
Math. Ann. (2013) 356:1247–1282
DOI 10.1007/s00208-012-0871-4 Mathematische Annalen

Heegner cycles and higher weight specializations of big
Heegner points

Francesc Castella

Received: 21 September 2012 / Revised: 23 October 2012 / Published online: 7 December 2012
© Springer-Verlag Berlin Heidelberg 2012

Abstract Let f be a p-ordinary Hida family of tame level N , and let K be an
imaginary quadratic field satisfying the Heegner hypothesis relative to N . By taking
a compatible sequence of twisted Kummer images of CM points over the tower of
modular curves of level �0(N )∩�1(ps), Howard has constructed a canonical class Z
in the cohomology of a self-dual twist of the big Galois representation associated to
f . If a p-ordinary eigenform f on �0(N ) of weight k > 2 is the specialization of f at
ν, one thus obtains from Zν a higher weight generalization of the Kummer images of
Heegner points. In this paper we relate the classes Zν to the étale Abel-Jacobi images
of Heegner cycles when p splits in K .
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1248 F. Castella

1 Introduction

Fix a prime p > 3 and an integer N > 4 such that p � Nφ(N ). Let

fo =
∑

n>0

anqn ∈ Sk(X0(N ))

be a p-ordinary newform of even weight k = 2r ≥ 2 and trivial nebentypus. Thus fo

is an eigenvector for all the Hecke operators Tn with associated eigenvalues an , and
ap is a p-adic unit for a choice of embeddings ι∞ : Q ↪→ C and ιp : Q ↪→ Qp that
will remain fixed throughout this paper. Also let O denote the ring of integers of a
(sufficiently large) finite extension L/Qp containing all the an .

For s > 0, let Xs be the compactified modular curve of level

�s := �0(N ) ∩ �1(ps),

and consider the tower

· · · → Xs
α−→ Xs−1 → · · ·

with respect to the degeneracy maps described on the non-cuspidal moduli by

(E, αE , πE ) �→ (E, αE , p · πE ),

where αE denotes a cyclic N -isogeny on the elliptic curve E , and πE a point of E of
exact order ps . The group (Z/psZ)× acts on Xs via the diamond operators

〈d〉 : (E, αE , πE ) �→ (E, αE , d · πE )

compatibly withα under the reduction (Z/psZ)× → (Z/ps−1Z)×. Set� := 1+ pZp.
Letting Js be the Jacobian variety of Xs , the inverse limit of the system induced by
Albanese functoriality,

· · · → Ta p(Js)⊗Zp O→ Ta p(Js−1)⊗Zp O→ · · · , (1.1)

is equipped with an action of the Iwasawa algebras 	̃O := O[[Z×p ]] and

	O := O[[�]].

Let hs be the O-algebra generated by the Hecke operators T
 (
 � N p), U
 := T

(
|N p), and the diamond operators 〈d〉 (d ∈ (Z/psZ)×) acting on the space Sk(Xs)

of cusp forms of weight k and level �s . Hida’s ordinary projector

eord := lim
n→∞U n!

p
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Specializations of big Heegner points 1249

defines an idempotent of hs , projecting to the maximal subspace of hs where Up

acts invertibly. We make each hs into a 	̃O-algebra by letting the group-like element
attached to z ∈ Z×p act as zk−2〈z〉.

Taking the projective limit with respect to the restriction maps induced by the natural
inclusion Sk(Xs−1) ↪→ Sk(Xs), we obtain a 	̃O-algebra

hord := lim←−
s

eordhs (1.2)

which can be seen to be independent of the weight k ≥ 2 used in its construction.
After a highly influential work [16] of Hida, one can associate with fo a certain

local domain I quotient of hord, finite flat over 	O, with the following properties. For
each n, let an ∈ I be the image of Tn under the projection hord → I, and consider the
formal q-expansion

f =
∑

n>0

anqn ∈ I[[q]].

We say that a continuous O-algebra homomorphism ν : I→ Qp is an arithmetic
prime if there is an integer kν ≥ 2, called the weight of ν, such that the composition
�→ I× → Q

×
p agrees withγ �→ γ kν−2 on an open subgroup of� of index psν−1 ≥ 1.

Denote by Xarith(I) the set of arithmetic primes of I, which will often be seen as sitting
inside Spf(I)(Qp). If ν ∈ Xarith(I), Fν will denote its residue field. Then:

• for every ν ∈ Xarith(I), there exists an ordinary p-stabilized newform1

fν ∈ Skν (Xsν )

such that ν(f) ∈ Fν[[q]] gives the q-expansion of fν ;
• if sν = 1 and kν ≡ k (mod 2(p − 1)), there exists a normalized newform f�ν ∈

Skν (X0(N )) such that

fν(q) = f�ν (q)−
pkν−1

ν(ap)
f�ν (q

p); (1.3)

• there exists a unique νo ∈ Xarith(I) such that fo = f�νo .

In particular, after “p-stabilization” (1.3), the form fo fits in the p-adic family f .
Similarly for the associated Galois representation V fo : the continuous hord-linear

action of the absolute Galois group GQ on the module

T := Tord ⊗hord I, where Tord := lim←−
s

eord(Ta p(Js)⊗Zp O), (1.4)

gives rise to a “big” Galois representation ρf : GQ → Aut(T) such that

ν(ρf ) ∼= ρ∗fν for every ν ∈ Xarith(I),

1 As defined in [29, (1.3.7)].
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1250 F. Castella

where ρ∗fν is the contragredient of the (cohomological) p-adic Galois representation
ρfν : GQ → Aut(Vfν ) attached to fν by Deligne; in particular, one recovers ρ∗fo

from
ρf by specialization at νo.

Assume from now on that the residual representation ρ̄ fo is irreducible; then T can
be shown to be free of rank 2 over I. (See [23, Théorème 7].) Let K be an imaginary
quadratic field with ring of integers OK containing an ideal N ⊂ OK with

OK /N ∼= Z/NZ, (1.5)

and denote by H the Hilbert class field of K . Under this Heegner hypothesis relative to
N (but with no extra assumptions on the prime p), the work [19] of Howard produces
a compatible sequence U−s

p ·Xs of cohomology classes with values in a certain twist
of the ordinary part of (1.1), giving rise to a canonical “big” cohomology class X, the
big Heegner point (of conductor 1), in the cohomology of a self-dual twist T† of T.
Moreover, if every prime factor of N splits in K , it follows from his results that the class

Z := CorH/K (X)

lies in Nekovář’s extended Selmer group H̃1
f (K ,T†). In particular, for every ν ∈

Xarith(I) with sν = 1 and kν ≡ k (mod 2(p − 1)) as above, the specialization Zν
belongs to the Bloch-Kato Selmer group H1

f (K , Vf�ν
(kν/2)) of the self-dual repre-

sentation T† ⊗I Fν ∼= Vf�ν
(kν/2). The classes Zν may thus be regarded as a natural

higher weight analogue of the Kummer images of Heegner points on modular Abelian
varieties (associated with weight 2 eigenforms).

But for any of the above f�ν , one has an alternate (and completely different!) method
of producing such a higher weight analogue. Briefly, if kν = 2rν > 2, associated to any
elliptic curve A with CM by OK , there is a null-homologous cycle �heeg

A,rν
, a so-called

Heegner cycle, on the (2rν − 1)-dimensional Kuga–Sato variety Wrν , giving rise to
an H -rational class in the Chow group CHrν+1(Wrν )0 with Q-coefficients. Since the
representation Vf�ν

(rν) appears in the étale cohomology of Wrν :

H2rν−1
ét (W rν ,Qp)(rν)

π
f�ν−−→ Vf�ν

(rν),

by taking the images of the cycles �heeg
A,rν

under the p-adic étale Abel-Jacobi map

�ét
H : CHrν+1(Wrν )0(H)→ H1(H, H2rν−1

ét (W rν ,Qp)(rν))

and composing with the map induced by πf�ν
on H1’s, we may consider the classes

�ét
f�ν ,K

(�
heeg
rν ) := CorH/K (πf�ν

�ét
H (�

heeg
A,rν

)).

By the work [28] of Nekovář, these classes are known to lie in the same Selmer
group as Zν , and the question of their comparison thus naturally arises.
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Specializations of big Heegner points 1251

Main Theorem (Thm. 5.11) Assume that p splits in K and that Z is not I-torsion.
Then for any ν ∈ Xarith(I) of weight kν = 2rν > 2 with kν ≡ k (mod 2(p − 1)) and
trivial character, we have

〈Zν,Zν〉K =
(

1− prν−1

ν(ap)

)4 〈�ét
f�ν ,K

(�
heeg
rν ),�ét

f�ν ,K
(�

heeg
rν )〉K

u2(4D)rν−1 ,

where 〈, 〉K is the cyclotomic p-adic height pairing on H 1
f (K , Vf�ν

(rν)), u := |O×K |/2,
and −D < 0 is the discriminant of K .

Thus assuming the non-degeneracy of the p-adic height pairing, it follows that the
étale Abel-Jacobi images of Heegner cycles are p-adically interpolated by Z. We also
note that Z is conjecturally always not I-torsion ([19, Conj. 3.4.1]), and that by [18,
Cor. 5] this conjecture can be verified in any given case by exhibiting the non-vanishing
of an appropriate L-value (a derivative, in fact).

This paper is organized as follows. Section 2 is aimed at proving an expression for
the formal group logarithms of ordinary CM points on Xs using Coleman’s theory of
p-adic integration. Our methods here are drawn from [1, Sect. 4], which we extend in
weight 2 to the case of level divisible by an arbitrary power of p, but with ramification
restricted to a potentially crystalline setting. Not quite surprisingly, this restriction
turns out to make our computations essentially the same as theirs, and will suffice for
our purposes.

In Sect. 3 we recall the generalised Heegner cycles and the formula for their p-adic
Abel-Jacobi images from loc.cit., and discuss the relation between these and the more
classical Heegner cycles.

In Sect. 4 we deduce from the work [30] of Ochiai a “big” logarithm map that will
allow as to move between different weights in the Hida family.

Finally, in Sect. 5 we prove our main results. The key observation is that, when
p splits in K , the combination of CM points on Xs taken in Howard’s construction
appears naturally in the evaluation of the critical twist of a p-adic modular form at
a canonical trivialized elliptic curve. The expression from Sect. 2 thus yields, for
infinitely many ν of weight 2, a formula for the p-adic logarithm of the localization
of Zν in terms of certain values of a p-adic modular form of weight 0 associated
with fν (Thm. 5.8). When extended by p-adic continuity to an arithmetic prime ν of
higher even weight, this expression is seen to agree with the formula from Sect. 3, and
by the interpolation properties of the big logarithm map it corresponds to the p-adic
logarithm of the localization of Zν . Our main results follow easily from this.

Finally, we note that an extension of the results in this paper, and in particular of
the Main Theorem above, has a number of arithmetic applications arising from the
connection with the theory of p-adic L-functions. (See [5].)

2 Preliminaries

2.1 p-Adic modular forms

To avoid some issues related to the representability of certain moduli problems, in
this section we change notations from the Introduction, letting Xs be the compactified
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1252 F. Castella

modular curve of level �s := �1(N ps), viewed as a scheme over Spec(Qp). Let
π : Es → Xs be the universal generalized elliptic curve over Xs , and let

ωXs
:= π∗�1

Es/Xs
(log Zs)

be the pushforward of the invertible sheaf of relative differentials on Es/Xs with
possible log-poles along the inverse image of the cuspidal subscheme Zs ⊂ Xs .

Algebraically, H0(Xs, ω
⊗2
Xs
) gives the space of modular forms of weight 2 and level

�s (defined over Qp). Consider the complex

�•Xs/Qp
(log Zs) : 0 −→ OXs

d−−→ �1
Xs/Qp

(log Zs) −→ 0 (2.1)

of sheaves on Xs . The algebraic de Rham cohomology of Xs

H1
dR(Xs/Qp) := H1(Xs,�

•
Xs/Qp

(log Zs))

is a finite-dimensional Qp-vector space equipped with a Hodge filtration

0 ⊂ H0(Xs,�
1
Xs/Qp

(log Zs)) ⊂ H1
dR(Xs/Qp),

and by the Kodaira–Spencer isomorphism ω⊗2
Xs
∼= �1

Xs/Qp
(log Zs), every cusp form

f ∈ S2(Xs) (in particular) defines a cohomology class ω f ∈ H1
dR(Xs/Qp).

Let X be the complete modular curve of level �1(N ), also viewed over Spec(Qp),
and consider the subspaces of the associated rigid analytic space X an:

Xord ⊂ X<1/(p+1) ⊂ X<p/(p+1) ⊂ X an.

To define these, let X/Zp be the canonical integral model of X over Spec(Zp), and
let XFp := X×Zp Fp denote its special fiber. The supersingular points SS ⊂ XFp (Fp)

is the finite set of points corresponding to the moduli of supersingular elliptic curves
(with �1(N )-level structure) in characteristic p. Let E p−1 be the Eisenstein series of

weight p − 1 and level 1, seen as a global section of the sheaf ω⊗(p−1)
X . (Recall that

we are assuming p ≥ 5.) The reduction of E p−1 to XFp is the Hasse invariant, which

defines a section of the reduction of ω⊗(p−1)
X with SS as its locus of (simple) zeroes.

If x ∈ X (Qp), let x̄ ∈ XFp (Fp) denote its reduction. Each point x̄ ∈ SS is smooth in
XFp , and the ordinary locus of X .

Xord := X an �
⋃

x̄∈SS

Dx̄

is defined to be the complement of their residue discs Dx̄ ⊂ X an. The function
|E p−1(x)|p defines a local parameter on Dx̄ , and with the normalization |p|p = p−1,
X<1/(p+1) (resp. X<p/(p+1)) is defined to be complement in X an of the subdiscs of
Dx̄ where |E p−1(x)|p ≤ p−1/(p+1) (resp. |E p−1(x)|p ≤ p−p/(p+1)), for all x̄ ∈ SS.
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Specializations of big Heegner points 1253

Using the canonical subgroup HE (of order p) attached to every elliptic curve E
corresponding to a closed point in X<p/(p+1), the Deligne–Tate map

φ0 : X<1/(p+1)→ X<p/(p+1)

is defined by sending E �→ E/HE (with the induced action on the level structure)
under the moduli interpretation. This map is a finite morphism which by definition
lifts to characteristic zero the absolute Frobenius on XFp . (See [21, Thm. 3.1].)

For every s > 0, the Deligne–Tate map φ0 can be iterated s − 1 times on the
open rigid subspace X<p2−s/(p+1) of X an where |E p−1(x)|p > p−p2−s/(p+1). Letting
αs : Xs → X be the map forgetting the “�1(ps)-part” of the level structure, define

W1(ps) ⊂ X an
s

to be the open rigid subspace of Xs whose closed points correspond to triples
(E, αE , πE ) whose image under αs lands inside X<p2−s (p+1) and are such that πE

generates the canonical subgroup of E of order ps (as in [4, Def. 3.4]).
Define W2(ps) ⊂ X an

s is the same manner, replacing p2−s/(p+1) by p1−s/(p+1)
in the definition of W1(ps). Then we obtain a lifting of Frobeniusφ = φs on Xs making
the diagram

commutative by sending a point x= (E, αE , ıE )∈W2(ps), where ıE :µps ↪→ E[ps]
is an embedding giving the �1(ps)-level structure on E , to x ′ = (φ0 E, φ0αE , ı ′E ),
where ı ′E is determined by requiring that αs(x ′) lands in X<p2−s/(p+1) and for each
ζ ∈ µps − {1}, ı ′E (ζ ) = φ0 Q if ıE (ζ ) = pQ. (Cf. [11, Sect. B.2].)

Let k ∈ Z, and denote by ωXan
s

the rigid analytic sheaf on X an
s deduced from

ωXs
. Let Is := {v ∈ Q : 0 ≤ v < p2−s/(p + 1)}, and for p−v ∈ Is define

the affinoid subdomain Xs(v) of X an
s inside W1(ps) whose closed points x satisfy

|E p−1(x)|p ≥ p−v . Then Xs(0) is the connected component of the ordinary locus of
Xs containing the cusp∞. The space of p-adic modular forms of weight k and level
�s (defined over Qp) is the p-adic Banach space

Mord
k (Xs) := H0(Xs(0), ω

⊗k
Xan

s
),

and the space of overconvergent p -adic modular forms of weight k and level �s is
the p-adic Fréchet space

M rig
k (Xs) := lim←−

v

H0(Xs(v), ω
⊗k
Xan

s
),
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1254 F. Castella

where the limit is with respect to the natural restriction maps as v ∈ Is increasingly
approaches p2−s/(p + 1). By restriction, a classical modular form in H0(Xs, ω

⊗k
Xs
)

defines an (obviously) overconvergent p-adic modular form of the same weight an
level. Moreover, the action of the diamond operators on Xs gives rise to an action of
(Z/psZ)× on the spaces of p-adic modular forms which agrees with the action on
H0(Xs, ω

⊗k
Xs
) under restriction.

We say that a ring R is a p-adic ring if the natural map R → lim←− R/pn R is an
isomorphism. For varying s > 0, the data of a compatible sequence of embeddings
µps ↪→ E as R-group schemes, amounts to the data of an embedding µp∞ ↪→ E[p∞]
of p-divisible groups, and also to the given of a trivialization of E over R, i.e. an
isomorphism

ıE : Ê → Ĝm

of the associated formal groups. The space M(N ) of Katz p-adic modular functions
of tame level N (over Zp) is the space of functions f on trivialized elliptic curves
with �1(N )-level structure over arbitrary p-adic rings, assigning to the isomorphism
class of a triple (E, αE , ıE ) over R a value f (E, αE , ıE ) ∈ R whose formation is
compatible under base change. If R is a fixed p-adic ring, by only considering p-adic
rings which are R-algebras, we obtain the notion of Katz p-adic modular functions
defined over R, forming the space M(N )⊗̂Zp R which will also be denoted by M(N )

with an abuse of notation.
The action of z ∈ Z×p on a trivialization gives rise to an action of Z×p on M(N ):

〈z〉 f (E, αE , ıE ) := f (E, αE , z · ıE ),

and given a character χ ∈ Homcont(Z×p , R×), we say that f ∈ M(N ) has weight-

nebentypus χ if 〈z〉 f = χ(z) f for all z ∈ Z×p . If k is an integer, denoting by zk the
k-th power character on Z×p , the subspace Mord

k (N ps, ε) of Mord
k (Xs) consisting of

p-adic modular forms with nebentypus ε : (Z/psZ)× → R× can be recovered as

Mord
k (N ps, ε) ∼= { f ∈M(N ) : 〈z〉 f = zkε(z) f, for all z ∈ Z×p }. (2.2)

Since it will play an important role later, we next recall from [14, Sect. III.6.2] the
definition in terms of moduli of the twist of p-adic modular forms by characters of
not necessarily finite order. Let R be a p-adic ring, and let (E, αE , ıE ) be a trivialized
elliptic curve with �1(N )-level structure over R. For each s > 0, consider the quotient
E0 := E/ ı−1

E (µps ), and let ϕ0 : E → E0 denote the projection. Since p � N , ϕ0
induces a �1(N )-level structure αE0 on E0, and since ker(ϕ0) ∼= µps , the dual ϕ̌0 :
E0 → E is étale, inducing an isomorphism of the associated formal groups. Thus (with
a slight abuse of notation) ıE0 := ıE ◦ϕ̌0 : Ê0

∼−→ Ĝm is a trivialization of E0, and since
we have an embedding j : Z/psZ ∼= ker(ϕ̌0) ↪→ E0[ps], we deduce an isomorphism

E0[ps] ∼= µps ⊕ Z/psZ
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Specializations of big Heegner points 1255

which we use to bijectively attach a ps-th root of unity ζC to every étale subgroup
C ⊂ E0[ps] of order ps , in such a way that 1 is attached to ker(ϕ̌0).

Now for f ∈ M(N ) and a ∈ Zp, define f ⊗ 1a+ps Zp to be the rule on trivialized
elliptic curves given by

f ⊗ 1a+ps Zp (E, αE , ıE ) = 1

ps

∑

C

ζ−a
C · f (E0/C, αC , ıC ) (2.3)

where the sum is over the étale subgroups C ⊂ E0[ps] of order ps , and where αC

(resp. ıC ) denotes the�1(N )-level structure (resp. trivialization) on the quotient E0/C
naturally induced by αE0 (resp. ıE0 ).

Lemma 2.1 The assignment a + psZp �
(

f �→ f ⊗ 1a+ps Zp

)
gives rise to an

EndRM(N )-valued measure μGou on Zp.

Proof Let
∑

n anqn be the q-expansion of f , i.e. the value that it takes at the triple
(Tate(q), αcan, ıcan) = (Gm/qZ, ζN ,µp∞ ↪→ Gm/qZ) over the p-adic completion of
R((q)). By the q-expansion principle, the claim follows immediately from the equality

f ⊗ 1a+ps Zp (q) =
∑

n≡a mod ps

anqn,

which is shown by adapting the arguments in [14, p. 102]. ��
Definition 2.2 (Gouvêa) Let f ∈ M(N ) and χ : Zp → R be any continuous multi-
plicative function. The twist of f by χ is

f ⊗ χ :=
⎛

⎜⎝
∫

Zp

χ(x)dμGou(x)

⎞

⎟⎠ ( f ) ∈M(N ).

This operation is compatible with the usual character twist of Hecke eigenforms:

Lemma 2.3 Letχ : Z×p → R× be a continuous character extended by zero on pZp. If
f ∈M(N ) has q-expansion

∑
n anqn, then f ⊗χ has q-expansion

∑
n χ(n)anqn, and

if f has weight-nebentypus κ ∈ Homcts(Z×p , R×), then f ⊗χ has weight-nebentypus

χ2κ .

Proof See [14, Cor. III.6.8.i] and [14, Cor. III.6.9]). ��
In particular, twisting by the identity function of Zp we obtain an operator

d : M(N ) → M(N ) whose effect on q-expansions is q d
dq . For every k ∈ Z, we

see from (2.2) and Lemma 2.3, that this restricts to a map

d : Mord
k (Xs)→ Mord

k+2(Xs)

which increases the weight by 2 and preserves the nebentypus. Moreover, for k = 0,
the arguments in [9, Prop. 4.3] can be adapted to show that d restricts to a linear map
M rig

0 (Xs)→ M rig
2 (Xs), viewing M rig

k (Xs) ↪→ Mord
k (Xs) by restriction.
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1256 F. Castella

2.2 Comparison isomorphisms

Let ζs be a primitive ps-th root of unity, and let F be a finite extension of Qp(ζs) over
which Xs acquires stable reduction, i.e. such that the base extension Xs×Qp F admits
a stable model over the ring of integers OF of F . For the ease of notation, from now
on we will denote Xs ×Qp F (as well as the associated rigid analytic space) simply
by Xs .

Let Xs be the minimal regular model of Xs over OF , and denote by F0 the maximal
unramified subfield of F . The work [17] of Hyodo–Kato endows the F-vector space
H1

dR(Xs/F) with a canonical F0-structure

H1
log−cris(Xs) ↪→ H1

dR(Xs/F) (2.4)

equipped with a semi-linear Frobenius operator ϕ.
After the proof [33] of the Semistable conjecture of Fontaine–Jannsen, these struc-

tures are known to agree with those attached by Fontaine’s theory to the p-adic G F -
representation

Vs := H1
ét(Xs,Qp). (2.5)

More precisely, since Xs has semistable reduction, Vs is semistable in the sense of
Fontaine, and there is a canonical isomorphism Dst(Vs) −→ H1

log−cris(Xs), inducing
an isomorphism

DdR(Vs)
∼−→ H1

dR(Xs/F) (2.6)

as filtered ϕ-modules after extension of scalars to F .
Consider the étale Abel-Jacobi map CH1(Xs)0(F) → H1(F, Vs(1)) constructed

in [28], which in this case agrees with the usual Kummer map

δF : Js(F)→ H1(F,Qp ⊗ Ta p(Js)),

where Js = Pic0(Xs) is the connected Picard variety of Xs . (See [loc.cit., Ex. (2.3)]).
Let g ∈ S2(Xs) be a newform with primitive nebentypus of p-power conductor, let

Vg the p-adic Galois representation attached to g, which is equipped with a Galois-
equivariant projection Vs → Vg , and let V ∗g be the representation contragredient to
Vg , so that Vg(1) and V ∗g are in Kummer duality. Also let Lg be a finite extension of
Qp over which the Hecke eigenvalues of g are defined. By [3, Ex. 3.11], the image of
the induced composite map:

δg,F : Js(F)
δF−→ H1(F, Vs(1))→ H1(F, Vg(1)) (2.7)

lies in the Bloch-Kato “finite” subspace H1
f (F, Vg(1)), and by our assumption on the

nebentypus of g, the Bloch-Kato exponential map gives an isomorphism
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Specializations of big Heegner points 1257

expF,Vg(1) :
DdR(Vg(1))

Fil0 DdR(Vg(1))
→ H1

f (F, Vg(1)) (2.8)

whose inverse will be denoted by logF,Vg(1).
Our aim in this section is to compute the images of certain degree 0 divisors on Xs

under the p-adic Abel-Jacobi map δ
(p)
g,F , defined as the composition

δ
(p)
g,F : Js(F)

δg,F−−→ H1
f (F, Vg(1))

logF,Vg (1)−−−−−→ DdR(Vg(1))

Fil0 DdR(Vg(1))

∼−→ (Fil0 DdR(V
∗
g ))
∨,

(2.9)

where the last identification arises from the de Rham pairing

〈 , 〉 : DdR(Vg(1))× DdR(V
∗
g )→ DdR(Qp(1))⊗Qp Lg ∼= Lg (2.10)

with respect to which Fil0 DdR(Vg(1)) and Fil0 DdR(V ∗g ) are exact annihilators of
each other. A basic ingredient for this computation will be the following alternate
description of the logarithm map logF,Vg(1).

Recall the interpretation of H1(F, Vg(1)) as the space Ext1
Rep(G F )

(Qp, Vg(1)) of

extensions of Vg(1) by Qp in the category of p-adic G F -representations. Since F con-
tains Qp(ζs), Vg is a crystalline G F -representation in the sense of Fontaine, and under
that interpretation the Bloch-Kato “finite” subspace corresponds to those extensions
which are crystalline (see [26, Prop. 1.26], for example):

H1
f (F, Vg(1)) ∼= Ext1

Rep
cris

(G F )
(Qp, Vg(1)). (2.11)

Now consider a crystalline extension

0→ Vg(1)→ W → Qp → 0. (2.12)

Since Dcris(Vg(1))ϕ=1 = 0 by our assumptions, the resulting extension of ϕ-
modules

0→ Dcris(Vg(1))→ Dcris(W )→ F0 → 0 (2.13)

admits a unique section sfrob
W : F0 → Dcris(W ) with sfrob

W (1) ∈ Dcris(W )ϕ=1. Extend-
ing scalars from F0 to F in (2.13) and taking Fil0-parts, we take an arbitrary section
sfil

W : F → Fil0 DdR(W ) of the resulting exact sequence of F-vector spaces

0→ Fil0 DdR(Vg(1))→ Fil0 DdR(W )→ F → 0 (2.14)

and form the difference

tW := sfil
W (1)− sfrob

W (1),
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1258 F. Castella

which can be seen in DdR(Vg(1)), and whose image modulo Fil0 DdR(Vg(1)) is
well-defined.

Lemma 2.4 Under the identification (2.11), the above assignment

0→ Vg(1)→ W → Qp → 0 � tW mod Fil0 DdR(Vg(1))

defines an isomorphism which agrees with the Bloch-Kato logarithm map

logF,Vg(1) : H1
f (F, Vg(1))

∼−→ DdR(Vg(1))

Fil0 DdR(Vg(1))
.

Proof See [26, Lem. 2.7], for example. ��
Let� ∈ Js(F) be the class of a degree 0 divisor on Xs with support contained in the

finite set of points S ⊂ Xs(F). The extension class W = W� (2.12) corresponding
to δg,F (�) can then be constructed from the étale cohomology of the open curve
Ys := Xs�S, as explained in [1, Sect. 4.1]. We describe the associated sfil

W�
and sfrob

W�
.

By [33] (or also [13]), denoting g-isotypical components by the superscript g, there
is a canonical isomorphism of F0 ⊗Qp Lg-modules

Dcris(Vg) ∼= H1
log−cris(Xs)

g (2.15)

compatible with ϕ-actions and inducing an F ⊗Qp Lg-module isomorphism

DdR(Vg) ∼= H1
dR(Xs/F)g (2.16)

after extension of scalars.
Writing � = ∑

Q∈S nQ .Q for some nQ ∈ Z, we assume from now on that the
reductions of the points Q ∈ S are smooth and pair-wise distinct. Assume from now on
that the reduction of S in the special fiber is stable under the absolute Frobenius. Like
H1

dR(Xs/F), the F-vector space H1
dR(Ys/F) is equipped with a canonical F0-structure

H1
log−cris(Ys) ↪→ H1

dR(Ys/F), (2.17)

a Frobenius operator still denoted by ϕ, and a Hecke action compatible with that in
(2.4). Thus for W = W� the exact sequence (2.13) is obtained as the pullback

(2.18)

of the bottom extension of ϕ-modules with respect to the F0 ⊗Qp Lg-linear map
sending 1 �→ (nQ)Q∈S , where the subscript 0 indicates taking the degree 0 subspace.
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Specializations of big Heegner points 1259

On the other hand, after extending scalars from F0 to F and taking Fil0-parts, (2.14)
is given by the pullback2

(2.19)

of the bottom exact sequence of free F ⊗Qp Lg-modules with respect to the F ⊗Qp

Lg-linear map sending 1 �→ (nQ)Q∈S .
Let g∗ ∈ S2(Xs) be the form dual to g, defined as the newform associated with

the twist g⊗ ε−1
g , and let ωg∗ ∈ H0(Xs,�

1
Xs/F ) be its associated differential, so that

Fil0 DdR(V ∗g ) = Fil1 DdR(Vg∗) = (F ⊗Qp Lg).ωg∗ . Thus δ(p)
g,F (�) is determined by

the value

δ
(p)
g,F (�)(ωg∗) = 〈tW�, ωg∗〉 (2.20)

of the pairing (2.10), which corresponds to the Poincaré pairing on H1
dR(Xs/F) under

the identification (2.16). Using rigid analysis, we now give an expression for the latter
pairing that will make (2.20) amenable to computations.

Let Xs be the canonical balanced model of Xs over Zp[ζs] constructed by Katz
and Mazur (see [22, Ch. 13]). The special fiber Xs ×Zp[ζs ] Fp is a reduced disjoint
union of Igusa curves over Fp intersecting at the supersingular points. Exactly two of
these components are isomorphic to the Igusa curve Ig(�s) representing the moduli
problem ([�1(N )], [bal.�1(ps)can]) over Fp, and we let I∞ be the one that contains
the reduction of W1(ps) ×Qp Qp(ζs), and I0 be the other. (These two are the two
“good” components in the terminology of [24]).

By the universal property of the regular minimal model, there exists a morphism

Xs → Xs ×Zp[ζs ] OF (2.21)

which reduces to a sequence of blow-ups on the special fiber. Letting κ be the residue
field of F , define W∞ ⊂ Xs (resp. W0 ⊂ Xs) to be the inverse image under the
reduction map via Xs of the unique irreducible component of Xs ×OF κ mapping
bijectively onto I∞×Fp κ (resp. I0×Fp κ) in Xs ×Zp[ζs ] κ via the reduction of (2.21).
Similarly, define U ⊂ Xs by considering the irreducible components of Xs ×Zp[ζs ]
κ different from I∞ ×Fp κ and I0 ×Fp κ . Letting SS denote (the degree of) the
supersingular divisor of Ig(�s), it follows that U intersects W∞ (resp. W0) in a union
of SS supersingular annuli.

Since they reduce to smooth points, the residue class DQ of each Q ∈ S is conformal

to the open unit disc D ⊂ Cp. Fix an isomorphism hQ : DQ
∼−→ D that sends Q to 0,

and for a real number rQ < 1 in pQ, denote by VQ ⊂ DQ the annulus consisting of

2 Notice the effect of the Tate twist on the filtrations.
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1260 F. Castella

the points x ∈ DQ with rQ < |hQ(x)|p < 1. In the same manner, we define annuli
Vz for each z in the cuspidal subscheme Zs ⊂ Xs .

Attached to any (oriented) annulus V , there is a p-adic annular residue map

ResV : �1
V → Cp

defined by expanding ω ∈ �1
V as ω = ∑

n∈Z anT n dT
T for a fixed uniformizing

parameter T on V (compatible with the orientation), and setting ResV (ω) = a0. This
descends to a linear functional on �1

V/dOV . (Cf. [6, Lem. 2.1]).
For any basic wide-open W (as in [4, p. 34]), define

H1
rig(W) := H1(W,�•(log Z)) ∼= �1

W/dOW , (2.22)

where �•(log Z) denotes the complex of rigid analytic sheaves on W deduced from
(2.1) by analytification and pullback, and consider the basic wide-opens

W̃∞ :=W∞ �
⋃

Q∈S

(DQ � VQ) and W̃0 :=W0 �
⋃

Q∈S

(DQ � VQ).

As follows from the arguments in [2, Lem. 4.4.1], the spaces H1
rig(W̃∞) and

H1
rig(W̃0) are each equipped with a natural action of the Hecke operators T
 (
 � N p)

compatible with the Hecke action on H1
dR(Ys/F) under restriction.

Lemma 2.5 • The natural restriction maps induce an isomorphism

H1
dR(Ys/F)g −→ H1

rig(W̃∞)g ⊕ H1
rig(W̃0)

g.

• A class ω ∈ H1
dR(Ys/F)g belongs to the natural image of H1

dR(Xs/F)g if an only
if it can be represented by a pair of differentials (ω∞, ω0) ∈ �1

W̃∞
× �1

W̃0
with

vanishing p-adic annular residues.
• If η and ω are any two classes in H1

dR(Xs/F)g, their Poincaré pairing can be
computed as

〈η, ω〉 =
∑

V⊂W̃∞

ResV (Fω∞|V · η∞|V )+
∑

V⊂W̃0

ResV (Fω0|V · η0|V ), (2.23)

where for each annulus V , FωV denotes any solution to d FωV = ωV on V .

Proof By an excision argument, the first assertion is easily deduced from [10,
Thm. 2.1] as in [2, Lem. 4.4.2]; the second and third are shown by adapting the argu-
ments in [9, §5] for each of the two components, as they are proven in [7, Prop. 1.3]
for s = 1. (See also [10, §3].) ��

123



Specializations of big Heegner points 1261

2.3 Coleman p-adic integration

Coleman’s theory provides a coherent choice of local primitives that will allow us to
compute (2.20) using the formula (2.23).

Recall the lift of Frobenius φ : W2(ps)→ W1(ps) described in Sect. 2.1, where
Wi (ps) are the strict neighborhoods of the connected component Xs(0) of the ordinary
locus of Xs containing the cusp∞ described there. Recall also the wide open space
W∞ described in the preceding section, which also contains Xs(0) by construction.

Proposition 2.6 (Coleman) Let g =∑
n>0 bnqn ∈ S2(Xs) be a normalized newform

with primitive nebentypus of p-power conductor, so that bp is such that Upg = bpg.
Then there exists a locally analytic function Fωg on W∞ which is unique up to a
constant on W∞ and such that

• d Fωg = ωg on W∞, and

• Fωg − bp
p φ
∗Fωg ∈ M rig

0 (Xs).

Proof This follows from the general result of Coleman [8, Thm. 10.1]. Indeed,
a computation on q-expansions shows that the action of the Frobenius lift φ on
differentials agrees with that of pV , with V the map sending q �→ q p, in the
sense that φ∗ωg = pωV g on W ′∞ := φ−1(W∞ ∩W1(ps)). Since the differential
ωg[p] = ωg − bpωV g attached to

g[p] =
∑

(n,p)=1

bnqn

becomes exact upon restriction toW ′∞, this shows that the polynomial L(T ) = 1− bp
p T

is such that

L(φ∗)ωg = 0.

Finally, since g has primitive nebentypus, bp has complex absolute value p1/2, and
hence [8, Thm. 10.1] can be applied with L(T ) as above. ��

Attached to a primitive ps-th root of unity ζ , there is an automorphism wζ of Xs

which interchanges the components W∞ and W0 (see [2, Lem. 4.4.3]).

Corollary 2.7 Define φ′ := wζ ◦ φ ◦ wζ . With hypotheses as in Proposition 2.6,
there exists a unique locally analytic function F ′ωg

on W0 which vanishes at 0, sat-

isfies d F ′ωg
= ωg on W0, and F ′ωg

− bp
p (φ

′)∗F ′ωg
is rigid analytic on a wide-open

neighborhood W ′0 of wζ Xs(0) in W0.

Proof Proposition 2.6 applied to the differential ω′g := w∗ζ ωg gives the existence of a
locally analytic function Fω′g with F ′ωg

:= w∗ζ Fω′g having the desired properties. The
uniqueness of F ′ωg

follows immediately from that of Fω′g . ��
We refer to the locally analytic function Fωg (resp. F ′ωg

) appearing in Proposition 2.6
as the Coleman primitive of g on W∞ (resp. W0). Let g = ∑

n>0 bnqn be as in
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1262 F. Castella

Proposition 2.6. The q-expansion
∑

(n,p)=1
bn
n qn corresponds to a p-adic modular

form g′ vanishing at∞ and satisfying dg′ = g[p], where d is the operator described at
the end of Section 2.1, which here corresponds to the differential operator OW → �1

W
for any subspace W ⊂ Xs . Set d−1g[p] := g′.
Corollary 2.8 If Fωg is the Coleman primitive of g on W∞ which vanishes at∞, then

Fωg −
bp

p
φ∗Fωg = d−1g[p].

Proof Since d−1g[p] is an overconvergent rigid analytic primitive of ωg[p] , and the

operator L(φ∗) = 1− bp
p φ
∗ acting on the space of locally analytic functions on W ′∞

is invertible, we see that L(φ∗)−1(d−1g[p]) satisfies the defining properties of Fωg .
Since d−1g[p] vanishes at∞, the result follows. ��

Now we can give a closed formula for the p-adic Abel-Jacobi images of certain
degree 0 divisors on Xs .

Proposition 2.9 Assume s > 1. Let g ∈ S2(Xs) be a normalized newform with prim-
itive nebentypus of p-power conductor, let P be an F-rational point of Xs factoring
through Xs(0) ⊂ Xs, and let � ∈ Js(F) be the divisor class of (P)− (∞). Then

δ
(p)
g,F (�)(ωg∗) = Fωg∗ (P), (2.24)

where Fωg∗ is the Coleman primitive of ωg∗ on W∞ which vanishes at∞.

Proof By (2.20), we must compute 〈tW�, ωg∗〉 = 〈sfil
W�

, ωg∗〉 − 〈sfrob
W�

, ωg∗〉, where

• sfil
W�
∈ Fil1 DdR(W�) is such that ρ(sfil

W�
) = 1 in (2.19), and

• sfrob
W�
∈ Dcris(W�)

ϕ=1 is such that ρ(sfrob
W�

) = 1 in (2.18).

By Lemma 2.5, we see that these can be represented, respectively, by

• ηfil
� a section of �1

Xs/F over Ys with simple poles at P and∞ and with

– ResP (η
fil
�) = 1, while Res∞(ηfil

�) = 0 for all Q ∈ S − {P};
– Res∞(ηfil

�) = −1, while Resz(η
fil
�) = 0 for all z ∈ Zs − {∞},

• ηfrob
� = (ηfrob∞ , ηfrob

0 ) ∈ �1
W̃∞
×�1

W̃0
with

– (φ∗ηfrob∞ , (φ′)∗ηfrob
� ) = (p · ηfrob∞ + dG∞, p · ηfrob

0 + dG0) with G∞ and G0

rigid analytic on φ−1W̃∞ and (φ′)−1W̃0, respectively;
– ResV (ηfrob

� ) = 0 for all supersingular annuli V; and
– ResVQ (η

frob
� ) = ResQ(η

fil
�) (Q ∈ S), ResVz (η

frob
� ) = Resz(η

fil
�) (z ∈ Zs).

The arguments in [1, Prop. 3.21] can now be straightforwardly adapted to deduce
the result. Indeed, using the defining properties of the Coleman primitives Fωg∗ and
F ′ωg∗ of ωg∗ on W∞ and W0, respectively, one first shows that

∑

V⊂W̃∞

ResV (Fωg∗ · ηfrob∞ ) = 0 and
∑

V⊂W̃0

ResV (F
′
ωg∗ · ηfrob

0 ) = 0 (2.25)
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as in [loc.cit., Lemma 3.20]. On the other hand, using the same primitives, one shows
as in [loc.cit., Lemma 3.19] that

∑

V⊂W̃∞

ResV (Fωg∗ · ηfil
�)=Fωg∗ (P) and

∑

V⊂W̃0

ResV (F
′
ωg∗ · ηfil

�) = 0. (2.26)

Substituting (2.26) and (2.25) into the formula (2.23) for the Poincaré pairing (and
using that s > 1, so that there is no overlap between the supersingular annuli in W̃∞
and the supersingular annuli in W̃0), the result follows. ��

3 Generalised Heegner cycles

Let X1(N ) be the compactified modular curve of level �1(N ) defined over Q, and
let E be the universal generalized elliptic curve over X1(N ). (Recall that N > 4).
For r > 1, denote by Wr the (2r − 1)-dimensional Kuga-Sato variety3, defined as
the canonical desingularization of the (2r − 2)-nd fiber product of E with itself over
X1(N ). By construction, the variety Wr is equipped with a proper morphism

πr : Wr → X1(N )

whose fibers over a noncuspidal closed point of X1(N ) corresponding to an elliptic
curve E with �1(N )-level structure is identified with 2r − 2 copies of E . (For a more
detailed description, see [1, Sect. 3.1].)

Let K be an imaginary quadratic field of odd discriminant −D < 0. It will be
assumed throughout that K satisfies the following hypothesis:

Assumption 3.1 All the prime factors of N split in K .

Denote by OK the ring of integers of K , and note that by this assumption we may
choose an ideal N ⊂ OK with OK /N ∼= Z/NZ that we fix once and for all.

Let A be a fixed elliptic curve with CM by OK . The pair (A, A[N]) defines a
point PA on X0(N ) rational over H , the Hilbert class field of K . Choose one of the
square-roots

√−D ∈ OK , let �√−D ⊂ A × A be the graph of
√−D, and define

ϒ
heeg
A,r := �√−D ×

(r−1)· · · × �√−D

viewed inside Wr by the natural inclusion (A × A)r−1 → Wr as the fiber of πr over
a point on X1(N ) lifting PA. Let εW be the projector from [1, (2.1.2)], and set

�
heeg
A,r := εWϒ

heeg
A,r , (3.1)

which is an (r −1)-dimensional null-homologous cycle on Wr defining an H -rational
class in the Chow group CHr (Wr )0 (taken with Q-coefficients, as always here).

3 Perhaps most commonly denoted by W2r−2; cf. [35] and [27], for example.
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These cycles (3.1) are usually referred to as Heegner cycles (of conductor one,
weight 2r ), and they share with classical Heegner points (as in [15]) many of their
arithmetic properties (see [25,27,35]).

We next recall a variation of the previous construction introduced in the recent work
[1] of Bertolini–Darmon–Prasanna. Let A be the CM elliptic curve fixed above, and
consider the variety4

Xr := Wr × A2r−2.

For each class [a] ∈ Pic(OK ), represented by an ideal a ⊂ OK prime to N , let
Aa := A/A[a] and denote by ϕa the degree Na-isogeny

ϕa : A→ Aa.

The pair a ∗ (A, A[N]) := (Aa, Aa[N]) defines a point PAa in X0(N ) rational over
H . Let �t

ϕa
⊂ Aa× A be the transpose of the graph of ϕa, and set

ϒ
bdp
ϕa ,r := �t

ϕa
× (2r−2)· · · × �t

ϕa
⊂ (Aa× A)2r−2 = A2r−2

a × A2r−2 (ıa ,idA)−−−−→ Xr ,

where ıa is the natural inclusion A2r−2
a → Wr as the fiber of πr over a point on X1(N )

lifting PAa . Letting εA be the projector from [1, (1.4.4)], the cycles

�
bdp
ϕa ,r := εAεWϒ

bdp
ϕa ,r (3.2)

define classes in CH2r−1(Xr )0(H) and are referred to as generalised Heegner cycles.
We will assume for the rest of this paper that K also satisfies the following:

Assumption 3.2 The prime p splits in K .

Let g ∈ S2r (X0(N )) be a normalized newform, and let Vg be the p-adic Galois
representation associated to g by Deligne. By the Künneth formula, there is a map

H4r−3
ét (Xr ,Qp(2r − 1)) −→ H2r−1

ét (W r ,Qp(1))⊗ Sym2r−2 H1
ét(A,Qp(1)),

which composed with the natural Galois-equivariant projection

H2r−1
ét (W r ,Qp(1))⊗ Sym2r−2 H1

ét(A,Qp(1))
πg⊗πNr−1−−−−−−→ Vg(r)

induces a map

πg,Nr−1 : H1(F, H4r−3
ét (Xr ,Qp(2r − 1))) −→ H1(F, Vg(r))

over any number field F . In the following we fix a number field F containing H .

4 Notice that our indices differ from those in [1].
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Now consider the étale Abel-Jacobi map

�ét
F : CH2r−1(Xr )0(F)→ H1(F, H4r−3

ét (Xr ,Qp)(2r − 1))

constructed in [28]. Let Fp be the completion of ı p(F), and denote by locp the induced
localization map from G F to Gal(Qp/Fp). Then we may define the p-adic Abel-Jacobi
map AJFp by the commutativity of the diagram

(3.3)

where the existence of the dotted arrow follows from [28, Thm.(3.1)(i)], and the vertical
map is given by the logarithm map of Bloch-Kato, as it appeared in (2.9) for r = 1.
Using the comparison isomorphism of Faltings [12], the map AJFp may be evaluated

at the class ωg ⊗ e⊗r−1
ζ , with eζ an Fp-basis of DdR(Qp(1)) ∼= Fp.

The main result of [1] yields the following formula for the p-adic Abel-Jacobi
images of the generalised Heegner cycles (3.2) which we will need.

Theorem 3.3 (Bertolini–Darmon–Prasanna) Let g = ∑
n bnqn ∈ S2r (X0(N )) be a

normalized newform of weight 2r ≥ 2 and level N prime to p. Then

(1− bp p−r + p−1)
∑

[a]∈Pic(OK )

Na1−r · AJFp (�
bdp
ϕa ,r )(ωg ⊗ e⊗r−1

ζ )

= (−1)r−1(r − 1)!
∑

[a]∈Pic(OK )

d−r g[p](a ∗ (A, A[N])),

where g[p] =∑
(n,p)=1 bnqn is the p-depletion of g.

Proof See the proof of [1, Thm. 5.13]. ��
We end this section by relating the images of Heegner cycles and of generalised

Heegner cycles under the p-adic height pairing. (Cf. [1, Sect. 3.4]).
Consider�r := Wr× Ar−1 seen as a subvariety of Wr×Xr = Wr×Wr×(A2)r−1

via the map

(idWr , idWr , (idA,
√−D)r−1).
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Denoting byπW andπX the projections onto the first and second factors of Wr×Xr ,
the rational equivalence class of the cycle �r gives rise to a map on Chow groups

�r : CH2r−1(Xr )→ CHr+1(Wr )

induced by �r (�) = πW,∗(�r · π∗X�).
Lemma 3.4 We have

〈�heeg
A,r ,�

heeg
A,r 〉Wr = (4D)r−1 · 〈�bdp

idA,r
,�

bdp
idA,r
〉Xr ,

where 〈, 〉Wr and 〈, 〉Xr are the p-adic height pairings of [26] on CHr+1(Wr )0 and
CH2r−1(Xr )0, respectively.

Proof The image �ét
F (�

heeg
A,r ) remains unchanged if we replace �√−D by Z A :=

�√−D − (A × {0}) − D({0} × A) (see [27, §II(3.6)]). Since Z A · Z A = −2D, we
easily see from the construction of �r that

�ét
F (�

heeg
A,r ) = (−2D)r−1 ·�ét

F (�r (�
bdp
idA,r

)). (3.4)

On the other hand, if 〈, 〉A denotes the Poincaré pairing on H1
dR(A/F), we have

〈(√−D)∗ω, (
√−D)∗ω′〉A = D · 〈ω,ω′〉A,

for all ω,ω′ ∈ H1
dR(A/F). By the definition of the p-adic height pairings 〈, 〉Wr and

〈, 〉Xr (factoring through �ét
F ), we thus see that

〈�bdp
idA,r

,�
bdp
idA,r
〉Xr = Dr−1 · 〈�r (�

bdp
idA,r

),�r (�
bdp
idA,r

)〉Wr . (3.5)

Combining (3.4) and (3.5), the result follows. ��

4 Big logarithm map

Let f = ∑
n>0 anqn ∈ I[[q]] be a Hida family passing through (the ordinary p-

stabilization of) a p-ordinary newform fo ∈ Sk(X0(N )) as described in the Intro-
duction. We begin this section by recalling the definition of a certain twist of f such
that all of its specializations at arithmetic primes of even weight correspond to p-adic
modular forms with trivial weight-nebentypus.

Decompose the p-adic cyclotomic character εcyc as the product

εcyc = ω · ε : GQ → Z×p = µp−1 × �.

Since k is even, the character ωk−2 admits a square root ω
k−2

2 : GQ → µp−1, and
in fact two different square roots, corresponding to the two different lifts of k − 2 ∈
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Specializations of big Heegner points 1267

Z/(p − 1)Z to Z/2(p − 1)Z. Fix for now a choice of ω
k−2

2 , and define the critical
character to be

� := ω
k−2

2 · [ε1/2] : GQ → 	×O, (4.1)

where ε1/2 : GQ → � denotes the unique square root of ε taking values in �.

Remark 4.1 As noted in [19, Rem. 2.1.4], the above choice of � is for most purposes

largely indistinguishable from the other choice, namely ω
p−1

2 �, where

ω
p−1

2 : Gal(Q(
√

p∗)/Q)
∼−→ {±1} (p∗ = (−1)

p−1
2 p).

Nonetheless, for a given fo as above, our main result (Theorem 5.11) will specifically
apply to only one of the two possible choices for the critical character.

The critical twist of T is then defined to be the module

T† := T⊗I I† (4.2)

equipped with the diagonal GQ-action, where I† = I(�−1) is I as a module over itself

with GQ acting via the character GQ
�−1−−→ 	×O → I×.

Lemma 4.2 Let ρT† : GQ → Aut(T†) be the Galois representation carried by T†.
Then for every ν ∈ Xarith(I) of even weight kν = 2rν ≥ 2 we have

ν(ρT†) ∼= ρf ′ν ⊗ εrν
cyc,

where f ′ν is a character twist of fν of the same weight with trivial nebentypus. In other
words, defining V†

ν := T†⊗I Fν and letting Vf ′ν be the representation space of ρf ′ν , we
have

V†
ν
∼= Vf ′ν (rν), (4.3)

and in particular V†
ν is isomorphic to its Kummer dual.

Proof This follows from a straightforward computation explained in [29, (3.5.2)] for
example (where T† is denoted by T ). ��

Let θ : Z×p → 	×O be such that � = θ ◦ εcyc. It follows from the preceding lemma
that the formal q-expansion

f† = f ⊗ θ−1 :=
∑

n>0

θ−1(n)anqn ∈ I[[q]]

(where we put θ−1(n) = 0 whenever p|n) is such that, for every ν ∈ Xarith(I) of even
weight, V†

ν is the Galois representation attached to the specialization fν ⊗ θ−1
ν of f†,

which by Lemma 2.3 is a p-adic modular form of weight 0 and trivial nebentypus.
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1268 F. Castella

We next recall some of the local properties of the big Galois representation T. Let
Iw ⊂ Dw ⊂ GQ be the inertia and decomposition groups at the place w|p induced
by our fixed embedding ı p : Q ↪→ Qp. In the following we will identify Dw with the
absolute Galois group GQp . Then by a result of Mazur and Wiles (see [34, Thm. 2.2.2])
there exists a filtration of I[Dw]-modules

0→ F+w T→ T→ F−w T→ 0 (4.4)

with F±w T free of rank one over I and with the Galois action on F−w T unramified,
given by the character α : Dw/Iw → I× sending an arithmetic Frobenius σp to ap.
Twisting (4.4) by �−1 we define F±w T† in the natural manner.

Let T∗ := HomI(T, I) be the contragredient5 of T, and consider the I-module

D := (F+w T∗⊗̂Zp Ẑnr
p )

GQp , (4.5)

where F+w T∗ := HomI(F
−T, I) ⊂ T∗, and Ẑnr

p is the completion of the ring of

integers of the maximal unramified extension of Qp in Qp.
Fix once and for all a compatible system ζ = {ζs} of primitive ps-th roots of unity,

and denote by eζ the basis of DdR(Qp(1)) corresponding to 1 ∈ Qp under the resulting
identification DdR(Qp(1)) ∼= Qp.

Lemma 4.3 The module D is free of rank one over I, and for every ν ∈ Xarith(I) of
even weight kν = 2rν ≥ 2 there is a canonical isomorphism

Dν ⊗ DdR(Qp(rν)) ∼= DdR(Vfν (rν))

Fil0 DdR(Vfν (rν))
. (4.6)

Proof Since the action on F+w T∗ is unramified, the first claim follows from [30,
Lemma 3.3] in light of the definition (4.5) of D. The second can be deduced from [30,
Lemma 3.2] as in the proof of [30, Lemma 3.6]. ��

With the same notations as in Lemma 4.3, we denote by 〈, 〉dR the pairing

〈, 〉dR : Dν ⊗ DdR(Qp(rν))× Fil1 DdR(Vf∗ν (rν − 1))→ Fν (4.7)

deduced from the usual de Rham pairing

DdR(Vfν (rν))

Fil0 DdR(Vfν (rν))
× Fil0 DdR(V

∗
fν (1− rν))→ Fν

via the identification (4.6) and the isomorphism V ∗fν
∼= Vf∗ν (kν − 1).

Theorem 4.4 (Ochiai) Assume that the residual representation ρ̄ fo is irreducible, fix
an I-basis η of D, and set λ := ap − 1. There exists an I-linear map

Log(η)
T† : H1(Qp,F

+
w T†)→ I[λ−1]

5 So that T
∗ ⊗I Fν ∼= Vfν for every ν ∈ Xarith(I).
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Specializations of big Heegner points 1269

such that if Y ∈ H1(Qp,F+w T†) and ν ∈ Xarith(I) has weight kν = 2rν ≥ 2, then

ν(Log(η)
T† (Y)) = (−1)rν−1

(rν − 1)!

×
⎧
⎨

⎩

(
1− prν−1

ν(ap)

)−1 (
1− ν(ap)

prν

)
〈logVfν (rν )

(Yν), η
′
ν〉dR if ϑν = 1;

1
G(ϑ−1

ν )

(
ν(ap)

prν−1

)sν 〈logs,Vfν (rν )
(Yν), η

′
ν〉dR if ϑν �= 1,

(4.8)

where

• logVfν (rν )
(resp. logs,Vfν (rν )

) is the Bloch-Kato logarithm map for Vfν (rν) over Qp

(resp. Qp,s := Qp(µps )),

• η′ν ∈ Fil1 DdR(Vf∗ν (rν − 1)) is such that 〈ην ⊗ e⊗rν
ζ , η′ν〉dR = 1,

• ϑν : Z×p → F×ν is the finite order character z �→ θν(z)z1−rν ,
• s > 0 is such that the conductor of ϑν is ps , and
• G(ϑ−1

ν ) is the Gauss sum
∑

x mod ps ϑ−1
ν (x)ζ x

s .

Proof Let 	cyc = Zp[[�cyc]] be the cyclotomic Iwasawa algebra, where

�cyc := Gal(Qp,∞/Qp) ∼= Zp,

and consider the I⊗̂Zp	cyc-modules D := D⊗̂Zp	cyc and F+w T ∗ := F+w T∗⊗̂Zp

	cyc⊗ω k−2
2 , the latter being equipped with the diagonal action of GQp . Also let γo be

a topological generator of �cyc and I := (λ, γo) ⊂ I⊗̂Zp	cyc ∼= I[[�cyc]]. Consider
the I-algebra isomorphism

Twθ1 : I[[�cyc]] → I[[�cyc]] (4.9)

given by Twθ1([σ ]) = ε1/2(σ )[σ ] for σ ∈ �cyc, where ε1/2 is the unique square-root
of the wild component of the cyclotomic character. By [30, Prop. 5.3] there exists an
injective I⊗̂Zp	cyc-linear map

ExpF+w T ∗ : ID→ H1(Qp,F
+
w T ∗)

with cokernel killed by I which interpolates the Bloch-Kato exponential over the
arithmetic primes of I and of 	cyc. Notice that letting F+w T † be the module F+w T ∗
with the I[[�cyc]]-action twisted by θ1, there is a Galois equivariant projection
F+w T † → F+w T†. The composition

ID
Exp

F+w T ∗−−−−−−→ H1(Qp,F
+
w T ∗) Tw−→ H1(Qp,F

+
w T †)

Cor−−→ H1(Qp,F
+
w T†)

(4.10)
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1270 F. Castella

is an I-linear map making for every ν ∈ Xarith(I) as in the statement the diagram

commutative, where Spν,ζ is given by the composition of (4.6) with the map

D = D⊗̂Zp	cyc → Dν ⊗ DdR(Qp(rν))⊗Qp,s

induced by specialization at ν on D and σ �→ e⊗rν
ζ ⊗ ζ σs (σ ∈ �cyc) on 	cyc, and

where the bottom horizontal arrow is given by:

(−1)rν−1(rν − 1)! ×
⎧
⎨

⎩

(
1− prν−1

ν(ap)

) (
1− ν(ap)

prν

)−1
expVfν (rν )

if ϑν = 1;
G(ϑ−1

ν )
(

prν−1

ν(ap)

)sν
exps,Vfν (rν )

if ϑν �= 1

with expVfν (rν )
(resp. exps,Vfν (rν )

) the Bloch-Kato exponential map for Vfν (rν) over
Qp (resp. Qp,s). The map ExpF+w T† factors through an injective I-linear map

ExpF+w T† : D† → H1(Qp,F
+
w T†),

where D† := ID⊗Zp I[[�cyc]]/(γ 2
o −γ ′o)with γ ′o a topological generator of�. (Recall

for the Introduction that � acts on I via the diamond operators.)
Now if Y ∈ H1(Qp,F+w T†), then λ ·Y lands in the image ExpF+w T† and so

LogT†(Y) := λ−1 · (ExpF+w T†)
−1(λ ·Y) ∈ I[λ−1] ⊗I D†

is well-defined. Thus defining Log(η)
T† (Y) ∈ I[λ−1] by the relation

LogT†(Y) = Log(η)
T† (Y) · η ⊗ 1

the result follows. ��

5 The big Heegner point

In this chapter we prove the main results of this paper, relating the étale Abel-Jacobi
images of Heegner cycles to the specializations at higher even weights of the big
Heegner point Z (whose definition is recalled below), from where a deformation of
the p-adic Gross-Zagier formula of Nekovář over a Hida family follows at once. There
are two key points to the proof: the properties of the big logarithm map deduced from
the work of Ochiai as explained in the preceding section, and the local study of (almost
all) the weight 2 specializations of Z taken up in the following.
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5.1 Weight two specializations

Recall form Sect. 3 that K is a fixed imaginary quadratic field in which all prime factors
of N split, and that N ⊂ OK is a fixed cyclic N -ideal, i.e. such that OK /N ∼= Z/NZ.
We also assume that p splits in K , and let p be the prime of K above p induced by our
fixed embedding ı p, and by p̄ the other. Finally, A is a fixed elliptic curve with CM by
OK defined over the Hilbert class field H of K .

Let R0 = Ẑnr
p be the completion of the ring of integers of the maximal unramified

extension of Qp, which we view as an overfield of H via ı p. Since p splits in K , A
admits a trivialization

ı A : Â→ Ĝm

over R0 with ı−1
A (µps ) = A[ps] for every s > 0. Letting αA be the cyclic N -isogeny

on A with kernel A[N], the triple (A, αA, ı A) thus defines a trivialized elliptic curve
with �0(N )-level structure defined over R0.

Set A0 := A/A[ps] and let (A0, αA0 , ı A0) be the trivialized elliptic curve deduced
from (A, αA, ı A) via the projection A→ A0. Let C ⊂ A0[ps] be any étale subgroup of
order ps , and set As := A0/C . Finally, let (As, αAs , ı As )be the trivialized elliptic curve
with �0(N )-level structure deduced from (A0, αA0 , ı A0) via the projection A0 → As ,
and consider the triple

hs = (As, αAs , ı As (ζs)), (5.1)

which defines an algebraic point on the modular curve Xs .

Write p∗ = (−1)
p−1

2 p, and let ϑ be the unique continuous character

ϑ : GQ(
√

p∗)→ Z×p /{±1} (5.2)

such that ϑ2 = εcyc. Notice the inclusion G Hps ⊂ GQ(
√

p∗) for any s > 0, where Hps

denotes the ring class field of K of conductor ps .

Lemma 5.1 The curve As has CM by the order Ops of K of conductor ps , and the
point hs is rational over L ps := Hps (µps ). In fact we have

hσs = 〈ϑ(σ)〉 · hs (5.3)

for all σ ∈ Gal(L ps/Hps ).

Proof The first assertion is clear, and immediately from the construction we also see
that αAs is the cyclic N -isogeny on As with kernel As[N ∩ Ops ]. It follows that the
point (5.1) gives rise to precisely the point hs ∈ Xs(C) in [19, Eq. (4)]. The result thus
follows from [loc.cit., Cor. 2.2.2]. ��

If ν is an arithmetic prime of I, we let ψν denote its wild character, defined as
the composition of ν : I → Qp with the structure map � = 1 + pZp → I×. The
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nebentypus of fν is then given by εfν = ψνω
k−kν , whereω : (Z/pZ)× → µp−1 ⊂ Z×p

is the Teichmüller character.
Recall the critical characters � and θ from Sect. 4, and for every ν ∈ Xarith(I) of

weight 2, consider the F×ν -valued Hecke character of K given by

χν(x) = �ν(artQ(NK/Q(x))) (5.4)

for all x ∈ A×K . Notice that since χν has finite order, it may alternately be seen as
character on G K via the Artin reciprocity map artK : A×K → Gab

K .
Let OCp be the ring of integers of the completion of Qp. For every ν ∈ Xarith(I),

after fixing an embedding Fν → Qp, the form fν ∈ Skν (Xsν ) defines a p-adic modular
form fν ∈ M(N ). Finally, recall the dual form f∗ν defined as in the paragraph before
(2.20).

Lemma 5.2 Let ν ∈ Xarith(I) have weight 2 and non-trivial wild character, and let
s > 1 be the p-power of the conductor of ψν . Then

d−1f∗[p]ν ⊗ θν(A, αA, ı A)= u

G(θ−1
ν )

∑

σ∈Gal(Hps /H)

χ−1
ν (σ̃ ) · d−1f∗[p]ν (hσ̃s ), (5.5)

where u = |O×K |/2, G(θ−1
ν ) is the Gauss sum

∑
x mod ps θ−1

ν (x)ζ x
s , and for every

σ ∈ Gal(Hps/H), σ̃ is any lift of σ to Gal(L ps/H).

Proof Notice that the expression in the right hand side of (5.5) does not depend on
the choice of lifts σ̃ . Indeed, as explained in [18, p. 808] the character χ0,ν := χν |A×Q ,

seen as a Dirichlet character in the usual manner, is such that χ−1
0,ν = θ2

ν . But since

the weight of ν is 2, we have θ2
ν = εfν = ε−1

f∗ν (see [18, p. 806]), and our claim thus
follows immediately from (5.3).

To compute the above value of the twist d−1f∗[p]ν ⊗ θν we follow Definition 2.2.
The integer s > 1 in the statement is such that θν factors through (Z/psZ)×, therefore

d−1f∗[p]ν ⊗θν(A, αA, ı A)=
∑

a mod ps

θν(a)

⎛

⎜⎝
∫

a+ps Zp

dμGou(x)

⎞

⎟⎠ (d−1f∗[p]ν )(A, αA, ı A)

= 1

ps

∑

a mod ps

θν(a)
∑

C

ζ−a
C · d−1f∗[p]ν (A0/C, αC , ıC ), (5.6)

where as before A0 := A/ ı−1
A (µps ) = A/A[ps] and the sum is over the étale sub-

groups C ⊂ A0[ps] of order ps . Letting γs be a generator of Z/psZ, these subgroups
correspond bijectively with the cyclic subgroups Cu = 〈ζ u

s .γs〉 ⊂ µps ×Z/psZ, with
u running over the integers modulo ps , and we set ζCu = ζ u

s .
Since θν does not factor through (Z/ps−1Z)×, we have

∑
a mod ps θν(a)ζ−ua

s = 0
whenever u /∈ (Z/psZ)×. Continuing from (5.6), we thus obtain
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d−1f∗[p]ν ⊗θν(A, αA, ı A)= 1

ps

∑

a mod ps

θν(a)
∑

u mod ps

ζ−ua
s · d−1f∗[p]ν (ACu , αCu , ıCu )

= 1

ps

∑

u∈(Z/ps Z)×
d−1f∗[p]ν (ACu , αCu , ıCu )

∑

a mod ps

θν(a)ζ
−ua
s

= 1

G(θ−1
ν )

∑

u∈(Z/ps Z)×
θ−1
ν (u) · d−1f∗[p]ν (ACu , αCu , ıCu ),

with the last equality obtained by a change of variables. The result thus follows from
the relation

∑

u∈(Z/ps Z)×
θ−1
ν (u) · d−1f∗[p]ν (ACu , αCu , ıCu )=u

∑

σ∈Gal(Hps /H)

χ−1
ν (σ̃) · d−1f∗[p]ν (hσ̃s ),

where u = |O×K |/2, and for each σ ∈ Gal(Hps/H), σ̃ ∈ Gal(L ps/H) lifts σ . ��
Keeping the above notations, let �s ∈ Js(L ps ) be the divisor class of (hs)− (∞),

and consider the element in Js(L ps )⊗Z Fν given by

Q̃χν :=
∑

σ∈Gal(Hps /H)

�σ̃
s ⊗ χ−1

ν (σ̃ ), (5.7)

where for every σ ∈ Gal(Hps/H), σ̃ is any lift to Gal(L ps/H).
Let Fs be the completion of ı p(L ps ), and consider the p-adic Abel-Jacobi map

δ
(p)
fν ,Fs

defined in (2.9) which we extend by Fν-linearity to a map

δ
(p)
fν ,Fs
: Js(L ps )⊗Z Fν −→ (Fil1 DdR(Vf∗ν ))

∨.

Proposition 5.3 Let ν ∈ Xarith(I) and s > 1 be as in Lemma 5.2. Then

∑

σ∈Gal(Hps /H)

χ−1
ν (σ̃ ) · d−1f∗[p]ν (hσ̃s ) = δ

(p)
fν ,Fs

(Q̃χν )(ωf∗ν ). (5.8)

Proof The integer s > 1 in the statement is so that the nebentypus εfν of fν is primitive
modulo ps . Moreover, since p splits in K , we see from the construction that the point
hs lies in the connected component Xs(0) of the ordinary locus of Xs containing the
cusp∞. Thus Proposition 2.9 applies, giving

δ
(p)
fν ,Fs

(�s)(ωf∗ν ) = Fωf∗ν (hs),

where Fωf∗ν is the Coleman primitive of ωf∗ν from Proposition 2.6 vanishing at∞, and
by linearity

∑

σ∈Gal(Hps /H)

χ−1
ν (σ̃ ) · Fωfν

(hσ̃s ) = δ
(p)
fν ,Fs

(Q̃χν )(ωf∗ν ). (5.9)
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Sinceφ lifts the Deligne–Tate map to Xs , we see thatφhs is defined over the subfield
Hps−1(ζs) ⊂ L ps . If bp denotes the Up-eigenvalue of f∗ν , by Corollary 2.8 we obtain

∑

σ

χ−1
ν (σ̃ ) · d−1f∗[p]ν (hσ̃s ) =

∑

σ

χ−1
ν (σ̃ ) · Fωf∗ν (h

σ̃
s )−

bp

p

∑

σ

χ−1
ν (σ̃ ) · Fωf∗ν (φhσ̃s )

=
∑

σ

χ−1
ν (σ̃ ) · Fωf∗ν (h

σ̃
s ),

where all the sums are over σ ∈ Gal(Hps/H), and the second equality follows imme-
diately from the fact θν is primitive modulo ps . The result thus follows from (5.9).

��
Still with the same notations, recall Hida’s ordinary projector (1.2) and set

ys := eordhs , which naturally lies in eord Js(L ps ) (see [19, p.100]). Equation (5.3)
then amounts to the fact that

yσs = �(σ) · ys (5.10)

for all σ ∈ Gal(L ps/Hps ), where � is the critical character (4.1). Denoting by
J ord

s (L ps )† the module eord Js(L ps ) with the Galois action twisted by �−1, and by y†
s

the point ys seen in this new module, (5.10) translates into the statement that

y†
s ∈ H0(Hps , J ord

s (L ps )†).

Lemma 5.4 (Howard) The classes

xs := CorHps /H (y
†
s ) ∈ H0(H, J ord

s (L ps )†) (5.11)

are such that

α∗xs+1 = Up · xs, for all s > 0

under the Albanese maps induced from the degeneracy maps α : Xs+1 → Xs.

Proof This is shown in the course of the proof of [19, Lemma 2.2.4]. ��
Abbreviate by Taord

p (Js) the module eord(Ta p(Js) ⊗Zp O) from the Introduction,
and denote by Taord

p (Js)
† this same module with the Galois action twisted by �−1. By

the Galois and Hecke-equivariance of the twisted Kummer map

Kums : H0(H, J ord
s (L ps )†)→ H1(H,Taord

p (Js)
†)

constructed in [19, p. 101], Lemma 5.4 implies that the cohomology classes Xs :=
Kums(xs) are such that α∗Xs+1 = Up · Xs , for all s > 0.
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Definition 5.5 (Howard) The big Heegner point of conductor one is the cohomology
class X given by the image of lim←−s

U−s
p · Xs under the natural map induced by the

hord[GQ]-linear projection lim←−s
(Taord

p (Js)
†)→ T†.

Our object of study is in fact

Z := CorH/K (X), (5.12)

which [19, Conj. 3.4.1] predicts to be not I-torsion. For ν ∈ Xarith(I) of weight 2, let
L(s, fν, χν) be the Rankin-Selberg convolution L-function of [20, §1]. In the spirit of
the classical Gross-Zagier theorem, one has the following criterion.

Theorem 5.6 (Howard) If ν ∈ Xarith(I) has weight 2 and non-trivial nebentypus, then

Zν �= 0 ⇐⇒ L ′(1, fν, χν) �= 0, (5.13)

and if the non-vanishing holds for at least one such ν, then Z is not I-torsion.

Proof See [18, Prop. 3] for the equivalence (5.13), and [loc.cit, Cor. 5] for the last
implication. We outline the proof for future reference. For every ν ∈ Xarith(I) of weight
2 and non-trivial nebentypus, consider (with the same notations as above)

Qχν :=
∑

τ∈Gal(L ps /K )

�τ
s ⊗ χ−1

ν (τ ) ∈ Js(L ps )⊗Z Q. (5.14)

If efν denotes the idempotent of the Hecke algebra (tensored with Q) defined by
the eigenform fν , the arguments in [18, pp. 809–810] show that

Zν �= 0 ⇐⇒ efν Qχν �= 0, (5.15)

and by the “twisted Gross-Zagier theorem” [20, Thm. 4.6.2], one has

efν Qχν �= 0 ⇐⇒ L ′(1, fν, χν) �= 0.

��
Corollary 5.7 Assume that there is a ν′ ∈ Xarith(I) of weight 2 and non-trivial neben-
typus such that L ′(1, fν′ , χν′) �= 0. Then the localization map

locp : H1
f (K ,V†

ν)→ H1
f (Qp,V

†
ν)

is injective at all but finitely many ν ∈ Xarith(I).

Proof By [18, Cor. 5], the assumption implies that Z is nontorsion, and by [19,
Cor. 3.4.3] that H̃1

f (K ,T†) has rank 1 over I. By [19, Lemma 2.1.7], it follows that

H1
f (K ,V†

ν) = Zν .Fν,
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for all but finitely many ν of weight 2 and non-trival nebentypus. On the other hand,
since dimFν H1

f (Qp,V
†
ν) for every ν of weight 2 with non-trivial nebentypus, we see

that it suffices to show that one has the implication

Zν �= 0 �⇒ locp(Zν) �= 0 (5.16)

for every ν ∈ Xarith(I) of weight 2 and non-trivial nebentypus. (Indeed, (5.16) will
show that locp is injective at infinitely many ν, and by [19, Lemma 2.1.7] it will follow
that the kernel of the localization map

locp : H̃1
f (K ,T†)→ H1(Qp,T

†)

must be I-torsion, hence contained in only finitely arithmetic primes).
The point Qχν (5.14) defines a K -rational point on a twist Jχν of Js by the character

χ−1
ν . Since the localization map

Jχν (K )⊗Z Q→ Jχν (Kp)

is injective, we thus see that (5.16) follows from (5.15), hence the result. ��
For any class [a] ∈ Pic(OK ), taking a representative a ⊂ OK prime to N p, define

a ∗ (A, αA, ı A) := (Aa, αAa , ı Aa ),

where Aa = A/A[N], αAa = Aa[N], and ı Aa is the trivialization Âa
ϕ̂−1

a−−→ Â
ı A−→ Ĝm

induced by the projection ϕa : A→ Aa.

Theorem 5.8 Let ν ∈ Xarith(I) have weight 2 and non-trivial wild character ψν , and
let s > 1 be the p-power of the conductor of ψν . Then

∑

[a]∈Pic(OK )

d−1f [p]ν ⊗ θ−1
ν (a ∗ (A, αA, ı A))=u

ν(ap)
s

G(θ−1
ν )

logs,Vfν (1)
(locp(Zν))(ωf∗ν ),

(5.17)

where u = |O×K |/2, and G(θ−1
ν ) is the Gauss sum

∑
x mod ps θ−1

ν (x)ζ x
s .

Proof Since clearly d−1f [p]ν ⊗ θ−1
ν = d−1f∗[p]ν ⊗ θν , letting Fs be the completion of

ı p(L ps ) it suffices to establish the equality

d−1f∗[p]ν ⊗ θν(A, αA, ı A) = u
ν(ap)

s

G(θ−1
ν )

logFs ,Vfν (1)
(locp(Xν))(ωf∗ν ). (5.18)

Combining the formulas from Lemma 5.2 and Proposition 5.3, we have

d−1f∗[p]ν ⊗ θν(A, αA, ı A) = u

G(θ−1
ν )

δ
(p)
fν ,Fs

(Q̃χν ). (5.19)
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Now the integer s > 1 is such that the natural map T→ Vν can be factored as

T→ Taord
p (Js)→ Vν, (5.20)

and we have V†
ν
∼= Vν as GL ps -modules. Tracing through the construction of X, we

see that the image of U s
p ·Xν in H1(L ps ,V†

ν) agrees with the image of Q̃χν under the
composite map (where the unlabelled arrow is induced by (5.20))

Js(L ps )⊗Z Fν
Kums−−−→ H1(L ps ,Ta p(Js)⊗Z Fν)

eord−−→ H1(L ps ,Taord
p (Js)⊗Z Fν)

−→ H1(L ps ,Vν) ∼= H1(L ps ,V†
ν). (5.21)

Since Up acts on V†
ν as multiplication by ν(ap), we thus arrive at the equality

Kums(e
ord Q̃χν ) = ν(ap)

s · resL ps /H (Xν) ∈ H1(L ps ,Vν). (5.22)

By [32, Prop. 1.6.8], this shows that the restriction to locp(Xν) to G Fs is contained

in the Bloch-Kato finite subspace H1
f (Fs,Vν) ∼= H1

f (Fs,V
†
ν). Since the map δ(p)

fν ,Fs
is

defined by the commutativity of the diagram

we thus see that (5.18) follows from (5.19) and (5.22). ��
Remark 5.9 The expression in the left hand side of (5.17) can be interpreted as the
value of a certain p-adic Rankin L-series at a point outside the range of classical
interpolation, and hence Theorem 5.8 may be seen as a p-adic analogue of the Gross-
Zagier formula for the classes Zν , in the same spirit as the main result of [1]. This
interpretation, which does not play a direct role in this paper, is studied further in the
companion paper [5].

5.2 Higher weight specializations

Now we can prove our main result. Recall from the Introduction that fo is a p-ordinary
newform of level N prime to p, even weight k ≥ 2 and trivial nebentypus, that

f =
∑

n>0

anqn ∈ I[[q]]
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is the Hida family passing through the ordinary p-stabilization of fo, and that K is an
imaginary quadratic field such that every prime factor of pN is split in K .

If fν is the ordinary p-stabilization of a p-ordinary newform f�ν of even weight
2rν > 2 and trivial nebentypus, the Heegner cycle �heeg

A,rν
has been defined in Sect. 3,

and by [28, Thm. (3.1)(i)] the class

�ét
f�ν ,K

(�
heeg
rν ) := CorH/K (�

ét
f�ν ,H

(�
heeg
A,rν

)) (5.23)

lies in the Bloch-Kato Selmer group H1
f (K , Vf�ν

(rν)).
On the other hand, by [19, Prop. 2.4.5], the big Heegner point X lies in the strict

Greenberg Selmer group SelGr(H,T†) (defined in [loc.cit., Def. 2.4.2]), and since
SelGr(K ,V†

ν)
∼= H1

f (K ,V†
ν) as explained in [19, p. 114]) and V†

ν
∼= Vf�ν

(rν) by
Lemma 4.2, the class

Zν = CorH/K (Xν)

naturally lies in H1
f (K , Vf�ν

(rν)) as well. Our main result relates these two classes.
Recall that the following hypotheses are being assumed throughout this paper.

Assumption 5.10 The residual representation ρ̄ fo is irreducible, and the semi-
simplification of ρ fo

|GQp
is non-scalar.

Theorem 5.11 Let νo be the arithmetic prime of I such that fνo is the ordinary p-
stabilization of fo, and let T† = T ⊗ �−1 be the critical twist of T such that ϑνo is
the trivial character6. Assume that there is a ν′ ∈ Xarith(I) of weight 2 and non-trivial
nebentypus such that

L ′(1, fν′ , χν′) �= 0. (5.24)

Then for all but finitely many arithmetic primes ν ∈ Xarith(I) of weight 2rν > 2
with 2rν ≡ k (mod 2(p − 1)), we have

〈Zν,Zν〉K =
(

1− prν−1

ν(ap)

)4 〈�ét
f�ν ,K

(�
heeg
rν ),�ét

f�ν ,K
(�

heeg
rν )〉K

u2(4D)rν−1 , (5.25)

where 〈, 〉K is the cyclotomic p-adic height pairing on H1
f (K , Vf�ν

(rν)), u = |O×K |/2,
and −D < 0 is the discriminant of K .

Proof Since Z ∈ SelGr(K ,T†), the localization locp(Z) lies in the kernel of the natural
map

H1(Qp,T
†)→ H1(Qp,F

−
w T†),

6 As opposed to ω
p−1

2 .
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and since H0(Qp,F−w T†) = 0 by [19, Lemma 2.4.4], the class locp(Z) can be seen
as sitting inside H1(Qp,F+w T†). Thus upon taking an I-basis η of D, we can form

Larith
p (f†) := u · Log(η)

T† (locp(Z)) ∈ I[λ−1] (λ := ap − 1).

On the other hand, consider the continuous function on Spf(I)(Qp) given by

Lanaly
p (f†) : ν �→

∑

[a]∈Pic(OK )

d−1f [p]ν ⊗ θ−1
ν (a ∗ (A, αA, ı A)).

(Its continuity can be checked by staring at the q-expansion of d−1f [p]ν ⊗ θ−1
ν and

appealing to the results in [14, § I.3.5], for example.)
By the specialization property (4.8) of the map Log(η)

T† , we see that Theorem 5.8
can be reformulated as follows: For every ν ∈ Xarith(I) of weight 2 and non-trivial
wild character, there exists a unit �(η)

ν ∈ O×ν such that

ν
(
Lanaly

p (f†)
)
= �(η)

ν · ν
(
Larith

p (f†)
)
. (5.26)

In fact,

�(η)
ν = 〈ην ⊗ e⊗rν

ζ , ωf∗ν 〉dR (5.27)

under the pairing (4.7), so that ωf∗ν = �
(η)
ν · η′ν with η′ν as defined in Theorem 4.4.7

Since both Larith
p (f†) and L

analy
p (f†) are continuous functions of ν, (5.26) shows that

the map ν �→ �
(η)
ν is continuous, and hence (5.27) is valid for all ν ∈ Xarith(I).

Now let ν ∈ Xarith(I) be as in the statement. Then θν(z) = zrν−1ϑν(z) = zrν−1 as
characters on Z×p , from where if follows that

ν
(
Lanaly

p (f†)
)
=

∑

[a]∈Pic(OK )

d−1f [p]ν ⊗ θ−1
ν (a ∗ (A, αA, ı A))

=
∑

[a]∈Pic(OK )

d−rν f [p]ν (a ∗ (A, A[N])).

By Theorem 3.3, setting

�
bdp
rν :=NormH/K (�

bdp
ϕ(1),rν )=

∑

[a]∈Pic(OK )

Na1−r ·�bdp
ϕa ,rν ∈ CH2rν−1(Xrν )0(K ),

(5.28)

7 That �(η)
ν , which a priori just lies in Fν , is indeed a unit is shown in [31, Prop. 6.4].
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this shows that

ν
(
Lanaly

p (f†)
)
= Eν(rν)E∗ν (rν)

(−1)rν−1

(rν − 1)!AJQp (�
bdp
rν )(ωf�ν

⊗ e⊗rν−1
ζ )

= Eν(rν)E∗ν (rν)
(−1)rν−1

(rν − 1)! log
V

†
ν
(locp(�

ét
f�ν ,K

(�
bdp
rν )))(ωf�ν

⊗ e⊗rν−1
ζ ),

(5.29)

where

Eν(rν) :=
(

1− prν−1

ν(ap)

)
, E∗ν (rν) :=

(
1− ν(ap)

prν

)
,

and �ét
f�ν ,K
:= πf�ν ,Nrν−1 ◦�ét

K with notations as in the diagram (3.3) defining AJQp .

On the other hand, by the specialization property of the map Log(η)
T† we have

ν
(
Larith

p (f†)
)
= u

(−1)rν−1

(rν − 1)! Eν(rν)
−1E∗ν (rν)log

V
†
ν
(locp(Zν))(η

′
ν). (5.30)

Comparing (5.30) and (5.29), we thus conclude form (5.26) that

log
V

†
ν
(locp(Zν))(ωf�ν

⊗e⊗rν−1
ζ )= 1

u
Eν(rν)2log

V
†
ν
(locp(�

ét
f�ν ,K

(�
bdp
rν )))(ωf�ν

⊗e⊗rν−1
ζ ).

Since Fil1 DdR(Vf�ν
(rν − 1)) is spanned by ωf�ν

⊗ e⊗rν−1
ζ , it follows that

log
V

†
ν
(locp(Zν)) = 1

u
Eν(rν)2log

V
†
ν
(locp(�

ét
f�ν ,K

(�
bdp
rν ))),

and since log
V

†
ν

is an isomorphism, that

locp(Zν) = 1

u
Eν(rν)2locp(�

ét
f�ν ,K

(�
bdp
rν )). (5.31)

Our nonvanishing assumption (5.24) implies on the one hand, by Theorem 5.6,
that Zν is non-zero for all but finitely many ν ∈ Xarith(I), and on the other hand,
by Corollary 5.7, that the localization map locp is injective for all but finitely many
ν ∈ Xarith(I). In particular, we thus see from (5.31) that we have

〈Zν,Zν〉K = 1

u2 Erν (rν)
4〈�ét

f�ν ,K
(�

bdp
rν ),�ét

f�ν ,K
(�

bdp
rν )〉K

= 1

u2 Erν (rν)
4
〈�ét

f�ν ,K
(�

heeg
rν ),�ét

f�ν ,K
(�

heeg
rν )〉K

(4D)rν−1
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for all but finitely many ν as in the statement, where the last equality follows from
Lemma 3.4 in light of the definitions (5.23) and (5.28). The result follows. ��
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