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Abstract We prove longtime existence and estimates for smooth solutions to a fully
nonlinear Lagrangian parabolic equation with locally C1,1 initial data u0 satisfying
either (1) −(1 + η)In ≤ D2u0 ≤ (1 + η)In for some positive dimensional constant η,
(2) u0 is weakly convex everywhere, or (3) u0 verifies a large supercritical Lagrangian
phase condition.

Mathematics Subject Classification (2000) Primary 53C44 · 53A10

1 Introduction

In this paper, we settle the longtime existence problem of smooth solutions with
“almost convex” initial data for the fully nonlinear Lagrangian parabolic equation

⎧
⎪⎨

⎪⎩

∂u

∂t
=

n∑

i=1

arctan λi

u(x, 0) = u0(x)

(1)
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166 A. Chau et al.

where λi ’s are the eigenvalues of D2u, and also obtain global estimates for the longtime
solutions. With “uniformly convex” initial data for (1), the longtime existence and
estimate problem of smooth solutions has been solved in [1]. With general continuous
initial data for (1), the longtime existence and uniqueness problem of continuous
viscosity solutions was obtained in [2].

When a family of smooth entire Lagrangian graphs in C
n evolve by the mean

curvature flow their potentials u : R
n × [0, T ) → R will evolve by (1), up to a time

dependent constant. Conversely, if u(x, t) solves (1), then the graphs (x, Du(x, t)) in
R

2n will evolve by the mean curvature flow up to tangential diffeomorphisms.
In the hypersurface case, the global and local behavior of mean curvature flow of

Lipschitz continuous initial graphs has been studied in [3,4]; the regularity for mean
curvature flow of continuous graphs has been obtained in [5]. In the high codimensional
case, the mean curvature of Lipschitz continuous initial graphs with small Lipschitz
norm has been studied in [7].

The main result of the paper is the following

Theorem 1.1 There exists a small positive dimensional constant η = η(n) such that
if u0 : R

n → R is a C1,1 function satisfying

− (1 + η)In ≤ D2u0 ≤ (1 + η)In (2)

then (1) has a unique longtime smooth solution u(x, t) for all t > 0 with initial
condition u0 such that the following estimates hold:

(i) −√
3In ≤ D2u ≤ √

3In for all t > 0.
(ii) supx∈Rn |Dlu(x, t)|2 ≤ Cl/t l−2 for all l ≥ 3, t > 0 and some Cl depending

only on l.
(iii) Du(x, t) is uniformly Hölder continuous in time at t = 0 with Hölder exponent

1/2.

After a coordinate rotation described in Sect. 2 [see (15)], the “convex” condition
−In < D2u < In corresponds to a convex potential in which case the right hand side
of (1) is a concave operator. This however is not the case under the weaker “almost
convex” assumption (2) in Theorem 1.1. This is interesting from a PDE standpoint
as Krylov’s theory for parabolic equations is for the concave operators [8]. Another
subtle point is that the “almost convex” initial condition (2) is not preserved under the
flow (but only preserved to an extent enough for further estimates of solutions), as the
weak maximum principle fails now.

In [1] Theorem 1.1 was proved for any negative constant η, in which case it was
shown that now the “uniformly convex” condition (2) is preserved for all t > 0. In
particular, a priori estimates were established for any solution to (1) with D2u so
bounded. The estimates combined maximum principle arguments for tensors and a
Bernstein theorem for entire special Lagrangians [15] via a blow up argument. The
estimates depended on the negativity of η and could not be applied to the more general
case of Theorem 1.1 even for η = 0. We overcome this through recent estimates in
[9] for solutions to (1) satisfying certain Hessian conditions (cf. Theorem 2.1 which
is Theorem 1.1 in [9]).
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A particular case of Theorem 1.1 (similarly for Theorems 1.2 and 1.3) is where
Du0 : R

n → R
n is a lift of a map f : T

n → T
n and T

n is the standard n-dimensional
flat torus. In this “periodic case”, our estimates together with the results in [10] imply
that the graphs (x, Du(x, t)) immediately become smooth after initial time and con-
verge smoothly to a flat plane in R

2n (cf. [1,10–12]).
In light of the above coordinate rotation, we apply Theorem 1.1 directly to the

“borderline convex” case in the following.

Theorem 1.2 Let u0 : R
n → R be a locally C1,1 weakly convex function, namely

D2u0 ≥ 0. Then (1) has a unique longtime smooth and weakly convex solution u(x, t)
with initial condition u0 such that

(i) either D2u(x, t) > 0 for all x and t > 0 or there exists coordinates x1, ..., xn

on R
n in which u(x, t) = w(xk, ..., xn, t) on R

n × [0,∞) where k > 1 and w is
convex with respect to xk, ..., xn for all t > 0,

(ii) supx∈Rn |∇l
t A(x, t)|2 ≤ Cl/t l+1 for all l ≥ 0, t > 0 and some constant Cl

depending only on l where ∇l
t A(x, t) is the lth covariant derivative of the second

fundamental form of the embedding Ft : R
n → R

2n given by x → (x, Du(x, t)),
(iii) the Euclidean distance from each point of Ft (R

n) to F0(R
n) in R

2n is Hölder
continuous in time at t = 0 with Hölder exponent 1/2.

We also prove the following

Theorem 1.3 Let u0 : R
n → R be a locally C1,1 function satisfying

n∑

i=1

arctan λi ≥ (n − 1)
π

2
. (3)

Then (1) has a unique longtime smooth solution u(x, t) with initial condition u0 such
that (3) is satisfied with either strict inequality for all t > 0 or equality for all t ≥ 0
in which case u0 must be quadratic. Moreover, u(x, t) also satisfies (ii) and (iii) in
Theorem 1.2.

Remark 1.1 Note that if u0 satisfies (3) then u0 must be convex.

As discussed above, after a coordinate rotation we may assume D2u0 in Theorem
1.2 satisfies the strict inequality −In ≤ D2u0 < In in which case Theorem 1.1
immediately provides a longtime solution u(x, t) to (1). In order for this to correspond
to the desired longtime solution in the original coordinates we must first show −In ≤
D2u < In is preserved for all t > 0 and this is the first main difficulty in proving (i)
in Theorem 1.2. This in particular will rule out the possibility of λi (D2u(x, t)) = 1
for some (x, t) which would correspond to a non-graphical (vertical) Lagrangian in
the original coordinates. The second main difficulty comes from showing that either
−In < D2u for all t > 0, or the solution splits off a quadratic term as in Lemma 4.2
and this will give (i) in Theorem 1.2 after rotating back to the original coordinates.

As for Theorem 1.3, by Remark 1.1, if u0 satisfies (3) then it is automatically
convex hence Theorem 1.2 guarantees a longtime convex solution u(x, t) to (1). The
difficulty in showing (3) is preserved for all t > 0 comes from the fact that a maximum
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principle may not directly apply as u0 is only locally C1,1 with possibly unbounded
Hessian. Performing a similar but small σ0 coordinate rotation, we can assume that
−K (σ0)In < D2u0 < 1/K (σ0)In , for some constant K (σ0) which approaches zero
as σ0 → 0, and satisfies

n∑

i=1

arctan λi ≥ (n − 1)
π

2
− nσ0 ≥ (n − 2)

π

2
. (4)

We then observe that the set of real symmetric n ×n matrices satisfying (4) is a convex
set S, and we approximate u0 by convolution with the standard heat kernels, which
has the effect of averaging elements in S, thus producing smooth approximations with
bounded derivatives (of order 2 and higher) and Hessians belonging to S. We perform
a further π/4 coordinate rotation after which the smooth approximated initial data
satisfies (ii) in Theorem 1.1 and

n∑

i=1

arctan λi ≥ (n − 1)
π

2
− n

π

4
− nσ0. (5)

By Theorem 1.1 we then apply a maximum principle argument to show (5) is preserved
starting from each approximate initial data.

The outline of the rest of the paper is as follows. In Sect. 2 we provide preliminary
results which will be used in the proofs of the theorems. In particular, we state the a
priori estimates in [9]. Theorem 1.1 is proved in Sect. 3 and Theorems 1.2 and 1.3
are proved in Sect. 4.

2 Preliminaries

In this section we establish some preliminary results.

Proposition 2.1 ([1], Proposition 5.1) Suppose u0 : R
n → R is a smooth function

such that sup |Dlu0| < ∞ for each l ≥ 2. Then (1) has a smooth solution u(x, t) on
R

n × [0, T ) for some T > 0 such that supx∈Rn |Dlu(x, t)| < ∞ for every l ≥ 2 and
t ∈ [0, T ).

Remark 2.1 In Proposition 5.1 in [1] it was shown that the non-parametric mean
curvature flow equation

⎧
⎪⎨

⎪⎩

∂ f a

∂t
=

n∑

i, j=1

gi j ( f )( f a)i j

f (x, 0) = Du0(x)

(6)

where gi j ( f ) is the matrix inverse of gi j ( f ) := δi j + ∑n
a=1 f a

i f a
j , has a short time

solution f (x, t) provided u0 satisfies the conditions in Proposition 2.1. As explained
in [1] (see Lemma 2.1), this in fact provides a short time solution u(x, t) to (1) as in
Proposition 2.1 such that f (x, t) = Du(x, t) and the proof of Proposition 5.1 in [1]
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can also be adapted directly to (1) to establish Proposition 2.1. For convenience of the
reader and completeness, we provide the details of this argument below.

Proof Let Ck+α,k/2+α/2 denote the standard parabolic Hölder spaces on R
n × [0, 1).

Define

B =
{
v ∈ C2+α,1+ α

2 | v(x, 0) = 0
}

and define a map F : B → Cα, α
2 by

F(v) = ∂v

∂t
− 	(v)

where 	(v) := ∑n
i=1 arctan λi (D2(u0 + v)). Then the differential DFv at any v ∈ B

is given by

DFv(φ) = ∂φ

∂t
−

n∑

i, j=1

gi j (u0 + v)φi j

where gi j (u0 + v) is the matrix inverse of In + [D2(u0 + v)]2.

Claim 1 DFv is a bijection from TvB onto TF(v)Cα, α
2 .

This follows from the general theory of linear parabolic equations on R
n × [0, 1)

with Hölder continuous coefficients.
Now define functions f1 and f2 on R

n recursively by

f1 := 	(u0)

f2 := gi j (u0)∂
2
i j f1.

(7)

Then we see that supRn |Dl fi | < ∞ for every i and l, and if we let w0 = F(v0) where
v0 = t f1 + t2 f2/2, then a straightforward computation gives

∂ l
t F(v0)(x, 0) = 0 (8)

for l ≤ 1 and

sup
Rn×[0,1)

|Dl
x Dm

t w0| < ∞ (9)

for every l, m ≥ 0. In particular w0 ∈ Cα, α
2 . By the inverse function theorem there

exists ε > 0 such that ‖w − w0‖α, α
2

< ε implies F(v) = w for some v ∈ B.
For any 0 < τ < 1, define wτ by

wτ (x, t) =
{

0, t ≤ τ

w0(x, t − τ), τ < t < 1.
(10)
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Claim 2 ‖wτ − w0‖α, α
2

< ε for sufficiently small τ > 0.

By (8) and (9), it follows that wτ ∈ Cα, α
2 and ‖wτ‖α, α

2
is bounded uniformly and

independently of τ . From this and the fact that wτ − w0 converges uniformly to 0 in
C0 as τ → 0, it is not hard to show the claim follows.

Hence by the inverse function theorem we have F(v) = wτ for some 0 < τ < 1
and v ∈ C2+α,1+α/2. In particular u0 + v solves (1) on R

n × [0, τ ]. Now the higher
regularity of u can be shown as follows. For any x0 ∈ R

n , consider the function

ũ(x, t) := u(x + x0, t) − u(x0, 0) − Du(x0, 0) · x .

Then ũ(x, t) ∈ B and still solves (1) on R
n × [0, τ ]. Now we can write (1) as

∂ ũ

∂t
=

n∑

i=1

arctan λi (D2ũ)

=
1∫

0

∂

∂s

(
n∑

i=1

arctan λi (D2(sũ))

)

ds

=
⎛

⎝

1∫

0

gi j (sũ)ds

⎞

⎠ ∂2
i j ũ. (11)

Notice that Dũ(0, 0) = ũ(0, 0) = 0 and that D2ũ(x, t) = D2u(x + x0, t) is
uniformly bounded on R

n × [0, τ ]. Now if we let B(1) be the unit ball in R
n it

follows from (1) that ũ(x, t) and thus Dũ(x, t) is uniformly bounded on B(1)×[0, τ ],
giving ũ(x, t) ∈ C2+α,1+ 1

2 + α
2 (B(1) × [0, τ ]). In particular, by freezing the symbol

ai j := ∫ 1
0 gi j (sũ)ds in (11), we can view (11) as a linear parabolic equation for ũ

with coefficients uniformly bounded in Cα, 1
2 + α

2 (B(1)×[0, τ ]). Now applying the local
parabolic Schauder estimates (Theorem 5, Chapter 3, [6]) and a standard bootstrapping
argument to (11) we may then bound the Cl+α norm of ũ(x, t) on B(1) by a constant
depending only on t and l.

Now the fact that v is smooth with bounded derivatives as in the theorem follows
by repeating the above argument for any x0 ∈ R

n . 
�
Lemma 2.1 ([1], Lemma 5.1) Let u0 : R

n → R be a C1,1 function satisfying
−C0 In ≤ D2u0 ≤ C0 In for some constant C0 > 0. Then there exists a sequence
of smooth functions uk

0 : R
n → R such that

(i) uk
0 → u0 in C1+α(BR(0)) for any R and 0 < α < 1,

(ii) −C0 In ≤ D2uk
0 ≤ C0 In for every k,

(iii) supx∈Rn |Dluk
0| < ∞ for every l ≥ 2 and k.

Proof Let

uk
0(x) =

∫

Rn

u0(y)K

(

x, y,
1

k

)

dy (12)
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where K (x, y, t) is the standard heat kernel on R
n × (0,∞). Conditions (i) and

smoothness of uk
0 are easily verified. By assumption, D2

yu0(y) is a well defined and
uniformly bounded function almost everywhere on R

n and we may write

Dl
x uk

0(x) =
∫

Rn

D2
yu0(y)Dl−2

x K

(

x, y,
1

k

)

dy

for every l ≥ 2 from which it is easy to see that conditions (ii) and (iii) is also true.

�

Theorem 2.1 ([9], Theorem 1.1) Let u(x, t) be a smooth solution to (1) in Q1 ⊂
R

n×(−∞, 0]. When n ≥ 4 we also assume that at least one of the following conditions
holds in Q1

(i)
∑n

i=1 arctan λi ≥ (n − 2)π
2 ,

(ii) 3 + λ2
i + 2λiλ j ≥ 0 for all 1 ≤ i, j ≤ n.

Then we have

[ut ]1, 1
2 ;Q1/2

+ [D2u]1, 1
2 ;Q1/2

≤ C(‖D2u‖L∞(Q1)). (13)

Here Qr (x, t) = Br (x) × [t − r2, t] ⊂ R
n × (−∞, 0], and Qr := Qr (0, 0). We

refer to [9] for further notations and definitions used in Theorem 2.1.

Lemma 2.2 Suppose u0 : R
n → R is a C1,1 function satisfying

− In ≤ D2u0 ≤ In (14)

and that u(x, t) ∈ C∞(Rn × (0, T ))
⋂

C0(Rn × [0, T )) is a solution to (1) and
satisfies u(x, 0) = u0. Then (14) is preserved for all t .

Proof We begin by establishing the following special case
Claim If u(x, t) is a smooth solution of (1) on R

n × [0, T ) satisfying.

(i) supRn |Dlu(x, t)| < ∞ for every t ∈ [0, T ) and l ≥ 2,

(ii) u(x, 0) satisfies (−1 + δ) In ≤ D2u (x, 0) ≤ (1 − δ) In for some δ > 0,

then u(x, t) satisfies (−1 + δ) In ≤ D2u (x, t) ≤ (1 − δ) In for each t ∈ (0, T ).
This was established in Lemma 4.1 in [1] and we provide a different proof of this

here. We begin by describing a change of coordinate which we will use at various places
throughout the paper. Let z j = x j + √−1y j and w j = r j + √−1s j ( j = 1, ..., n)
be two holomorphic coordinates on C

n related by

z j = e
√−1σ w j (15)

for some constant σ . Then as described in [16] (see p.1356), if L = {(x, Du0(x))|x ∈
R

n} in C
n is represented as L = {(r, Dv0(r))|r ∈ R

n} in the coordinates w j , then v0
satisfies

arctan λi (D2v0) = arctan λi (D2u0) − σ. (16)
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Now by (ii) in the claim, as described in [15] we may choose σ = −π/4 and obtain
such a new graphical representation of L and the new potential function will satisfy

δ

2 − δ
In ≤ D2v0 ≤ 2 − δ

δ
In . (17)

The claim will be established once we show (17) is preserved for any δ > 0. Differ-
entiating (1) twice with respect to any coordinate direction xk yields

n∑

i, j=1

gi j∂i jvkk − ∂tvkk =
n∑

l,m=1

gll gmm (λl + λm) v2
lmk (18)

where the subscripts of v denote partial differentiation. Now fix any vector V ∈ R
n and

any point (r0, t0) note that V T D2v(r0, t0)V = vV V (r, t) where vV V (r, t) is just the
second derivative of v(r0, t0) in the direction V . It follows from (18) that the function

f (r, t) = V T
(

D2v (r, t) − 2 − δ

δ
I

)

V

satisfies
⎛

⎝
n∑

i, j=1

gi j∂2
i j − ∂t

⎞

⎠ f (r, t) ≥ 0

at any (r, t) in R
n × [0, t1) where t1 is the maximal time for which

δ

2(2 − δ)
In ≤ D2v(r, t) ≤ 2(2 − δ)

δ
In (19)

holds in R
n×[0, t1). Note the existence and positivity of t1 is guaranteed by assumption

(i) in the claim. Now by our assumption on the derivatives of u we have that gi j (r, t)
is uniformly equivalent to the Euclidean metric on R

n uniformly for t ∈ [0, t ′] with
t ′ < t1, while gi j (r, t) and f (r, t) are also continuous on R

n × [0, t1). The maximum
principle (Theorem 9, p.43, [6]) then implies f (r, t) ≤ 0 and thus D2v(r, t) ≤ 2−δ

δ
In

for all t ∈ [0, t1). Now if t1 < T , then by continuity there exists some t2 > t1 for
which (19) holds for all t ∈ [0, t2) thus contradicting the maximality of t1. We must
therefore have t1 = T from which the upper bound in the claim follows. Applying the
above argument to −u, we obtain the lower bound in the claim as well.

Now let u0 and u(x, t) be as in the lemma, and let uk
0 be a sequence as in Lemma 2.1.

Fix some sequence δk → 0 and consider the sequence vk
0 = (1 − δk)uk

0. Then
by Proposition 2.1 there exists a positive sequence Tk such that for each k there
is a smooth solution vk(x, t) of (1) on R

n × [0, Tk) with initial condition vk
0 and

supx∈Rn |Dlvk(x, t)| < ∞ for every l ≥ 2 and t ∈ [0, Tk). For each k, assume that Tk

is the maximal time on which the solution vk exists. By the above claim we also have
(−1 + δk) In ≤ D2vk (x, t) ≤ (1 − δk) In for each t ∈ [0, Tk) and the main theorem

123



Lagrangian mean curvature flow for entire Lipschitz graphs II 173

in [1] then implies supx∈Rn |Dlvk(x, t)|2 ≤ Cl,k/t l−2 for all l ≥ 3, and some constant
Cl,k depending only on l and δk and it follows that Tk = ∞. In fact, the local estimates
in Theorem 2.1 can be used to remove the dependence on δk in these bounds. Indeed,
fix some k, T ∈ (0,∞) and x ′ ∈ R

n and let

wk(y, s) = 1

T

(
vk(y

√
T + x ′, sT + T ) − vk(x ′, T ) − Dvk(x ′, T ) · y

)
. (20)

Then we have wk(0, 0) = Dwk(0, 0) = 0, and wk(y, s) solves (1) on R
n ×[−1, 0] and

satisfies −(1 − δk)In ≤ D2wk ≤ (1 − δk)In for all (y, s) ∈ R
n × [−1, 0]. Applying

Theorem 2.1 then gives

sup
(x,t)∈B√

T /2(x ′)×[3T/4,T ]

∣
∣
∣D3vk(x, t)

∣
∣
∣
2 = sup

(y,s)∈Q1/2

1

T

∣
∣
∣D3wk(y, s)

∣
∣
∣
2 ≤ C

T
(21)

where B√
T /2(x ′) is the ball of radius

√
T /2 centered at x ′ ∈ R

n and C is some
constant independent of k. Noting that x ′ ∈ R

n and T ∈ (0,∞) were arbitrary we
obtain

sup
x∈Rn

∣
∣
∣D3vk(x, t)

∣
∣
∣
2 ≤ C

t
(22)

for all t ∈ (0,∞) and it follows from a scaling argument, described in the proof of
Lemma 5.2 in [1], that for every t ∈ (0,∞) and l ≥ 3 we may have

sup
x∈Rn

∣
∣
∣Dlvk(x, t)

∣
∣
∣
2 ≤ Cl

tl−2 (23)

for some constant Cl depending only on l.
From (23) we conclude that the vk(x, t)’s have a subsequence converging to a

function v(x, t) on R
n ×[0,∞) where the convergence is smooth on compact subsets

of R
n × (0,∞). In particular, by construction we have that v(x, t) is smooth and

solves (1) on R
n × (0,∞), satisfies (14) for every t ∈ [0,∞) and v(x, 0) = u0(x).

Moreover, by (1) we have |∂tv(x, t)| ≤ nπ
2 for all (x, t) ∈ R

n × [0,∞) from which
we conclude that v ∈ C0(Rn × [0, T )).

It now follows by the uniqueness result in [2] that u(x, t) = v(x, t) for all t ∈ [0, T ),
and thus u(x, t) also satisfies (14) for every t ∈ [0, T ). This completes the proof of
the lemma. 
�

We now apply the above results to prove the following proposition.

Proposition 2.2 There exists a dimensional constant η = η(n) > 0 such that for
every T > 0 the following holds: if u(x, t) is a smooth solution to (1) on R

n × [0, T )

such that −(1 + η)I ≤ D2u ≤ (1 + η)I at t = 0 and supx∈Rn |Dlu| < ∞ for each
t ∈ [0, T ) and l ≥ 2, then u(x, t) satisfies −√

3In ≤ D2u ≤ √
3In for all t ∈ [0, T ).

Proof Suppose otherwise. Then there exists a sequence ηk → 0 and a sequence of
smooth uk(x, t) each solving (1) on R

n × [0, Tk) where Tk > 0, and each satisfying
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(a) −(1 + ηk)In ≤ D2uk ≤ (1 + ηk)In at t = 0,
(b) supx∈Rn

∣
∣Dluk

∣
∣ < ∞ for each t ∈ [0, Tk) and l ≥ 2,

(c)
∣
∣λi (D2uk(xk, tk))

∣
∣ >

√
3 for some (xk, tk) ∈ R

n × [0, Tk) and some i .

Then by (a) and (b) it is not hard to show that there exists a sequence Rk with R2
k ∈

(0, Tk) satisfying

(A) −√
3In ≤ D2uk ≤ √

3In for all t ∈ [0, R2
k ),

(B)
∣
∣λi (D2uk(xk, tk))

∣
∣ = √

3/2 for some (xk, tk) ∈ R
n × [0, R2

k ) and some i .

Now consider the sequence

vk(x, t) := 1

t2
k

(uk(xtk + xk, t2
k t + t2

k ) − uk(xk, tk) − Duk(xk, t2
k ) · x)

each solving (1) on R
n × [−1, 0] and each satisfying

(i) −(1 + ηk)In ≤ D2vk ≤ (1 + ηk)In at t = 0 and −√
3In ≤ D2vk ≤ √

3In

∀t > 0,
(ii)

∣
∣
∣λi (D2vk)(0, 0)

∣
∣
∣ = √

3/2 for some i ,

(iii) vk(0, 0) = Dvk(0, 0) = 0.

Then as assumption (ii) in Theorem 2.1 is satisfied, we may apply the estimates there
as in the proof of Lemma 2.2 to show that the vk(x, t)′s have a subsequence converging
to a function v(x, t) ∈ C∞(Rn × (−1, 0))

⋂
C0(Rn × [−1, 0]) such that in addition

we have supx∈Rn |D3v(x, t)| bounded independent of t ∈ [−1/2, 0]. Moreover, by
construction v(x, t) solves (1) and satisfies −In ≤ D2v(x,−1) ≤ In in the L∞ sense
and |λi (D2v(0, 0))| = √

3/2 for some i . Together, these facts contradict Lemma 2.2.

�

Remark 2.2 Noting that (13) in Theorem 2.1 holds in general when n ≤ 3, we observe
that when n ≤ 3 we can replace

√
3 in Proposition 2.2 with any larger constant C > 0

(for a little larger η).

3 Proof of Theorem 1.1

Proof of Theorem 1.1 Let u0 be as in Theorem 1.1 where η > 0 is as in Proposition
2.2. Let uk

0 be a sequence of approximations as in Lemma 2.1. By Proposition 2.1 we
have smooth short time solutions uk(x, t) to (1) with initial condition uk(x, t) = uk

0(x).
Moreover, by Proposition 2.2 we have −√

3In ≤ D2u ≤ √
3In for all (x, t). We will

let R
n × [0, Tk) be the maximal space time domain on which uk(x, t) is defined.

Then by a rescaling argument and applying Theorem 2.1 as in the the proof of
Lemma 2.2, we can show that for each k, Tk = ∞ and uk(x, t) satisfies the estimates
in (23) for all l ≥ 3 and t > 0. In particular, we argue as in the last two paragraphs
of the proof of Lemma 2.2 that some subsequence of the uk(x, t)’s converge to a
function u(x, t) solving (1) on R

n × [0,∞) satisfying (i) and (ii) in the conclusions
of Theorem 1.1.

123



Lagrangian mean curvature flow for entire Lipschitz graphs II 175

We now show that Du(x, t) satisfies conclusion (iii) in Theorem 1.1. By differenti-
ating (1) once in space and using (i) and the estimates in (ii) for l = 3 we may estimate
as follows for any x ∈ R

n and t > t ′ > 0:

∣
∣Du(x, t) − Du(x, t ′)

∣
∣

(t − t ′)1/2 ≤

∣
∣
∣
∣

∫ t

t ′
∂s Du(x, s)ds

∣
∣
∣
∣

(t − t ′)1/2

≤
C

∫ t

t ′

∣
∣
∣D3u(x, s)

∣
∣
∣ ds

(t − t ′)1/2

≤
C

∫ t

t ′
s−1/2ds

(t − t ′)1/2

≤ C (24)

for some constant C independent of x, t and t ′. The uniqueness of u(x, t) follows
from the uniqueness result in [2]. 
�

4 Proofs of Theorem 1.2 and Theorem 1.3

We begin by establishing the following lemmas

Lemma 4.1 Let v(r, t) be a solution to (1) as in Theorem 1.1 and assume −In ≤
D2v(r, t) ≤ In for all r and t. Then if λ1(r ′, t ′) = 1 at some point where t ′ > 0, then
λ1(r, t) = 1 for all (r, t) ∈ R

n × (0, t ′]. Similarly if λ1(r ′, t ′) = −1 at some point
where t ′ > 0, then λ1(r, t) = −1 for all (r, t) ∈ R

n × (0, t ′].
Proof Consider a solution v to the elliptic equation corresponding to (1):

n∑

i=1

arctan λi = C (25)

where C is some constant. By twice differentiating (25) and the characteristic equa-

tion det(D2v − λi In) = 0 a formula was obtained for
∑n

a,b=1 gab∂2
ab ln

√

1 + λ2
i

at any point where λi is a non-repeated eigenvalue for D2v in [14, Lemma 2.1].
By essentially the same calculations we may differentiate the parabolic Eq. (1) and
the characteristic equation det(D2v − λi In) = 0 twice in space, and also differen-
tiate the characteristic equation once in time, to obtain the exact same formula for

(
∑n

a,b=1 gab∂2
ab − ∂t ) ln

√

1 + λ2
i at any point where λi is a non-repeated eigenvalue

for D2v. Namely, if λi is a non-repeated eigenvalue of D2v at a point (r0, t0) then the
following holds at (r0, t0) (after making a linear change of coordinates on R

n so that
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D2v(r0, t0) is diagonal):

⎛

⎝
n∑

a,b=1

gab∂2
ab − ∂t

⎞

⎠ ln
√

1 + λ2
i =

(
1 + λ2

i

)
h2

i i i

+
∑

α �=i

2λi

λi − λα

(1 + λiλα) h2
ααi

+
∑

α �=i

[

1 + λ2
i + 2λi

λi − λα

(1 + λiλα)

]

h2
i iα

+
∑

α<β
α,β �=i

2λi

(
1 + λiλα

λi − λα

+ 1 + λiλβ

λi − λβ

)

h2
αβi

(26)

where hαβγ (r, t) is the second fundamental form of the embedding F(r, t) =
(r, Dv(r, t)) of R

n into R
2n .

Claim If λ1(r ′, t ′) = 1 at some point where t ′ > 0, then λ1(r, t) = 1 for all
(r, t) ∈ R

n × (0, t ′].
We will always assume that 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1 where the upper
and lower bounds are given by Lemma 2.2. Now suppose that 1 is an eigenvalue of

multiplicity k and consider the function f = ∑k
i=1 ln

√

1 + λ2
i . Then f is a smooth

function in a space-time neighborhood U × (t ′ − ε, t ′ + ε) of (r ′, t ′) (see [13]) and
attains a maximum value in U × (t ′ − ε, t ′ + ε) at (r ′, t ′). Now we want to compute
the evolution of f in U × (t ′ − ε, t ′ + ε). We illustrate how to do this first at some
point where λ1, ..., λk are all distinct. In this case we may apply (26) separately to
each term in f , and after some computation we obtain

⎛

⎝
n∑

a,b=1

gab∂2
ab − ∂t

⎞

⎠
k∑

i=1

ln
√

1 + λ2
i

=
∑

γ≤k

(
1 + λ2

γ

)
h2

γ γ γ + I + II

≥ I + II (27)

where

I =
∑

α<γ≤k

(
3 + λ2

α + 2λαλγ

)
h2

ααγ +
∑

α≤k<γ

3λα − λγ + λ2
α

(
λα + λγ

)

λα − λγ

h2
ααγ

+
∑

α<γ≤k

(
3 + λ2

γ + 2λγ λα

)
h2

γ γα +
∑

α≤k<γ

2λα

(
1 + λαλγ

)

λα − λγ

h2
γ γα
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II = 2
∑

α<β<γ≤k

(
3 + λαλβ + λβλγ + λγ λα

)
h2

αβγ

+ 2
∑

α<β≤k<γ

[

1 + λαλβ + λβ

(
1 + λβλγ

λβ − λγ

)

+ λα

(
1 + λαλγ

λα − λγ

)]

h2
αβγ

+ 2
∑

α≤k<β<γ

λα

(
1 + λαλβ

λα − λβ

+ 1 + λαλγ

λα − λγ

)

h2
αβγ (28)

where I corresponds to summing the second and third terms on the right hand side
of (26) for i = 1, ..., k and II corresponds to summing the fourth term on the right
hand side of (26) for i = 1, ..., k. Our derivation above only applies at a point where
λ1, ..., λk are all distinct, and thus cannot be used directly to calculate the evolution of

f = ∑k
i=1 ln

√

1 + λ2
i at (r ′, t ′). We now remove this assumption on the distinctness

of eigenvalues by the approximation argument below.
Consider the function

vm(r, t) := v(r, t) − 1

m

k∑

j=1

jr2
j .

Then for sufficiently large m, in some space-time neighborhood of (r ′, t ′) which we
still denote as U ×(t ′−ε, t ′+ε) the eigenvalues λi,m of D2vm will be between −1 and

1 while the k largest eigenvalues will be non-repeated. Thus the function ln
√

1 + λ2
i,m

is smooth in U × (t ′ − ε, t ′ + ε) for each i . On the other hand, by (1) and the definition
vm we have

∂vm

∂t
=

n∑

i=1

arctan λi,m + wm (29)

where

wm =
n∑

i=1

arctan λi (v) −
n∑

i=1

arctan λi (vm).

Note that wm approaches zero smoothly and uniformly on compact subsets of U ×
(t ′ − ε, t ′ + ε) as m → ∞. By (29), the above referenced derivation of (26) and by
(28) we have

⎛

⎝
n∑

a,b=1

gab
m ∂2

ab − ∂t

⎞

⎠
k∑

i=1

ln
√

1 + λ2
i,m

=
∑

γ≤k

(
1 + λ2

γ,m

)
h2

γ γ γ + Im + IIm
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+
k∑

i=1

λi,m

1 + λ2
i,m

(wm)i i

≥
k∑

i=1

λi,m

1 + λ2
i,m

(wm)i i (30)

in U × (t ′ − ε, t ′ + ε) where Im is obtained by replacing λα and λβ in I by λα,m and
λβ,m respectively, and IIm is obtained similarly. We have also used the fact that Im, IIm

is nonnegative. Letting m → ∞, we conclude that (
∑n

a,b=1 gab∂2
ab − ∂t ) f ≥ 0 on

U × (t ′ − ε, t ′ + ε) and thus f = k ln
√

2 in U × (t ′ − ε, t ′] by the strong maximum
principle (Theorem 1, p. 34, [6]).

Now for any (r ′′, t ′′) ∈ R
n × (0, t ′] let γ (s) : [0, 1] be a line segment in space-time

such that γ (0) = (r ′, t ′) and γ (1) = (r ′′, t ′′). Let A be the set of s̄ ∈ [0, 1] for which
λ1(γ (s)) = 1 for all s ∈ [0, s̄]. Then the above argument shows that A is in fact open
and non-empty. Moreover, A is clearly closed by continuity and we then conclude that
A = [0, 1] and in particular, λ1(r ′′, t ′′) = 1. This established the claim and thus the
first statement in the conclusion of the lemma.

By considering the solution −v(r, t) to (1), we likewise conclude the second state-
ment in the conclusion of the lemma is true. 
�
Lemma 4.2 Let v(r, t) be a solution to (1) as in Theorem 1.1 and assume that −In <

D2v(r, t) ≤ In for all r ∈ R
n and t ∈ [0,∞). Then either D2v(r, t) < In for all

r and t > 0 or there exist coordinates r1, ..., rn on R
n in which we have v(r, t) =

r2
1
2 + · · · + r2

k
2 + w(rk+1, ..., rn, t) on R

n × [0,∞) where −In < D2w(r, t) < In for
all r, t > 0 and k > 1.

Proof We begin by establishing the following claims.

Claim 1 If v11(r ′, t ′) = 1 at some point (r ′, t ′) with t ′ > 0, then v11 = 1 on
R

n × (0, t ′].
By a rotation of coordinates on R

n , we may assume that D2v(r ′, t ′) is diagonal.
Since D2v > −In there exists some space time neighborhood U1 × (t ′ − ε, t ′ +
ε) of (r ′, t ′) in which −(1 − δ)In ≤ D2v(r, t) ≤ In for some ε, δ > 0. By (16)
it follows that for some choice of σ ∈ (0, π/4), we may change coordinates on
C

n (from w j to z j ) using (15) so that the local family of Lagrangian graphs L =
{(r, Dv(r, t))|(r, t) ∈ U1 × (t ′ − ε, t ′ + ε)} is represented in the new coordinates as
L = {(x, Du(x, t))|(x, t) ∈ U2 × (t ′ − ε, t ′ + ε)} for some space time neighborhood
U2 × (t ′ − ε, t ′ + ε) in which 0 ≤ D2u(x, t) ≤ M In with u11(x ′, t ′) = M at some
interior point (x ′, t ′) with respect to coordinates x1, ..., xn given by (15). It follows
from (18) and the strong maximum principle (Theorem 1, p.34, [6]) that u11 = M in
U2 × [t ′ − ε, t ′] and thus v11 = 1 in U1 × [t ′ − ε, t ′].

Now for any (r ′′, t ′′) ∈ R
n × (0, t ′] and let γ (s), s ∈ [0, 1], be a line segment in

space-time such that γ (0) = (r ′, t ′) and γ (1) = (r ′′, t ′′). Let A be the set of s̄ ∈ [0, 1]
for which v11(γ (s)) = 1 for all s ∈ [0, s̄]. Then the above argument shows that A is
in fact open and non-empty. Moreover, A is clearly closed by continuity and we then
conclude that A = [0, 1] and in particular, v11(r ′′, t ′′) = 1. This established the claim.
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Claim 2 In Claim 1, we in fact have v(r, t) = r2
1
2 +w(r2, ..., rn, t) on R

n ×[0,∞).

Integrating v11 twice with respect to r1 gives

v(r, t) = r2
1

2
+ r1w1(r2, ..., rn, t) + w2(r2, ..., rn, t)

on R
n × (0, t ′] for some functions w1 and w2. It follows that w1 must in fact be

linear with respect to r2, ..., rn as otherwise D2v would be unbounded on R
n × (0, t ′]

thus contradicting our assumption on that −In < D2v(r, t) ≤ In for all r and t . Our
assumption that D2v(r ′, t ′) is diagonal then implies that w1 must in fact be constant
in space. Finally, as the right hand side of (1) is uniformly bounded in absolute value
from which we further conclude that is in fact constant in time as well and thus after
a possible translation of the coordinate r1 we have

v(r, t) = r2
1

2
+ w3(r2, ..., rn, t)

on R
n × (0, t ′] for some function w3. Now observe that up to the addition of a time

dependent constant, w3(r2, ..., rn, t) solves (1) on R
n−1 × [0, t ′] and by Theorem 1.1

this extends to a smooth longtime solution which we still denote as w3(r2, ..., rn, t). In

particular
r2

1
2 +w3(r2, ..., rn, t) is also a longtime solution to (1) and it follows from the

uniqueness result in [2] that the above representation of v(r, t) holds on R
n × [0,∞).

The lemma follows by iterating the arguments above starting with the function w

in Claim 2. 
�
Proof of Theorem 1.2 Now let u0 be a C1,1 locally weakly convex function as in
Theorem 1.2. Using σ = π/4 in (15) to change coordinates on C

n and noting (16)
(see also [15]), we represent the Lagrangian graph L = {(x, Du0(x))|x ∈ R

n} in the
coordinates z j as L = {(r, Dv0(r))|r ∈ R

n} in the coordinates w j where v0 satisfies
−In ≤ D2v0 < In . Let v(r, t) be the long time solution to (1) with initial condition v0
given by Theorem 1.1. Then from Lemmas 2.2 and 4.1 we have −In ≤ D2v(r, t) < In

for all r, t ≥ 0. Moreover, applying Lemma 4.2 to −v(r, t) we further conclude that
either −In < D2v(r, t) < In for all r ∈ R

n and t > 0 or

v(r, t) = −r2
1

2
+ · · · − r2

k

2
+ w(rk+1, ..., rn, t) (31)

on R
n × [0, T ) where k > 0 and −In < D2w(r, t) < In for all r ∈ R

n, t ≥ 0. Let
Lt = {(r, Dv(r, t))|(r, t) ∈ R

n × [0,∞)} be the corresponding family of Lagrangian
graphs in C

n . Then by (16), Lt will correspond to a family of Lagrangian graphs
{(x, Du(x, t))|(x, t) ∈ R

n × [0,∞)} such that u(x, t) is a longtime solution to (1)
satisfying (i) in Theorem 1.2. Now note that as v(x, t) satisfies (ii) and (iii) in Theorem
1.1 it also satisfies (ii) and (iii) in Theorem 1.2. It follows that u(x, t) must then
also satisfy (ii) and (iii) in Theorem 1.2. The uniqueness of u(x, t) follows from the
uniqueness result in [2]. 
�
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Proof of Theorem 1.3 Let u0 be a locally C1,1 function satisfying (3). Then u0 is
automatically convex and by Theorem 1.2 there exists a longtime convex solution
u(x, t) to (1) with initial condition u0. In particular, note that u(x, t) satisfies (ii) and
(iii) in Theorem 1.2. It will be convenient here to define the operator

	(A) :=
n∑

i=1

arctan λi (A)

on symmetric real n × n matrices A where the λi ’s are the eigenvalues of A. A direct
computation shows that as u(x, t) solves (1), 	(D2u(x, t)) evolves according to

∂t	 =
n∑

i, j=1

gi j∂2
i j	. (32)

We would like to use (32) and the maximum principle (Theorem 9, p.43, [6]) to con-
clude that (3) is thus preserved for all t > 0. One difficulty here is that 	(D2u(x, t))
is not necessarily continuous at t = 0. Another difficulty is that D2u(x, t) is not
neccesarily bounded above, and thus the symbol gi j is not necessarily bounded below
(by a positive constant) on R

n for t > 0. To overcome this we will need to transform
and approximate our solution u(x, t) through the following sequence of steps.

Step 1 (small rotation) We begin by using (15), with σ = σ0 ∈ (0, π/2) to be
chosen in a moment, to change coordinates on C

n and represent the Lagrangian graphs
Lt = {(x, Du(x, t))|x ∈ R

n} in the coordinates z j as Lt = {(r, Dv(r, t))|r ∈ R
n} in

the coordinates w j for some family v(r, t) with (r, t) ∈ R
n ×[0,∞). By (16) we have

	(D2v(r, 0)) ≥ (n − 1)
π

2
− nσ0 (33)

and by (16) and the convexity of u(x, t) we have

− K (σ0) ≤ D2v(r, t) ≤ 1/K (σ0) (34)

for all r, t where K (σ0) → 0 as σ0 → 0.
Step 2 (approximation) Let vk

0 be the sequence of approximations of v0 = v(r, 0)

constructed in Lemma 2.1. Then for each k we have −K (σ0) ≤ D2vk
0 ≤ 1/K (σ0) by

(34). Moreover, supr∈Rn |Dlvk
0(r)| < ∞ for all l ≥ 3. Now we show that

	(D2vk
0) ≥ (n − 1)

π

2
− nσ0 (35)

is satisfied for all k.
Fix r ∈ R

n and k. By (12) we have

D2vk
0(r) =

∫

Rn

D2v0(y)K

(

r, y,
1

k

)

dy.
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Approximating by the Riemann sums, we can find a double sequence {pi j } ⊂ R
n and

a sequence { ji } ⊂ Z
+ for which

D2vk
0(r) = lim

i→∞

ji∑

j=1

D2v0(pi j )K

(

r, pi j ,
1

k

)
1

in
. (36)

On the other hand,

∫

Rn

K

(

r, y,
1

k

)

dy = 1

and we may then further assume

Bi :=
ji∑

j=1

K

(

r, pi j ,
1

k

)
1

in
→ 1

as i → ∞. By (36) we then have

D2vk
0(r) = lim

i→∞

ji∑

j=1

D2v0(pi j )Ai j (37)

where Ai j = K
(
r, pi j ,

1
k

)
/(in Bi ) and in particular

∑ ji
j=1 Ai j = 1 while Ai j ≥ 0 for

all i, j . Now since (n − 1)π
2 − nσ0 > (n − 2)π

2 by our choice of σ0, the results in [16]
assert that the set of symmetric n × n matrices A for which 	 ≥ (n − 1)π

2 − nσ0 is
a convex set S in the space of real n × n symmetric matrices. This, (37) and the fact
that D2v0(pi j ) ∈ S for all i, j imply D2vk

0(r) ∈ S. Thus (35) holds for each k.
Step 3 (π/4 rotation) Now we use (15) as in Step 1, but with σ = π/4, to obtain

from v(r, t) and the vk
0(r)’s a corresponding family w(p, t) and sequence wk

0(p). In
particular, w(p, t) is a longtime solution to (1) and the wk

0’s will satisfy (2) in Theorem
1.1, provided σ0 > 0 is chosen sufficiently small and we will assume such a choice of
σ0 has been made. They will also satisfy

	(D2wk
0(p)) ≥ (n − 1)

π

2
− nσ0 − n

π

4
(38)

by (16). Thus for each k, Theorem 1.1 gives a longtime solution wk(p, t) to (1) with ini-
tial condition wk

0 satisfying supr∈Rn |Dlwk(p, t)| < ∞ for all l ≥ 2 and t ≥ 0.

It follows from (38), (32), (16) and the weak maximum principle (Theorem 9, p.43,
[6]) that

	(D2wk(p, t)) ≥ (n − 1)
π

2
− nσ0 − n

π

4
(39)
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for all (p, t). Now using Theorem 1.1 and arguing as in the beginning of the proof
of Theorem 1.1, we see that some subsequence of the wk(p, t)’s converge smoothly
and uniformly on compact subsets of R

n × (0,∞) to a smooth limit solution to (1)
on R

n × (0,∞). By the uniqueness result in [2] and the definition of wk
0, we see this

limit solution is in fact the solution w(p, t). In particular, w(p, t) must satisfy (39)
for all (p, t).

Rotating back to the original coordinates, we conclude from the last statement above
that u(x, t) must satisfy (3) for all t ≥ 0. Thus either (3) holds with strict inequality
for all t > 0 or there exists some (x ′, t ′) ∈ R

n × (0,∞) at which equality holds in (3)
in which case (32) and the strong maximum principle (Theorem 1, p. 34, [6]) give

	(D2u(x, t)) = (n − 1)
π

2
(40)

in R
n × (0, t ′]. In this case, integrating (1) in t and noting the continuity of u(x, t) in

t (for all t ≥ 0) we obtain

u(x, t) = u(x, t ′) + (n − 1)
π

2
(t − t ′)

for all t ∈ [0, t ′], and thus for all t ∈ [0,∞) by the uniqueness result in [2]. In
particular, D2u(x, t) satisfies (40) for all t ≥ 0. On the other hand, u(x, t ′) is smooth
in x and it follows that u0(x) = u(x, 0) is a smooth convex solution to the special
Lagrangian equation 	(D2u0(x)) = (n − 1)π

2 on R
n and is thus quadratic by the

Bernstein theorem in [15]. This concludes the proof of Theorem 1.3. 
�
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