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Abstract The existence of global unique solutions to the Navier-Stokes equations
with the Coriolis force is established in the homogeneous Sobolev spaces Ḣ s(R3)3

for 1/2 < s < 3/4 if the speed of rotation is sufficiently large. This phenomenon is
so-called the global regularity. The relationship between the size of initial datum and
the speed of rotation is also derived. The proof is based on the space time estimates of
the Strichartz type for the semigroup associated with the linearized equations. In the

scaling critical space Ḣ
1
2 (R3)3, the global regularity is also shown.

1 Introduction

We consider the initial value problem for the Navier-Stokes equations with the Coriolis
force

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
− �u + �e3 × u + (u · ∇)u + ∇ p = 0 in R

3 × (0,∞),

div u = 0 in R
3 × (0,∞),

u(x, 0) = u0(x) in R
3,

(NSC)

where u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and p = p(x, t) denote the
unknown disturbance of velocity field and the unknown disturbance of pressure of
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728 T. Iwabuchi, R. Takada

the fluid at the point (x, t) ∈ R
3 × (0,∞), respectively, while u0 = u0(x) =

(u0,1(x), u0,2(x), u0,3(x)) denotes the given initial velocity field satisfying the com-
patibility condition div u0 = 0. Here, � ∈ R is the speed of rotation around the
vertical unit vector e3 = (0, 0, 1). Note that (NSC) also demonstrates a rigid-body
rotation in the geostatics.

The purpose of this paper is to show the existence and the uniqueness of the global
solutions to (NSC) in the homogeneous Sobolev spaces Ḣ s(R3)(s ≥ 1/2). In partic-
ular, we obtain global solutions for large initial velocity u0 if the speed of the rotation
is sufficiently fast. For the existence of global solutions to (NSC), Chemin et al. [6,7]

proved that for any initial data u0 ∈ L2(R2)2 + H
1
2 (R3)3, there exists a positive

parameter �0 such that for every � ∈ R with |�| ≥ �0 there exists a unique global
solution. Babin et al. [2–4] showed the existence of global solutions and the regularity
of the solutions to (NSC) for the periodic initial data with large |�|. On the other
hand, Giga et al. [12] showed the existence of global solutions for small initial data
u0 ∈ F M−1

0 (R3)3, where the condition of smallness is independent of the speed of
the rotation �, and F M−1

0 (R3) is scaling critical to (NSC) with � = 0. Indeed, for
the solution u to (NSC) with � = 0, let uλ(x, t) := λu(λx, λ2t) for λ > 0. Then, uλ

is also a solution to (NSC) with � = 0 and we have ‖uλ(·, 0)‖F M−1
0

= ‖u(·, 0)‖F M−1
0

for all λ > 0. On such other results of global solutions for small initial data, Hieber and

Shibata [13] studied in the Sobolev space H
1
2 (R3), Konieczny and Yoneda [19] stud-

ied in the Fourier-Besov space Ḟ B
2− 3

p
p,∞ (R3) with 1 < p ≤ ∞. On the well-posedness

for (NSC) with � = 0 in the scaling critical spaces, we refer to Fujita and Kato [8],
Kato [15], Kozono and Yamazaki [20], Koch and Tataru [18]. On the local existence of
solutions to (NSC), we refer to the results by Giga et al. [10,11] and Sawada [21]. In our
previous result [14], we see that the time-interval in which the local solution to integral
equation exists can be taken arbitrary long for initial datum u0 ∈ Ḣ s(R3)3 with 1/2 <

s < 5/4, if the speed of rotation � is sufficiently large compared with the size of u0.
In this paper, we establish the existence theorem on global solutions to (NSC) for

the initial velocity u0 in the homogeneous Sobolev spaces Ḣ s(R3) (1/2 ≤ s < 3/4).
In the case s > 1/2, the existence of global solutions is obtained if the speed of
rotation � is large compared with the norm of initial data ‖u0‖Ḣ s . On the other hand,
in the critical case s = 1/2, the speed |�| to obtain the existence of global solutions is

determined by each precompact set K ⊂ Ḣ
1
2 (R3)3, which the initial data belong to.

We consider the following integral equation:

u(t) = T�(t)u0 −
t∫

0

T�(t − τ)P∇ · (u ⊗ u)dτ, (IE)

where P = (δi j + Ri R j )1≤i, j≤3 denotes the Helmholtz projection onto the divergence-
free vector fields and T�(·) denotes the semigroup corresponding to the linear problem
of (NSC), which is given explicitly by

T�(t) f = F−1
[

cos
(
�

ξ3

|ξ | t
)

e−t |ξ |2 I f̂ (ξ) + sin
(
�

ξ3

|ξ | t
)

e−t |ξ |2 R(ξ) f̂ (ξ)
]
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Global solutions for the Navier-Stokes equations in the rotational framework 729

for t ≥ 0 and divergence-free vector fields f . Here, I is the identity matrix in
R

3, R j ( j = 1, 2, 3) is the Riesz transform and R(ξ) is the skew-symmetric matrix
symbol related to the Riesz transform, which is defined by

R(ξ):= 1

|ξ |

⎛

⎝
0 ξ3 −ξ2

−ξ3 0 ξ1
ξ2 −ξ1 0

⎞

⎠ for ξ ∈ R
3\ {0} .

We refer to Babin et al. [1–3], Giga et al. [11] and Hieber and Shibata [13] for the
derivation of the explicit form of T�(·).
Theorem 1.1 Let � ∈ R\ {0}, and let s, p and θ satisfy

1

2
< s <

3

4
,

1

3
+ s

9
<

1

p
<

2

3
− s

3
, (1.1)

s

2
− 1

2p
<

1

θ
<

5

8
− 3

2p
+ s

4
,

3

4
− 3

2p
≤ 1

θ
< 1 − 2

p
. (1.2)

Then, there exists a positive constant C = C(s, p, θ) > 0 such that for any initial
velocity field u0 ∈ Ḣ s(R3)3 with

‖u0‖Ḣ s ≤ C |�| s
2 − 1

4 and div u0 = 0, (1.3)

there exists a unique global solution u ∈ C([0,∞); Ḣ s(R3))3 ∩ Lθ (0,∞; Ḣ s
p(R

3))3

to (NSC).

Remark 1.2 (i) The existence of global solutions for small initial data u0 ∈ Ḣ
1
2 (R3)3

was shown by Hieber and Shibata [13]. The size condition (1.3) on initial data can

be regarded as a continuous extension of that in Ḣ
1
2 (R3)3. Indeed, Hieber and

Shibata [13] assumed the smallness condition ‖u0‖
H

1
2

≤ δ for some δ > 0, which

corresponds to our condition (1.3) with s = 1/2.
(ii) The space Lθ0(0,∞; Ḣ s0

p0(R
3)) is scaling invariant to (NSC) in the case � = 0

if θ0, s0 and p0 satisfy

2

θ0
+ 3

p0
= 1 + s0. (1.4)

On the first condition of (1.2), we see that

2

θ
+ 3

p
<

5

4
+ s

2
< 1 + s if s >

1

2
.

Therefore, the space Lθ (0,∞; Ḣ s
p(R

3)) in Theorem 1.1 includes more regular
functions than those in the scaling invariant spaces. Besides, it is possible to show
that the solutions in Theorem 1.1 are smooth. Indeed, by the smoothing effect of
the semigroup T�(t):
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‖∇αT�(t) f ‖L2 ≤ Ct−
|α|
2 ‖ f ‖L2 for any α ∈ (N ∪ {0})3,

we can show that the solution u in Theorem 1.1 is in C((0,∞), Hk(R3))3 for
any k ∈ N.

(iii) In Theorem 1.1, it is possible to show that the gradient of pressure p is smooth.
Indeed, ∇ p is in C((0,∞); Hs(R3))3 for any s ≥ 0 by the following fomula:

∇ p = (−�)−1∇�
(

− ∂x1 u2 + ∂x2 u1

)
+

3∑

j,k=1

(−�)−1∇
(
∂x j uk∂xk u j

)
,

the boundedness of the Riesz transform in the Sobolev space Hs(R3) and the
smoothness of the solution.

(iv) In the case of periodic boundary condition T
3, it seems difficult to obtain the

characterization (1.3) for the size condition on initial data due to the resonances
in the nonlinear term and the lack of the dispersive effect. For the existence
theorem of solutions to (NSC) in T

3, we refer to Babin et al. [1–4], and Chemin
et al. [7].

By Theorem 1.1 for the case s > 1/2, it is possible to obtain global solutions for
initial data u0 ∈ Ḣ s(R3)3 if � satisfies

|�| > C‖u0‖
2

s− 1
2

Ḣ
1
2

. (1.5)

Therefore, the speed |�| of rotation to obtain global solutions is determined by the
each bounded set in Ḣ s(R3) if s > 1/2. We next consider the critical case s = 1/2.

Theorem 1.3 For any u0 ∈ Ḣ
1
2 (R3)3 with div u0 = 0, there exists ω = ω(u0) > 0

such that for any � ∈ R with |�| > ω, there exists a unique global solution u to

(NSC) in C([0,∞); Ḣ
1
2 (R3))3 ∩ L4(0,∞; Ḣ

1
2

3 (R3))3.

Remark 1.4 The space L4(0,∞; Ḣ
1
2

3 (R3)) in Theorem 1.3 is scaling invariant space
in the case � = 0 since θ0 = 4, s0 = 1/2 and p0 = 3 satisfy (1.4).

Since the condition (1.5) breaks down in the case s =1/2, it is not clear whether the
Coriolis parameter � to obtain global solutions for initial data u0 ∈ Ḣ

1
2 (R3)3 can be

characterized by the norm of initial data ‖u0‖
Ḣ

1
2

such as (1.5). To overcome this diffi-

culty, we consider a class of precompact subsets in Ḣ
1
2 (R3)3. We also show the similar

result on the existence of local solutions. In our previous work [14], we considered
the case s >1/2 and showed that the existence time T >0 satisfies T ≥c|�|α‖u0‖−β

Ḣ s

with some constants c, α, β >0. By this result, we see that for the time T >0 and the
bounded set B in Ḣ s(R3), the sufficient speed � to obtain local solutions is determined
by T and B if s >1/2. For the case s =1/2, we obtain the following as a corollary of
Theorem 1.3.
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Global solutions for the Navier-Stokes equations in the rotational framework 731

Corollary 1.5 (i) Let K be an arbitrary precompact set in Ḣ
1
2 (R3)3. Then, there

exists ω(K ) > 0 such that for any � ∈ R with |�| > ω(K ) and for any
u0 ∈ K with div u0 = 0, there exists a unique global solution u to (NSC) in

C([0,∞); Ḣ
1
2 (R3))3 ∩ L4(0,∞; Ḣ

1
2

3 (R3))3.

(ii) For any T > 0 and precompact set K in Ḣ
1
2 (R3), there exists ω = ω(T, K ) > 0

such that for any � ∈ R with |�| > ω and for any u0 ∈ K with div u0 = 0, there

exists a unique local solution u in C([0, T ); Ḣ
1
2 (R3))3 ∩ L4(0, T ; Ḣ

1
2

3 (R3))3 to
(NSC).

Remark 1.6 (i) For the original Navier-Stokes equations

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
− �u + (u · ∇)u + ∇ p = 0 in R

3 × (0,∞),

div u = 0 in R
3 × (0,∞),

u(x, 0) = u0(x) in R
3,

(NS)

it is known by the results of Brezis [5], Giga [9] and Kozono [16] that the existence
time T of local solutions for initial data in Lr (R3) (3 < r < ∞) and L3(R3) is deter-
mined by the each bounded set B in Lr (R3) (3 < r < ∞) and the each precompact
set K in L3(R3), respectively. Note that the space L3(R3) is a scaling critical space
to (NS). On the other hand, the sufficint speed � to obtain global solutions is deter-
mined by the bounded sets and precompact sets in Theorem 1.1 and (i) of Corollary
1.5, respectively. Therefore, our theorems can be regarded as a counterpart of such
results from the viewpoint of the Coriolis parameter � for the existence of global
solutions.

(ii) For any precompact set K in Ḣ
1
2 (R3), the constant ω(T, K ) > 0 in (ii) of

Corollary 1.5 is increasing and bounded with respect to T > 0. Indeed, ω(T, K ) >

ω(T̃ , K ) if T > T̃ since a local solution on the time interval [0, T ) is also a solution
on [0, T̃ ). By (i) of Corollary 1.5 for global solutions, it suffices to take |�| sufficiently
large to obtain global solutions and the lower bound ω(T, K ) for local solutions does
not diverge to infinity as T → ∞.

This paper is organized as follows. In Sect. 2, we introduce propositions to prove
theorems which are on linear estimates for the semigroup T�(·) and the bilinear esti-
mate. In Sect. 3, we prove Theorem 1.1, Theorem 1.3 and Corollary 1.5.

2 Preliminaries

In what follows, we denote by C > 0 various constants and by 0 < c < 1 various
small constants. In order to introduce propositions to provetheorems, let us recall the
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732 T. Iwabuchi, R. Takada

definition of the homogeneous Besov spaces in brief. Let φ be a radial smooth function
satisfying

supp φ̂ ⊂
{

ξ ∈ R
3 | 2−1 ≤ |ξ | ≤ 2

}
,

∑

j∈Z

φ̂(2− jξ) = 1 for any ξ ∈ R
3\ {0} .

Let
{
φ j

}

j∈Z
be defined by

φ j (x) := 23 jφ(2 j x) for j ∈ Z, x ∈ R
3.

Then, for s ∈ R, 1 ≤ p, q ≤ ∞, the homogeneous Besov space Ḃs
p,q(R3) is defined

by the set of all tempered distributions f ∈ S ′(R3) with

‖ f ‖Ḃs
p,q

:=
∥
∥
∥

{
2s j‖φ j ∗ f ‖L p(R3)

}

j∈Z

∥
∥
∥

�q (Z)
< ∞.

Lemma 2.1 [14] Let 2 ≤ p ≤ ∞. There exists C > 0 such that

‖F−1e±i
ξ3|ξ | �tF f ‖Ḃ0

p,2
≤ C

{ log(e + |�|t)
1 + |�|t

} 1
2 (1− 2

p )‖ f ‖
Ḃ

3(1− 2
p )

p
p−1 ,2

(2.1)

for all � ∈ R, t > 0, f ∈ Ḃ
3(1− 2

p )
p

p−1 ,2
(R3).

Lemma 2.2 Let 1 < q ≤ 2 ≤ p < ∞ satisfy 1/q ≥ 1 − 1/p. Then, there exists
C > 0 such that

‖T�(t) f ‖L p ≤ Ct−
3
2 ( 1

q − 1
p )

{ log(e + |�|t)
1 + |�|t

} 1
2 (1− 2

p )‖ f ‖Lq (2.2)

for all � ∈ R, t > 0, f ∈ Lq(R3).

Proof By the continuous embedding Ḃ0
p,2(R

3) ↪→ L p(R3) and (2.1), we have

‖T�(t) f ‖L p ≤ C‖T�(t) f ‖Ḃ0
p,2

≤ C
{ log(e + |�|t)

1 + |�|t
} 1

2 (1− 2
p )‖et� f ‖

Ḃ
3(1− 2

p )

p
p−1 ,2

.

We obtain from Lemma 2.2 in [17] and the continuous embedding Lq(R3) ↪→
Ḃ0

q,2(R
3)

‖et� f ‖
Ḃ

3(1− 2
p )

p
p−1 ,2

≤ Ct−
3
2 ( 1

q − 1
p )‖ f ‖Ḃ0

q,2
≤ Ct−

3
2 ( 1

q − 1
p )‖ f ‖Lq (R3).

Therefore, (2.2) is obtained.
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Global solutions for the Navier-Stokes equations in the rotational framework 733

Proposition 2.3 [14] Let 2 < p < 6, 2 < θ < ∞ satisfy

3

4
− 3

2p
≤ 1

θ
< 1 − 2

p
.

Then, there exists C > 0 such that

‖T�(·) f ‖Lθ (0,∞;L p) ≤ C |�|− 1
θ
+ 3

4 (1− 2
p )‖ f ‖L2

for all � ∈ R\ {0} , f ∈ L2(R3).

Proposition 2.4 For every f ∈ Ḣ
1
2 (R3), it holds that

lim|�|→∞ ‖T�(·) f ‖
L4(0,∞;Ḣ

1
2

3 )
= 0. (2.3)

Proof Let Z(R3) be defined by

Z(R3):=
{

f ∈ S(R3)

∣
∣
∣

∫

R3

f (x)dx = 0
}
.

Since Z(R3) is dense in Ḣ
1
2 (R3), there exists { fN }∞N=1 ⊂ Z(R3) such that fN → f

in Ḣ
1
2 (R3) as N → ∞. Then, we have from Proposition 2.3

‖T�(·) f ‖
L4(0,∞;Ḣ

1
2

3 )
≤ ‖T�(·)( fN − f )‖

L4(0,∞;Ḣ
1
2

3 )
+ ‖T�(·) fN ‖

L4(0,∞;Ḣ
1
2

3 )

≤ C‖ fN − f ‖
Ḣ

1
2

+ ‖T�(·) fN ‖
L4(0,∞;Ḣ

1
2

3 )
. (2.4)

On the second term of the last right hand side, we take p satisfying 8/3 < p < 3

and have from the embedding Ḣ
− 1

2 + 3
p

p (R3) ↪→ Ḣ
1
2

3 (R3), Proposition 2.3 and 3/4 −
3/2p < 1/4

‖T�(·) fN ‖
L4(0,∞;Ḣ

1
2

3 )
≤ C‖T�(·) fN ‖

L4(0,∞;Ḣ
− 1

2 + 3
p

p )

≤ C |�|− 1
4 + 3

4 (1− 2
p )‖ f ‖

Ḣ
− 1

2 + 3
p

2

→ 0 as |�| → ∞. (2.5)

Therefore, (2.3) is obtained by (2.4), (2.5) and the convergence fN → f in Ḣ
1
2 (R3)

as N → ∞.
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Proposition 2.5 Let 2 < p < 3 and 6/5 < q < 2 satisfy

1 − 1

p
≤ 1

q
<

1

3
+ 1

p
, (2.6)

max
{

0,
1

2
− 3

2

( 1

q
− 1

p

)
− 1

2

(
1 − 2

p

)}
<

1

θ
≤ 1

2
− 3

2

( 1

q
− 1

p

)
. (2.7)

Then, there exists C > 0 such that

∥
∥
∥

t∫

0

T�(t − τ)P∇ f (τ )dτ

∥
∥
∥

Lθ (0,∞;Ḣ s
p)

≤ C |�|−
{

1
2 − 3

2 ( 1
q − 1

p )− 1
θ

}

‖ f ‖
L

θ
2 (0,∞;Ḣ s

q )

(2.8)

for all s ∈ R, � ∈ R\ {0} , f ∈ L
θ
2 (0,∞; Ḣ s

q (R3)).

Proof We only consider the case s = 0 for simplicity since it is possible to treat the
case s �= 0 similarly. By Lemma 2.2, we have

∥
∥
∥

t∫

0

T�(t − τ)P∇ f (τ )dτ

∥
∥
∥

Lθ (0,∞;L p)

≤ C
∥
∥
∥

t∫

0

(t − τ)
− 1

2 − 3
2

(
1
q − 1

p

){ log(e + |�||t − τ |)
1 + |�||t − τ |

} 1
2

(
1− 2

p

)

‖ f (τ )‖Lq dτ

∥
∥
∥

Lθ (0,∞)
.

In the case 1/θ = 1/2 − 3(1/q − 1/p)/2, we have from Hardy-Littlewood-Sobolev’s
inequality

∥
∥
∥

t∫

0

(t − τ)
− 1

2 − 3
2 ( 1

q − 1
p )

{ log(e + |�||t − τ |)
1 + |�||t − τ |

} 1
2 (1− 2

p )‖ f (τ )‖Lq dτ

∥
∥
∥

Lθ (0,∞)

≤
∥
∥
∥

t∫

0

(t − τ)
− 1

2 − 3
2 ( 1

q − 1
p )‖ f (τ )‖Lq dτ

∥
∥
∥

Lθ (0,∞)

≤ C‖ f ‖
L

θ
2 (0,∞;Lq )

.

In the case 1/θ < 1/2−3(1/q −1/p)/2, we have from Hausdorff-Young’s inequality
with 1/θ = 1/r + 2/θ − 1
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∥
∥
∥

t∫

0

(t − τ)
− 1

2 − 3
2 ( 1

q − 1
p )

{ log(e + |�||t − τ |)
1 + |�||t − τ |

} 1
2 (1− 2

p )‖ f (τ )‖Lq dτ

∥
∥
∥

Lθ (0,∞)

≤
∥
∥
∥t−

1
2 − 3

2 ( 1
q − 1

p )
{ log(e + |�|t)

1 + |�|t
} 1

2 (1− 2
p )∥∥

∥
Lr (0,∞)

‖ f ‖
L

θ
2 (0,∞;Lq )

= C |�| 1
θ
− 1

2 + 3
2 ( 1

q − 1
p )‖ f ‖

L
θ
2 (0,∞;Lq )

.

Therefore, (2.8) is obtained.

Proposition 2.6 There exists a positive constant C such that

∥
∥
∥

t∫

0

T�(t − τ)∇ f (τ )dτ

∥
∥
∥

L∞(0,∞;Ḣ s )∩L4(0,∞;Ḣ s
3 )

≤ C‖ f ‖L2(0,∞;Ḣ s ) (2.9)

for all s ∈ R,� ∈ R, f ∈ L2(0,∞; Ḣ s(R3)).

Proof For simplicity, we show (2.9) in the case s = 0 since it is possible to treat the
case s �= 0 similarly. On the L∞(0,∞; L2) norm, we have from Plancherel’s theorem
and Hölder’s inequality

∥
∥
∥

t∫

0

T�(t − τ)∇ f (τ )dτ

∥
∥
∥

L2
≤ C

∥
∥
∥

t∫

0

e−(t−τ)|ξ |2 |ξ || f̂ (τ )|dτ

∥
∥
∥

L2

≤ C
∥
∥
∥‖e−(t−τ)|ξ |2‖L2

τ (0,t)|ξ |‖ f̂ (τ )‖L2
τ (0,t)

∥
∥
∥

L2

≤ C‖ f̂ ‖L2(0,∞;L2)

= C‖ f ‖L2(0,∞;L2). (2.10)

On the L4(0,∞; L3(R3)) norm, we have from (2.2) and Hardy-Littlewood-Sobolev’s
inequality

∥
∥
∥

t∫

0

T�(t − τ)∇ f (τ )dτ

∥
∥
∥

L4(0,∞;L3(R3))

≤ C
∥
∥
∥

t∫

0

(t − τ)−
1
2 − 3

2 ( 1
2 − 1

3 )‖ f (τ )‖L2 dτ

∥
∥
∥

L4(0,∞)
(2.11)

≤ C‖ f ‖L2(0,∞;L2).

Therefore, (2.9) is obtained by (2.10) and (2.11).
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Lemma 2.7 Let s, p satisfy

0 ≤ s < 3,
s

3
<

1

p
<

1

2
+ s

6
,

and let q satisfy

1

q
= 2

p
− s

3
.

Then, there exists C > 0 such that

‖ f g‖Ḣ s
q

≤ C‖ f ‖Ḣ s
p
‖g‖Ḣ s

p
. (2.12)

Proof Let r satisfy 1/q = 1/p + 1/r . In the Sobolev spaces, it is known that

‖ f g‖Ḣ s
q

≤ C‖ f ‖Ḣ s
p
‖g‖Lr + C‖ f ‖Lr ‖g‖Ḣ s

p
.

By the continuous embedding Ḣ s
p(R

3) ↪→ Lr (R3), we obtain (2.12).

3 Proof of theorems

We prove Theorem 1.1 and Corollary 1.5 only. It is possible to show Theorem 1.3 in

the analogous way to the proof of (i) of Corollary 1.5 since the set {u0} ⊂ Ḣ
1
2 (R3)3

is compact for each u0 ∈ Ḣ
1
2 (R3)3.

Proof of Theorem 1.1 Since the assumption on θ and p in Proposition 2.3 is satisfied
by (1.1) and (1.2), there exists C0 > 0 such that

‖T�(·)u0‖Lθ (0,∞;Ḣ s
p) ≤ |�|− 1

θ
+ 3

4

(
1− 2

p

)

C0‖u0‖Ḣ s .

Let �(u) and Y be defined by

�(u)(t) := T�(t)u0 −
t∫

0

T�(t − τ)P∇ · (u ⊗ u)(τ )dτ, (3.1)

Y :=
{

u ∈ Lθ (0,∞; Ḣ s
p(R

3))3 | ‖u‖Lθ (0,∞;Ḣ s
p) ≤2C0|�|− 1

θ
+ 3

4

(
1− 2

p

)

‖u0‖Ḣ s ,

div u = 0

}

.
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Let q satisfy 1/q = 2/p − s/3. Since the assumptions on s, p, q and θ in Proposition
2.5 and Lemma 2.7 are satisfied by (1.1) and (1.2), for any u, v ∈ Y , we have from
Proposition 2.3, Proposition 2.5 and Lemma 2.7

‖�(u)‖Lθ (0,∞;Ḣ s
p)

≤ C0|�|− 1
θ
+ 3

4 (1− 2
p )‖u0‖Ḣ s + C |�| 1

θ
− 1

2 + 3
2 ( 1

q − 1
p )‖u ⊗ u‖

L
θ
2 (0,∞;Ḣ s

q )

≤ C0|�|− 1
θ
+ 3

4 (1− 2
p )‖u0‖Ḣ s + C |�| 1

θ
− 1

2 + 3
2 ( 1

q − 1
p )‖u‖2

Lθ (0,∞;Ḣ s
p)

≤ C0|�|− 1
θ
+ 3

4 (1− 2
p )‖u0‖Ḣ s + C1|�| 1

θ
− 1

2 + 3
2 ( 1

q − 1
p )+2

{
− 1

θ
+ 3

4 (1− 2
p )

}

‖u0‖2
Ḣ s

≤ C0|�|− 1
θ
+ 3

4 (1− 2
p )‖u0‖Ḣ s + C1|�|− s

2 + 1
4 |�|− 1

θ
+ 3

4 (1− 2
p )‖u0‖2

Ḣ s , (3.2)

‖�(u) − �(v)‖Lθ (0,∞;Ḣ s
p)

=
∥
∥
∥

t∫

0

T�(t − τ)P∇ · {u ⊗ (u − v)(τ ) + (u − v) ⊗ v(τ)} dτ

∥
∥
∥

Lθ (0,∞;Ḣ s
p)

≤ C |�| 1
θ
− 1

2 + 3
2 ( 1

q − 1
p )‖u ⊗ (u − v) + (u − v) ⊗ v‖

L
θ
2 (0,∞;Ḣ s

q )

≤ C |�| 1
θ
− 1

2 + 3
2 ( 1

q − 1
p )

(‖u‖Lθ (0,∞;Ḣ s
p) + ‖v‖Lθ (0,∞;Ḣ s

p))‖u − v‖Lθ (0,∞;Ḣ s
p)

≤ C2|�| 1
θ
− 1

2 + 3
2 ( 1

q − 1
p )− 1

θ
+ 3

4 (1− 2
p )‖u0‖Ḣ s ‖u − v‖Lθ (0,∞;Ḣ s

p)

= C2|�| 1
4 + 3

2q − 3
p ‖u0‖Ḣ s ‖u − v‖Lθ (0,∞;Ḣ s

p)

= C2|�|− s
2 + 1

4 ‖u0‖Ḣ s ‖u − v‖Lθ (0,∞;Ḣ s
p).

If �, u0 satisfy

C1|�|− s
2 + 1

4 ‖u0‖Ḣ s ≤ C0, C2|�|− s
2 + 1

4 ‖u0‖Ḣ s ≤ 1

2
,

then, it is possible to apply Banach’s fixed point theorem in Y and we obtain u ∈ Y
with

u(t) = T�(t)u0 −
t∫

0

T�(t − τ)P∇ · (u ⊗ u)dτ.

Here, we show that the solution u ∈ Y satisfies u(t) ∈ Ḣ s(R3)3 for all t ≥ 0. On the
linear part, it is easy to see that T�(t)u0 ∈ Ḣ s(R3)3 for any t ≥ 0. On the nonlinear
part, let 1/q = 2/p −s/3 and we have from Lemma 2.2, Lemma 2.7 and Hölder’s
inequality
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∥
∥
∥

t∫

0

T�(t − τ)P∇ · (u ⊗ u)(τ )dτ

∥
∥
∥

Ḣ s

≤ C

t∫

0

(t − τ)
− 1

2 − 3
2 ( 1

q − 1
2 )‖(u ⊗ u)(τ )‖Ḣ s

q
dτ

≤ C

t∫

0

(t − τ)
− 1

2 − 3
2 ( 1

q − 1
2 )‖u(τ )‖2

Ḣ s
p
dτ (3.3)

≤ C
∥
∥
∥(t − ·)− 1

2 − 3
2 ( 1

q − 1
2 )

∥
∥
∥

L
θ

θ−2 (0<τ<t)

∥
∥
∥‖u(τ )‖2

Ḣ s
p

∥
∥
∥

L
θ
2 (0,∞)

≤ Ct
θ−2
θ

[
1− θ

θ−2

{
− 1

2 − 3
2 ( 1

q − 1
2 )

}]

‖u‖2
Lθ (0,∞;Ḣ s

p)
.

Here, we note on the integrability at τ = t that

θ

θ − 2

{1

2
+ 3

2

( 1

q
− 1

2

)}
< 1 if and only if

1

θ
<

5

8
− 3

2p
+ s

4
.

Therefore, we obtain u(t) ∈ Ḣ s(R3)3 and we also see u ∈ C([0,∞), Ḣ s(R3))3. ��
Proof of (i) of Corollary 1.5 Let δ > 0 be an arbitrary positive number to be deter-

mined later. Since K is precompact in Ḣ
1
2 (R3)3, the closure of K is compact. Hence

there exist a natural number N (δ, K ) and
{

f j
}N (δ,K )

j=1 ⊂ Ḣ
1
2 (R3)3 such that

K ⊂ ∪N (δ,K )
j=1 B( f j , δ),

where B( f, δ) denotes a ball in Ḣ
1
2 (R3)3 with center being f and radius δ. By

Proposition 2.4, there exists ω0(δ, K ) > 0 such that we have

sup
j=1,2,...,N (δ,K )

‖T�(·) f j‖
L4(0,∞;Ḣ

1
2

3 )
≤ δ

for all � ∈ R with |�| > ω0(δ, K ). Then, for any f ∈ K , there exists j ∈
{1, 2, . . . , N (δ, K )} such that f ∈ B( f j , δ) and we have from Proposition 2.3

‖T�(·) f ‖
L4(0,∞;Ḣ

1
2

3 )
≤ ‖T�(·)( f j − f )‖

L4(0,∞;Ḣ
1
2

3 )
+ ‖T�(·) f j‖

L4(0,∞;Ḣ
1
2

3 )

≤ C‖ f j − f ‖
Ḣ

1
2

+ δ

≤ Cδ.

Therefore, there exists a positive constant C1 > 0

sup
f ∈K

‖T�(·) f ‖
L4(0,∞;Ḣ

1
2

3 )
≤ C1δ (3.4)
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for all � ∈ R with |�| > ω0(δ, K ). Then, let the space X be defined by

X :=
{

u ∈ C([0,∞), Ḣ
1
2 (R3))3 | ‖u‖

L4(0,∞;Ḣ
1
2

3 )
≤ 2C1δ, div u = 0

}

,

d(u, v) := ‖u − v‖
L4(0,∞;Ḣ

1
2

3 )
.

Let � be defined by (3.1). For any u ∈ X , we have from Proposition 2.6, Lemma 2.7
and Hölder’s inequality

‖�(u)‖
L∞(0,∞;Ḣ

1
2 )

≤ C‖u0‖
Ḣ

1
2

+ C‖u ⊗ u‖
L2(0,∞;Ḣ

1
2 )

≤ C‖u0‖
Ḣ

1
2

+ C
∥
∥
∥‖u‖2

Ḣ
1
2

3

∥
∥
∥

L2(0,∞)

≤ C‖u0‖
Ḣ

1
2

+ C‖u‖2

L4(0,∞;Ḣ
1
2

3 )

. (3.5)

We also have from Proposition 2.6, Lemma 2.7 and Hölder’s inequality

‖�(u)‖
L4(0,∞;Ḣ

1
2

3 )
≤ ‖T�(·)u0‖

L4(0,∞;Ḣ
1
2

3 )
+ C‖u ⊗ u‖

L2(0,∞;Ḣ
1
2 )

≤ ‖T�(·)u0‖
L4(0,∞;Ḣ

1
2

3 )
+ C

∥
∥
∥‖u‖2

Ḣ
1
2

3

∥
∥
∥

L2(0,∞)

≤ ‖T�(·)u0‖
L4(0,∞;Ḣ

1
2

3 )
+ C2‖u‖2

L4(0,∞;Ḣ
1
2

3 )

. (3.6)

Similarly, we also have for u, v ∈ X

‖�(u) − �(v)‖
L4(0,∞;Ḣ

1
2

3 )

(3.7)

≤ C3

(
‖u‖

L4(0,∞;Ḣ
1
2

3 )
+ ‖v‖

L4(0,∞;Ḣ
1
2

3 )

)
‖u − v‖

L4(0,∞;Ḣ
1
2

3 )
.

Here, since δ is an arbitrary positive number, let δ > 0 satisfy

δ < min
{ 1

4C1C2
,

1

8C1C3

}
,

where C1, C2 and C3 is the constants in (3.4), (3.6) and (3.7), respectively. Then, we
have from (3.4), (3.5), (3.6) and (3.7)

‖�(u)‖
L∞(0,∞;Ḣ

1
2 )

< ∞
‖�(u)‖

L4(0,∞;Ḣ
1
2

3 )
≤ 2C1δ,

‖�(u) − �(v)‖
L4(0,∞;Ḣ

1
2

3 )
≤ 1

2
‖u − v‖

L4(0,∞;Ḣ
1
2

3 )
,
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for all u, v ∈ X,� ∈ R with |�| > ω0(δ, K ). Therefore, it is possible to apply
Banach’s fixed point theorem to obtain the global solutions. ��
Proof of (ii) of Corollary 1.5 By the same argument on the precompact set K in

Ḣ
1
2 (R3) as that of proof of (i) of Corollary 1.5, we see that for any T > 0 and

δ > 0, there exist ω(T, K ) > 0 and C1 > 0 such that

sup
f ∈K

‖T�(·) f ‖
L4(0,T ;Ḣ

1
2

3 )
≤ C1δ,

for all � ∈ R with |�| > ω(T, K ). Then, we can obtain the similar estimate as (3.5),
(3.6) and (3.7) in which time interval (0,∞) is replaced with (0, T ). It is possible to
apply Banach’s fixed point theorem in the space

X :=
{

u ∈ C([0, T ), Ḣ
1
2 (R3))3 | ‖u‖

L4(0,T ;Ḣ
1
2

3 )
≤ 2C1δ, div u = 0

}

,

d(u, v) := ‖u − v‖
L4(0,T ;Ḣ

1
2

3 )

and obtain local solutions. ��
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