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Abstract The following subexponential estimate for commutators is proved

|{x ∈ Q : |[b, T ] f (x)| > t M2 f (x)}| ≤ c e−√
α t‖b‖B M O |Q|, t > 0.

where c and α are absolute constants, T is a Calderón–Zygmund operator, M is the
Hardy Littlewood maximal function and f is any function supported on the cube
Q ⊂ R

n . We also obtain that

|{x ∈ Q : | f (x) − m f (Q)| > t M#
λn;Q( f )(x)}| ≤ c e−α t |Q|, t > 0,

where m f (Q) is the median value of f on the cube Q and M#
λn;Q is Strömberg’s local

sharp maximal function with λn = 2−n−2. As a consequence we derive Karagulyan’s
estimate:

|{x ∈ Q : |T f (x)| > t M f (x)}| ≤ c e−c t |Q| t > 0,

from [21] improving Buckley’s theorem [3]. A completely different approach is used
based on a combination of “Lerner’s formula” with some special weighted estimates
of Coifman–Fefferman type obtained via Rubio de Francia’s algorithm. The method
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1218 C. Ortiz-Caraballo et al.

is flexible enough to derive similar estimates for other operators such as multilinear
Calderón–Zygmund operators, dyadic and continuous square functions and vector
valued extensions of both maximal functions and Calderón–Zygmund operators. In
each case, M will be replaced by a suitable maximal operator.

Mathematics Subject Classification (2000) Primary 42B20 · 42B25;
Secondary 46B70 · 47B38

1 Introduction

A classical problem in Calderón–Zygmund theory is the control of a given singular
operator by means of a maximal type operator. As a model example of this phenom-
enon, we can take the classical Coifman–Fefferman inequality involving a Calderón–
Zygmund (C–Z) operator and the usual Hardy–Littlewood maximal operator M (see
[7]).

Theorem 1 (Coifman–Fefferman) For any weight w in the Muckenhoupt class A∞,
the following norm inequality holds:

‖T ∗ f ‖L p(w) ≤ c ‖M f ‖L p(w), (1)

where 0 < p < ∞ and c = cn,w,p is a positive constant depending on the dimension
n, the exponent p and the weight w.

We use here the standard notation T ∗ for the maximal singular integral operator of
T , T ∗ f (x) = supε>0 |Tε f (x)|, where Tε is, as usual, the truncated singular integral.
This theorem says that the maximal operator M plays the role of a “control operator”
for C–Z operators, but the dependence of the constant c on both w and p is not precise
enough for some applications. The original proof was based on the good–λ technique
introduced by Burkholder and Gundy [4]. The goal is to prove that the following
estimate holds

∣
∣{x ∈ R

n : T ∗ f (x) > 2λ, M f (x) ≤ γ λ}∣∣ ≤ cγ
∣
∣{x ∈ R

n : T ∗(x) > λ}∣∣ (2)

for any λ > 0 and for sufficiently small γ > 0. Very roughly, the main idea to prove
(2) is to localize the level set {x ∈ R

n : T ∗ f (x) > λ} by means of Whitney cubes.
Then the problem is reduced to study a local estimate of the form

|{x ∈ Q : T ∗ f (x) > 2λ, M f (x) ≤ γ λ}| ≤ c γ |Q|, (3)

where Q is a cube from the Whitney decomposition and where f is supported on Q
and by standard methods, weighted norm inequalities for T and M can be derived.

In this paper we focus our attention on the growth rate of γ . In fact (3) is too rough
since the constant c = cn,p,w obtained in (1) is not sharp neither on the A∞ constant
of the weight nor on p as shown by Bagby and Kurtz [2].
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Exponential decay for singular operators 1219

Pursuing the sharp dependence on the Ap constant of the weight w for the operator
norm of singular integrals, Buckley improved this good–λ inequality (3) (see [3]),
obtaining a local exponential decay in γ in the following way:

|{x ∈ Q : T ∗ f (x) > 2λ, M f (x) ≤ γ λ}| ≤ c e−c/γ |Q|. (4)

Buckley proved this estimate using as a model a more classical inequality due
to Hunt for the conjugate function which was inspired by a result of Carleson [5].
We mention here in passing that this optimal weighted dependence, called the A2
conjecture, has been proved recently and by different means by Hytönen [18] (see
also [15,17] and [16] for a further improvement and the recent work [22] for a very
interesting simplication of the proof of the A2 conjecture). On the other hand, this
exponential decay (4) has been a crucial step in deriving corresponding sharp A1
estimate in [25,27].

Our point of view is different and has been motivated by an improved version of
inequality (4) due to Karagulyan [21]:

|{x ∈ Q : T ∗ f (x) > t M f (x)}| ≤ ce−αt |Q|, t > 0 (5)

However, it is not clear that the proof can be adapted to other situations.
In the present article we present a new approach flexible enough to derive corre-

sponding estimates for other operators. Furthermore, our approach allows to recognize
and distinguish a notion of “order of singularity” for each operator. To be more precise
and as a model, we consider a pair of operators T1 an T2, and consider for a fixed cube
Q the level set function

ϕ(t) := 1

|Q| |{x ∈ Q : |T1 f (x)| > t |T2 f (x)|}|, t > 0 (6)

where f stands for a function, an m-vector of functions or an infinite sequence, depend-
ing on the type of operators involved. In any case, all the coordinate functions are
assumed to be supported on Q. We will provide sharp estimates on the decay rate
for ϕ(t) in different instances of T1 and T2, including the case of C–Z operators,
vector-valued extensions of the maximal function or C–Z operators, commutators of
singular integrals with BMO functions and higher order commutators. We also provide
estimates for dyadic and continuous square functions and for multilinear C–Z opera-
tors. We summarize this different decay rates and the maximal operators involved in
Table 1 below (see Sect. 3 for the precise definitions). Observe that each operator has
its maximal operator acting as a control operator and, further, has its specific decay
rate for the corresponding level set function ϕ(t).

In this work we will present two different approaches, both based on the use of
Lerner’s formula (see Theorem 10), which is a very powerful and successful method
as we can see in several recent situations (see [8,9]). Roughly, the first approach allows
us to derive the exponential decay whenever there is a superlinear rate, namely, in all
the cases except for the commutators. This method, although it is far from being trivial,
can be seen as the natural way to exploit Lerner’s formula to obtain the exponential
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1220 C. Ortiz-Caraballo et al.

Table 1 Order of singularity for several operators

T1 T2 ϕ(t)

Vector valued maximal function Mq (·), 1 < q < ∞ M(| · |q ) e−αtq

Dyadic square function S M e−αt2

Continuous square function g∗
μ 1 < μ < ∞ M e−αt2

C–Z operator T M e−αt

Multilinear C–Z operator T Multilinear maximal M e−αt

Vector valued extension T q (·), 1 < q < ∞ M(| · |q ) e−αt

Commutator [b, T ] M2 = M ◦ M e−√
αt

Iterated commutator T k
b Mk+1 = M ◦ · · · ◦ M(k + 1 times) e−(αt)

1
k+1

decay. However, it fails when we consider the case of commutators. Hence, to be able
to tackle this latter case, we develop a different method, which is the more original and
substantial contribution of the present article: a novel approach and a different type
of proof based on weighted estimates. This second approach uses Lerner’s formula to
derive suitable local versions of weighted norm inequalities of Coifman–Fefferman
type. This, combined with factorization arguments, gives all the results, including
commutators of any order. In addition, we present here a sort of “template”, a general
scheme that can be applied to any pair of operators fulfilling certain general hypothesis.

The paper is organized as follows. In Sect. 2 we present the precise statement of
our results. In Sect. 3 we include some preliminary definitions and tools needed in
the sequel. In Sect. 4 we present our first approach and provide the proofs of the
“superlinear” results. In Sect. 5 we present our second approach and prove all the
results of the paper. In this final section we also include some background on weights
and, in addition, some new extensions of classical results.

2 Statement of the main results

In this section we present the precise statement of the main results of this paper. We
start with a general result involving a generic a function f and its local maximal
function M#

λ;Q f in a given cube Q (see Sect. 3 for the precise definitions).

• The key estimate: a John-Strömberg-Fefferman–Stein type inequality

Theorem 2 Let Q be a cube and let f ∈ L∞
c (Rn) such that supp( f ) ⊆ Q. Then

there are constants α, c > 0 such that

|{x ∈ Q : | f (x) − m f (Q)| > t M#
2−n−2;Q( f )(x)}| ≤ ce−αt |Q|, t > 0. (7)

Such an estimate involving a function controlled in some sense by its sharp maximal
function is surely related to Fefferman–Stein inequality, but the version we present
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Exponential decay for singular operators 1221

here with the local sharp maximal function goes back to the work of Strömberg [36]
and Jawerth and Torchinsky [19].

Once we have such a general theorem, we can derive the results announced in the
introduction for a wide class of singular operators. The idea is to apply the theorem
to a given singular operator T and then use the key tool: a pointwise estimate of the
form M#

2−n−2;Q
(T f )(x) ≤ c M( f )(x), where M is an appropriate maximal operator.

More precisely, we have the following theorems:

• Calderón–Zygmund operators.

Theorem 3 Let T be a C–Z operator with maximal singular integral operator T ∗. Let
Q be a cube and let f ∈ L∞

c (Rn) such that supp( f ) ⊆ Q. Then there are constants
α, c > 0 such that

|{x ∈ Q : |T ∗ f (x)| > t M f (x)}| ≤ ce−αt |Q|, t > 0. (8)

• Calderón–Zygmund multilinear operators.

Theorem 4 Let T be a m-linear C–Z operator. Let Q be a cube and let f be vector
of m functions f j ∈ L∞

c (Rn) such that supp( f j ) ⊆ Q for 1 ≤ j ≤ m. Then there are
constants α, c > 0 such that

|{x ∈ Q : |T f (x)| > tMf (x)}| ≤ ce−αt |Q|, t > 0. (9)

• Vector-valued extensions.

Theorem 5 Let 1 < q < ∞ and let T q be the vector-valued extension of T , where T
is a C–Z operator. Then there are constants α, c > 0 such that for any cube Q and
any vector-function f = { f j }∞j=1 with supp f ⊆ Q:

|{x ∈ Q : T q f (x) > t M(| f |q)(x)}| ≤ ce−αt |Q|, t > 0. (10)

Theorem 6 Let 1 < q < ∞ and let Mq be the vector-valued extension of M. Then
there are constants α, c > 0 such that for any cube Q and any vector-function
f = { f j }∞j=1 with supp f ⊆ Q:

|{x ∈ Q : Mq f (x) > t M(| f |q)(x)}| ≤ ce−αtq |Q|, t > 0. (11)

• Littlewood–Paley square functions.

Theorem 7 Let S be the dyadic square function and let g∗
μ be the continuous

Littlewood–Paley square function, with μ > 3. Let Q be a cube and let f ∈ L∞
c (Rn)

such that supp( f ) ⊆ Q. Then there are constants α, c > 0 such that

|{x ∈ Q : S f (x) > t M f (x)}| ≤ ce−αt2 |Q|, t > 0. (12)

and
|{x ∈ Q : g∗

μ( f )(x) > t M f (x)}| ≤ ce−αt2 |Q|, t > 0. (13)
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1222 C. Ortiz-Caraballo et al.

We also present here the result for commutators, although it will not follow from
Theorem 2. We will prove this theorem following the “weighted approach” announced
in the introduction.

• Commutators.

Theorem 8 Let T be a Calderón–Zygmund operator an let b be in B M O. Let f be
a function such that supp f ⊆ Q. Then there are constants, such that

|{x ∈ Q : |[b, T ] f (x)| > t M2 f (x)}| ≤ ce−√
αt‖b‖B M O |Q|, t > 0. (14)

Similarly, for higher commutators we have

|{x ∈ Q : |T k
b f (x)| > t Mk+1 f (x)}| ≤ ce−(αt‖b‖B M O )1/(k+1) |Q|, (15)

for all t > 0.

3 Preliminaries and notation

In this section we gather some well known definitions and properties which will be
used along this paper. We will adopt the usual notation fQ = 1

|Q|
∫

Q f (y) dy for the
average over a cube Q of a function f .

3.1 Maximal functions

Given a locally integrable function f on R
n , the Hardy–Littlewood maximal operator

M is defined by

M f (x) = sup
Q�x

1

|Q|
∫

Q

f (y), dy,

where the supremum is taken over all cubes Q containing the point x . For ε > 0, we
define:

Mε f (x) = (M(| f |ε)(x))1/ε.

The usual sharp maximal function of Fefferman–Stein is defined as:

M#( f )(x) = sup
Q�x

inf
c

1

|Q|
∫

Q

| f (y) − c| dy,

We will also use the following operator:

M#
δ ( f )(x) = sup

Q�x
inf

c

⎛

⎜
⎝

1

|Q|
∫

Q

| f (y) − c|δ dy,

⎞

⎟
⎠

1
δ

.
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If the supremum is restricted to the dyadic cubes, we will use respectively the following
notation Md , M#,d

δ and Md
δ . We will also need to consider iterations of maximal

functions. Let Mk be defined as

Mk := M ◦ · · ◦M (k times).

In addition, for a given cube Q, we will consider local maximal functions. For a fixed
cube Q, we will denote by D(Q) to the family of all dyadic subcubes with respect to
the cube Q. The maximal function M Q is defined by

M Q f (x) = sup
P∈D(Q),P�x

1

|P|
∫

P

f (y), dy.

Similarly, M Q
δ , M#,Q and M#,Q

δ are defined in the same way as above.
We introduce the following notation: for a given vector–valued function f =

( f j )
∞
j=1 we denote

| f (x)|q :=
⎛

⎝

∞
∑

j=1

| f j (x)|q
⎞

⎠

1/q

.

Then, the classical vector-valued extension of the maximal function introduced by
Fefferman and Stein [10] can be written as follows:

Mq f (x) =
⎛

⎝

∞
∑

j=1

(M f j (x))q

⎞

⎠

1/q

= |M f (x)|q ,

where f = { f j }∞j=1 is a vector–valued function.
Within the multilinear setting, the appropriate maximal function M for a m-vector

f of m functions f = ( f1, . . . , fm) is defined as

M(f )(x) = sup
Q�x

m
∏

i=1

1

|Q|
∫

Q

| fi (yi )| dyi . (16)

Note that this operator is pointwise smaller than the m-fold product of M . This max-
imal operator was introduced in [28] where it is shown that is the “correct” maximal
operator controlling the multilinear C–Z operators.

3.2 Calderón–Zygmund operators

We will use standard well known definitions, see for instance [12,20]. Let K (x, y) be
a locally integrable function defined of the diagonal x = y in R

n ×R
n , which satisfies

the size estimate
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1224 C. Ortiz-Caraballo et al.

|K (x, y)| ≤ c

|x − y|n , (17)

and for some ε > 0, the regularity condition

|K (x, y) − K (z, y)| + |K (y, x) − K (y, z)| ≤ c
|x − z|ε

|x − y|n+ε
, (18)

whenever 2|x − z| < |x − y|.
A linear operator T : C∞

c (Rn) −→ L1
loc(R

n) is a Calderón–Zygmund operator if
it extends to a bounded operator on L2(Rn), and there is a kernel K satisfying (17)
and (18) such that

T f (x) =
∫

Rn

K (x, y) f (y) dy, (19)

for any f ∈ C∞
c (Rn) and x /∈ supp( f ).

Given a C–Z operator T we define as usual the vector–valued extension T q as

T q f (x) =
⎛

⎝

∞
∑

j=1

|T f j (x)|q
⎞

⎠

1/q

= |T f (x)|q ,

where f = { f j }∞j=1 is a vector–valued function.
We will also study the problem in the multilinear setting, considering multilinear

C–Z operators acting on product Lebesgue spaces. Let T be an operator initially
defined on th m-fold product of Schwartz spaces and taking values into the space of
tempered distributions,

T : S(Rn) × · · · × S(Rn) → S ′(Rn).

We say that T is an m-linear C–Z operator if, for some 1 ≤ q j < ∞, it extends to a
bounded multilinear operator from Lq1 × · · · × Lqm to Lq , where 1

q = 1
q1

+ · · · + 1
qm

and if there exists a function K defined off the diagonal x = y1 = · · · = ym in
(Rn)m+1, satisfying

T ( f1, . . . , fm)(x) =
∫

(Rn)m

K (x, y1, . . . , ym) f1(y1) . . . fm(ym) dy1 . . . dym

for all x /∈ ⋂m
j=1 supp f j . We refer to [14] and [28] for a detailed treatment of these

operators.

3.3 Commutators

Let T be any operator and let b be any locally integrable function. The commutator
operator [b, T ] is defined by

[b, T ] f = b T ( f ) − T (b f ).
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Exponential decay for singular operators 1225

If b ∈ B M O and T is a C–Z operators these operators were considered by Coifman,
Rochberg and Weiss. These operators are more singular than a C–Z operator, a fact
that can be seen from the following version of the classical result of Coifman and
Fefferman (1) for commutators proved by the second author in [32]. One of the main
points of this paper is that there is an intimate connection between these commutators
and iterations of the Hardy-Littlewood maximal operator.

An important point is that these operators are not of weak type (1, 1), but we do
have the following substitute inequality.

Theorem 9 [31] Let b be a B M O function and let T be a C–Z operator. Defined
the function φ(t) as follows φ(t) = t (1 + log+ t), there exists a positive constant
c = c‖b‖B M O such that for all compactly supported function f and for all λ > 0,

∣
∣{x ∈ R

n : |[b, T ] f (x)| > λ}∣∣ ≤ c
∫

Rn

φ

( | f (x)|
λ

)

dx .

A natural generalization of the commutator [b, T ] is given by T k
b := [b, T k−1

b ],
k ∈ N and more explicitly by,

T k
b f (x) =

∫

Rn

(b(x) − b(y))k K (x, y) f (y) dy.

We call them higher order commutators and the case k = 0 recaptures the Calderón–
Zygmund singular integral operator, and for k = 1 we get the commutator operator
defined before. It is shown in [32] that for any 0 < p < ∞ and any w ∈ A∞ there is a
constant C such that. Again, this inequality is sharp since, Mk+1 can not be replaced
by the smaller operator Mk .

3.4 Littlewood-Paley square functions

Let D denote the collection of dyadic cubes in R
n . Given Q ∈ D, let Q̂ be its dyadic

parent, i.e., the unique dyadic cube containing Q such that |Q̂| = 2n|Q|. The dyadic
square function is the operator

Sd f (x) =
⎛

⎝
∑

Q∈D
( fQ − f Q̂)2χQ(x)

⎞

⎠

1/2

,

where as usual fQ denotes the average of f over Q. For the properties of the dyadic
square function we refer the reader to Wilson [37].
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1226 C. Ortiz-Caraballo et al.

We will also use the following continuous and more classical version of the square
function:

g∗
λ( f )(x) =

⎛

⎝

∞∫

0

∫

Rn

|φt ∗ f (y)|2
(

t

t + |x − y|
)nλ dy dt

tn+1

⎞

⎠

1/2

, (20)

where φ ∈ S,
∫

φ dx = 0, φt (x) = 1
tn φ( x

t ), and λ > 2 (see [35]).

3.5 Lerner’s formula

In this subsection, we will state a result from [24] which will be fundamental in our
proofs. This result is known as “Lerner’s formula”, and allows to obtain a decompo-
sition of a function f that can be seen as a sophisticated Calderón–Zygmund decom-
position of that function at all scales.

In order to state Lerner’s result, we need to introduce the main objects involved.
For a given a cube Q, the median value m f (Q) of f over Q is a, possibly non-unique,
number such that

|{x ∈ Q : f (x) > m f (Q)}| ≤ |Q|/2

and

|{x ∈ Q : f (x) < m f (Q)}| ≤ |Q|/2.

The mean local oscillation of a measurable function f on a cube Q is defined by the
following expression

ωλ( f ; Q) = inf
c∈R

(( f − c)χQ)∗(λ|Q|),

for all 0 < λ < 1, and the local sharp maximal function on a fixed cube Q0 is defined
as

M#
λ;Q0

f (x) = sup
x∈Q⊂Q0

ωλ( f ; Q),

where the supremum is taken over all cubes Q contained in Q0 and such that x ∈ Q.
Here f ∗ stands for the usual non-increasing rearrangement of f . We will use several
times that for any δ > 0, and 0 < λ ≤ 1,

( f χQ)∗(λ|Q|) ≤
⎛

⎜
⎝

1

λ|Q|
∫

Q

| f |δ dx

⎞

⎟
⎠

1/δ

, (21)
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Exponential decay for singular operators 1227

and, as a consequence, that

|m f (Q)| ≤
⎛

⎜
⎝

2

|Q|
∫

Q

| f (x)|δ dx

⎞

⎟
⎠

1/δ

, (22)

for any δ > 0.
Recall that, for a fixed cube Q0, D(Q0) denotes all the dyadic subcubes with respect

to the cube Q0. As before, if Q ∈ D(Q0) and Q �= Q0, Q̂ will be the ancestor dyadic
cube of Q, i.e., the only cube in D(Q0) that contains Q and such that |Q̂| = 2n|Q|.
We state now Lerner’s formula.

Theorem 10 [24] Let f be a measurable function on R
n and let Q0 be a cube. Then

there exists a (possibly empty) collection of cubes {Qk
j } j,k ∈ D(Q0) such that:

(i) For a.e. x ∈ Q0,

| f (x) − m f (Q0)| ≤ 4 M#
1/4;Q0

f (x) + 4
∞
∑

k=1

∑

j

ω1/2n+2( f ; Q̂k
j )χQk

j
(x); (23)

(ii) For each fixed k the cubes Qk
j are pairwise disjoint;

(iii) If �k =⋃ j Qk
j , then �k+1 ⊂ �k;

(iv) |�k+1 ∩ Qk
j | ≤ 1

2 |Qk
j |.

Let us remark that in any decomposition as in the previous theorem, if we define
Ek

j := Qk
j\�k+1, then we have that {Ek

j } is a pairwise disjoint subsets family. More-
over,

|Qk
j | ≤ 2|Ek

j |. (24)

3.6 Pointwise inequalities

In this section we will summarize some important pointwise inequalities involving
sharp maximal functions. We start with the following, which is an immediate con-
sequence of the definitions. Given a cube Q, δ > 0 and 0 < λ ≤ 1, there exists a
constant c = cλ such that

M#
λ;Q( f χQ)(x) ≤ c M#

δ ( f χQ)(x), (25)

for all x ∈ Q. We will also use the following result from [30]. If 0 < δ < ε < 1, there
is a constant c = cε,δ such that

M#,d
δ (Md

ε ( f ))(x) ≤ c M#,d
ε f (x). (26)

The idea behind the following list of inequalities is that a sharp maximal type
operator acting on several singular operators can be controlled by suitable maximal
operators.
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1228 C. Ortiz-Caraballo et al.

Calderón–Zygmund operators and vector valued extensions: Let T be a Calderón–
Zygmund operator with maximal singular operator T ∗, and 0 < ε < 1. Then there
exists a constant c = cε such that

M#
ε (T ∗ f )(x) ≤ c M f (x). (27)

This follows essentially from [1] where T is used instead of T ∗. Moreover, we know
from [33] that if 1 < q < ∞ and 0 < ε < 1, then there exists a constant c = cε > 0
such that

M#
ε (T q f )(x) ≤ c M

(| f |q
)

(x) x ∈ R
n (28)

for any smooth vector function f = { f j }∞j=1.
Multilinear C–Z operators: [28] Let T be a Calderón–Zygmund m-linear operator

and let 0 < ε < 1/m. Then there exists a constant c = cε > 0 such that

M#
ε (T (f ))(x) ≤ c M(f )(x) x ∈ R

n (29)

for any smooth vector function f .
Commutators: [31] Let b ∈ B M O and let 0 < δ < ε. Then there exists a positive

constant c = cδ,ε such that,

M#,d
δ (T k

b f )(x) ≤ c ‖b‖B M O

k−1
∑

j=0

Md
ε (T j

b f )(x) + ‖b‖k
B M O Mk+1 f (x), (30)

for any k ∈ N and for all smooth functions f .
Dyadic and continuous square functions: [9,23] Let Sd be the dyadic square function

operator and let 0 < λ < 1. Then for any function f , every dyadic cube Q, and every
x ∈ Q,

ωλ((Sd f )2, Q) ≤ cn

λ2

⎛

⎜
⎝

1

|Q|
∫

Q

| f (x)| dx

⎞

⎟
⎠

2

, (31)

and hence
M#,d

λ (Sd( f )2)(x) ≤ cλ M f (x)2. (32)

For the continuous square function g∗
μ we use the following from [23]. For μ > 3 and

0 < λ < 1, we have that

M#
λ(g∗

μ( f )2)(x) ≤ cλ M f (x)2. (33)

The analogue for the vector-valued extension of the maximal function, from [9] is
the following. Fix λ, 0 < λ < 1 and 1 < q < ∞. Then for any function f = { f j }∞j=1,
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every dyadic cube Q, and every x ∈ Q,

ωλ

((

M
d
q f
)q

, Q
)

≤ cn,q

λq

⎛

⎜
⎝

1

|Q|
∫

Q

‖ f (x)‖lq dx

⎞

⎟
⎠

q

(34)

Finally, we include here the well known Kolmogorov’s inequality in the following
form. Let 0 < q < p < ∞. Then there is a constant c = cp,q such that for any
nonnegative measurable function f ,

⎛

⎜
⎝

1

|Q|
∫

Q

f (x)q dx

⎞

⎟
⎠

1
q

≤ c‖ f ‖L p,∞(Q, dx
|Q| )

. (35)

(See for instance [13, p. 91, ex. 2.1.5]).

4 First approach, proof of linear and superlinear estimates

We prove in this section Theorem 2 and the consequences. The proof is based on
Lerner’s formula (23) combined with a new way of handling the sparse cubes {Qk

j }
by means of an exponential vector valued endpoint estimate due to Fefferman–Stein.

4.1 Proof of the key estimate

As already mentioned the proof is based on Lerner’s formula from Theorem 10. The
drawback of the method is that it is not clear if this approach allows us to derive
such sharp exponential decays for the case of commutators. We remark that a slightly
weaker result, involving M#

δ instead of the local sharp maximal function was proved
by the second author in [6, Chapter 3].

Proof of Theorem 2 We consider the distribution set

EQ := {x ∈ Q : | f (x) − m f (Q)| > t M#
2−n−2;Q( f )(x)}.

Then, by (23) and for appropriate c we have that

∣
∣EQ
∣
∣ ≤ |{x ∈ Q :

∑

k, j

χQk
j
(x) inf

Qk
j

M#
2−n−2;Q f > ct M#

2−n−2;Q f (x)}|

≤ |{x ∈ Q :
∑

k, j

χQk
j
(x) > ct}|.
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Let {Ek
j } be the family of sets from the remark after Lerner’s formula satisfying (24).

We have then

∑

j,k

χQk
j
(x) =

∑

j,k

(

1

|Qk
j |

|Qk
j |
)q

χQk
j
(x)

≤ cq
n

∑

j,k

(

1

|Qk
j |

|Ek
j |
)q

χQk
j
(x)

≤ cq
n

∑

j,k

⎛

⎜
⎜
⎝

1

|Qk
j |
∫

Qk
j

χEk
j
(x) dx

⎞

⎟
⎟
⎠

q

χQk
j
(x)

≤ cq
n

(

Mq

({

χEk
j

}

j,k

)

(x)

)q

≤ cq
n
(

Mq g(x)
)q

,

where g = {χEk
j

}

j,k . Now, since {Ek
j } is a pairwise disjoint family of subsets, we have

that

‖g(x)‖�q =
⎛

⎝
∑

j,k

(

χEk
j
(x)
)q

⎞

⎠

1/q

≤ 1, (36)

We finish our proof recalling that if |g|�q ∈ L∞, then
(

Mq g(x)
)q ∈ ExpL (see [10]).

Therefore, we obtain the desired inequality (7):

|{x ∈ Q : | f (x) − m f (Q)| > t M#
2−n−2;Q( f )(x)}| ≤ ce−αt |Q|, t > 0.

��

4.2 Proofs for Calderón–Zygmund operators, vector valued extensions
and multilinear C–Z operators: first approach

We will combine Theorem 2, replacing f by the operator, with an appropriate pointwise
inequality. We start by proving Theorem 3.

Proof of Theorem 3 We first note the following estimate for the median value of T ∗ f
over a cube Q. We have that

123



Exponential decay for singular operators 1231

mT ∗ f (Q) ≤
⎛

⎜
⎝

2

|Q|
∫

Q

(T ∗ f )δ

⎞

⎟
⎠

1/δ

≤ cδ‖T ∗ f ‖L1,∞(Q, dx
|Q| )

≤ c

|Q|
∫

Q

| f (x)| dx

by Kolmogorov’s inequality (35). It follows that

mT ∗ f (Q) ≤ cM f (x), x ∈ Q. (37)

This, together with inequality (25) and (27), yields

∣
∣
∣
∣

{

x ∈ Q : |T ∗ f (x)|
M f (x)

> t

}∣
∣
∣
∣
≤ |{x ∈ Q : |T ∗ f (x)| > ct M#

λn ,Q(T ∗( f ))(x)}|

for λn = 2−n−2 for some constant c > 0. We can apply now our general result from
Theorem 2 to conclude the proof. ��

For the proof of Theorem 4 and Theorem 5, we have all the ingredients: we use
(respectively) inequalities (29) and (28) instead of (27) and we control the median
value by using Kolmogorov’s inequality and the weak type of both vector-valued
extensions and multilinear C–Z operators.

4.3 Proof for the square functions and for the vector-valued maximal function: first
approach

For the proof of Theorem 7 we start with:

|{x ∈ Q : S f (x) > t M f (x)}| = |{x ∈ Q : (S f (x))2 > t2(M f (x))2}|.

and we use this time estimates (32) and (33) for the pointwise control. The median
value of the square function is also bounded by M as in the previous cases using, again,
Kolmogorov’s inequality and the weak (1, 1) type of the operator. From Theorem 2
we will obtain, in this case, a Gaussian decay rate for the level set.

Finally, for the vector-valued extension of the Maximal function, we proceed as in
the case of the square function but replacing the “2” by “q”. The key estimate for the
oscillation is in inequality (34).

5 Second approach: weighted estimates and the proof for commutators

As already mentioned the approach considered in the previous section cannot be used
in the case of commutators. We introduce here a new approach, combining Lerner’s
formula with a variant of Rubio de Francia’s algorithm. In this case, Lerner’s formula is
used to derive a certain sharp local weighted estimate (see Theorem 11). This is the first

123



1232 C. Ortiz-Caraballo et al.

key ingredient. The second key ingredient is to apply Rubio de Francia’s algorithm with
a factorization argument for Aq weights and the use of Coifman–Rochberg theorem
(see Lemma 1).

This approach will allow us to derive all the results of this paper, including those
proved in the previous section, and also the results for commutators. We will present
the general scheme in terms of a pair of generic operators T1 and T2 and then emphasize
the different kind of hypothesis needed and the estimates obtained on each case.

We start with some preliminaries about weights. We include some classical well
known results and some new ones.

5.1 Some extra preliminary on weights

We recall that a weight w (any non negative measurable function) satisfies the Ap

condition for 1 < p < ∞ if

[w]Ap =
⎛

⎜
⎝

1

|Q|
∫

Q

w

⎞

⎟
⎠

⎛

⎜
⎝

1

|Q|
∫

Q

w1−p′

⎞

⎟
⎠

p−1

< ∞.

Also we recall that w is an A1 weight if there is a finite constant c such that
Mw ≤ c w a.e., and where [w]A1 denotes the smallest of these c. Also, we recall that
the A∞ class of weights is defined by A∞ =⋃p≥1 Ap.

We will use that if w1 and w2 are A1 weights then w = w1w
1−p
2 ∈ Ap and

[w]Ap ≤ [w1]A1[w2]p−1
A1

. (38)

Another key feature of the A1 weights that we will use repeatedly is that (Mμ)δ

is an A1 weight whenever 0 < δ < 1 and μ is positive Borel measure (this is due to
Coifmann and Rochberg, [11, Theorem 3.4]). Furthermore we have

[(M f )δ]A1 ≤ c

1 − δ
,

where c = cn . We will need the following extension of this result for the multilinear
maximal operator M defined in (16) which may have its own interest.

Lemma 1 Let µ be a vector of m positive Borel measures on R
n such that Mµ(x) <

∞ for a.e. x ∈ R
n. Then

(M(µ))δ ∈ A1 for any 0 < δ <
1

m
(39)

Moreover,
[

(M(µ))δ
]

A1
≤ c

1 − mδ
, (40)

where c = cn is some dimensional constant.
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Proof The idea is the same as in the classical Coifman–Rochberg theorem, but using
this time the appropriate the weak type boundedness of M:

M : L1(Rn) × · · · × L1(Rn) → L
1
m ,∞(Rn).

If w = (M(µ))δ , the aim is to prove that, for a given cube Q,

1

|Q|
∫

Q

w(x) dx ≤ c

1 − mδ
w(y) for all y ∈ Q.

Consider Q̃ := 3Q, the dilation of Q and split the vector µ = µ0 + µ∞ as usual
with µ0 = (μ0

1, . . . , μ
0
m) and where μ0

j := μ jχQ̃ for all 1 ≤ j ≤ m. We can handle
M(µ∞) as in the m = 1 case, since in this case the maximal function is essentially
constant. For the other part, we have that

1

|Q|
∫

Q

(

M(µ0)(x)
)δ

dx = δ

|Q|
∞∫

0

tδ
∣
∣
∣

{

x ∈ Q : M(µ0)(x)δ > t
}∣
∣
∣

dt

t

≤ Rδ + δ

|Q|
∞∫

R

tδ
∣
∣
∣

{

M(µ0)(x)δ > t
}∣
∣
∣

dt

t

for any R > 0 since we trivially have that
∣
∣
{

x ∈ Q : M(µ0)(x)δ > t
}∣
∣ ≤ |Q|. Now,

we recall that M is a bounded operator from L1 × · · · × L1 → L1/m,∞. Therefore
we can estimate the last integral as

δ

|Q|
∞∫

R

tδ
∣
∣
∣

{

M(µ0)(x)δ > t
}∣
∣
∣

dt

t
≤ c

δ

|Q|
∞∫

R

tδ−1− 1
m dt

m
∏

j=1

‖μ0
j‖1/m

L1

≤ c

1 − mδ

Rδ− 1
m

|Q|
m
∏

j=1

‖μ0
j‖1/m

L1

for any δ < 1
m . We obtain that

1

|Q|
∫

Q

(

M(µ0)(x)
)δ

dx ≤ Rδ

(

1 + c

1 − mδ

∏m
j=1 ‖μ0

j‖1/m
L1

R
1
m |Q|

)

123



1234 C. Ortiz-Caraballo et al.

Now we choose R =
∏m

j=1 ‖μ0
j‖L1

|Q|m and we get

1

|Q|
∫

Q

(M(µ)(x))δ dx ≤
(

c

1 − mδ

∏m
j=1 ‖μ0

j‖L1

|Q|m
)δ

≤ c3n

1 − mδ

(∏m
j=1 μ j (Q̃) j

|Q̃|m
)δ

≤ cn

1 − mδ
(M(µ)(x))δ ��

The following Proposition can be viewed as an integral version of the main result
of the previous section, namely Theorem 2. It follows from Lerner’s formula as well,
but this integral version is the key to obtain the result for commutators, which cannot
be obtained by means of the first approach.

Proposition 1 Let f be a measure function such that supp f ⊂ Q, being Q a fixed
cube. Let 0 < δ < 1 and let w ∈ Aq. Then we have that

‖ f − m f (Q)‖L1(w,Q) ≤ c 2q [w]Aq ‖M#,d
δ ( f )‖L1(w,Q) (41)

Proof We start with a pointwise estimate, which follows from Lerner’s formula, taking
into account the definition of the oscillation and (21).

| f (x) − m f (Q)| ≤ c M#
δ f (x) + c

∑

k, j

inf
Qk

j

M#
δ ( f ) χQk

j
(x).

Then, taking norms,

∥
∥ f − m f (Q)

∥
∥

L1(w,Q)
≤ c‖M#,d

δ ( f )‖L1(w,Q) + c
∑

k, j

∫

Qk
j

inf
Qk

j

M#
δ ( f )w(x)dx .

Now we recall that the family {Ek
j } satisfies (24) and use the following property of

the Aq class of weights: let w ∈ Aq and let Q be a cube, then for each measurable
sets such that E ⊂ Q,

w(Q) ≤
( |Q|

|E |
)q

[w]Aq w(E).

Since for any index ( j, k) we have the property |Qk
j | ≤ 2|Ek

j |, it follows that

w(Qk
j ) ≤ 2q [w]Aq w(Ek

j ).
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If we apply this on each term of the sum, we obtain

∫

Qk
j

inf
Qk

j

M#
δ ( f )w(x)dx ≤ c2q [w]Aq inf

Qk
j

M#
δ ( f ) w(Ek

j )

Finally, we obtain that

∥
∥ f − m f (Q)

∥
∥

L1(w,Q)
≤ c 2q [w]Aq

∥
∥M#

δ ( f )
∥
∥

L1(w,Q)
,

since {Ek
j } is a pairwise disjoint subsets family. ��

The following lemma gives a way to produce A1 weights with special control on the
constant. It is based on the so called Rubio de Francia iteration scheme or algorithm.

Lemma 2 [26] Let M be the usual Hardy–Littlewood maximal operator and let 0 <

r < ∞. Define the operator R : Lr (Rn) → Lr (Rn) as follows. For a given h ∈
Lr (Rn), consider the sum:

R(h) =
∞
∑

k=0

1

2k

Mkh

‖M‖k
Lr (Rn)

,

Then R satisfies the following properties:

(i) h ≤ R(h);
(ii) ‖Rh‖Lr (Rn) ≤ 2‖h‖Lr (Rn);

(iii) For any nonnegative h ∈ Lr (Rn), we have that Rh ∈ A1with

[Rh]A1 ≤ 2‖M‖Lr (Rn) ≤ cn r ′.

5.2 The model case

Consider two nonnegative operators T1 and T2, where typically T1 is the absolute
value of a singular operator and T2 is an appropriate maximal operator that will act as
a control operator. As in the introduction we will be slightly vague on the use of the
notation, since here f will stand for a single function, a vector or an infinite sequence
of functions, depending on the operators. Assume that, for any cube Q, we have a
weighted L1 local Coifman–Fefferman type inequality. To be more precise we will
assume the following:

1. There is an special positive parameter β and an index 1 ≤ q ≤ ∞ for which we
can find a constant c such that for any w ∈ Aq and any cube Q,

‖T1 f ‖L1(w,Q) ≤ c[w]βAq
‖T2 f ‖L1(w,Q), (42)

for appropriate functions f . The parameter β is key in the sequel.
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2. Suppose that the (maximal type) operator T2 is so that (T2 f )
1

q−1 ∈ A1 with

[(T2 f )
1

q−1 ]q−1
A1

≤ a (43)

where a is a constant independent of f .

The general purpose is to estimate the level set function ϕ as in (6)

ϕ(t) := 1

|Q| |{x ∈ Q : |T1 f (x)| > t |T2 f (x)|}|.

We start by applying Chebychev’s inequlity for some p > 1 that will be chosen
later:

|{x ∈ Q : |T1( f )(x)| > t |T2( f )(x)|}| ≤ 1

t p

∫

Q

∣
∣
∣
∣

T1 f (x)

T2 f (x)

∣
∣
∣
∣

p

dx

= 1

t p

∥
∥
∥
∥

T1 f (x)

T2 f (x)

∥
∥
∥
∥

p

L p(Q)

≤ 1

t p

⎛

⎜
⎝

∫

Q

T1 f (x)

T2 f (x)
h(x) dx

⎞

⎟
⎠

p

for some nonnegative h such that ‖h‖L p′
(Q)

= 1. Now we apply Rubio de Francia’s
algorithm (Lemma 2) and the key hypothesis (42) to obtain that

∫

Q

T1( f )(x)

T2( f )(x)
h(x) dx ≤

∫

Q

T1( f )(x) T2( f )(x)−1 R(h)(x)dx

≤ c [R(h)(T2 f )−1]βAq

∫

Q

T2( f )(x)
R(h)(x)

T2( f )(x)
dx

= c [R(h)(T2 f )−1]βAq

∫

Q

R(h)(x) dx

≤ c [R(h)(T2 f )−1]βAq
2 ‖h‖L p′

(Q)
|Q|1/p

= 2c [R(h)(T2 f )−1]βAq
|Q|1/p.

Since R(h) ∈ A1 we can use formula (38)

[R(h)(T2 f )−1]Aq ≤ [R(h)]A1[(T2 f )
1

q−1 ]q−1
A1

≤ p a.

since by Lemma 2, (iii) [R(h)]A1 ≤ p and the constant in (43) is uniform on f .
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Then, if we choose p such that e−1 = (ap)β

t
, we get

|{x ∈ Q : T1 f (x) > t T2 f (x)}| ≤ 2 c

(
(a p)β

t

)p

|Q|

≤ 2c e−αt
1
β |Q|

where α depends on β and q and hence ϕ(t) ≤ 2e−αt
1
β

.
Note that this model example reveals that the two hypothesis that we need to fulfill:

(H1) A local Coifman–Fefferman inequality like (42) with the sharpest exponent β

on the constant of the weight which controls the decay rate of the level set
function ϕ(t).

(H2) An appropriate power of the maximal operator T2 should be a A1 weight. This
is the case in all the operators we consider in this paper and follows essentially
from a suitable variations of Coifman–Rochberg’s theorem (Lemma 1).

This scheme will be followed in the proof of the main results. In each case, we
will show how to derive the appropriate local Coifman–Fefferman inequality with
the correct exponent and will check that the A1 constant of the control operator is
uniformly bounded.

5.3 Proofs for C–Z operators, vector valued extensions and multilinear C–Z
operators: second approach

We start by proving local C–F inequalities. The central tool is Proposition 1.

Theorem 11 Let w ∈ Aq, with 1 ≤ q < ∞.

1. Let T be a Calderón–Zygmund integral operator. Let f be a function such that
supp f ⊆ Q. Then, there exists a constant c = cn such that

‖T ∗ f ‖L1(w,Q) ≤ c 2q [w]Aq ‖M f ‖L1(w,Q).

2. Let T q the vector–valued extension of Calderón–Zygmund integral operators. Let
f = { f j }∞j=1 be a vector-valued function such that supp f ⊆ Q. Then, there exists
a constant c = cn such that

∥
∥T q f

∥
∥

L1(w,Q)
≤ c 2q [w]Aq

∥
∥M(| f |q)

∥
∥

L1(w,Q)
.

3. Let T be a m-linear C–Z operator. Let f is a vector of m functions such that
supp f j ⊆ Q. Then, there exists a constant c = cn such that

‖T (f )‖L1(w,Q) ≤ c 2q [w]Aq ‖M(f )‖L1(w,Q).
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Proof In all three cases we start with Proposition 1 and use (27), (28) and (29) to control
the sharp maximal function. It remains to prove that we can control the median value
in each case. For T ∗, we already have done it in (37). There we proved that

mT ∗ f (Q) ≤ c

|Q|
∫

Q

| f (x)| dx ≤ cM f (y), for all y ∈ Q,

and hence

w(Q) mT ∗ f (Q) ≤ c ‖M f ‖L1(w,Q).

The case of the vector-valued operators follows the same steps. The multilinear case
also follows from Kolmogorov’s inequality and the weak type boundedness of multi-
linear C–Z operators. ��

At this point, we have proved Coifman–Fefferman inequalities like (42) with β = 1
in all the cases. It remains to check that the factorizazion argument can be performed.
For C–Z operators and its vector-valued extension, we can use (42) with q = 3 (or
any larger q). Therefore, (43) holds in both cases by Lemma 1 for m = 1. Note that

what we have to control in both cases is [M(μ)
1
2 ]2

A1
. For the multilinear case, we have

that, for q = m + 2,

[M(f )
1

q−1 ]q−1
A1

≤
(

Cn

1 − m
m+1

)m+1

.

So we finish the proof of Theorem 3 and Theorem 4.

5.4 Results for commutators

As before, we need to prove an appropriate Coifman–Fefferman inequality.

Theorem 12 Let w ∈ Aq be, with 1 ≤ q < ∞. Let T be a C–Z operator and
b ∈ B M O. Let f be a function such that supp f ⊆ Q. Then, there exists a dimensional
constant c = cn such that

‖[b, T ] f ‖L1(w,Q) ≤ c ‖b‖B M O 22q [w]2
Aq

∥
∥M2 f

∥
∥

L1(w,Q)
. (44)

In the higher order commutator case we get that

∥
∥T k

b f
∥
∥

L1(w,Q)
≤ c ‖b‖k

B M O2(k+1)q [w]k+1
Aq

∥
∥Mk+1 f

∥
∥

L1(w,Q)
. (45)

Proof Using Proposition 1 we get that

‖Tb f ‖L1(w,Q) ≤ c2q [w]Aq

∫

Q

M#,Q
δ (Tb f ) w(x)dx + w(Q)m[b,T ] f (Q)

= I + I I
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For the first term, by (30) we have that

I ≤ c2q [w]Aq ‖b‖B M O

(∥
∥
∥M Q

ε (T f )

∥
∥
∥

L1(w,Q)
+ ∥∥M2 f

∥
∥

L1(w,Q)

)

Now we write L(Q) := w(Q)m
M Q

ε (T f )
(Q) and we apply Proposition 1 with some

0 < δ < ε to the first norm to obtain that

∥
∥
∥M Q

ε (T f )

∥
∥
∥

L1(w,Q)
≤ c2q [w]Aq

∥
∥
∥M#,Q

δ

(

M Q
ε (T f )

)∥
∥
∥

L1(w,Q)
+ L(Q)

≤ c2q [w]Aq

∥
∥
∥M#,Q

ε (T f )

∥
∥
∥

L1(w,Q)
+ L(Q)

≤ c2q [w]Aq ‖M f ‖L1(w,Q) + L(Q)

by (26) and (27). Now we have to bound L(Q). We apply property (22) for the median
value with some 0 < δ < ε, Kolmogorov’s inequality twice and the weak type of both
M and T :

m Mε(χQ T f )(Q) ≤ c

⎛

⎜
⎝

1

|Q|
∫

Q

M Q
ε (T f )δ dx

⎞

⎟
⎠

1
δ

≤
⎛

⎜
⎝

1

|Q|
∫

Q

M Q(|T f |ε) δ
ε dx

⎞

⎟
⎠

ε
δ

1
ε

≤ ∥∥M Q(|T f |ε)∥∥
1
ε

L1,∞( dx
|Q| ,Q)

≤
⎛

⎜
⎝

1

|Q|
∫

Q

|T f |ε dx

⎞

⎟
⎠

1
ε

≤ M f (x) for all x ∈ Q.

Therefore, we have that w(Q)mMε(T f )(Q) ≤ ‖M f ‖L1(w,Q). Combining all previous
estimates, we get

I ≤ c22q [w]2
Aq

‖b‖B M O‖M f ‖L1(w,Q) + c[w]Aq ‖b‖B M O
∥
∥M2 f

∥
∥

L1(w,Q)

From this estimate, using that [w]Aq ≥ 1 and by dominating M by M2, we obtain the
desired result if we can control I I , involving the median value of the commutator. To
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that end, we will use the weak estimate from Theorem 9. For φ(t) = t (1 + log+(t)),

m[b,T ] f (Q) ≤
⎛

⎜
⎝

1

|Q|
∫

Q

|Tb f |δ dx

⎞

⎟
⎠

1
δ

≤
⎛

⎝
1

|Q|
∞∫

0

δtδ−1|{x ∈ Q : |Tb f | > t}| dt

⎞

⎠

1
δ

≤
⎛

⎜
⎝Rδ + 1

|Q|
∞∫

R

δtδ−1
∫

Q

φ

( | f (x)|
t

)

dxdt

⎞

⎟
⎠

1
δ

for any R > 0 (to be chosen). By the submultiplicativity of φ, we have that

m[b,T ] f (Q) ≤
⎛

⎜
⎝Rδ + 1

|Q|
∫

Q

φ (| f (x)|) dx

∞∫

R

δtδ−1φ(1/t) dt

⎞

⎟
⎠

1
δ

≤
⎛

⎜
⎝Rδ + Rδ−1

|Q|
∫

Q

| f (x)|(1 + log+ | f (x)|
| f |Q

) dx

⎞

⎟
⎠

1
δ

≤ R

⎛

⎜
⎝1 + 1

R|Q|
∫

Q

M f (x) dx

⎞

⎟
⎠

1
δ

.

where we have used the following well known estimate essentially due to Stein [34],

∫

Q

w log

(

e + w

wQ

)

dx ≤ cn

∫

Q

M(wχQ) dx w ≥ 0.

If we now choose R = 1
|Q|
∫

Q M f (x) dx , then we obtain that

m[b,T ] f (Q) ≤ M2 f (x) for all x ∈ Q.

This clearly implies that w(Q)m[b,T ] f (Q) ≤ ∥∥M2 f
∥
∥

L1(w,Q)
and the proof of inequal-

ity (44) is complete. The higher order commutator bound (45) is technically more
complicated, but it follows from the same ideas by using an induction argument. The
details can be found in [29]. ��
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Hence, we have the hypothesis (H1) of our model. We finish the proof of Theorem 8
by proving that we have also the second hypothesis (H2). Namely, we have M2 acting
as a control operator, so we have to prove that, for some q > 1,

[(M2 f )
1

q−1 ]2(q−1)
A1

≤ C.

But since M2( f ) = M(M( f )), this is, once again, Coifman–Rochberg theorem. We
only have to pick, for instance, q = 3.

5.5 Proof for the square functions and for the vector-valued maximal function:
second approach

For the dyadic square function S, the statement of Theorem 7 and the discussion about
the “model” of proof suggest that we need a C-F inequality with β = 1

2 as exponent on
the weight. This is essentially what we borrow from [9] in (31) for the dyadic case and
from (33) for the continuous case. From those estimates for the oscillation and using
Lerner’s formula, we can derive the following Coifman–Fefferman type inequality.

Lemma 3 Let S be the dyadic square function operator Sd or the continuous square
function g∗

μ and let w ∈ Aq. Then for any function f and every cube Q

∫

Q

(S f (x))2w(x) dx ≤ c 2q [w]Aq

∫

Q

(M f (x))2w(x) dx (46)

Proof It follows directly from Lerner’s formula in both cases. For the median value,
we can use Kolmogorov and the weak (1, 1) type of the operator as in the previous
cases. ��

Now we prove Theorem 7 by using our model, but with a twist.

Proof of Theorem 7 Motivated by Lemma 3, we write the level set function ϕ(t) as
follows.

∣
∣
∣
∣

{

x ∈ Q : S f (x)2

M f (x)2 > t2
}∣
∣
∣
∣
≤ 1

t2p

∫

Q

S f (x)2p

M f (x)|2p
dx

= 1

t2p

∥
∥
∥
∥
∥

(
S f

M f

)2
∥
∥
∥
∥
∥

p

L p(Q)

≤ 1

t2p

⎛

⎜
⎝

∫

Q

S f (x)2

M f (x)2 h(x) dx

⎞

⎟
⎠

p
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1242 C. Ortiz-Caraballo et al.

for some h such that ‖h‖L p′
(Q)

= 1. Now we apply Rubio de Francia’s algorithm and
(46) to obtain that

∫

Q

S f (x)2

M f (x)2 h(x) dx ≤
∫

Q

S f (x)2 M f (x)−2 R(h)(x) dx

≤ [R(h) (M f )−2]Aq

∫

Q

R(h)(x) dx

≤ [R(h) (M f )−2]Aq 2 ‖h‖L p′
(Q)

|Q|1/p.

The same factorization argument yields

[Rh(M f )−2]Aq ≤ [(M f )
2

q−1 ](q−1)
A1

p ≤ c p

for q = 5 by Lemma 1.

We now choose e−1 = cn p

t2 to finally obtain that

|{x ∈ Q : S f (x) > t M f (x)}| ≤
(cn p

t2

)p |Q| ≤ e−αt2 |Q|

��
Finally, the proof for the vector valued extension of the maximal function follows

the same steps.

Proof of Theorem 6 The proof can be carried by replacing the “2” by “q” in case of
the square function. The key estimate for the oscillation is inequality (34). ��
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