bk

that lies in the x1xn plane. Note that ϕ(x) ∼ h1/2x2. By the Lipschitz property of l in
Step 1, we have

1

θγ

∣∣∇ũh(ȳ) · (x, 0, . . . , 0, ϕ(x))
∣∣ = |Ax + anϕ(x)| ≤ L

√
x2 + (ϕ(x))2 ≤ 2L |x | .

Dividing the above inequalities by x and then letting x → 0, we get the desired bound

∣∣a′∣∣ = |A| ≤ 2L .

As a consequence, we have

|anϕ(x)| ≤ |Ax | + 2L |x | ≤ 4L |x | .

Using the lower bound on the growth of ϕ and evaluating at |x | ∼ k2, we obtain

|an| h1/2 ≤ C L .

Step 3. We have

‖v‖C2,α
(
∂Uh∩B+

k

) = ‖l‖C2,α
(
∂Uh∩B+

k

) ≤ C.

Recall from (5.25) that ∂Uh ∩ Bk is a graph in the en direction, that is,

∂Uh ∩ Bk = {(x ′, ψ(x ′)) : |x ′| ≤ Ck
}
,
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with the following properties:

(a) ‖∇ψ‖L∞ + ‖D2ψ‖L∞ ≤ Ch1/2, (b) ‖D2ψ‖Cα ≤ Ch
1+α

2 .

For y ∈ ∂Uh ∩ Bk , we have y = (x ′, ψ(x ′)) and

l(y) = l(0)− 1

θγ
∇ũh(ȳ) · y = l(0)− a′ · x ′ − anψ(x

′)

where l(0) is a constant bounded by 1. Clearly, the C2,α bound for l on ∂Uh ∩ Bk now
follows from (a)− (b) and Step 2. ��

5.2 Global W 2,p estimates

In this subsection we will use the density estimates established in Sect. 5.1 to derive
global W 2,p-estimates for solution u of the linearized equation Lφu = f when f ∈
Lq(	) for some q > n as stated in Theorems 1.1 and 1.2.

Proof of Theorem 1.1. The assumptions on 	 and φ in the statement of our theorem
imply that 	 satisfy (2.1) for some ρ > 0 and, by Proposition 2.4, φ satisfies (2.3).
Thus, 	 and φ satisfy the conditions of Lemmas 5.2 and 5.4.

By the ABP estimate, it suffices to establish our W 2,p estimates in the form

‖D2u‖L p(	) ≤ C
(
‖u‖L∞(	) + ‖ f ‖Lq (	)

)
.

We first observe that by working with the function v := εu

ε‖u‖L∞(	) + ‖ f ‖Lq (	)

instead of u, it is enough to show that there exist ε,C > 0 depending only on p, q, n
and 	 such that if 1 − ε ≤ det D2φ ≤ 1 + ε in 	, φ = u = 0 on ∂	, Lφu = f in 	,
‖u‖L∞(	) ≤ 1 and ‖ f ‖Lq (	) ≤ ε, then

‖D2u‖L p(	) ≤ C. (5.28)

Notice that u ∈ W 2,s
loc (	) for any n < s < q as a consequence of W 2,p

loc estimates in
[17].

Let N∗ = max{N1, N2} where N1 and N2 are the large constants in Lemmas 5.2
and 5.4 and ĉ = min{c1, c2} where c1 and c2 are the small constants in the above
lemmas. Fix M ≥ N∗ so that 1/M < ĉ. Next select 0 < ε0 < 1/2 such that

Mq
√

2ε0 = 1

2

and ε = ε(ε0, n,	) = ε(p, q, n,	) be the smallest of the constants in Lemmas 5.2
and 5.4. With this choice of ε, we are going to show that (5.28) holds. Applying
Lemma 5.2 to the function u and using ‖ f ‖Lq (	) ≤ ε we obtain
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∣∣Sφ(x, t) ∩ G M
t
(u,	)

∣∣ ≥ (1 − ε0 − Cετ
) |Sφ(x, t)|

as long as x ∈ 	 and t ≤ ĉ. By taking ε even smaller if necessary we can assume
Cετ < ε0. Then it follows from the above inequality that

∣∣Sφ(x, t) \ G M
t
(u,	)

∣∣ ≤ 2ε0 |Sφ(x, t)| for any x ∈ 	, t ≤ ĉ. (5.29)

Let 1/h ≤ ĉ. For x ∈ 	 \ GhM (u,	), define

g(t) :=
∣∣(	 \ GhM (u,	)) ∩ Sφ(x, t)

∣∣∣
|Sφ(x, t)| .

We have limt→0 g(t) = 1. Also, if 1/h ≤ t ≤ ĉ, then (5.29) gives

∣∣(	 \ GhM (u,	)) ∩ Sφ(x, t)
∣∣ ≤ |Sφ(x, t) \ GhM (u,	)|
≤ |Sφ(x, t) \ G M/t (u,	)| ≤ 2ε0 |Sφ(x, t)|.

Therefore g(t) ≤ 2ε0 for t ∈ [1/h, ĉ]. Then by continuity of g, there exists tx ≤ 1/h
such that g(tx ) = 2ε0.

Thus for any x ∈ 	 \ GhM (u,	) there is tx ≤ 1/h ≤ ĉ satisfying

∣∣(	 \ GhM (u,	)
) ∩ Sφ(x, tx )

∣∣ = 2ε0 |Sφ(x, tx )|. (5.30)

We now claim that (5.30) implies

Sφ(x, tx ) ⊂
(
	 \ Gh(u,	)

) ∪ {z ∈ 	 : M( f n)(z) > (c∗Mh)n
}
, (5.31)

where c∗ := ( ε0
C )

1/τ , and

M(F)(z) := sup
t≤ĉ

1

|Sφ(z, t)|
∫

Sφ(z,t)

|F(y)| dy ∀z ∈ 	.

Indeed, since otherwise there exists x̄ ∈ Sφ(x, tx )∩Gh(u,	) such that M( f n)(x̄) ≤
(c∗Mh)n . Note also that tx ≤ ĉ. Then by Lemma 5.4 applied to u we get

123



Global W 2,p estimates 695

∣∣Sφ(x, tx ) ∩ GhM (u,	)
∣∣ > (1 − 2ε0) |Sφ(x, tx )|

yielding

∣∣(	 \ GhM (u,	)
) ∩ Sφ(x, tx )

∣∣ ≤ ∣∣Sφ(x, tx ) \ GhM (u,	)
∣∣ < 2ε0 |Sφ(x, tx )|.

This is a contradiction with (5.30) and so (5.31) is proved. We infer from (5.30), (5.31)
and Theorem 2.15 that

|	\GhM (u,	)| ≤
√

2ε0
[|	\Gh(u,	)| +

∣∣{x ∈ 	 : M( f n)(x) > (c∗Mh)n}∣∣] ,
(5.32)

as long as 1/h ≤ ĉ.
For k = 0, 1, . . . , set

ak := |	 \ G Mk (u,	)| and bk := ∣∣{x ∈ 	 : M( f n)(x) > (c∗M Mk)n}∣∣.

Let h = M , then we get from (5.32) that a2 ≤ √
2ε0(a1 + b1). Next let h = M2,

then a3 ≤ √
2ε0(a2 + b2) ≤ 2ε0a1 + 2ε0b1 + √

2ε0 b2. Continuing in this way we
conclude that

|	\G Mk+1(u,	)| = ak+1 ≤
(√

2ε0

)k
a1+

k∑

i=1

(√
2ε0

)(k+1)−i
bi for k=1, 2, . . .

(5.33)

We are now ready to prove (5.28). We have

∫

	

|Di j u|p dx = p

∞∫

0

t p−1
∣∣{x ∈ 	 : |Di j u(x)| > t}∣∣ dt

= p

M
q
p∫

0

t p−1
∣∣{x ∈ 	 : |Di j u(x)| > t}∣∣ dt

+ p
∞∑

k=1

M
q(k+1)

p∫

M
qk
p

t p−1
∣∣ {x ∈ 	 : |Di j u(x)| > t

} ∣∣ dt

≤ |	|Mq + (Mq − 1
) ∞∑

k=1

Mqk
∣∣∣∣

{
x ∈ 	 : |Di j u(x)| > M

qk
p

}∣∣∣∣
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≤ |	|Mq + (Mq − 1
)

⎡

⎢⎢⎢⎣

∞∑

k=1

Mqk
∣∣∣∣	 \ Aloc

(
cM

k(q−p)
2p

) −2
n−1

∣∣∣∣+
∞∑

k=1

Mqk
∣∣	 \ G Mk (u, 	)

∣∣

⎤

⎥⎥⎥⎦

≤ |	|Mq + (Mq−1
)
[

C(n, ε,	)
∞∑

k=1

M
k
(

q+
(

q
p−1
)

ln
√

Cε
C

)

+
∞∑

k=1

Mqk
∣∣	 \ G Mk (u, 	)

∣∣
]
,

where we used (3.1) with m = q/p > 1 and β = Mk in the second inequal-
ity and used (3.2) in the last inequality. Since ε > 0 is small, the first summation
in the last expression is finite and hence (5.28) will follow if we can show that∑∞

k=1 Mkq |	 \ G Mk (u,	)| ≤ C . For this, let us employ (5.33) to obtain

∞∑

k=1

Mkq |	 \ G Mk (u,	)|

≤ a1

∞∑

k=1

Mkq
(√

2ε0

)k−1 +
∞∑

k=1

k−1∑

i=0

Mkq
(√

2ε0

)k−i
bi

= a1√
2ε0

∞∑

k=1

(
Mq
√

2ε0
)k +

⎡

⎣
∞∑

j=1

(
Mq
√

2ε0
) j

⎤

⎦
[ ∞∑

i=0

Miqbi

]

= a1√
2ε0

∞∑

k=1

2−k +
⎡

⎣
∞∑

j=1

2− j

⎤

⎦
[ ∞∑

i=0

Miqbi

]
= a1√

2ε0
+

∞∑

i=0

Miqbi .

But as f n ∈ L
q
n (	) and q > n, by the strong-type estimate in Theorem 2.16 we have

∫

	

∣∣M( f n)(x)
∣∣ q

n dx ≤ C(n, q, ρ)
∫

	

∣∣ f n(x)
∣∣ q

n dx

≤ C(n, q, ρ)‖ f ‖q
Lq (	) ≤ C(n, q, ρ)

implying
∑∞

i=0 (M
n)i

q
n bi ≤ C . Thus

∑∞
k=1 Mkq |	 \ G Mk (u,	)| ≤ C and (5.28) is

proved. ��
Finally, we prove Theorem 1.2.

Proof of Theorem 1.2. It suffices to prove the theorem for the case ϕ = 0 since ũ :=
u − ϕ ∈ C(	) ∩ W 2,n

loc (	) is the solution to the linearized Monge–Ampère equation

Lφ ũ = f̃ in 	, and ũ = 0 on ∂	,

where f̃ := f −�i jϕi j ∈ Lq(	). Indeed, since g ∈ C(	), we have φ ∈
W 2, (n−1)qs

s−q (	) by Savin’s global W 2,p estimates [28]. Thus �i j ∈ L
qs

s−q (	) for all
i, j and hence f̃ := f −�i jϕi j ∈ Lq(	).
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In view of Theorem 1.1 and the interior W 2,p estimates obtained in [17], the theorem
follows by localizing boundary sections of φ using Theorem 2.2. For completeness,
we sketch the proof.

The assumptions on 	 and φ imply that 	 satisfies (2.1) for some ρ > 0 and φ
satisfies (2.3). Let ε be the small constant given by an analogous version of Theorem 1.1
which will be explained later. In particular, ε depends only on n, p, q, λ,�, ρ and α.
Let c be as in Remark 2.6.

Since g ∈ C(	), we can find m ≤ c depending only on ε, λ and the modulus of
continuity of g such that

|g(x)− g(y)| ≤ λε for all x, y ∈ 	 satisfying |x − y| ≤ m.

Hence it follows from (2.7) that for s ≤ m3 and any boundary point y ∈ ∂	, we have

|g(x)− g(y)| ≤ λε for all x ∈ Sφ(y, s). (5.34)

Let us consider a boundary point y ∈ ∂	 and for simplicity we assume that y = 0.
We can assume further that 	 satisfies (2.5), φ(0) = 0 and ∇φ(0) = 0. Then by the
Localization Theorem, there is a linear map Ts = s−1/2 As such that

	 ∩ Bk ⊂ Ts(Sφ(0, s)) ⊂ 	 ∩ Bk−1 , (5.35)

where det As = 1 and ‖As‖, ‖A−1
s ‖ ≤ k−1| log s|. By working with the function

g(0)
−1
n φ(x) instead of φ(x) and using (5.34), we can also assume that g(0) = 1 and

1 − ε ≤ g ≤ 1 + ε in Sφ(0, s).

We now define the rescaled domains Us := Ts(Sφ(0, s)),	s := Ts(	) and the rescaled
functions φs , us := u ◦ T−1

s , fs as in Sect. 2.2 that preserve the L∞-norm of u. We
claim that

‖D2us‖L p
(

Sφs (0,c
9)
) ≤ C

(
‖us‖L∞(Us ) + ‖ fs‖Lq (Us )

)
, (5.36)

where C > 0 depends only on p, q, n, ρ, λ,�, α, the uniform convexity of ∂	,
‖∂	‖C2,α and ‖φ‖C2,α(∂	). Then by rescaling back as in the proof of Lemma 3.11 we
obtain

‖D2u‖
L p
(

Sφ(y,c9s)
) ≤ Cs

n
2p −1| log s|2‖u‖L∞(	) + Cs

n
2 (

1
p − 1

q )| log s|2‖ f ‖Lq (	)

≤ C(s)
(‖u‖L∞(	) + ‖ f ‖Lq (	)

) ∀y ∈ ∂	. (5.37)

Let δ := c9s. By (2.7), we know that Sφ(y, δ) ⊃ 	 ∩ B(y, δ2/3). Therefore if we
let

	δ2/3 := {x ∈ 	 : dist(x, ∂	) > δ2/3},
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then we can cover the δ2/3 neighborhood of 	, that is 	\	δ2/3 , by a finite num-
ber of boundary sections {Sφ(y j , δ)}N

j=1. Then by adding (5.37) over the family

{Sφ(y j , δ)}N
j=1, we arrive at the W 2,p estimate at the boundary

‖D2u‖L p
(
	\	

δ2/3
) ≤ C

(‖u‖L∞(	) + ‖ f ‖Lq (	)

)
.

On the other hand, by the interior estimate in [17, Theorem 1.1], we also have

‖D2u‖L p(	
δ2/3 )

≤ C(‖u‖L∞(	) + ‖ f ‖Lq (	)).

Our Theorem 1.2 follows from the above inequalities.
We now indicate how to obtain the claim (5.36). The proof consists of reviewing

the proof of Theorem 1.1. By (2.7), we have

Sφs (0, c9) ⊂ Us ∩ Bc3 .

We use Lemma 3.13 to cover Us ∩ Bc2 . We restrict our estimates on the distribution
function for the second derivatives in Lemma 3.4 to Us ∩ Bc2 . Lemma 5.2 holds with
obvious changes for the data (	s, φs,Us). So does Lemma 5.4 provided that we have an
analogous version of Lemma 5.5 for our data (	s, φs,Us). Precisely, let Sφs (y0, h) be
a section of φs in Us such that y0 ∈ ∂Us ∩ Bc3 and Sφs (y0, h) ∩ Gγ (us,Us, φs) �= ∅
for some γ > 0 (say, ȳ ∈ Sφs (y0, h) ∩ Gγ (us,Us, φs) ). By Lemma 2.5 and the
Localization Theorem 2.2, there exists an affine map T̃h such that

T̃h(y0) = y0 and Us ∩ Bk(y0) ⊂ Ũh := T̃h(Sφs (y0, θh)) ⊂ Us ∩ Bk−1(y0).

Here θ > 1 is the same constant at the beginning of the proof of Lemma 5.4. We need
to show that the C2,α norm on the boundary ∂Ũh ∩ Bk(y0) of the following function

ṽ(z) := 1

θγ h

[
us(T̃

−1
h z)− us(ȳ)− ∇us(ȳ) · (T̃−1

h z − ȳ)
]
, z ∈ T̃h(Us)

is bounded by a constant which is independent of the uniform convexity of Us . The
function ṽ is defined in a similar way to the definition of the function v in (5.18).
We note that the uniform convexity of the boundary ∂	 plays a key role in the proof
of Lemma 5.5. Thus we can not obtain the desired result by repeating the proof of
Lemma 5.5 for our data (	s, φs,Us) since the uniform convexity of ∂	s deteriorates
as s → 0. However, we can get away from this as follows.

Let T := T̃h ◦ Ts . Then T normalizes the section Sφ(T−1
s y0, θhs), and

‖T ‖ ≤ k−2(θhs)−1/2 | log (θh)| | log s|, ‖T−1‖ ≤ k−2(θhs)1/2 | log (θh)| | log s|.

Moreover, x̄ := T−1
s (ȳ) ∈ Sφ(T−1

s y0, θhs) ∩ Gγ s−1(u,	, φ) and

T
(

Sφ(T
−1
s y0, θhs)

)
= T̃h(Sφs (y0, θh)) = Ũh .
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Therefore, by reviewing the proof of Lemma 5.5 we see that the function

v(y) := 1

θ(γ s−1)hs

[
u(T−1 y)− u(x̄)−∇u(x̄) · (T−1 y − x̄)

]
, y ∈ T (	)

satisfies

‖v‖
C2,α
(
∂Ũh∩Bk (T̃h(y0))

) ≤ Cα (5.38)

with Cα depending on the uniform convexity of 	. But since T̃h(y0) = y0 and ṽ ≡ v

on Ũh as us(y) = u(T−1
s y), we conclude that the C2,α norm of ṽ on ∂Ũh ∩ Bk(y0)

is bounded by the same constant Cα in (5.38). Hence the claim (5.36) follows as
explained above. ��
Acknowledgments T. Nguyen gratefully acknowledges the support provided by NSF grant DMS-
0901449.
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