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574 R. Côte et al.

1 Introduction

In this paper we consider solutions to the linear wave equation

�u = 0, u(0) = f, ∂t u(0) = g (1)

where ( f, g) ∈ (Ḣ1×L2)(Rd) are radial. Denote by u(t) = S(t)( f, g) the solution
to this wave equation (1) with initial data ( f, g) at time 0.

The origin of our work lies in the exterior energy estimates obtained by Duyckaerts
et al. [5,6] which state that for d ≥ 3 and odd one has either one of the following
estimates (even in the nonradial setting):

∀ t ≥ 0,
∫

|x |≥t

|∇t,x S(t)( f, g)(x)|2 dx ≥ 1

2

∫

Rd

(|∇ f (x)|2 + |g(x)|2) dx, or

∀ t ≤ 0,
∫

|x |≥−t

|∇t,x S(t)( f, g)(x)|2 dx ≥ 1

2

∫

Rd

(|∇ f (x)|2 + |g(x)|2) dx, (2)

where

|∇t,x S(t)( f, g)|2 = |∇u(t)|2 + |∂t u(t)|2

is the linear energy density (see [6, Proposition 2.7]). No result of this type was
established there for even dimensions, and the method of proof used in odd dimensions
does not apply in even dimensions.

In this paper we show that (2) fails in even dimensions. To be specific, there does
not exist a positive constant which can be substituted on the right-hand side for 1

2
and so that the resulting inequality will hold for all ( f, g).This will be based on a
computation of the asymptotic exterior energy

lim
t→±∞

∫

|x |≥|t |
|∇t,x S(t)( f, g)(x)|2 dx =: lim

t→±∞ ‖∇t,x S(t)( f, g)(x)‖2
L2(|x |≥|t |).

Note that the exterior energy is decreasing in |t |, whence (2) reduces to the computation
of these limits. Since the propagator S(t) is difficult to work with on the “physical
side”, we employ the Fourier transform in this computation. To state our asymptotic
result, we introduce the Hankel transform H and the Hilbert transform H on the
half-line (0,∞):

(Hϕ)(ρ) :=
∞∫

0

ϕ(σ)

ρ + σ
dσ, and (H ϕ)(ρ) :=

∞∫

0

ϕ(σ)

ρ − σ
dσ

where the second integral is to be taken in the principal value sense. Both these oper-
ators are bounded and self-adjoint (anti-selfadjoint, respectively) on L2((0,∞), dρ),
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Energy partition for the linear radial wave equation 575

with norm π . Furthermore, H is a positive operator since it is of the form H = L 2

where L is the Laplace transform, see for example Lax [7, Section 16.3.3] for details.
This positivity is important for our purposes. In even dimensions, we find the following
expression for the asymptotic exterior energy in terms of H and H . In the following
two theorems, we use the notation

〈 f, g〉 :=
∞∫

0

f (x)g(x) dx

for two functions f, g on the half-line (0,∞).

Theorem 1 Let d be even, ( f, g) ∈ Ḣ1 × L2(Rd) be radial as above, and denote by
f̂ , ĝ their Fourier transforms in R

d . Then for some constant C(d) > 0 one has for
the solution u of (1)

lim
t→±∞ C(d)‖∇t,x S(t)( f, g)‖2

L2(|x |≥|t |)=
π

2

∫
(ρ2| f̂ (ρ)|2+|ĝ(ρ)|2)ρd−1 dρ

+ (−1)
d
2

2

(〈
H(ρ

d+1
2 f̂ ), ρ

d+1
2 f̂
〉
−
〈
H(ρ

d−1
2 ĝ), ρ

d−1
2 ĝ
〉)

±Re
〈
ρ

d+1
2 f̂ ,H (ρ

d−1
2 ĝ)

〉
.

(3)

The constant C(d) is explicit, see below.
This immediately implies that for d ≡ 2 mod 4, there can be no exterior energy

estimate for the initial value problem with data ( f, 0), whereas there is such an estimate
for data of the form (0, g).

Corollary 2 Let d ≥ 2 be even. Let �u = 0, u(0) = f ∈ Ḣ1(Rd) be radial,
∂t u(0) = 0. Then for all t ≥ 0, and provided d ≡ 0 mod 4,

‖∇t,x S(t)( f, 0)‖2
L2(r≥t) ≥ c(d) ‖∇ f ‖2

L2 (4)

where c(d) > 0 is an absolute constant that only depends on the dimension. If d ≡ 2
mod 4 then there can be no estimate of the form (4) for all t ≥ 0: more precisely, there
exists as sequence fn ∈ Ḣ1(Rd) such that

lim
t→±∞ ‖∇x,t S(t)( fn, 0)‖2

L2(r≥t) = o(‖∇ fn‖2
L2) as n → +∞.

For the dual initial value problem �u = 0, u(0) = 0, ∂t u(0) = g ∈ L2(Rd) radial,
one has for all t ≥ 0

‖∇t,x S(t)(0, g)‖2
L2(r≥t) ≥ c(d) ‖g‖2

2

if d ≡ 0 mod 4, whereas it fails (in the same sense as above) if d ≡ 2 mod 4.

This is in sharp contrast with the asymptotics for odd dimensions:
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576 R. Côte et al.

Theorem 3 Let d be odd, ( f, g) ∈ (Ḣ1 × L2)(Rd) be radial, and denote by f̂ , ĝ their
Fourier transforms in R

d . Then for some constant C(d) > 0 one has for the solution
u of (1)

lim
t→±∞ C(d)‖∇t,x S(t)( f, g)(x)‖2

L2(|x |≥|t |) = π

2

∫
(ρ2| f̂ (ρ)|2 + |ĝ(ρ)|2)ρd−1 dρ

±
(
(−1)

d−1
2 Re

〈
H
(
ρ

d+1
2 f̂
)
, ρ

d−1
2 ĝ
〉
+ Re

〈
ρ

d+1
2 f̂ ,H

(
ρ

d−1
2 ĝ
)〉)

. (5)

From this one immediately deduces (2) up to constants. We prove Theorems 1, 3
in Sect. 2. The failure of (2) presents a serious obstruction for the extension of the
nonlinear machinery developed in [5,6] to even dimensions. However, see [3,4] for an
application of the exterior energy estimate in four dimensions restricted to data ( f, 0)
in the context of equivariant wave maps.

In order to salvage some aspect of (2) in even dimensions, we show in Sect. 3 that
at least a delayed exterior energy estimate holds. This is natural in view of two facts:

– energy equipartition,
– at least one of the Cauchy data ( f, 0) or (0, g) is favorable in each even dimension.

The equipartition property here refers to the fact that after some time, which of course
depends on the solution, the energy will split more or less evenly between ∇u and ∂t u.
“Delayed” refers to lifting the forward (say) light-cone upwards by a certain amount.
Equivalently, it means calculating the energy over |x | ≥ t − T instead of |x | ≥ t for
some T > 0. Figure 1 shows the distinction between an exterior region both without
and with a time delay.

The choice of this T is a delicate matter and depends on the data ( f, g). The
following proposition expresses our main quantitative energy evacuation result. In

Fig. 1 Exterior region without and with time delay
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Energy partition for the linear radial wave equation 577

odd dimensions, results of this nature are obtained via the sharp Huygens principle
and are simpler to obtain. The novelty here lies again with even dimensions.

Proposition 4 For all ε > 0 and for all ( f, g) ∈ (Ḣ1 × L2)(Rd) radial there exists
T = T (ε, f, g, d) > 0 such that

‖∇t,x S(t)( f, g)‖2
L2(|x |≤t−T ) ≤ ε‖( f, g)‖2

Ḣ1×L2 (6)

for all t ≥ T .

In combination with finite propagation speed, Proposition 4 implies the following
result on the concentration of energy near the light-cone. Such statements are well-
known in odd dimensions, see [5, Lemma 4.1] for the three-dimensional version.

Theorem 5 Let ( f, g) ∈ (Ḣ1 × L2)(Rd) be radial. Then we have the following
vanishing of the energy away from the forward light-cone {|x | = t ≥ 0}:

lim
T →+∞ lim sup

t→+∞
‖∇t,x S(t)( f, g)‖L2(||x |−t |≥T ) = 0.

Finally, in Sect. 4 we present various results connected with the profile decom-
position of Bahouri–Gérard [2], in particular the Pythagorean expansion of the linear
energy with sharp cut-offs (Corollary 8). These are even-dimensional versions of tools
that are of essential importance to the nonlinear theory developed in [5,6].

Although these results are technical in nature we include them here since the meth-
ods needed to establish them in even dimensions are similar to those used earlier in
the paper. The key new point is a bilinear convergence result, see Lemma 6, which
follows from some representation formulas and computations analogous to those of
Proposition 4.

See our followup work [3,4] with Andrew Lawrie for concrete applications of these
results.

2 Asymptotic representation of the exterior energy

Before going into the detailed computations, let us first give an outline of the proofs of
Theorems 1, 3 and Proposition 4. Denote by u the solution to the linear wave equation
(1) with initial data ( f, g) at time 0:

u(t) = S(t)( f, g).

The starting point is a representation formula of u(t) through Bessel functions. More
precisely u(t) is given by

u(t) = cos(t |∇|) f + sin(t |∇|)
|∇| g.
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578 R. Côte et al.

Let f̂ , ĝ be the Fourier transforms in R
d :

f̂ (ξ) =
∫

Rd

e−i x ·ξ f (x) dx, f (x) = (2π)−d
∫

Rd

eix ·ξ f̂ (ξ) dξ.

For radial functions, f̂ is again radial. Recall that

σ̂Sd−1(ξ) = (2π)
d
2 |ξ |−ν Jν(|ξ |), ν := d − 2

2
≥ 0,

where Jν is the Bessel function of the first type of order ν. It is characterized as being
the solution of

x2 J ′′
ν (x)+ x J ′

ν(x)+ (x2 − ν2)Jν(x) = 0 (7)

which is regular at x = 0 (unique up to a multiplicative constant). The inversion
formula takes the form

f (r) = (2π)−
d
2

∞∫

0

f̂ (ρ)Jν(rρ)(rρ)
−νρd−1 dρ.

The Plancherel identity takes the form ‖ f̂ ‖2
2 = (2π)d‖ f ‖2

2. For the solution u(t, r)
this means that

u(t, r)= (2π)− d
2

∞∫

0

(
cos(tρ) f̂ (ρ)+ sin(tρ)

ρ
ĝ(ρ)

)
Jν(rρ)(rρ)

−νρd−1 dρ, (8)

∂t u(t, r)= (2π)− d
2

∞∫

0

(
− sin(tρ)ρ f̂ (ρ)+cos(tρ)ĝ(ρ)

)
Jν(rρ)(rρ)

−νρd−1 dρ. (9)

We shall invoke the standard asymptotics for the Bessel functions, see [1],

Jν(x) =
√

2

πx
[(1 + ω2(x)) cos(x − τ)+ ω1(x) sin(x − τ)] ,

J ′
ν(x) =

√
2

πx

[
ω̃1(x) cos(x − τ)− (1 + ω̃2(x)) sin(x − τ)

]
. (10)

with phase-shift τ = (d − 1)π4 , and with the bounds (for n ≥ 0, x ≥ 1)

|ω(n)1 (x)| + |ω̃(n)1 (x)| ≤ Cn x−1−n, |ω(n)2 (x)| + |ω̃(n)2 (x)| ≤ Cn x−2−n . (11)

Using the representations (8) and (9), we have explicit formulas for ‖∇x,t u‖L2(|x |≥|t |)
or the delayed quantity. Then we expand these formulas and using the asymptotics
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Energy partition for the linear radial wave equation 579

of the Bessel functions; by a delicate inspection of all terms involved, we derive the
desired expansion as t → +∞. We shall make frequent use of the monotonicity of
the energy on outer cones, i.e., the fact that

‖(u, ∂t u)(t)‖Ḣ1×L2(|x |≥t−T ) =: ‖∇t,x u(t)‖L2(|x |≥t−T ) ≤ ‖∇t,x u(s)‖L2(|x |≥s−T )

for all T ≤ s ≤ t . Also, given a set S ⊂ R
d (possibly depending on time), define the

localized energy functional on S as

‖(u, v)‖2
Ḣ1×L2(S )

:=
∫

x∈S

1

2
(|v|2 + |∇u|2)(x) dx .

We now proceed with the details. The goal in the remaining of this section is to
prove the expression (3) for the asymptotic exterior energy in even dimensions, as
well as the exterior energy estimate on the region {|x | > |t |}. We shall also contrast
this to the analogous known results in odd dimensions.

Throughout this section, the delay T = 0.

Proof (Proof of Theorem 1) First, notice that it suffices to let f, g be Schwartz functions
by energy bounds, and we may assume that f̂ (ρ) and ĝ(ρ) are supported on 0 < ρ∗ <
ρ < ρ∗ < ∞. We begin with the kinetic part of the outer energy, viz.

(2π)d
1

2
‖∂t u(t)‖2

L2(|x |≥t) = (2π)d |Sd−1|
∞∫

t

1

2
|∂t u(t, r)|2 rd−1 dr

= (2π)d |Sd−1| lim
ε→0+

∞∫

t

1

2
|∂t u(t, r)|2rd−1e−εr dr

= lim
ε→0+

∞∫

t

∫∫
1

2

(
− sin(tρ1)ρ1 f̂ (ρ1)+ cos(tρ1)ĝ(ρ1)

)

·
(
− sin(tρ2)ρ2 f̂ (ρ2)+ cos(tρ2)ĝ(ρ2)

)

·Jν(rρ1)Jν(rρ2)(r
2ρ1ρ2)

−ν(ρ1ρ2)
d−1 dρ1dρ2 rd−1 e−εr dr. (12)

For each ε > 0 fixed, the integrals here are absolutely convergent. In view of the
asymptotic expansion of the Bessel functions as stated above, the leading term for (12)

is given by the following expression, with μ = ν + 1

2
= d − 1

2
:
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580 R. Côte et al.

1

π
lim
ε→0+

∞∫

t

∞∫

0

∞∫

0

(
− sin(tρ1)ρ1 f̂ (ρ1)+ cos(tρ1)ĝ(ρ1)

)

·
(
− sin(tρ2)ρ2 f̂ (ρ2)+ cos(tρ2)ĝ(ρ2)

)

· cos(rρ1 − τ) cos(rρ2 − τ)(ρ1ρ2)
μ dρ1dρ2 e−εr dr. (13)

We shall show later that this indeed captures the correct asymptotic behavior of the
exterior kinetic energy. To be specific, and adding in the contribution by ∂r u we make
the following claim:

(2π)d |Sd−1|−1
(
‖∂t u(t)‖2

L2(|x |≥t) + ‖∂r u(t)‖2
L2(|x |≥t)

)

= 2

π
lim
ε→0+

∞∫

t

∫∫ (
− sin(tρ1)ρ1 f̂ (ρ1)+ cos(tρ1)ĝ(ρ1)

)

·
(
− sin(tρ2)ρ2 f̂ (ρ2)+ cos(tρ2)ĝ(ρ2)

)

· cos(rρ1 − τ) cos(rρ2 − τ)(r2ρ1ρ2)
μ dρ1dρ2 e−εr dr +

+ 2

π
lim
ε→0+

∞∫

t

∫∫ (
cos(tρ1)ρ1 f̂ (ρ1)+ sin(tρ1)ĝ(ρ1)

)

·
(

cos(tρ2)ρ2 f̂ (ρ2)+ sin(tρ2)ĝ(ρ2)
)

· sin(rρ1 − τ) sin(rρ2 − τ)(ρ1ρ2)
μ dρ1dρ2 e−εr dr + o(1) (14)

where o(1) is with respect to t → ±∞. We now proceed to extract (3) from the

integrals. In order to carry out the r -integration in (14), we use (note 2τ ∈ (Z + 1

2
)π )

cos(rρ1−τ) cos(rρ2 − τ)= 1

2
[cos(r(ρ1+ρ2)− 2τ)+cos(r(ρ1−ρ2))]

= 1

2
[(−1)ν sin(r(ρ1+ρ2))+cos(r(ρ1 − ρ2))]

× sin(rρ1−τ) sin(rρ2 − τ)

= 1

2
[− cos(r(ρ1+ρ2)− 2τ)+cos(r(ρ1−ρ2))]

= 1

2
[−(−1)ν sin(r(ρ1+ρ2))+cos(r(ρ1−ρ2))]

(recall ν = d − 2

2
). In what follows, we slightly abuse notation by writing f̂ ′(ρ) :=

ρ f̂ (ρ).
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Energy partition for the linear radial wave equation 581

For any smooth compactly supported functions φ,ψ on (0,∞), one has for every
t ∈ R

lim
ε→0+

∞∫

t

∫∫
cos(r(ρ1 − ρ2))φ(ρ1)ψ(ρ2) e−εr dr dρ1dρ2

= π

∫
φ(ρ)ψ(ρ)dρ −

∫∫
sin(t (ρ1 − ρ2))

ρ1 − ρ2
φ(ρ1)ψ(ρ2) dρ1dρ2 (15)

lim
ε→0+

∞∫

t

∫∫
sin(r(ρ1 + ρ2))φ(ρ1)ψ(ρ2)e

−εr dr dρ1dρ2

=
∫∫

cos(t (ρ1 + ρ2))

ρ1 + ρ2
φ(ρ1)ψ(ρ2) dρ1dρ2. (16)

To prove (15) we note that

lim
ε→0+

∞∫

t

cos(ar)e−εr dr = limε→0+ 1
2

(
− et (ia−ε)

ia−ε + e−t (ia+ε)
ia+ε

)
= πδ0(a)− sin(ta)

a

where the limit is to be taken in the distributional sense. For (16) the argument is
essentially the same.

Carrying out the r -integration using (15), (16) and ignoring constant prefactors
yields:

∫∫ [
cos(t (ρ1 − ρ2))( f̂ ′(ρ1) f̂ ′(ρ2)+ ĝ(ρ1)ĝ(ρ2))−sin(t (ρ1−ρ2)) ·

·( f̂ ′(ρ1)ĝ(ρ2)− ĝ(ρ1) f̂ ′(ρ2))

](
πδ0(ρ1−ρ2)− sin(t (ρ1−ρ2))

ρ1−ρ2

)
(ρ1ρ2)

μ dρ1dρ2

+(−1)
d
2

∫∫ [
cos(t (ρ1+ρ2))

(
f̂ ′(ρ1) f̂ ′(ρ2)− ĝ(ρ1)ĝ(ρ2)

)
+sin(t (ρ1+ρ2)) ·

·( f̂ ′(ρ1)ĝ(ρ2)+ ĝ(ρ1) f̂ ′(ρ2))

]
cos(t (ρ1 + ρ2))

ρ1+ρ2
(ρ1ρ2)

μ dρ1dρ2

which further simplifies to (integration extending over (0,∞))

π

∞∫

0

(| f̂ ′(ρ)|2+|ĝ(ρ)|2)ρd−1 dρ

−1

2

∫∫
sin(2t (ρ1−ρ2))

ρ1−ρ2

(
f̂ ′(ρ1) f̂ ′(ρ2)+ ĝ(ρ1)ĝ(ρ2)

)
(ρ1ρ2)

μ dρ1dρ2

+
∫∫

sin2(t (ρ1−ρ2))

ρ1−ρ2
( f̂ ′(ρ1)ĝ(ρ2)− ĝ(ρ1) f̂ ′(ρ2))(ρ1ρ2)

μ dρ1dρ2

123



582 R. Côte et al.

+(−1)
d
2

∫∫
cos2(t (ρ1+ρ2))

ρ1 + ρ2
( f̂ ′(ρ1) f̂ ′(ρ2)− ĝ(ρ1)ĝ(ρ2))(ρ1ρ2)

μ dρ1dρ2

+ (−1)
d
2

2

∫∫
sin(2t (ρ1+ρ2))

ρ1+ρ2
( f̂ ′(ρ1)ĝ(ρ2)+ ĝ(ρ1) f̂ ′(ρ2))(ρ1ρ2)

μ dρ1dρ2.

(17)

It remains to determine the limit as t → ∞. First, recall that for any a > 0 (with F
denoting the Fourier transform on R)

F

[
sin(ax)

x

]
(ξ) = πχ(−a,a)(ξ), F

[
cos(ax)

x

]
(ξ) = π i[−χ(−∞,−a) + χ(a,∞)].

(18)

The integral on the second line is of the form

∫

R2

sin(2t (ρ1 − ρ2))

ρ1 − ρ2
φ(ρ1)φ(ρ2) dρ1dρ2 = 1

2

2t∫

−2t

|φ̂(ξ)|2 dξ (19)

with φ(ρ) = f̂ (ρ)ρμ. As t → ∞, this approaches

1

2
‖φ̂‖2

2 = π‖φ‖2
2.

Hence, the first and second lines in (17) approach

π

2

∞∫

0

(| f̂ ′(ρ)|2 + |ĝ(ρ)|2)ρd−1 dρ as t → ∞.

Integration by parts shows that the fifth line vanishes in the limit as t → ∞ (the data
are Schwartz). For the expressions on the third and fourth lines, respectively, we use

cos2(x) = 1

2
+ 1

2
cos(2x), sin2(x) = 1

2
− 1

2
cos(2x)

and (18), (19) to deduce that in the limit of (17) as t → ∞ equals

π

2

∫
(| f̂ ′(ρ)|2 + |ĝ(ρ)|2)ρd−1 dρ

+ (−1)
d
2

2

∫∫
1

ρ1 + ρ2
( f̂ ′(ρ1) f̂ ′(ρ2)− ĝ(ρ1)ĝ(ρ2))(ρ1ρ2)

μ dρ1dρ2

+Re
∫∫

1

ρ1 − ρ2
f̂ ′(ρ1)ĝ(ρ2)(ρ1ρ2)

μ dρ1dρ2,
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Energy partition for the linear radial wave equation 583

up to a constant prefactor, and with integration extending over (0,∞). This is exactly
what (3) claims.

It remains to verify the claimed dominance of the leading order terms of the Bessel
expansion, see (14). For simplicity, we restrict ourselves to the kinetic energy (12).
Subtracting (13) from (12) yields, with ω j as in (11),

2

π
lim
ε→0+

∞∫

t

∞∫

0

∞∫

0

(
− sin(tρ1)ρ1 f̂ (ρ1)+ cos(tρ1)ĝ(ρ1)

)

·
(
− sin(tρ2)ρ2 f̂ (ρ2)+ cos(tρ2)ĝ(ρ2)

)

·
[
(ω2(rρ1)+ ω2(rρ2)+ ω2(rρ1)ω2(rρ2)) cos(rρ1 − τ) cos(rρ2 − τ)

+ω1(rρ1)(1 + ω2(rρ2)) sin(rρ1 − τ) cos(rρ2 − τ)

+ω1(rρ2)(1 + ω2(rρ1)) sin(rρ2 − τ) cos(rρ1 − τ)

+ω1(rρ1)ω1(rρ2) sin(rρ1 − τ) sin(rρ2 − τ)

]
(ρ1ρ2)

μ dρ1dρ2 e−εr dr.

All terms here are treated in a similar fashion. As a representative example, consider
for all ε > 0 the error term

E1(ε) :=
∞∫

t

∞∫

0

∞∫

0

sin((t + T )ρ1) sin((t + T )ρ2) cos(rρ1 − τ) sin(rρ2 − τ)ω1(rρ2)

· f̂ (ρ1) f̂ (ρ2)(ρ1ρ2)
μ+1e−εr dρ1dρ2 dr,

As before, we write

cos(rρ1 − τ) sin(rρ2 − τ) = −1

2

[
(−1)ν cos(r(ρ1 + ρ2))+ sin(r(ρ1 − ρ2))

]
,

expand the trigonometric functions on the right-hand side into complex exponentials,
and perform an integration by parts in the r variable as follows: for any σ ∈ R and
dropping the subscripts on ω, ρ for simplicity, one has

∞∫

t

e−[ε∓iσ ]r ω(rρ) dr = e−[ε∓iσ ]t

ε ∓ iσ
ω(tρ)+

∞∫

t

e−[ε∓iσ ]r

ε ∓ iσ
ω′(rρ)ρ dr. (20)

We apply this with σ = ρ1 +ρ2 and σ = ρ1 −ρ2 to the fully expanded form of E1(ε)

as explained above. In both cases one has the uniform bounds

sup
ε>0

∥∥∥∥∥∥
∞∫

−∞

φ(ρ2)

(ρ1 ± ρ2)± iε
dρ2

∥∥∥∥∥∥
L2(ρ1)

≤ C‖φ‖2.
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In order to use this, we distribute the exponential factors as well as all weights over

the functions f̂ (ρ1) and f̂ (ρ2), respectively. For the first term on the right-hand side
of (20) we then obtain an estimate O(t−1) from the decay of the weight ω, whereas
for the integral in (20) we obtain a O(r−2)-bound via

sup
ρ>0

|ω′(rρ)ρ2| ≤ C r−2

which then leads to the final bound

∞∫

t

O(r−2) dr = O(t−1).

The O-here are uniform in ε > 0. Note that various ρ-factors which are introduced
by the ω-weights are harmless due to our standing assumption that 0 < ρ∗ < ρ < ρ∗.

All error terms fall under this scheme. In fact, those involving two ω-factors yield
a O(t−2)-estimate. This concludes the proof.

As an immediate corollary one obtains the exterior energy estimate in even dimen-
sions.

Proof (Proof of Corollary 2) Denote the left-hand side of (4) by E(t). Since E(t)
is decreasing, it suffices to consider the limit as t → ∞. Let us fix dimensions
d = 4, 8, 12, . . . and data ( f, 0). Then (3) implies that

lim
t→∞ C(d)‖∇t,x S(t)( f, 0)‖2

L2(r≥t) = π

2
‖∇ f ‖2

2 + 1

2

〈
H
(
ρ

d+1
2 f̂
)
, ρ

d+1
2 f̂
〉
. (21)

It is well-known that the Hankel transform H is a positive operator on L2((0,∞)),
since H = L 2 where L is the Laplace transform which is self-adjoint. See for
example [7, Section 16.3.3].

The failure of the estimate for d = 2, 6, 10, . . . and data ( f, 0) follows just as
easily since the operator norm of H on L2 equals π . More precisely, 1a,b/

√· where
b/a → +∞ is an explicit extremizing family for L . Let fn = 11,n/

√·, then

〈
H(ρ

d+1
2 f̂ ), ρ

d+1
2 f̂
〉
=
∥∥∥L
(
ρ

d+1
2 f̂n

)∥∥∥2

L2((0,∞))
→π

∥∥∥ρ d+1
2 f̂n

∥∥∥2

L2((0,∞))
as n →∞.

Then with data ( fn, 0)

lim
t→±∞ C(d)‖∇t,x S(t)( fn, 0)(x)‖2

L2(|x |≥|t |) = o
(
‖ρ d+1

2 f̂n‖2
L2((0,∞))

)

= o
(
‖ fn‖2

Ḣ1(Rd )

)
.

The Cauchy problem with data (0, g) is treated analogously.

For the sake of completeness, we contrast the even-dimensional case of Theorem 1
with the odd-dimensional one ofTheorem 3. The asymptotic calculations are com-
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pletely analogous to the ones above, with the dimension entering only (in an essential

way) through the phase-shift τ = d − 1

4
π in the expansions of the Bessel functions

for large arguments. The key feature being that 2τ is an integer if d is odd, and a
half-integer otherwise.

Proof (Proof of Theorem 3) We begin by computing the asymptotic form of the exterior
energy as in even dimensions, say for t ≥ 0. With all Fourier transforms being those
in R

d , one has

(2π)d
(
‖∂t u(t)‖2

L2(|x |≥t) + ‖∂r u(t)‖2
L2(|x |≥t)

)

= 2

π
lim
ε→0+

∞∫

t

∫∫ (
− sin(tρ1)ρ1 f̂ (ρ1)+ cos(tρ1)ĝ(ρ1)

)

·
(
− sin(tρ2)ρ2 f̂ (ρ2)+ cos(tρ2)ĝ(ρ2)

)

· cos(rρ1 − τ) cos(rρ2 − τ)(r2ρ1ρ2)
μ dρ1dρ2 e−εr dr +

+ 2

π
lim
ε→0+

∞∫

t

∫∫ (
cos(tρ1)ρ1 f̂ (ρ1)+ sin(tρ1)ĝ(ρ1)

)

·
(

cos(tρ2)ρ2 f̂ (ρ2)+ sin(tρ2)ĝ(ρ2)
)

· sin(rρ1 − τ) sin(rρ2 − τ)(ρ1ρ2)
μ dρ1dρ2 e−εr dr + o(1) (22)

where the o(1) is for t → ∞. Here τ = d − 1

4
π, μ = d − 1

2
. Moreover, we used the

asymptotic expansions of the Bessel functions (10), and we absorbed all error terms
in the o(1), which is justified by the exact same reasoning as in the proof of (3). In
order to carry out the r -integration, we use (note 2τ ∈ Zπ )

cos(rρ1 − τ) cos(rρ2 − τ) = 1

2
[cos(r(ρ1 + ρ2)− 2τ)+ cos(r(ρ1 − ρ2))]

= 1

2
[(−1)μ cos(r(ρ1 + ρ2))+ cos(r(ρ1 − ρ2))]

sin(rρ1 − τ) sin(rρ2 − τ) = 1

2
[− cos(r(ρ1 + ρ2)− 2τ)+ cos(r(ρ1 − ρ2))]

= 1

2
[−(−1)μ cos(r(ρ1 + ρ2))+ cos(r(ρ1 − ρ2))].

In what follows, we slightly abuse notation by writing f̂ ′(ρ) := ρ f̂ (ρ). Carrying out
the r -integration using (15), (16) and applying trigonometric identities yields (ignoring
constant prefactors):
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∫∫ [
cos(t (ρ1−ρ2))( f̂ ′(ρ1) f̂ ′(ρ2)+ ĝ(ρ1)ĝ(ρ2))−sin(t (ρ1 − ρ2))

( f̂ ′(ρ1)ĝ(ρ2)− ĝ(ρ1) f̂ ′(ρ2))

](
πδ0(ρ1−ρ2)− sin(t (ρ1−ρ2))

ρ1−ρ2

)
(ρ1ρ2)

μ dρ1dρ2

+(−1)μ
∫∫ [

cos(t (ρ1+ρ2))( f̂ ′(ρ1) f̂ ′(ρ2)− ĝ(ρ1)ĝ(ρ2))

+ sin(t (ρ1+ρ2))( f̂ ′(ρ1)ĝ(ρ2)+ ĝ(ρ1) f̂ ′(ρ2))

]
sin(t (ρ1+ρ2))

ρ1+ρ2
(ρ1ρ2)

μ dρ1dρ2

which further simplifies to (integration extending over (0,∞))

π

∞∫

0

(| f̂ ′(ρ)|2 + |ĝ(ρ)|2)ρd−1 dρ

−1

2

∫∫
sin(2t (ρ1 − ρ2))

ρ1 − ρ2
( f̂ ′(ρ1) f̂ ′(ρ2)+ ĝ(ρ1)ĝ(ρ2))(ρ1ρ2)

μ dρ1dρ2

+1

2

∫∫
1 − cos(2t (ρ1 − ρ2))

ρ1 − ρ2
( f̂ ′(ρ1)ĝ(ρ2)− ĝ(ρ1) f̂ ′(ρ2))(ρ1ρ2)

μ dρ1dρ2

+ (−1)μ

2

∫∫
sin(2t (ρ1 + ρ2))

ρ1 + ρ2
( f̂ ′(ρ1) f̂ ′(ρ2)− ĝ(ρ1)ĝ(ρ2))(ρ1ρ2)

μ dρ1dρ2

+ (−1)μ

2

∫∫
1 − cos(2t (ρ1+ρ2))

ρ1+ρ2
( f̂ ′(ρ1)ĝ(ρ2)+ ĝ(ρ1) f̂ ′(ρ2))(ρ1ρ2)

μ dρ1dρ2.

We may now pass to the limit as t → ∞. The terms involving sin(2t (ρ1 + ρ2))

and cos(2t (ρ1 + ρ2)) in the fourth and fifth lines, respectively, vanish in the limit
as t → ∞ as can be seen by integration by parts (we may again assume that the
data are Schwartz). The asymptotic form of the terms involving sin(2t (ρ1 − ρ2)) and
cos(2t (ρ1 − ρ2)) in the second and third lines, respectively, follows from (18):

lim
t→∞

∫∫
sin(2t (ρ1 − ρ2))

ρ1 − ρ2
( f̂ ′(ρ1) f̂ ′(ρ2)+ ĝ(ρ1)ĝ(ρ2))(ρ1ρ2)

μ dρ1dρ2

= π

∫
(| f̂ ′(ρ)|2 + |ĝ(ρ)|2)ρd−1 dρ

and

lim
t→∞

∫∫
cos(2t (ρ1 − ρ2))

ρ1 − ρ2
( f̂ ′(ρ1)ĝ(ρ2)− ĝ(ρ1) f̂ ′(ρ2))(ρ1ρ2)

μ dρ1dρ2 = 0.

In conclusion, we obtain the following asymptotic expression for the left-hand side
of (14) for d odd as t → ±∞:
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π

2

∫
(| f̂ ′(ρ)|2 + |ĝ(ρ)|2)ρd−1 dρ

± Re
∫∫ [

1

ρ1 − ρ2
+ (−1)μ

1

ρ1 + ρ2

]
f̂ ′(ρ1)ĝ(ρ2)(ρ1ρ2)

μ dρ1dρ2 (23)

up to a constant prefactor, and with integration extending over (0,∞). This is
exactly (5).

In order to deduce (2) from (23), one choses the direction of time so as the make
the second line of (23) nonnegative.

3 Delayed exterior energy and energy concentration

We now turn to a delayed version of the exterior energy bound. We will rely on the
radial Fourier formalism from the proof of Theorem 1 without further mention.

Proof (Proof of Proposition 4) Denote by u(t, x) = S(t)( f, g) the solution of the
wave equation (1) as above. We first remark that by conservation of energy (6) is
equivalent to the following:

‖( f, g)‖2
Ḣ1×L2 − ‖∇t,x u‖2

L2(|x |≥t−T ) ≤ ε‖( f, g)‖2
Ḣ1×L2 (24)

for all t ≥ T where T = T (ε, f, g, d). Due to the fact that

t �→ ‖∇t,x u(t)‖L2(|x |≥t−T )

is monotone decreasing, we see that (24) is a consequence of the following bound

lim sup
t→+∞

[
‖( f, g)‖2

Ḣ1×L2 − ‖∇t,x u‖2
L2(|x |≥t−T )

]
≤ ε‖( f, g)‖2

Ḣ1×L2 (25)

which we now prove. Moreover, it suffices to let f, g be Schwartz functions by energy
bounds, and we may assume that f̂ (ρ) and ĝ(ρ) are supported on 0 < ρ∗ < ρ <

ρ∗ < ∞. We begin with the kinetic part of the outer energy, viz.

(2π)d
1

2
‖∂t u(t + T )‖2

L2(|x |≥t) = (2π)d |Sd−1|
∞∫

t

1

2
|∂t u(t + T, r)|2 rd−1 dr

= (2π)d |Sd−1| lim
ε→0+

∞∫

t

1

2
|∂t u(t + T, r)|2rd−1e−εr dr

= lim
ε→0+

∞∫

t

∫∫
1

2

(
− sin((t + T )ρ1)ρ1 f̂ (ρ1)+ cos((t + T )ρ1)ĝ(ρ1)

)

·
(
− sin((t + T )ρ2)ρ2 f̂ (ρ2)+ cos((t + T )ρ2)ĝ(ρ2)

)

·Jν(rρ1)Jν(rρ2)(r
2ρ1ρ2)

−ν(ρ1ρ2)
d−1 dρ1dρ2 rd−1 e−εr dr. (26)
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For each ε > 0 fixed, the integrals here are absolutely convergent. In view of the
asymptotic expansion of the Bessel functions (10), the leading term for (12) is given
by the following expression, where μ = ν + 1

2 = d−1
2 :

I (T, t) := 1

π
lim
ε→0+

∞∫

t

∞∫

0

∞∫

0

(
− sin((t + T )ρ1)ρ1 f̂ (ρ1)+ cos((t + T )ρ1)ĝ(ρ1)

)

·
(
− sin((t + T )ρ2)ρ2 f̂ (ρ2)+ cos((t + T )ρ2)ĝ(ρ2)

)

· cos(rρ1 − τ) cos(rρ2 − τ)(ρ1ρ2)
μ dρ1dρ2 e−εr dr. (27)

We now proceed to estimate I (T, t), and then show later that the higher order correc-
tions to the Bessel asymptotics contribute terms that vanish as t → ∞. To be more
precise, we shall show at the end of the proof that

∀ T, t ≥ 0,
(2π)d

2
‖∂t u(t + T )‖2

L2(|x |≥t) = I (T, t)+ O(t−1) as t → ∞. (28)

First, we expand I as follows: With μ := ν + 1
2 = d−1

2 ,

I (T, t)= 1

2π
lim
ε→0+

∞∫

t

∞∫

0

∞∫

0

(
sin((t+T )ρ1) sin((t+T )ρ2)ρ1 f̂ (ρ1)ρ2 f̂ (ρ2)

− sin((t+T )ρ1) cos((t+T )ρ2)ρ1 f̂ (ρ1)ĝ(ρ2)

− sin((t+T )ρ2) cos((t+T )ρ1)ρ2 f̂ (ρ2)ĝ(ρ1)

+ cos((t+T )ρ1) cos((t+T )ρ2)ĝ(ρ1)ĝ(ρ2)

)

·
[
(−1)ν sin(r(ρ1+ρ2))+cos(r(ρ1−ρ2))

]
(ρ1ρ2)

μ dρ1dρ2 e−εr dr. (29)

Inserting (15) and (16) into (29) yields

I (T, t) = I1(t + T )+ (−1)ν I2(T, t)− I3(T, t),

where

I1(s) = 1

2
Re

∞∫

0

(
sin2(sρ)ρ2| f̂ (ρ)|2 − 2 sin(2sρ)ρ f̂ (ρ)ĝ(ρ)

+ cos2(sρ)|ĝ(ρ)|2
)
ρd−1dρ,

I2(T, t)= 1

4π

∞∫

0

∞∫

0

(
(cos((t+T )(ρ1−ρ2))−cos((t+T )(ρ1+ρ2))) ρ1 f̂ (ρ1)ρ2 f̂ (ρ2)

123



Energy partition for the linear radial wave equation 589

− (sin((t+T )(ρ1+ρ2))+sin((t+T )(ρ1−ρ2))) ρ1 f̂ (ρ1)ĝ(ρ2)

− (sin((t+T )(ρ1+ρ2))−sin((t+T )(ρ1−ρ2))) ĝ(ρ1)ρ2 f̂ (ρ2)

+ (cos((t + T )(ρ1 − ρ2))+ cos((t + T )(ρ1 + ρ2))) ĝ(ρ1)ĝ(ρ2)

)

·cos(t (ρ1 + ρ2))

ρ1 + ρ2
(ρ1ρ2)

μdρ1dρ2,

I3(T, t)= 1

4π

∞∫

0

∞∫

0

(
(cos((t+T )(ρ1−ρ2))−cos((t+T )(ρ1+ρ2))) ρ1 f̂ (ρ1)ρ2 f̂ (ρ2)

− (sin((t + T )(ρ1 + ρ2))+ sin((t + T )(ρ1 − ρ2))) ρ1 f̂ (ρ1)ĝ(ρ2)

− (sin((t + T )(ρ1 + ρ2))− sin((t + T )(ρ1 − ρ2))) ĝ(ρ1)ρ2 f̂ (ρ2)

+ (cos((t + T )(ρ1 − ρ2))+ cos((t + T )(ρ1 + ρ2))) ĝ(ρ1)ĝ(ρ2)

)

· sin(t (ρ1 − ρ2))

ρ1 − ρ2
(ρ1ρ2)

μdρ1dρ2.

Passing to the limit s → ∞ (by Riemann–Lebesgue or using the Schwartz property
of the integrand) yields

I1(s) −→ 1

4

∞∫

0

(ρ2| f̂ (ρ)|2 + |ĝ(ρ)|2)ρd−1 dρ =: I1(∞)

I1(∞) = (2π)d

4|Sd−1| (‖ f ‖2
Ḣ1 + ‖g‖2

L2)

where the second line uses the Plancherel formula ‖ĝ‖2
2 = (2π)d‖g‖2

2 in L2(Rd).

Next, for the terms containing the Hankel-transform kernel
1

ρ1 + ρ2
we claim that the

following representation holds:

I2(T, t) = 1

8π

∫∫
cos(T (ρ1 + ρ2))

ρ1 + ρ2

(
−ρ1 f̂ (ρ1)ρ2 f̂ (ρ2)+ ĝ(ρ1)ĝ(ρ2)

)
(ρ1ρ2)

μ dρ1dρ2

− 1

4π
Re
∫∫

sin(T (ρ1 + ρ2))

ρ1 + ρ2
ρ1 f̂ (ρ1)ĝ(ρ2)(ρ1ρ2)

μ dρ1dρ2 + Ĩ2(T, t), (30)

where

∀ T, t ≥0, | Ĩ2(T, t)|≤c(d)(‖ f ‖2
Ḣ1 +‖g‖2

L2), ∀ T ≥0, Ĩ2(T, t)→0 as t →+∞.

Moreover, the convergence as t → ∞ here holds uniformly in T ≥ 0.
To verify this claim, notice first that as ρ1, ρ2 ∈ [ρ∗, ρ∗] for some ρ∗, ρ∗ > 0, the

denominator
1

ρ1 + ρ2
does not create any singularity. We simplify the trigonometric
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terms as follows, denoting by z either sin or cos (which can change from one line to
the next):

z((t + T )(ρ1 − ρ2)) cos(t (ρ1 + ρ2))

= 1

2
[z(2tρ1 + T (ρ1 − ρ2))+ z(−2tρ2 + T (ρ1 − ρ2))] .

Note that there is no complete cancellation of t in this process. Hence for all terms of
the type

I1(t, T ) :=
∫∫

z(2tρ1 + T (ρ1 − ρ2))
h1(ρ1)h2(ρ2)

ρ1 + ρ2
(ρ1ρ2)

μ dρ1dρ2

(and symmetrically in ρ1 and ρ2), we see that for all T one has I1(t, T ) = ot (1) as
t → +∞, and uniformly in T ≥ 0. The uniformity is established as follows: by the
support and smoothness properties of h1,

∫∫
e±i[2tρ1+T (ρ1−ρ2)] h1(ρ1)h2(ρ2)

ρ1 + ρ2
(ρ1ρ2)

μ dρ1dρ2

=
∫∫

e±i(2t+T )ρ1
h1(ρ1)

ρ1 + ρ2
(ρ1ρ2)

μ dρ1 e∓iTρ2 h2(ρ2) dρ2

= ∓ 1

i(2t + T )

∫∫
e±i(2t+T )ρ1 ∂ρ1

(
h1(ρ1)ρ

μ
1

ρ1 + ρ2

)
dρ1 ρ

μ
2 e∓iTρ2 h2(ρ2) dρ2

as desired. For the terms with z((t + T )(ρ1 + ρ2)) we use the identity

sin((t+T )(ρ1+ρ2)) cos(t (ρ1+ρ2))= 1

2
[sin((2t+T )(ρ1+ρ2))+sin(T (ρ1+ρ2))] .

The first term yields a contribution of ot (1) as before whence

∫∫
sin((t+T )(ρ1+ρ2))

(
ρ1 f̂ (ρ1)ĝ(ρ2)+ ĝ(ρ1)ρ2 f̂ (ρ2)

) cos(t (ρ1+ρ2))

ρ1+ρ2

×(ρ1ρ2)
μdρ1dρ2 =Re

∫∫
sin(T (ρ1+ρ2))

ρ1+ρ2
ρ1 f̂ (ρ1)ĝ(ρ2)(ρ1ρ2)

μdρ1dρ2+ot (1)

as t → ∞, uniformly in T ≥ 0. We also used the symmetry here to reduce to one pair
of functions. In the same way,

cos((t+T )(ρ1+ρ2)) cos(t (ρ1+ρ2))= 1

2
[cos((2t+T )(ρ1+ρ2))+cos(T (ρ1+ρ2))] .
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The first term makes a contribution of ot (1), again uniformly in T ≥ 0, and thus

∫∫
cos((t + T )(ρ1 + ρ2))

(
−ρ1 f̂ (ρ1)ρ2 f̂ (ρ2)+ ĝ(ρ1)ĝ(ρ2)

)

×cos(t (ρ1 + ρ2))

ρ1 + ρ2
(ρ1ρ2)

μ dρ1dρ2 = 1

2

∫∫
cos(T (ρ1 + ρ2))

ρ1 + ρ2

×
(
−ρ1 f̂ (ρ1)ρ2 f̂ (ρ2)+ ĝ(ρ1)ĝ(ρ2)

)
(ρ1ρ2)

μ dρ1dρ2 + ot (1)

and we have proved (30).
It remains to deal with the I3-term. Let ĥ1, ĥ2 denote any of the functions

1[0,+∞)(ρ)ρ
μ+1 f̂ (ρ) or 1[0,+∞)(ρ)ρ

μĝ(ρ).

Here ĥ j are the one-dimensional Fourier transforms. We write the trigonometric factors
in exponential form: all the terms are of the type

∫∫
ei(t+T )(ρ1±ρ2)

sin(t (ρ1 − ρ2))

ρ1 − ρ2
ĥ1(ρ1)ĥ2(ρ2) dρ1dρ2

= 1

2

∫
(1̂[−t,t] ∗ (ei(t+T )ρ1 ĥ1))(ρ2) e∓i(t+T )ρ2 ĥ2(ρ2) dρ2

= 1

4π

t∫

−t

h1(r + (t + T ))h2(r ∓ (t + T )) dr (31)

where we used Plancherel on the last line. Via Cauchy–Schwarz we can bound these
terms by

‖h1‖L2(|x |≥T )‖h2‖L2(|x |≥T ). (32)

Due to the distinction between the Fourier transform on the line and in R
d we can-

not simply express the previous expression by one involving the energy of ( f, g)
over {|x | > T }. However, it is clear that (32) can be made arbitrarily small by taking
T ≥ T∗.

In summary, we arrive at the following preliminary conclusion:
Given ε > 0 there exists T∗ = T∗(ε, f, g) such that the following holds: for any

T ≥ T∗

I (T, t) ≥ I1(∞)(1 − ε)+ (−1)ν

8π

∫∫
cos(T (ρ1+ρ2))

ρ1 + ρ2

×
(
−ρ1 f̂ (ρ1)ρ2 f̂ (ρ2)+ ĝ(ρ1)ĝ(ρ2)

)
(ρ1ρ2)

μ dρ1dρ2

− (−1)ν

4π
Re
∫∫

sin(T (ρ1 + ρ2))

ρ1+ρ2
ρ1 f̂ (ρ1)ĝ(ρ2)(ρ1ρ2)

μ dρ1dρ2+ Ĩ (T, t),

(33)
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where

∀ t ≥ 0, | Ĩ (T, t)| ≤ c1(d)(‖ f ‖2
Ḣ1 + ‖g‖2

L2), and Ĩ (T, t) → 0 as t → +∞.

The constants here do not depend on T , and the vanishing of Ĩ as t → ∞ holds
uniformly in T ≥ 0.

To proceed we first note that

1

T

T∫

0

(
‖ f ‖2

Ḣ1(|x |≥τ) + ‖g‖2
L2(|x |≥τ)

)
dτ −→ 0 (34)

as T → ∞. The double integrals in (33) will be dealt with by randomizing T , in other
words, by taking averages in T . This process becomes degenerate for small frequencies
ρ1, ρ2. However, by the uncertainty principle (which amounts to an application of
Bernstein’s inequality), these small frequencies occur only with small probability and
can therefore be ignored.

To be specific, we rely on the following simple fact: let h ∈ L2(Rd) be such that
‖h‖L2(|x |≥R) ≤ δ‖h‖L2 . Then, with ĥ being the Fourier transform in R

d ,

‖ĥ‖L2(|ξ |≤ρ) ≤ c(d)((Rρ)
d
2 + δ)‖h‖L2 . (35)

To prove this property, let h1 := h1[|x |≤R], h2 := h−h1. Then ‖ĥ2‖L2 ≤ c(d)δ‖h‖L2

and

‖ĥ1‖L∞ ≤ ‖h1‖L1 ≤ c(d)R
d
2 ‖h1‖L2 ≤ c(d)R

d
2 ‖h‖L2 .

Now, by Cauchy–Schwarz,

‖ĥ1‖L2(|ξ |≤ρ) ≤ √|{|ξ | ≤ ρ}| ‖ĥ1‖L∞ ≤ c(d)(Rρ)
d
2 ‖h‖L2 .

As ĥ = ĥ1 + ĥ2, (35) follows.
We apply (35) to establish the following “randomized estimate” on the double

integrals in (33). We formulate it as a general principle:
Given δ > 0 and any h1, h2 ∈ L2(Rd) radial, there exists T ∗ = T ∗(δ, h1, h2) such

that for all T ≥ T ∗,

∣∣∣∣∣∣
1

T

T∫

0

∫∫
eiτ(ρ1+ρ2)

ρ1 + ρ2
ĥ1(ρ1)ĥ2(ρ2) (ρ1ρ2)

μ dρ1dρ2dτ

∣∣∣∣∣∣ ≤ c(d)δ2‖h1‖L2‖h2‖L2 .

(36)
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With T, ρ > 0 to be determined later, we split the integral into two parts:

I≤ρ(t, T ) := 1

T

T∫

0

∫∫

ρ1+ρ2≤ρ

eiτ(ρ1+ρ2)

ρ1 + ρ2
ĥ1(ρ1)ĥ2(ρ2) (ρ1ρ2)

μ dρ1dρ2dτ,

I≥ρ(t, T ) := 1

T

T∫

0

∫∫

ρ1+ρ2≥ρ

eiτ(ρ1+ρ2)

ρ1 + ρ2
ĥ1(ρ1)ĥ2(ρ2) (ρ1ρ2)

μ dρ1dρ2dτ

where it is understood that ρ1, ρ2 > 0. Then with R as in (35)

|I≤ρ(t, T )| ≤ 1

T

T∫

0

∫∫ |ĥ1(ρ1)|1[ρ1≤ρ]|ĥ2(ρ2)|1[ρ2≤ρ]
ρ1 + ρ2

(ρ1ρ2)
μ dρ1dρ2dτ

≤ ‖H(|ĥ1(ρ1)|ρμ1 1[ρ1≤ρ])‖L2‖ĥ2(ρ2)ρ
μ
2 ‖L2(|ρ2|≤ρ)

≤ c(d)2((Rρ)
d
2 + δ)2‖h1‖L2‖h2‖L2 .

where we used L2-boundedness of the Hankel transform (H f )(r) := ∫∞
0

f (s)
r+s ds and

(35) to pass to the final estimate. For the second term, we integrate first in τ

|I≥ρ(t, T )| ≤ 2

T

∫∫

ρ1+ρ2≥ρ

|ĥ1(ρ1)ĥ2(ρ2)|
(ρ1 + ρ2)2

(ρ1ρ2)
μ dρ1dρ2

≤ 2

ρT
〈H(|ĥ1|ρμ1 ), |ĥ2|ρμ2 〉 ≤ C(d)

ρT
‖h1‖L2‖h2‖L2

where 〈·, ·〉 is the L2(0,∞)-pairing. Taking first R large (depending on δ, h1, h2),
then ρ small, and finally T large implies (36).

It is now a simple matter to finish the estimation of the principal term. Indeed, fix
a small ε > 0 (to be determined later) and let T ∗, T∗ ≥ 0 be sufficiently large. Then
for all T ≥ max(T ∗, T∗) and t ≥ 0, we obtain the following lower bound on (33):

1

T

T∫

0

I (τ, t) dτ ≥ (1 − ε)I1(∞)− 1

T

T∫

0

| Ĩ (τ, t)| dτ.

By the asymptotic behavior of Ĩ (τ, t)we see that given ε > 0 there exists T0, depending
on ε, f, g and d, such that

lim sup
t→∞

1

T

T∫

0

I (τ, t) dτ ≥ (1 − ε)I1(∞).
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Recall that so far we have only dealt with the kinetic part of the energy, i.e., the one
given by ∂t u. The other contribution coming from ∂r u(t, r) equals

(2π)d |Sd−1|−1 1

2
‖∂r u(t + T )‖2

L2(|x |≥t) = (2π)d
∞∫

t

1

2
|∂r u(t + T, r)|2 rd−1 dr

= (2π)d lim
ε→0+

∞∫

t

1

2
|∂r u(t + T, r)|2rd−1e−εr dr

= lim
ε→0+

∞∫

t

∫∫
1

2

(
cos((t + T )ρ1)ρ1 f̂ (ρ1)+ sin((t + T )ρ1)ĝ(ρ1)

)

·
(

cos((t + T )ρ2)ρ2 f̂ (ρ2)+ sin((t + T )ρ2)ĝ(ρ2)
)

·J ′
ν(rρ1)J

′
ν(rρ2)(r

2ρ1ρ2)
−ν(ρ1ρ2)

d−1 dρ1dρ2 rd−1 e−εr dr + ot (1)

as t → ∞. The final term here results from the derivatives in r falling on the r−2ν

weight outside of the Bessel functions, see below for the treatment of such error terms.
Plugging in the asymptotics from (10), and performing the same type of arguments as
before now yields

lim sup
t→∞

1

T

T∫

0

‖∇t,x u(t)‖2
L2(|x |>t−τ) dτ ≥ (1 − c2(d)(δ

2 + ε))‖( f, g)‖2
Ḣ1×L2

for all T ≥ T0. We also used the Plancherel identity ‖ f̂ ‖2
2 = (2π)d‖ f ‖2

2. By the
monotonicity of the exterior energy, we can take T = T0 which leads to the desired
result.

It remains to verify the dominance of the leading order terms of the Bessel expansion
as expressed by (28). This is very similar to the corresponding argument in the proof
of Theorem 1. Indeed, subtracting (27) from (26) yields, with ω j as in (11),

I (T, t) := 2

π
lim
ε→0+

∞∫

t

∞∫

0

∞∫

0

(
− sin((t + T )ρ1)ρ1 f̂ (ρ1)+ cos((t + T )ρ1)ĝ(ρ1)

)

·
(
− sin((t + T )ρ2)ρ2 f̂ (ρ2)+ cos((t + T )ρ2)ĝ(ρ2)

)

·
[
(ω2(rρ1)+ ω2(rρ2)+ ω2(rρ1)ω2(rρ2)) cos(rρ1 − τ) cos(rρ2 − τ)

+ω1(rρ1)(1 + ω2(rρ2)) sin(rρ1 − τ) cos(rρ2 − τ)

+ω1(rρ2)(1 + ω2(rρ1)) sin(rρ2 − τ) cos(rρ1 − τ)

+ω1(rρ1)ω1(rρ2) sin(rρ1 − τ) sin(rρ2 − τ)

]
(ρ1ρ2)

μ dρ1dρ2 e−εr dr.
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All terms here are treated in a similar fashion. As one example, consider for all ε > 0
the error term

E1(ε) :=
∞∫

t

∞∫

0

∞∫

0

sin((t + T )ρ1) sin((t + T )ρ2) cos(rρ1 − τ) sin(rρ2 − τ)ω1(rρ2)

· f̂ (ρ1) f̂ (ρ2)(ρ1ρ2)
μ+1e−εr dρ1dρ2 dr,

As before, we write

cos(rρ1 − τ) sin(rρ2 − τ) = −1

2

[
(−1)ν cos(r(ρ1 + ρ2))+ sin(r(ρ1 − ρ2))

]
,

expand the trigonometric functions on the right-hand side into complex exponentials,
and perform an integration by parts in the r variable as in (20). We apply this with
σ = ρ1 +ρ2 and σ = ρ1 −ρ2 to the fully expanded form of E1(ε) as explained above.
In both cases one has the uniform bounds

sup
ε>0

∥∥∥∥∥∥
∞∫

−∞

φ(ρ2)

(ρ1 ± ρ2)± iε
dρ2

∥∥∥∥∥∥
L2(ρ1)

≤ C‖φ‖2.

In order to use this, we distribute the exponential factors as well as all weights over

the functions f̂ (ρ1) and f̂ (ρ2), respectively. For the first term on the right-hand side
of (20) we then obtain an estimate O(t−1) from the decay of the weight ω, whereas
for the integral in (20) we obtain a O(r−2)-bound via

sup
ρ>0

|ω′(rρ)ρ2| ≤ C r−2

which then leads to the final bound

∞∫

t

O(r−2) dr = O(t−1).

The O-here are uniform in ε > 0. Note that various ρ-factors which are introduced
by the ω-weights are harmless due to our standing assumption that 0 < ρ∗ < ρ < ρ∗.

Proof (Proof of Theorem 5) This is an immediate consequence of Proposition 4 and
the monotonicity of the energy on the region {|x | ≥ t + T }.

4 Concentration compactness decompositions

The section collects some admittedly more technical results which, however, are of
crucial importance in the implementation of certain nonlinear arguments in our fol-
lowup work [3,4].
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4.1 A bilinear convergence property

We begin with the following result is useful when considering energy splitting in a
concentration-compactness decomposition. The issue here is to localize such a splitting
to the exterior of balls. We show that such a localization does not affect a Pythagoras-
type property of the energy. Technically speaking, the main issue here is the inclusion
of the cut-off {|x | > rn} or {|x | < rn} in (37). We present this material here since it
rests on the exact same considerations as the exterior energy estimates from above.

Lemma 6 Let wn = (wn,0, wn,1) be a bounded sequence of radial functions in Ḣ1 ×
L2. Let tn, rn be two sequences (rn ≥ 0). Assume that ∇x,t S(−tn)wn ⇀ 0 in L2 as
n → ∞. Then for any U = (u0, u1) ∈ (Ḣ1 × L2)(Rd), one has

∫

|x |>rn

∇x,t S(tn)U · (∇xwn,0, wn,1) dx → 0 as n → +∞, (37)

∫

|x |<rn

∇x,t S(tn)U · (∇xwn,0, wn,1) dx → 0 as n → +∞. (38)

Proof By conservation of the linear energy, one has

∫

Rd

∇x,t S(tn)U · (∇xwn,0, wn,1) dx

=
∫

Rd

∇x,t U · S(−tn)(∇xwn,0, wn,1) dx → 0 as n → +∞. (39)

Hence, (38) and (37) are equivalent.
By unitarity of the evolution we may assume that u is a Schwartz function with

Fourier support away from the origin. Also it suffices to show the claim assuming that
the sequences

(tn)n, (rn)n, (tn − rn)n and (tn + rn)n have a limit in R.

If tn has a finite limit, then S(tn)U converges strongly in L2 and (∇xwn,0, wn,1)

converges weakly in L2. Now recall the following simple fact: if fn ⇀ f weakly in
L2, and αn → α ∈ R, the dominated convergence theorem shows that

1|x |≥αn fn ⇀ 1(α,+∞) f weakly in L2.

Applying this to αn = rn and fn = (∇xwn,0, wn,1) yields the result in this case.
We now turn to the case when lim tn ∈ {±∞}. We have shown above that the

sequence ∇x,t S(tn)U asymptotically concentrates its L2 mass where ||x | − |tn|| ≤ R.
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In particular,

∫

|x |≤|tn |/2
|∇x,t S(tn)U|2 → 0.

If rn is bounded, it then transpires that

∫

|x |≤rn

∇x,t S(tn)U · (∇xwn,0, wn,1) dx → 0,

and we are done with this case.
It remains to treat the case where both (tn)n and (rn)n have infinite limits. We

proceed as in the proof of Proposition 4, using the Fourier representation and the Bessel

functions Jν with ν = d − 2

2
. Retaining only the leading orders in the expansions of

these functions the dominant contribution to (37) is given by

∞∫

rn

∞∫

0

(cos(tnρ)ρû0(ρ)+ sin(tnρ)û1(ρ)) sin(rρ − τ)(rρ)−ν−
1
2 ρd−1 dρ

∞∫

0

ŵn,0(σ )σ sin(rσ − τ)(rσ)−ν−
1
2 σ d−1 dσ e−εr rd−1 dr

+
∞∫

rn

∞∫

0

(− sin(tnρ)ρû0(ρ)+ cos(tnρ)û1(ρ)) cos(rρ − τ)(rρ)−ν−
1
2 ρd−1 dρ

∞∫

0

ŵn,1(σ ) cos(rσ − τ)(rσ)−ν−
1
2 σ d−1 dσ e−εr rd−1 dr

in the limit ε → 0+. Carrying out the r -integration and passing to the limit yields the
expression

∞∫

0

∞∫

0

(cos(tnρ)ρû0(ρ)+ sin(tnρ)û1(ρ)) ρ
d−1

2 σŵn,0(σ )σ
d−1

2

(
πδ0(ρ − σ)− sin(rn(ρ − σ))

ρ − σ
− (−1)ν

cos(rn(ρ + σ))

ρ + σ

)
dρdσ

+
∞∫

0

∞∫

0

(− sin(tnρ)ρû0(ρ)+ cos(tnρ)û1(ρ)) ρ
d−1

2 ŵn,1(σ )σ
d−1

2

(
πδ0(ρ − σ)− sin(rn(ρ − σ))

ρ − σ
+ (−1)ν

cos(rn(ρ + σ))

ρ + σ

)
dρdσ. (40)
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The δ0 make the following contribution to (40):

∞∫

0

ρû0(ρ)
[
cos(tnρ)ρŵn,0(ρ)− sin(tnρ)ŵn,1(ρ)

]
ρd−1 dρ

+
∞∫

0

û1(ρ)
[
sin(tnρ)ρŵn,0(ρ)+ cos(tnρ)ŵn,1(ρ)

]
ρd−1 dρ

which tends to 0 by the assumption on wn . Next, we extract the terms involving the
Hilbert transform kernel from (40) (ignoring multiplicative constants):

∞∫

0

∞∫

0

{
ρû0(ρ)

[
cos(tnρ)σ ŵn,0(σ )− sin(tnρ)ŵn,1(σ )

]

+û1(ρ)
[
sin(tnρ)σ ŵn,0(σ )+ cos(tnρ)ŵn,1(σ )

] } sin(rn(ρ − σ))

ρ − σ
(ρσ)

d−1
2 dρdσ.

(41)

Using simple trigonometry, the terms involving u0 can be transformed into the fol-
lowing expression:

∞∫

0

∞∫

0

ρû0(ρ)

{
[sin((tn + rn)(ρ − σ))− sin((tn − rn)(ρ − σ))] cos(tnσ)σ ŵn,0(σ )

+ [cos((tn + rn)(ρ − σ))− cos((rn − tn)(ρ − σ))] sin(tnσ)σ ŵn,0(σ )

− [cos((tn − rn)(ρ − σ))− cos((tn + rn)(ρ − σ))] cos(tnσ)ŵn,1(σ )

− [− sin((tn − rn)(ρ − σ))+ sin((tn + rn)(ρ − σ))] sin(tnσ)ŵn,1(σ )

}

× (ρσ)
d−1

2

ρ − σ
dρdσ =

∞∫

0

∞∫

0

ρû0(ρ)

{
[sin((tn + rn)(ρ − σ))

+ sin((rn − tn)(ρ − σ))]
(
cos(tnσ)σ ŵn,0(σ )− sin(tnσ)ŵn,1(σ )

)
+ [cos((tn + rn)(ρ − σ))− cos((rn − tn)(ρ − σ))]

× (sin(tnσ)σ ŵn,0(σ )+ cos(tnσ)ŵn,1(σ )
) } (ρσ) d−1

2

ρ − σ
dρdσ. (42)

Define, with F1 the Fourier transform on R,

ũ0 := F−1
1

(
1R+ρû0(ρ)ρ

d−1
2

)
∈ L2(R).
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Then with some constant c,

∞∫

0

e±i Bn(ρ−σ) ρû0(ρ)

ρ − σ
ρ

d−1
2 dρ = cF1(sign(· ± Bn)ũ0)(σ ).

If Bn has a limit in R or ±∞, then this converges strongly in L2(R): in our case, Bn

is tn + rn or tn − rn . Thus, (42) can be reduced to the form 〈vn, ṽn〉 → 0 where vn

converges strongly in L2 and ṽn ⇀ 0 weakly in L2 as n → ∞. Analogously, the
terms involving u1 in (41) are reduced to the following expressions:

∞∫

0

∞∫

0

û1(ρ)

{
[sin((tn + rn)(ρ − σ))− sin((tn − rn)(ρ − σ))]

(
sin(tnσ)σ ŵn,0(σ )+ cos(tnσ)ŵn,1(σ )

)
− [cos((tn + rn)(ρ − σ))− cos((tn − rn)(ρ − σ))]

(
cos(tnσ)σ ŵn,0(σ )− sin(tnσ)ŵn,1(σ )

) } (ρσ) d−1
2

ρ − σ
dρdσ

which converges to zero by the same reason.

It remains to handle the terms in (40) involving the Hankel kernel
1

ρ + σ
. Using the

same type of trigonometric identities as above the terms involving the Hankel kernel
as well as u0 are transformed into the following ones:

∞∫

0

∞∫

0

ρû0(ρ)

{
[sin((tn + rn)(ρ + σ))+ sin((tn − rn)(ρ + σ))]

(sin(tnσ)σ ŵn,0(σ )+ cos(tnσ)ŵn,1(σ ))

+ [cos((tn + rn)(ρ + σ))+ cos((tn − rn)(ρ + σ))]

(cos(tnσ)σ ŵn,0(σ )− sin(tnσ)ŵn,1(σ ))

}
(ρσ)

d−1
2

ρ + σ
dρdσ.

We proceed as in the case of the Hilbert transform, considering

ŭ0 := F−1
1

(
1R−ρû0(ρ)ρ

d−1
2

)

instead of ũ0, and noticing

∞∫

0

e±i Bn(ρ+σ) ρû0(ρ)

ρ + σ
ρ

d−1
2 dρ = cF1(sign(· ∓ Bn)ŭ0)(σ ).
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We argue analogously for the terms involving the Hankel kernel as well as u1,
which are of the form

∞∫

0

∞∫

0

û1(ρ)

{
[sin((tn + rn)(ρ + σ))+ sin((tn − rn)(ρ + σ))]

(cos(tnσ)σ ŵn,0(σ )− sin(tnσ)ŵn,1(σ ))

− [cos((tn + rn)(ρ + σ))+ cos((tn − rn)(ρ + σ))]

(sin(tnσ)σ ŵn,0(σ )+ cos(tnσ)ŵn,1(σ ))

}
(ρσ)

d−1
2

ρ + σ
dρdσ.

By inspection, these also vanish in the limit n → ∞.
It remains to deal with the errors resulting from the lower orders in (10). In contrast

to the leading order, no use is going to be made of the weak convergence assumption
on wn . Indeed, just by means of L2-estimation and the gain of (at least) one power
stemming from the ω j and ω̃ j factors in (10), one obtains a O(r−1

n ) bound on all of
the contributions of these terms to the left-hand side of (37) (recall our assumption
ρ > ρ∗ > 0, and the same for σ ). To be more specific, the error terms are of the form

∞∫

rn

(
Un,0(r)w

′
n,1(r)+ Un,1(r)w

′
n,0(r)+ Un,1(r)w

′
n,1(r)

)
rd−1 dr (43)

where

Un,1(r) =
∞∫

0

(
cos(tnρ)û0(ρ)+ sin(tnρ)

ρ
û1(ρ)

)
(ω̃1(rρ) cos(rρ − τ)

−ω̃2(rρ) sin(rρ − τ)) (rρ)−ν−
1
2 ρd dρ,

wn,1(r) =
∞∫

0

ŵn(σ ) (ω̃1(rσ) cos(rσ − τ)− ω̃2(rσ) sin(rσ − τ)) (rσ)−ν−
1
2 σ d dσ.

Let us consider the first term in (43):
∞∫

rn

Un,0(r)w
′
n,1(r)r

d−1 dr

= lim
ε→0+

∞∫

tn+A

∞∫

0

(
cos(tnρ)û0(ρ)+ sin(tnρ)

ρ
û1(ρ)

)
sin(rρ−τ)(rρ)−ν−1

2 ρd dρ

∞∫

0

ŵn(σ ) (ω̃1(rσ) cos(rσ−τ)−ω̃2(rσ) sin(rσ−τ)) (rσ)−ν−1
2 σ d dσ e−εr rd−1 dr

(44)
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In view of (20) the r -integral here is of the form

∞∫

t

e−[ε∓iτ ]r ω(rσ) dr = e−[ε∓iτ ]t

ε ∓ iτ
ω(tσ)+

∞∫

t

e−[ε∓iτ ]r

ε ∓ iτ
ω′(rσ)σ dr (45)

for all t > 0, σ > 0. Inserting the boundary term on the right-hand side of (45)
into (43) yields expressions of the form, for j = 1, 2,

∞∫

0

∞∫

0

e±i tnρe−(ε±i(ρ±σ))(tn+A)

ε ± i(ρ ± σ)
ω̃ j (rnσ)û0(ρ)ŵn(σ )(σρ)

d+1
2 dρdσ

where the signs are chosen independently of each other. By the L2-boundedness of the
Hilbert, respectively, Hankel transforms and the fact that σ > ρ∗ > 0, we conclude
that uniformly in ε > 0 this expression is O(t−1

n ). Similarly, the integral on the
right-hand side of (45) yields

∞∫

rn

⎡
⎣

∞∫

0

∞∫

0

e±i tnρe−(ε±i(ρ±σ))r

ε ± i(ρ ± σ)
ω̃′

j (rσ)σ û0(ρ)ŵn(σ )(σρ)
d+1

2 dρdσ

⎤
⎦ dr.

Again by L2-boundedness the expression in brackets is O(r−2) uniformly in ε > 0
and n. Integrating this in r > rn then yields O(r−1

n ) as before. This shows that the
entire first term on the right-hand side of (43) is O(r−1

n ). The second and third terms
satisfy the same bound and we are done. ��

4.2 Energy partition for profile decompositions

We first recall the notion of a profile decomposition which originates in this form in [2].
It plays a fundamental role in the analysis of nonlinear equations at large energies.
See for example [3–6].

We denote S the Strichartz space L
2(d+1)

d−2
t,x (Rd), and its associated norm

‖ f ‖S = ‖ f ‖
L

2(d+1)
d−2

t (R,L
2(d+1)

d−2
x (Rd ))

.

Definition 7 We say that a sequence (u0,n, u1,n) ⊂ Ḣ1 × L2 admits a profile decom-
position (U j

L , ∂tU
j

L) j∈N ⊂ Ḣ1 × L2 (solutions to the linear wave equation (1)), with
parameters (λ j,n, t j,n), and remainder w J

n (also solutions to the linear wave equation
(1)) if there holds
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0,n =
J∑

j=1

1

λ
d/2−1
j,n

U j
L

(
− t j,n

λ j,n
,

x

λ j,n

)
+ w J

n (0, x),

u1,n =
J∑

j=1

1

λ
d/2
j,n

∂tU
j

L

(
− t j,n

λ j,n

x

λ j,n

)
+ ∂tw

J
n (0, x),

(46)

where limJ→+∞ lim supn→+∞ ‖w J
n ‖S = 0,

and the parameters are pseudo-orthogonal, that is for all i �= j ,

∣∣∣∣ln λ j,n

λi,n

∣∣∣∣+ |t j,n − ti,n|
λ j,n

→ +∞ as n → +∞.

The following result is the Pythagorean expansion of the truncated energy.

Corollary 8 Let {(u0,n, u1,n)} be a bounded sequence in Ḣ1 × L2, and assume it

admits a profile decomposition (46) with profiles (U j
L) j∈N, parameters (λ j,n, t j,n), and

remainderw J
n . Let tn, rn be two sequences. Then we have the Pythagorean expansion:

∫

|x |≥rn

(
|∇x u0,n(x)|2 + |u1,n(x)|2

)
dx

=
J∑

j=1

∫

|x |≥rn

1

λd
j,n

∣∣∣∣∇x,tUL

(
− t j,n

λ j,n
,

x

λ j,n

)∣∣∣∣
2

dx +
∫

|x |≥rn

|∇x,twn(0, x)|2 dx + on(1).

Proof It suffices to prove that the cross terms go to 0, i.e.

∀i �= j,
∫

|x |≥rn

1

λ
d/2
i,n

∇x,tU
i
L

(
− ti,n
λi,n

,
x

λi,n

)
1

λ
d/2
j,n

∇x,tU
j

L

(
− t j,n

λ j,n
,

x

λ j,n

)
dx → 0,

∀ j ≤ J,
∫

|x |≥rn

1

λ
d/2
j,n

∇x,tU
j

L

(
− t j,n

λ j,n
,

x

λ j,n

)
∇x,tw

J
n (0, x) dx → 0.

After scaling, this takes the expression

∀i �= j,
∫

|x |≥rn/λi,n

∇x,tU
i
L

(
− ti,n
λi,n

, x

)
λ

d/2
i,n

λ
d/2
j,n

∇x,tU
j

L

(
− t j,n

λ j,n
,
λi,n

λ j,n
x

)
dx → 0,

∀ j ≤ J,
∫

|x |≥rn/λ j,n

∇x,tU
j

L

(
− t j,n

λ j,n
, x

)
λ

d/2
j,n ∇x,tw

J
n (0, λ

d/2
j,n x) dx → 0.

In both cases we will use Lemma 6: we have to check the weak convergence.
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In the first case, we have

∇x,t S

(
ti,n
λi,n

)⎛
⎝λ

d/2−1
i,n

λ
d/2−1
j,n

U j
L

(
− t j,n

λ j,n
,
λi,n

λ j,n
x

)
,
λ

d/2
i,n

λ
d/2
j,n

∂tU
j

L

(
− t j,n

λ j,n
,
λi,n

λ j,n
x

)⎞
⎠

= λ
d/2
i,n

λ
d/2
j,n

∇x,tU
j

L

(
ti,n − t j,n

λ j,n
,
λi,n

λ j,n
x

)
.

From pseudo-orthogonality, it is clear that this last expression tends weakly to 0 in
L2. Let us focus on the second, then

∇x,t S

(
t j,n

λ j,n

)
(λ

d/2−1
j,n wJ

n,0(0, λ j,n x), λd/2
j,n w

J
n,1(0, λ j,n x)) = λ

d/2
j,n ∇x,twn

(
t j,n, λ j,n x

)
.

But by construction of a profile decomposition, for j ≤ J , recall that

λ
d/2
j,n ∇x,tw

(
t j,n, λ j,n x

)
⇀ 0 weakly in L2 as n → +∞.

4.3 Asymptotic vanishing of Strichartz norms

The goal here is to prove a technical statement on the stability of the asymptotic
vanishing of global Strichartz norms under spatial cutoffs, see Lemma 11 below. In
odd dimensions, this was established in [5, Claim 2.11]. This statement will play an
important role in the applications of this paper to wave maps, see [3,4].

Lemma 9 [5, Lemma 4.1] Let v be a solution to the linear wave equation (1), and
(tn) ⊂ R, (λn) ⊂ R

∗+ be two sequences. Define the sequence

vn(t, x) = 1

λ
d/2−1
n

v

(
t

λn
,

x

λn

)
.

Assume that
tn
λn

→ � ∈ R. Then

If � ∈ {±∞}, lim supn→∞ ‖∇x,tvn(tn)‖2
L2(||x |−|tn ||≥Rλn)

→ 0 as R → +∞,

If � ∈ R, lim supn→∞ ‖∇x,tvn(tn)‖2
L2(| ln(x/λn)|≥ln R) → 0 as R → +∞.

Proof First consider the case � ∈ R, then notice that

‖∇x,tvn(tn)‖L2(| ln(|x |/λn)|≥ln R) = ‖∇x,tv(�)‖L2(| ln |x ||≥ln R) + on(1),

from where the result follows. In the case |�| = +∞, then

‖∇x,tvn(tn)‖L2(||x |−|tn ||≥Rλn)
= ‖∇x,tv(tn/λn)‖L2(||x |−|tn/λn ||≥R),
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604 R. Côte et al.

and the result follows from Theorem 5.

Lemma 10 [5, Claim A.1] Let (u, ∂t u) and (wn, ∂twn) be solutions to the linear wave
equation (1) bounded in Ḣ1 × L2, and let (λn)n, (μn), (tn)n, (sn)n be sequences of
real numbers (with λn, μn > 0). Assume that

λ
d/2
n ∇x,twn(tn, λn x) ⇀ (0, 0) weakly in L2. (47)

If ϕ is either a radial, compactly supported smooth function such that ϕ = 1 (or
ϕ ≡ 1) in a neighbourhood of 0, we have

∫
ϕ

(
x

μn

)
∇x,twn(sn, x) · 1

λ
d/2
n

∇x,t u

(
sn − tn
λn

,
x

λn

)
dx → 0, (48)

and
∫
(1 − ϕ)

(
x

μn

)
∇x,twn(sn, x) · 1

λ
d/2
n

∇x,t u

(
sn − tn
λn

,
x

λn

)
dx → 0. (49)

as n → ∞.

Proof By conservation of the linear energy for solutions to (1), and we have

∫
∇x,twn(sn, x) · 1

λ
d/2
n

∇x,t u

(
sn − tn
λn

,
x

λn

)
dx

=
∫
λ

d/2
n ∇x,twn(tn, x) · ∇x,t u

(
sn − tn
λn

, x

)
dx

=
∫
λ

d/2
n ∇x,twn(tn, λn x) · ∇x,t u (0, x) dx → 0. (50)

where we used weak convergence (47). This settles the case ϕ ≡ 1. Also this
shows that is suffices to prove (49). For this we will use Lemma 6. Writing ϕ(z) =
−
∫

1[y≥z]ϕ′(y)dy, we have

∫
ϕ

(
x

μn

)
∇x,twn(sn, x) · 1

λ
d/2
n

∇x,t u

(
sn − tn
λn

,
x

λn

)
dx = −

∞∫

0

ϕ′(y)Fn(y)dy,

where Fn(y) =
∫

1[x≤μn y]∇x,twn(sn, x) · 1

λ
d/2
n

∇x,t u

(
sn − tn
λn

,
x

λn

)
dx .

Unscaling, we see that

Fn(y) =
∫

1[x≤μn y/λn ]λd/2
n ∇x,twn(sn, λn x) · ∇x,t u

(
sn − tn
λn

, x

)
dx .
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Energy partition for the linear radial wave equation 605

Now we compute

∇x,t S

(
tn − sn

λn

)(
λ

d/2−1
n wn(sn, λn x), λd/2

n ∂twn(sn, λn x)
)

= λ
d/2
n ∇x,twn(tn, λx) ⇀ 0 in L2, (51)

by hypothesis. Hence (37) ensures that for all y, Fn(y) → 0 as n → +∞. Further-
more, it is clear that

|Fn(y)| ≤ ‖(u, ∂t u)‖Ḣ1×L2‖(wn, ∂twn)‖Ḣ1×L2 ≤ M.

Hence for all n, |ϕ′(y)Fn(y)| ≤ M |ϕ′(y)|. As ϕ′ ∈ L1, the Theorem of dominated
convergence applies and

∞∫

0

ϕ′(y)Fn(y)dy → 0.

We are now in a position to derive the aforementioned stability result for the asymp-
totic vanishing of the Strichartz norms.

Lemma 11 [5, Claim 2.11] Let wn be a sequence of radial solutions to the linear
wave equation (1) with bounded energy and such that

‖wn‖S → 0 as n → +∞.

Let (w0,n, w1,n) be the initial data of wn, χ ∈ D(Rd) radial and such that χ = 1
around the origin, and λn be a sequence of positive numbers. Consider the solution
vn to (1) with truncated data

(v0,n, v1,n) := (ϕ(| · |/λn)w0,n, ϕ(| · |/λn)w1,n),

where ϕ = χ or ϕ = 1 − χ . Then

‖vn‖S → 0 as n → +∞.

Proof It suffice to consider the case ϕ = χ . By scaling invariance, we can assume that
λn = 1 for all n. Notice that convergence to 0 in the Strichartz space S is equivalent
to having trivial profile decomposition, more precisely, one has the following:

Let (un, ∂t un) be a sequence of solution to (1). Then ‖un‖S(R) → 0 if and only if
for any sequence (tn) ⊂ R, (μn) ⊂ (0,+∞),

μ
d/2
n ∇x,t un(−μntn, μn x) ⇀ 0 weakly in L2.

This a consequence of the construction of a profile decomposition, see [2] for further
details.

123



606 R. Côte et al.

Hence, let (tn) ⊂ R, (μn) ⊂ (0,+∞) be two sequences, and (u0, u1) ∈ Ḣ1 × L2.
By density, we can assume that (u0, u1) are radial, smooth and compactly support
outside 0, say in {x | |x | ∈ [ρ∗, ρ∗]} for some ρ∗, ρ∗ > 0. Define (u, ∂t u) be the
solution to (1) with initial data (u0, u1). It suffices to prove that

∫
1

μ
d/2
n

∇x,tvn

(
− tn
μn
,

x

μn

)
∇x,t u(0, x) dx → 0.

Now we compute,

∫
1

μ
d/2
n

∇x,tvn

(
− tn
μn
,

x

μn

)
∇x,t u(x) dx

=
∫

∇x,tvn (0, x) μd/2
n ∇x,t u(−tn, μn x) dx

=
∫
ϕ (x)∇xwn (0, x) μd/2

n ∇x u(tn, μn x) dx

+
∫
ϕ (x) ∂twn (0, x) μd/2

n ∂t u(tn, μn x) dx

+
∫

∇xϕ (x) wn (0, x) μd/2
n ∇x u(tn, μn x) dx .

The claim together with (48), (49) shows that the first two terms of the right-hand side
converge to 0. Hence we are left to prove that

In :=
∫

∇xϕ (x) wn (0, x) μd/2
n ∇x u(tn, μn x) dx → 0.

It suffices to prove this for subsequences, hence we can assume that tn, μn and tn/μn

have a limit in R. The claim ensures that wn(0, x) ⇀ 0 in Ḣ1. Recall that ∇xϕ has
compact support away from 0: due to Hardy’s inequality, we deduce

1

|x |wn(0, x) ⇀ 0 in L2-weak, and then ∇xϕ (x) wn (0, x) ⇀ 0 in L2-weak.

In particular ‖wn(0, x)/|x |‖L2 , ‖∇xϕ (x) wn (0, x) ‖L2 are bounded.

First assume that tn → τ ∈ R. By Lemma 9, we see that μd/2
n ∇x,t u

(
tn,

x

μn

)

concentrates L2 mass on annuli of the form

{x | μn/R ≤ |x | ≤ μn R}.

Hence if μn → +∞ or if μn → 0, as ∇xϕ has compact support away from 0, we see
that In → 0.

If μn → μ ∈ (0,+∞), then

μ
d/2
n ∇x u(tn, μn x) → μd/2∇x u(τ, μx) strongly in L2.
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Energy partition for the linear radial wave equation 607

As ∇xϕ (x) wn (0, x) ⇀ 0 in L2-weak, we deduce that In → 0.
We now turn to the case when |tn| → +∞. Then Lemma 9 shows that

lim sup
n→+∞

‖μd/2
n ∇x,t u (tn, μn x) ‖L2(||x |−|tn |/μn |≥R/μn)

→ 0 as R → +∞. (52)

If
|tn|
μn

→ +∞, then for all R, Supp(∇xϕ) ⊂ {||x | − |tn|/μn| ≥ μn R} when n is

large enough: hence we see that In → 0.

Otherwise,
tn
μn

→ � ∈ R. Using (52) and μn → +∞, we see that

∥∥∥μd/2
n ∇x,t u

(
tn,

x

μn

)∥∥∥
L2(||x |−�|≥μ−1/2

n )
→ 0.

Hence, separating the integral in In between the regions {|x | − �| ≥ μ
−1/2
n } and its

complement, and writing ∇xϕ (x) = |x |∇xϕ(x)
1
|x | , we have

In =
∫

||x |−�|≤μ−1/2
n

|x |∇xϕ (x)
1

|x |wn (0, x) μd/2
n ∇x u(tn, μn x)dx + o(1)

= |�|∇xϕ (�)

∫

||x |−�|≤μ−1/2
n

1

|x |wn (0, x) μd/2
n ∇x u(tn, μn x)dx + o(1).

(we used the continuity of |x |∇xϕ (x) at � on the last line, and 1/
√
μn → 0).

Now as
1

|x |wn (0, x) ⇀ 0 in L2, we deduce that the last integral converges to 0,

and In → 0. This completes the proof.
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