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Abstract We construct a new invariant of transverse links in the standard contact
structure on R

3. This invariant is a doubly filtered version of the knot contact homol-
ogy differential graded algebra (DGA) of the link, see (Ekholm et al., Knot contact
homology, Arxiv:1109.1542, 2011; Ng, Duke Math J 141(2):365–406, 2008). Here
the knot contact homology of a link in R

3 is the Legendrian contact homology DGA
of its conormal lift into the unit cotangent bundle S∗

R
3 of R

3, and the filtrations are
constructed by counting intersections of the holomorphic disks of the DGA differen-
tial with two conormal lifts of the contact structure. We also present a combinatorial
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formula for the filtered DGA in terms of braid representatives of transverse links and
apply it to show that the new invariant is independent of previously known invariants
of transverse links.

Mathematics Subject Classification (2000) 53D42 · 57R17 · 57M27

1 Introduction

Constructing effective invariants of transverse knots in contact 3-manifolds that go
beyond the obvious homotopy invariants has been a notoriously difficult problem. For
knots transverse to the standard contact structure on R

3, the first such invariant proven
to be effective was constructed only recently, using combinatorial knot Heegaard Floer
homology [14]; a related transverse invariant in the Heegaard Floer homology of a
general compact contact 3-manifold was subsequently constructed in [10]. In this
paper we define and combinatorially present a new invariant for transverse links in the
standard contact R

3. The new invariant is a filtration on the knot contact homology
differential graded algebra (DGA) [4,12] for transverse links and it appears to be
quite different from the Heegaard Floer invariants. The construction of the invariant
can be applied more generally to produce invariants of transverse links in any contact
3-manifold and might even say interesting things in higher dimensions, but the details
are considerable more difficult, as are the computations. So we defer the discussion
of the general case to a future paper.

1.1 Transverse knot contact homology

In [12], the third author constructs a combinatorial DGA associated to a framed knot
K ⊂ R

3 and shows that its homology, combinatorial knot contact homology, is an
invariant of framed knots. This invariant detects the unknot and encodes the Alexander
polynomial, among other things.

The current authors prove in [4] that the combinatorial DGA is (stable tame) iso-
morphic to the Legendrian contact homology DGA of the conormal lift of a knot K
and also generalize the combinatorial description of knot contact homology to many-
component links. Here the conormal lift of a link K is a union ΛK of Legendrian tori
in the unit cotangent bundle S∗

R
3 of R

3 with the contact structure given as the kernel
of the canonical 1-form. The Legendrian contact homology DGA of ΛK is an alge-
bra generated by its Reeb chords with differential defined by a count of holomorphic
disks in S∗

R
3 × R in the spirit of symplectic field theory [8]. Its calculation in [4]

uses the contactomorphism S∗
R

3 ≈ T ∗S2 ×R to transfer the holomorphic disk count
in S∗

R × R to T ∗S2. The disk count is then carried out using the relation between
holomorphic disks and Morse flow trees [2].

We will call the Legendrian invariant of ΛK defined using holomorphic disks the
knot contact homology of K . We denote the underlying DGA by (K CA (K ), ∂) and
its homology by K C H(K ). The algebra K CA (K ) is a free graded tensor algebra over
the coefficient ring R = Z[H1(ΛK )] = Z[λ±1

1 , μ±1
1 , . . . , λ±1

r , μ±1
r ], where r is the

number of components of K ; the differential ∂ depends on K as well, but we suppress
this dependence to simplify notation.
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Transverse knot contact homology 1563

Let (x1, x2, x3) be coordinates on R
3 and let ξ0 = ker(dx3 − x1 dx2 + x2 dx1)

denote the standard tight, rotationally symmetric contact structure on R
3. For links

K transverse to ξ0, we extend the coefficient ring of the knot contact homology DGA
to R[U, V ], where U and V are two formal variables which encode intersections of
holomorphic disks with the natural lifts of ξ0 that correspond to its two coorientations.
The resulting DGA will be denoted (K CA −(K ), ∂−) and has a double filtration: by
positivity of intersections the differential ∂− does not decrease the exponents of U or
V . Our main result is as follows.

Theorem 1.1 The filtered stable tame isomorphism type of (K CA −(K ), ∂−), and
hence its homology, is an invariant of the transverse knot or link K in (R3, ξ0). The
DGA can be computed from a braid representative of K as described in Theorem 1.3
below.

This invariant of transverse links in particular distinguishes transverse knots with the
same self-linking number and with the same Heegaard Floer invariants, see Sect. 5.2.
The explicit formula for (K CA −(K ), ∂−) is somewhat involved and is therefore pre-
sented separately in Sect. 1.2. It should however be noted that our method for obtaining
the combinatorial formula relies heavily on the explicit description of holomorphic
disks used in the computation of knot contact homology in [4]. An alternate and purely
combinatorial approach to Theorem 1.1 is worked out in [13]. It begins with the com-
binatorial description of Theorem 1.3 in terms of a braid representation of the knot and
proves invariance under transverse isotopy, without any reference to the underlying
geometry, via a study of effects of Markov moves. See [13] also for various alge-
braic properties of the invariant and more detailed calculations which demonstrate its
effectiveness.

Those familiar with the algebraic formalism of Heegaard Floer homology will
notice that we can construct several other invariants from (K CA −(K ), ∂−). Two

simpler invariants (K̂ CA (K ),̂∂) and
(̂
K̂ CA (K ),̂̂∂

)

arise by setting (U, V ) =
(0, 1) and (0, 0), respectively. Setting (U, V ) = (1, 1), on the other hand, reduces
(K CA −(K ), ∂−) to the original knot contact homology DGA, (K CA (K ), ∂).

Alternatively, one can tensor (K CA −(K ), ∂−) with an extended coefficient ring
R[U±1, V ±1], to obtain a DGA, (K CA ∞(K ), ∂∞). It turns out that (K CA ∞(K ), ∂∞)

depends on only the topological isotopy class of K , rather than its transverse isotopy
class.

Theorem 1.2 If K is a transverse knot, then as a DGA over Z[λ±1, μ±1, U±1, V ±1],
(K CA ∞(K ), ∂∞) is an invariant, up to stable tame isomorphism, of the topological
knot underlying K .

In fact, it equals the Legendrian contact homology of ΛK with coefficients in a rel-
ative homology group, see Sect. 3.7 and also [13]. A statement similar to Theorem 1.2
holds for general transverse links but will not be proven here.

1.2 Calculating (K CA (K )−, ∂−) from a braid presentation

We now turn to the computation of our transverse link invariant. To this end we first
need to introduce some notation. Our notation and conventions differ slightly from
those of [13], in which the equivalence of conventions is discussed.
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1564 T. Ekholm et al.

The unit circle U in the plane {x3 = 0} is transverse to the contact structure defined
by the 1-form dx3 −x2 dx1 +x1 dx2. By work of Bennequin [1], any transverse link K
can be isotoped so that it is braided around U , i.e., contained in a tubular neighborhood
U × D2 of U so that it is transverse to the disk fibers. So K can be represented as the
closure of a braid B in U × D2 = S1 × D2. The braid B is an element of the braid
group Bn for some n and can be expressed as a word in the standard generators of Bn

and their inverses; here the standard generator σ j ( j = 1, . . . , n − 1) corresponds to
a braid that intertwines strands j and j + 1 positively.

The Legendrian contact homology DGA of ΛK is a free associative non-
commutative unital DGA over the group ring of H1(ΛK ; Z). Fixing a framing on
each component of K (e.g., the standard topological 0-framing) yields a distinguished
basis {λ1, μ1, . . . , λr , μr } of H1(ΛK ; Z), where r is the number of components of K .
More precisely, by identifying T R

3 with T ∗
R

3, we can identify ΛK with the boundary
of a tubular neighborhood of K , which consists of r disjoint tori. Each component of
K has a natural orientation given by the positive coorientation of the contact structure
ξ0. Then μ j , λ j are the meridian and framed longitude of the j-th torus.

Now, as described above, suppose that K is the closure of a braid B ∈ Bn in a
tubular neighborhood of the standard transverse unknot U. Let An denote the graded
unital algebra over Z[λ±1

1 , μ±1
1 , . . . , λ±1

r , μ±1
r ] freely generated by

{ai j }1≤i, j≤n; i �= j in degree 0,

{bi j }1≤i, j≤n; i �= j in degree 1,

{ci j }1≤i, j≤n in degree 1, and

{ei j }1≤i, j≤n in degree 2,

where the degrees of λ±1
j and μ±1

j equal 0 for j = 1, . . . , r . (When there is only one

link component, we drop the subscripts on λ j , μ j .) Let A (0)
n denote the subalgebra

of An of elements of degree 0.
We define an automorphism φB : A (0)

n → A (0)
n as follows. Introduce auxil-

iary variables μ̃1, . . . , μ̃n of degree 0, and write ˜A (0)
n for the unital algebra over

Z[μ̃±1
1 , . . . , μ̃±1

n ] freely generated by {ai j }1≤i, j≤n;i �= j . For k = 1, . . . , n − 1, let

φσk : ˜A (0)
n → ˜A (0)

n be given by

φσk (ai j ) = ai j i, j �= k, k + 1
φσk (ak k+1) = −ak+1 k

φσk (ak+1 k) = −μ̃kμ̃
−1
k+1ak k+1

φσk (ai k+1) = aik i �= k, k + 1
φσk (ak+1 i ) = aki i �= k, k + 1
φσk (aik) = ai k+1 − aikak k+1 i < k
φσk (aik) = ai k+1 − μ̃kμ̃

−1
k+1aikak k+1 i > k + 1

φσk (aki ) = ak+1 i − ak+1 kaki i �= k, k + 1
φσk

(

μ̃±1
k

) = μ̃±1
k+1

φσk

(

μ̃±1
k+1

) = μ̃±1
k

φσk

(

μ̃±1
i

) = μ̃±1
i i �= k, k + 1.
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Transverse knot contact homology 1565

Write B in terms of braid group generators, B = σ
m0
i0

. . . σ
ml
il

∈ Bn, and let
φB = (φσi0

)m0 ◦ · · · ◦ (φσil
)ml . Then φ descends to a homomorphism from Bn to

the automorphism group of ˜A (0)
n ; in particular, φ satisfies the braid relations.

For j = i, . . . , n, let α(i) ∈ {1, . . . , r} be the number of the link component of K
corresponding to the i-th strand of B. Then φB can be viewed as an automorphism of
A (0)

n by setting μ̃i = μα(i) for all i and having φB act as the identity on λi for all i .

As an automorphism of A (0)
n , φB acts as the identity on μi as well.

For convenient notation we assemble the generators of An into (n × n)-matrices.
Writing Mi j for the element in position i j in the (n × n)-matrix M, we define the
(n × n)-matrices

A :

⎧

⎪

⎨

⎪

⎩

Ai j = ai j if i < j,

Ai j = μα( j)ai j if i > j,

Ai i = 1 + μα(i),

B :

⎧

⎪

⎨

⎪

⎩

Bi j = bi j if i < j,

Bi j = μα( j)bi j if i > j,

Bi i = 0,

C :
{

Ci j = ci j , E :
{

Ei j = ei j .

We also associate (n ×n)-matrices with coefficients in A (0)
n to the braid B as follows.

Let φB(A) be the matrix defined by
(

φB(A)
)

i j = φB(Ai j ). Then there are invertible

matrices ΦL
B and Φ R

B so that

φB(A) = ΦL
B · A · Φ R

B .

More specifically, we define these matrices by setting B ′ to be the (n + 1)-braid
obtained by adding an extra strand labeled 0 to B (that is, viewing the word defining
B as a word in the (n + 1)-strand braid group generated by σ0, . . . , σn−1). Let φ′

B be
the corresponding automorphism of the {ai j }0≤i, j≤n;i �= j . Then define ΦL

B and Φ R
B by

φ′
B(ai0) =

n
∑

j=1

(

ΦL
B

)

i j
a j0 and φ′

B(a0 j ) =
n

∑

i=1

a0i

(

Φ R
B

)

i j
;

see also [4,11,12]. (Note that since the 0-th strand does not interact with the others, μ̃0
does not appear anywhere in the expressions for φ′

B(ai0) and φ′
B(a0 j ), and so ΦL

B , Φ R
B

have coefficients in A (0)
n .)

Also, define an (n ×n) coefficient matrix λ as follows. Among the strands 1, . . . , n
of the braid, call a strand leading if it is the first strand belonging to its component.
Then let λ be the diagonal matrix defined by

λ :

⎧

⎪

⎨

⎪

⎩

λi j = 0 if i �= j,

λi i = λα(i)μ
w(i)
γ (i) if the i th strand is leading,

λi i = 1 otherwise,
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1566 T. Ekholm et al.

where w(i) is the writhe (algebraic crossing number) of the i-th component of the
braid, considered by itself. Finally, in order to capture the two filtrations, we define
the following additional matrices:

AU :

⎧

⎪

⎨

⎪

⎩

AU
i j = Uai j if i < j,

AU
i j = μα( j)ai j if i > j,

AU
ii = U + μα(i),

BU :

⎧

⎪

⎨

⎪

⎩

BU
i j = Ubi j if i < j,

BU
i j = μα( j)bi j if i > j,

BU
ii = 0,

AV :

⎧

⎪

⎨

⎪

⎩

AV
i j = ai j if i < j,

AV
i j = μα( j)V ai j if i > j,

AV
ii = 1 + μα(i)V,

BV :

⎧

⎪

⎨

⎪

⎩

BV
i j = bi j if i < j,

BV
i j = μα( j)V bi j if i > j,

BV
ii = 0.

Theorem 1.3 The filtered knot contact homology DGA, (K CA (K )−, ∂−) of a trans-
verse link K represented as a braid B on n strands is given by the DGA, (An, ∂−),
with the differential ∂− : An → An defined by the following matrix equations:

∂−A = 0,

∂−B = −λ−1 · A · λ + ΦL
B · A · Φ R

B ,

∂−C = AV · λ + AU · Φ R
B ,

∂−E = BV · (Φ R
B )−1 + BU · λ−1 − ΦL

B · C · λ−1 + λ−1 · C · (Φ R
B )−1,

where if M is an (n × n)-matrix, the matrix ∂−M is defined by (∂−M)i j = ∂−(Mi j ).

The rest of the paper is organized as follows. We provide some general geometric
background in Sect. 2 before defining the transverse invariant (K CA −(K ), ∂−) and
proving invariance in Sect. 3. In Sect. 4, we derive the combinatorial formula for
(K CA −(K ), ∂−) by proving Theorem 1.3, and present examples in Sect. 5.

2 Geometric constructions

In this section we begin by recalling the definition of Legendrian contact homology
and then discuss filtrations on the Legendrian contact homology DGA induced by
complex hypersurfaces with certain properties. In the next subsection we recall the
conormal construction and see how it can be used to construct invariants of smooth
embeddings using Legendrian contact homology. In the last subsection we show how
to construct an appropriate complex hypersurface in the case of the Legendrian contact
homology of the conormal lift of a transverse knot in the standard contact structure on
R

3 and that it gives an invariant of transverse knots. We note that this section gives a
geometric construction of transverse knots invariants that can be generalized to other
situations, but to actually compute the invariant for transverse knots in the standard
contact structure on R

3 we will need to slightly alter the complex hypersurfaces so
that they interact well with the constructions in [4]. This is done explicitly in Sect. 3.

123



Transverse knot contact homology 1567

2.1 Legendrian contact homology

In [8], the Legendrian contact homology LC H(Λ) of a Legendrian submanifold Λ of
a contact manifold (V, ξ) was introduced. The analytic underpinnings were worked
out in detail in [7] for a fairly general and useful case (but under the simplifying
assumption that the chosen Reeb field of ξ has no closed orbits, see below). In this case
the Legendrian contact homology LC H(Λ) is the homology of a DGA, (LCA (Λ), ∂),
over a fixed ring, which changes by a particular type of quasi-isomorphism, called a
stable tame isomorphism, as Λ changes by Legendrian isotopy. Thus, the stable tame
isomorphism class of (LCA (Λ), ∂) might be considered to be the actual Legendrian
invariant underlying LC H(Λ).

We briefly sketch the definition of this DGA in the case handled in [7] for the con-
venience of the reader and to establish some notation; for a more complete definition,
see [7] and for generalizations see [8].

Let P be a manifold with exact symplectic form dλ. The manifold P × R has
a natural contact structure ξ = ker(dz − λ) where z is the coordinate on R. The
Reeb vector field of this form is ∂z and consequently there are no closed Reeb orbits.
Consider the projection

πC : P × R → P.

The algebra LCA (Λ) is the free tensor algebra generated over Z[H1(Λ)] by the double
points of πC(Λ). Notice that the double points are in one to one correspondence with
“Reeb chords”, that is, flow lines of the Reeb vector field that begin and end on
Λ. Thus we will frequently refer to double points as Reeb chords. For the double
points we choose “capping paths” in Λ: that is, paths in Λ that connect any Reeb
chord endpoint to a fixed base point in its connected component, and fixed paths
connecting the base points of distinct components; together, these give paths that
connect the two points in Λ which project to a double point in πC(Λ). At a double
point p there are two points in Λ that project to it. We label the one with larger
z coordinate z+ and the other z−. The projection of a neighborhood of z+ in Λ

to P will be called the upper sheet at z and the projection of a neighborhood of
z− will be called the lower sheet at z. We then can define a Maslov type index |c|
and |A| of Reeb chords c and homology classes A ∈ H1(Λ) to provide a grading
on LCA (Λ).

To define the differential we fix an almost complex structure J on P (which
can be thought of as an almost complex structure on ξ using the isomorphism
dπC|ξ ). For this almost complex structure the differential is determined by counting
(pseudo-)holomorphic disks mapped into P with boundary on πC(Λ). Given a Reeb
chord a, a (noncommutative) word of Reeb chords b = b1 · · · bm, and a homology
class A ∈ H1(Λ), we define a moduli space

MA(a; b) (2.1)
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1568 T. Ekholm et al.

of holomorphic disks u : D → P with: boundary on Λ; one positive1 puncture at a
and negative punctures at b1, . . . , bm in the order given by the boundary orientation;
and the homology class A given by the lift of u(∂ D) to Λ together with the chosen
capping paths. For a generic almost complex structure, this moduli space is a manifold
of dimension |a| − |b| − |A| − 1, where |b| = ∑m

i=1 |bi |. Furthermore, the space has
a natural compactification which consists of (several level) broken curves and which
admits the structure of a manifold with boundary with corners. The moduli spaces can
be coherently oriented provided the Legendrian submanifold Λ is spin.

Define the differential on the generators of LCA (Λ) by

∂a =
∑

{u∈MA(a;b) | |a|−|b|−|A|−1=0}
(−1)|a|+1σ(u)eAb, (2.2)

where σ(u) ∈ {±1} is determined by the moduli space orientation. The differential is
then extended to all of LCA (L) by the graded product rule and linearity.

2.2 Almost complex hypersurfaces and filtration on Legendrian contact homology

We discuss how to use a complex hypersurface to add a “filtration” to the Legendrian
contact homology DGA. With the notation above, suppose that H is a submanifold of
P such that

1. H is an almost complex hypersurface (J (T H) = T H and the (real) codimension
of H equals 2) and

2. Λ ∩ H = ∅.

Given such Λ and H , we can extend the base ring for the contact homology DGA of Λ

from Z[H1(Λ)] to Z[H1(Λ)][UH ], by adjoining a formal variable UH and changing
the definition of the boundary map, using powers of UH to keep track of the number
of times the holomorphic disks in the definition of the boundary map intersect UH .

Specifically, given u ∈ MA(a; b), positivity of intersection shows that the intersection
number of the image of u with H is a well-defined and nonnegative integer which we
denote nH (u). We can now modify the differential in Eq. (2.2) and define instead:

∂ f a =
∑

{u∈MA(a;b) | |a|−|b|−|A|−1=0}
(−1)|a|+1σ(u)U

nH (u)

H
eAb. (2.3)

Conditions (1) and (2) above ensure that ∂ f is a filtered differential; that is, it respects
the filtration

LCA ⊃ UH · LCA ⊃ U 2
H

· LCA ⊃ · · · .

1 Using the orientation on ∂ D induced by the complex structure a puncture is positive if it maps the segment
of the boundary just before the puncture to the lower sheet at the double point and the segment just after the
puncture to the upper sheet. The puncture is negative if the roles of the upper and lower sheets are reversed.
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The proof that (LCA (Λ), ∂) is invariant up to stable tame isomorphism carries over
to show that the stable tame isomorphism type of (LCA (Λ), ∂ f ) over Z[H1(Λ)][UH ]
is an invariant of Λ under isotopies Λt , 0 ≤ t ≤ 1, such that Λt satisfies condition (2)

for all t , see Theorem 3.11 below.

2.3 The conormal construction and knot contact homology

Given any n-manifold M, the cotangent bundle T ∗M has a canonical symplectic
structure dλ where λ is the Liouville 1-form. If we choose a metric g on M then we
can consider the unit cotangent bundle S∗M. The restriction of λ to S∗M is a contact
form which we denote by α, and ξ = ker α is a contact structure on S∗M.

Let pr : T ∗M → M denote the natural projection. If K is a submanifold of M (of
any dimension) then the unit conormal bundle

ΛK = {β ∈ S∗M : pr(β) = p ∈ K and β(v) = 0 for all v ∈ Tp K }

is a Legendrian submanifold of (S∗M, ξ). If we smoothly isotop K in M , it is clear
that ΛK will undergo a Legendrian isotopy in (S∗M, ξ). Thus any Legendrian isotopy
invariant of ΛK is a smooth isotopy invariant of K .

In this paper, we consider conormal lifts of links K ⊂ R
3 which are Leg-

endrian submanifolds ΛK ⊂ S∗
R

3. There is a well known contactomorphism
S∗

R
3 ∼= J 1(S2) = T ∗S2 × R and we will thus consider ΛK ⊂ T ∗S2 × R and

use the version of Legendrian contact homology of ΛK defined in [7]. In particular,
we define the knot contact homology algebra of a link K in R

3 to be the Legendrian
contact homology algebra of ΛK ⊂ J 1(S2). We denote it (K CA (K ), ∂) and note
that the stable tame isomorphism class of (K CA (K ), ∂) is an isotopy invariant of
K . In [4] the authors show how to compute (K CA (K ), ∂) and demonstrate that it is
equivalent to the combinatorial knot DGA introduced by the third author in [12].

We recall for later use that the projection πF : J 1(S2) → S2 ×R is called the front
projection and that a generic Legendrian submanifold Λ in J 1(S2) can be recovered
uniquely from πF (Λ) ⊂ S2 ×R. Since S2 ×R can be visualized as R

3 \ {(0, 0, 0)}, it
will frequently be useful to study a Legendrian submanifold Λ via its front projection.

2.4 Transverse link invariants

Here we describe the geometry underlying the claimed filtration on knot contact homol-
ogy, in the case when K ⊂ R

3 is a transverse link and not simply a topological link.
Consider a contact structure ξ on R

3. If there is a Reeb vector field Rξ for ξ such that
the flow lines of the vector field trace out geodesics (in the flat Euclidean metric on
R

3) then we can consider the submanifolds

H±
ξ = {η ∈ S∗

R
3 : ±η(Rξ ) > 0 and η(v) = 0 for all v ∈ ξ}.
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1570 T. Ekholm et al.

Since the Reeb flow lines of Rξ are geodesics, H±
ξ are foliated by Reeb flow lines in

S∗
R

3. In other words, identifying S∗
R

3 with J 1(S2) = T ∗S2 × R, the projected sub-
manifold H

±
ξ = πC(H±

ξ ) in T ∗S2 is an embedded codimension 2 submanifold. One

may also choose the almost complex structure on T ∗S2 so that H
±
ξ is a holomorphic

submanifold. Moreover, if K is a knot in R
3 that is transverse to ξ then its conormal

lift ΛK projects to an exact Lagrangian submanifold in T ∗S2 that is disjoint from H
±
ξ .

Thus, as discussed above, we can construct an associated filtered contact homology
DGA that will be an invariant of the transverse isotopy class of K .

To carry out the above construction one must choose a contact form α with ξ =
ker(α) so that its Reeb flow traces out geodesics. The standard contact structure does
have such representatives, for example ξ0 = ker(sin x1 dx2 + cos x2 dx3), but it is
quite difficult to actually compute the filtered contact homology DGA for this contact
structure. To take advantage of the computations in [4] we would prefer to work
with the contact form ker(dx3 + r2 dθ), but this contact form does not have a Reeb
vector field with the requisite properties. In the remainder of the paper we overcome
this problem by considering a different S2-subbundle B of T ∗

R
3 instead of the unit

cotangent bundle. As long as each fiber in this subbundle bounds a convex region
containing the origin, we can still identify B with J 1(S2). By a judicious choice of
B we will see that the projection of H±

ξ to T ∗S2 retains enough of the properties
discussed above to allow us to explicitly calculate a filtered invariant for transverse
knots in R

3.

3 The filtered DGA of transverse links in (R3, ξ0)

In this section we show how to construct from the standard contact structure (R3, ξ0) a
pair of complex hypersurfaces H± in T ∗S2 satisfying the following: if K is any link in a
sufficiently small ball around the origin which is transverse to ξ0, then H±∩πC(ΛK ) =
∅. In order to get a computable invariant we adapt the geometry and use a slightly
non-standard version of S∗

R
3.

In Sect. 3.1 we describe our geometric model of S∗
R

3 and its relation to T ∗S2 ×R.
In Sect. 3.2 we show that we can control the image of the holomorphic disks used to
compute the knot contact homology so that they lie near the zero section in T ∗S2 if
the original link is sufficiently small. We then discuss the conormal lift of the standard
contact structure on R

3 in Sect. 3.3 and show in Sect. 3.4 that it is no restriction to
assume that all transverse links and isotopies lie in a small ball around the origin. In
Sects. 3.5 and 3.6, we define a suitable almost complex structure on T ∗S2 and then
prove the filtered DGA of a transverse link is well-defined and invariant up to stable
tame isomorphisms under isotopies through transverse links. Finally, in Sect. 3.7, we
explain why the infinity theory for knots in R

3 is a topological invariant.

3.1 The spherical conormal bundle and the 1-jet space of S

Let y = (y1, y2, y3) be standard Euclidean coordinates on R
3. Let S denote the

smooth boundary of a (not necessarily strictly) convex subset of R
3 which is symmetric

123



Transverse knot contact homology 1571

with respect to reflection in the y1 y2-plane and with respect to rotations about the
y3-axis. For y ∈ S, let ν(y) denote the outward unit normal to S at y. Note that the
symmetries of S imply that ν(y1, y2, y3) lies in the subspace spanned by the vectors
(y1, y2, 0) and (0, 0, y3). In particular, ν(0, 0, y3) = (0, 0,±1) and ν(y1, y2, 0) =

1
√

y2
1+y2

2

(y1, y2, 0).

We represent the spherical cotangent bundle of R
3 as

S∗
R

3 = R
3 × S ⊂ T ∗

R
3 = R

3 × R
3

and use coordinates (x, y) = (x1, x2, x3, y1, y2, y3) on T ∗
R

3. The contact form on
S∗

R
3 is the restriction of the Liouville 1-form y · dx = ∑3

j=1 y j dx j on T ∗
R

3 to

S∗
R

3. We compute the Reeb vector field as follows.

Lemma 3.1 The Reeb vector field on S∗
R

3 is

R(x, y) = |y|−1(ν(y) · ∂x ) = |y|−1
∑

ν j (y)∂x j (3.1)

and the time t flow starting at (x, y) is

Φ t
R(x, y) = (x + t (|y|−1ν(y)) , y). (3.2)

Proof If i denotes the standard complex structure on C
3 = R

3 + iR3 = T ∗
R

3 then
the Reeb field lies in the intersection of T (S∗

R
3) and the complex tangent line at y

containing ν(y). Thus up to normalization the Reeb field equals −iν(y) = ν(y) · ∂x .
The lemma follows.

The spherical cotangent bundle S∗
R

3 can be identified with the 1–jet space J 1(S) =
T ∗S×R as follows, where we use the flat metric on R

3 to identify vectors and covectors.

Lemma 3.2 The map φ : S∗
R

3 → J 1(S) = T ∗S × R given by

φ(x, y) = (y, x − (x · ν)ν, x · y).

is a contactomorphism

φ : (S∗
R

3, y · dx) → (J 1(S), dz − p · dq),

where q = (q1, q2) are local coordinates on S, p = (p1, p2) give the coordinates on
the fiber of the cotangent bundle and z is the coordinate on R.

Proof Note that

φ∗(dq) = dy,

φ∗(dz) = x · dy + y · dx,
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and thus

φ∗(dz − p · dq) = x · dy + y · dx − (x − (x · ν)ν) · dy = y · dx,

where we use ν · dy = 0, which holds since y ∈ S and ν is the normal of S at y.

3.2 Confining holomorphic curves

Fix δ > 0, let S ⊂ R
3 be as above and write ρ0 = max{|y| : y ∈ S}. Below we will

measure lengths of cotangent vectors in T ∗S using the metric coming from the one
induced on T ∗

R
3 by the flat metric on R

3. If (q, p) ∈ T ∗S then we write |p| for the
length of the cotangent vector measured with respect to this metric.

Lemma 3.3 If K is any link contained in B(δ), the ball of radius δ about the origin
in R

3, then

ΛK ⊂ {(q, p, z) ∈ T ∗S × R : |p| ≤ δ}.

Moreover, if c is a Reeb chord of ΛK then

∫

c

(dz − p dq) ≤ 2ρ0δ.

Proof By Lemma 3.2 if x ∈ K and (x, y) ∈ ΛK ⊂ S∗
R

3 then

|p| = |x − (ν(y) · x)ν(y)| ≤ |x | ≤ δ.

For the second statement we note that Lemma 3.1 implies that a Reeb chord c of ΛK

is a lift (lc, y) into S∗
R

3 of a line segment lc in R
3 with endpoints on K and that the

action of the chord is
∫

lc

y · dx ≤
∫

lc

ρ0|dx | ≤ 2ρ0δ.

As a consequence of Lemma 3.3 we can confine holomorphic curves with boundary
on ΛK . As in Sect. 2.3, πC : J 1(S) → T ∗S will denote the projection map and
ΛK = πC(ΛK ).

Lemma 3.4 Let J be an almost complex structure on T ∗S that is compatible with the
symplectic form on T ∗S. Fix δ0 > 0 a constant. Then there exists 0 < δ < δ0 such
that if K is a link in B(δ) then any J -holomorphic disk with boundary on ΛK and one
positive puncture lies in {(q, p) ∈ T ∗S : |p| < 2δ0}.
Proof Consider 0 < δ < δ0. By Stokes’ theorem and Lemma 3.3, the area of a disk
u as described is bounded above by 2ρ0δ and its boundary is contained in the region
where |p| ≤ δ. By monotonicity (see for example Proposition 4.3.1 [9]), there exists
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a constant C0 (depending only on J ) such that if u leaves the region where |p| ≤ 2δ0
then the area of u is at least C0δ

2
0. If we now take δ < C0δ

2
0/2ρ0, the lemma follows.

3.3 A contact form on R
3 and its spherical cotangent lifts

Fix the contact form α0 = dx3 − x2 dx1 + x1 dx2 on R
3 and write, as in Sect. 1,

ξ0 = ker(α0) for the corresponding contact structure. Note that α0 is invariant under
rotations in the x1x2-plane and that the diffeomorphism

(x1, x2, x3) �→
(

1

2
x1 ,

1

2
x2 , x3 − 1

2
x1x2

)

gives a contactomorphism between α0 and the standard contact form on R
3, dx3 −

x2 dx1.
If v ∈ R

3 is a non-zero vector, we denote the two open half rays determined by v

as follows:

R± · v = {x ∈ R
3 : x = tv, ±t > 0}.

The positive and negative spherical lifts of α0 are

H+ = {(x, y) ∈ S∗
R

3 : y ∈ R+ · α0(x)} and

H− = {(x, y) ∈ S∗
R

3 : y ∈ R− · α0(x)}, (3.3)

respectively. At all points x on a transverse link K , α0 fails to annihilate the tangent
space Tx K . Thus we have the following immediate result.

Lemma 3.5 If K is transverse to ξ0 then the conormal lift ΛK of K is disjoint from
H±.

3.4 Shrinking transverse links

The following straightforward lemma reduces the study of transverse links in R
3 with

its standard contact structure to the study of transverse links lying in an arbitrary small
fixed neighborhood of the origin. Let Bd(r) denote the closed d-dimensional ball of
radius r around the origin and let B(r) = B3(r).

Lemma 3.6 Fix δ > 0. Let K (s), s ∈ Bd(1), be a continuous family of transverse
links in (R3, ξ0) such that K (s) ⊂ B(δ) for s ∈ ∂ Bd(1). Then there is a homotopy
K (s, t), 0 ≤ t ≤ 1, with K (s, t) = K (s) if s ∈ ∂ Bd(1), and such that K (s, 0) = K (s)
and K (s, 1) ⊂ B(δ) for each s ∈ Bd(1). In particular, the space of transverse links
in R

3 is weakly homotopy equivalent to the space of transverse links in B(δ).

Proof Note that if K is a transverse link in (R3, α) then so is Fc(K ) where

Fc(x1, x2, x3) = (
√

c x1,
√

c x2, cx3)
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for c > 0. Choose ε1, ε2 > 0 sufficiently small so that K (s) ⊂ B(ε−1
1 δ) for all

s ∈ Bd(1) and K (s) ⊂ B(δ) for all s ∈ (Bd(1) \ Bd(1 − ε2)). Choose any smooth
ε : Bd(1) → [ε1, 1] such that

ε(s) = 1 if s ∈ ∂ Bd(1), and ε(s) = ε1 if s ∈ Bd(1 − ε2).

Then K (s, t) = F(1−t)+tε(s)(K (s)) is a homotopy with the required properties.

Using Lemma 3.6 in conjunction with Lemma 3.4, we can restrict our attention to a
small neighborhood of the zero section in T ∗S when counting holomorphic curves
with boundary on the conormal lift of transverse knots.

3.5 Almost complex structures

We choose S ⊂ R
3 as in Sect. 3.1 with the additional requirement that S is flat near

the north and south poles. More precisely, for some fixed δ0 > 0 we require that

S ∩
{

y ∈ R
3 :

√

y2
1 + y2

2 ≤ 3δ0

}

=
{

(y1, y2,±1) ∈ R
3 :

√

y2
1 + y2

2 ≤ 3δ0

}

.

(3.4)

For 0 < k < 3, write

Ekδ0 = S ∩
{

y ∈ R
3 :

√

y2
1 + y2

2 ≤ kδ0

}

=
{

(y1, y2,±1) ∈ R
3 :

√

y2
1 + y2

2 ≤ kδ0

}

,

and let H±(kδ0) denote the intersection H± ∩ (T ∗Ekδ0 × R). Note that the metric on
S is flat in E3δ0 and that the almost complex structure induced by the metric agrees
with the standard integrable complex structure J0 on T ∗E3δ0 ⊂ C

2.
Let K be a transverse link in the ball B(δ) and ΛK its conormal lift. As usual, let

πC : J 1(S) → T ∗S denote the projection, and write H± = πC(H±) and H±(kδ0) =
πC(H±(kδ0)).

Lemma 3.7 The spherical lifts H± of α0 intersect the subset ∂(T ∗E2δ0 ×R) ⊂ J 1(S)

transversely. Moreover, H±(2δ0) is invariant under the Reeb flow and its projection
H±(2δ0) ⊂ T ∗E2δ0 is a smooth J0-complex subvariety.

Proof By Formula (3.4), the normal vector to E2δ0 is ν = (0, 0, 1). By the definition
of the contact form α0 and Lemma 3.2,

H±(2δ0) = {

(q, p, z) ∈ T ∗S × R : (q, p, z) = (±(−x2, x1, 1) , (x1, x2, 0) , x3)

and x2
1 + x2

2 ≤ 4δ2
0

}

(3.5)

(see the Proof of Lemma 3.8 for a parameterized version). This is clearly transverse
to ∂(T ∗E2δ0 × R) and invariant under the Reeb flow (which is just translation in

123



Transverse knot contact homology 1575

the z-direction). Furthermore, under the identification ((u1, u2,±1), (v1, v2, 0)) �→
(u1 + iv1, u2 + iv2) ∈ C

2, H±(2δ0) corresponds to the complex line

(u1 + iv1, u2 + iv2) = (iζ, ζ ),

where ζ = x1 + i x2.

Fix δ ∈ (0, δ0) so that Lemma 3.4 holds. As pointed out in Sect. 3.4, Lemma 3.6
implies that when studying the isotopy classification of links in R

3 which are transverse
to α, it is no restriction to assume that all such links are contained in B(δ) and that all
isotopies are through links inside B(δ). We thus make this assumption throughout the
rest of the paper.

Lemma 3.8 Let K be a transverse link (by our standing assumption K ⊂ B(δ)).
Then the sets ΛK and H± are disjoint in T ∗S. In addition, H± \ H±(2δ0) does not
intersect any J -holomorphic disk with boundary on ΛK and one positive puncture.

Proof Lemmas 3.5 and 3.7 imply that H±(2δ0) and ΛK are disjoint, for if H±(2δ0)

intersected a Reeb flow line emanating from ΛK , then it would intersect ΛK itself
since H±(2δ0) is foliated by Reeb flow lines.

Lemmas 3.3 and 3.4 imply that any holomorphic curve with boundary on ΛK will
be contained in

{(q, p) ∈ T ∗S : |p| < 2δ0}.

Write x = (x1, x2, x3). The contactomorphism of Lemma 3.2 and the properties of
S, see Sect. 3.1, imply that H± consists of the points (p(x), q(x)) ∈ T ∗S whose
coordinates satisfy the following:

q(x) = b(−x2, x1, 1),

where b > 0 is such that q(x) ∈ S; and

p(x)

=
(

x1 − x2x3

√

1 − a2(x2
1 + x2

2 ), x2−vx1x3

√

1 − a2(x2
1 + x2

2 ), a2x3(x2
1 +x2

2 )

)

,

where a ≥ 0 is chosen so that ν(q(x)) = (−ax2, ax1,

√

1 − a2(x2
1 + x2

2 )). It follows
that

|p(x)|2 = (

x2
1 + x2

2

)(

1 + a2x2
3

)

.

Since the second factor is bigger than or equal to 1, the lemma clearly follows.

Lemma 3.9 There exists an almost complex structure J on T ∗S which agrees with
J0 in a neighborhood of H± and outside the region where |p| ≤ δ0, and which is
regular for ΛK in the sense that 0- and 1-dimensional moduli spaces of holomorphic
disks with boundary on ΛK and one positive puncture are transversely cut out.
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Proof Proposition 2.3(1) in [7] shows that the asserted regularity can be achieved by
perturbing J in an arbitrary small neighborhood of the double points of ΛK . Since
these double points lie neither on H± nor in the region where |p| ≥ δ0 the lemma
follows.

3.6 A filtered DGA

Following the discussion in Sect. 2, we now define a filtered version of the Legen-
drian contact homology DGA of ΛK when K is a transverse link. See [7] for further
background details on the unfiltered DGA.

Let K CA −(K ) = LCA (ΛK ) be the graded free associative non-commutative
unital algebra over the ring Z[H1(ΛK )][U, V ] generated by the Reeb chords of ΛK .
Here U, V are two (formal) variables of grading 0. Other generators and coefficients
have grading exactly as in the usual Legendrian contact homology DGA determined
via a Maslov index. We denote the grading | · |.

Consider a Reeb chord a, a monomial of Reeb chords b = b1 · · · bm, and a homol-
ogy class A ∈ H1(ΛK ). Recall from (2.1) the moduli space MA(a; b) of holomorphic
disks with boundary onΛK , which has dimension |a|−|b|−|A|−1. For u ∈ MA(a; b),

let nU (u) and nV (u) denote the algebraic intersection of u and H+ and u and H−,

respectively. Lemmas 3.7 and 3.8 imply that these counts are well-defined and non-
negative for the J and K we consider.

Define the differential ∂− : K CA −(K ) → K CA −(K ) by

∂−a =
∑

{u∈MA(a;b) | |a|−|b|−|A|=1}
(−1)|a|+1σ(u) U nU (u)V nV (u) eA b, (3.6)

where σ(u) ∈ {±1} is determined by the moduli space orientation; compare to
Eq. (2.3). Setting U = V = 1 we recover the differential used in the Legendrian
contact homology DGA defined in [7].

Theorem 3.10 The above definition gives a filtered differential: ∂− does not decrease
the exponents of U or V, and (∂−)2 = 0.

Proof The unfiltered version of the differential squares to zero due to the usual
transversality, gluing and compactness arguments [7]. The filtered version follows
from the fact that nU and nV are nonnegative, the fact that gluing and compactness
respects the filtration, and Lemmas 3.8 and 3.9.

We call the above filtered DGA the transverse knot DGA of K and denote it
(K CA −(K ), ∂−). We next show that the filtered DGA of K is invariant under trans-
verse isotopies of K up to filtered stable tame isomorphism. (For the definition of
stable tame isomorphism, which extends to our situation, see [7] for example.) In
particular, the homology of the filtered DGA (K CA −(K ), ∂−) is a transverse link
invariant.

Theorem 3.11 The filtered DGA, (K CA −(K ), ∂−), is invariant under transverse
isotopies of K up to filtered stable tame isomorphism.
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Proof By Lemma 3.6 we may assume that Kt , 0 ≤ t ≤ 1 is an isotopy of transverse
links inside B(δ) connecting two given transverse links. Then ΛKt is an isotopy of
Legendrian submanifolds confined to the region in J 1(S) where |p| ≤ δ. To prove the
invariance statement we generalize the invariance proof in [6].

We study parameterized moduli spaces and first note that, as in [6, Lemma 2.11],
when there are no disks of index −1 and no births/deaths of intersection points, the
moduli spaces change by cobordisms and the filtered differential is unchanged.

Suppose at some critical time t ′ an index −1 disk exists. Like in [6, Section 10],
we use a small perturbation of the trace of the fronts of the isotopies near the critical
instance to create a Legendrian submanifold ΛKt ′ × R ⊂ J 1(S × R) and study a
compact part of this manifold corresponding to [−1, 1] ⊂ R. Straightforward mod-
ifications of Lemmas 3.4, 3.7, and 3.8 show that H± × C ⊂ T ∗(S × R) (where we
think of T ∗

R as C) are disjoint from πC(ΛKt ′ × R) and is complex in regions where
holomorphic disks with one positive puncture might exist. As above it then follows
that H± × C give filtrations on LCA −(ΛKt ′ × R) compatible with those induced on
LCA −(ΛKt ′ ). From this filtered differential we construct a filtered tame isomorphism
by repeating, essentially verbatim, the construction of the tame isomorphism in the
unfiltered case given in [6, Lemma 2.12].

When a birth/death of intersection points occurs, we use the same analytical “degen-
erate” gluing results [6, Proposition 2.16 and 2.17] and a filtered version of the algebraic
arguments in [6, Lemma 2.15] to construct an explicit filtered stable tame isomorphism.

3.7 Topological invariance of the infinity version in R
3

Before delving in depth into the technical details of the computation of the filtered
DGA in R

3 in Sect. 4, we give a geometric explanation of Theorem 1.2, which says
that the infinity version of the transverse invariant in R

3 is actually a topological
link invariant. To simplify notation, we treat only the single-component knot case
in this subsection. An alternative discussion in the algebraic setting can be found in
[13], though the presentation here has the advantage that it explains the underlying
geometric reason for this phenomenon.

Let K be an oriented transverse knot in R
3. The homology H1(ΛK ) ∼= Z

2 has a
distinguished set of generators corresponding to the meridian and (0-framed) longitude
of K , allowing us to identify Z[H1(ΛK )] with R = Z[λ±1, μ±1]. We can then rewrite
Eq. (3.6) as

∂−a =
∑

{u∈(MA(a;b)/R) | dim M=1}
(−1)|a|+1σ(u)U nU (u)V nV (u)λlong(A)μmer(A)b,

(3.7)

where A is the linear combination of long(A) longitudes and mer(A) meridians.
As in [13], define the infinity DGA, (K CA ∞(K ), ∂∞), by tensoring (K CA −(K ),

∂−) with R[U±1, V ±1] and replacing λ by λ(U/V )−(sl(K )+1)/2, where sl(K ) is
the self-linking number of K . We are now ready to prove Theorem 1.2 from the
introduction.
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Proof of Theorem 1.2 Let u denote a holomorphic disk contributing to the Legendrian
contact homology of ΛK ⊂ S∗

R
3. Just as we viewed the boundary of u in Sect. 2.3 as

an element of H1(ΛK ) by appending capping paths at Reeb chords, we can view the
entirety of u as an element [u] of the relative homology H2(S∗

R
3,ΛK ) by appending

capping surfaces at Reeb chords.
Note that S∗

R
3 ∼= J 1(S2) is topologically S2 × R

3. The exact sequence

· · ·−→0−→ H2(S∗
R

3) = Z −→ H2(S∗
R

3,ΛK )−→ H1(ΛK )=Z
2 −→0−→· · ·

implies that H2(S∗
R

3,ΛK ) ∼= Z
3. Pick a basis s, l, m of H2(S∗

R
3,ΛK ) such that the

following holds:

– s = [S2], the class of S2 in S∗
R

3 ∼= R
3 × S2;

– l is the homology class of the conormal lift of a cooriented Seifert surface of K ;
– m is the hemisphere of the S2 fiber of S∗

R
3 over some point p ∈ K , bounded by

the intersection of ΛK with this fiber and containing the positive lift of ξ over p.

Note that under the boundary map H2(S∗
R

3,ΛK ) −→ H1(ΛK ), the classes s, l, m
map to 0, the longitude, and the meridian, respectively. Now intersecting H± or pro-
jecting to T ∗S2 and intersecting with with H± defines linear maps

nU , nV : H2(S∗
R

3,ΛK ) → Z

such that nU (s) = nV (s) = 1, nU (m) = 1, and nV (m) = 0. By the definition of
self-linking number, the difference nU (l) − nV (l) is sl(K ); by adding the appropriate
multiple of s to l, we may assume that nU (l) = sl(K )−1

2 and nV (l) = − sl(K )+1
2 .

If we write [u] = s(u)s + l(u)l + m(u)m for s(u), l(u), m(u) ∈ Z, then nU [u] =
s(u) + sl(K )−1

2 l(u) + m(u) and nV [u] = s(u) − sl(K )+1
2 l(u). From Eq. (3.7), the

contribution of u to the differential ∂∞ has coefficient

(−1)|a|+1σ(u)U nU [u]V nV [u](λ(U/V )−(sl(K )+1)/2)l(u)μm(u)

= (−1)|a|+1σ(u)(λ/U )l(u)(μU )m(u)(U V )s(u).

Now in the definition of the unfiltered Legendrian contact homology of ΛK , which
is a topological knot invariant, one could use the coefficient ring Z[H2(S∗

R
3,ΛK )]

rather than Z[H1(ΛK )]. If one writes λ̃, μ̃, σ̃ for the multiplicative generators of
Z[H2(S∗

R
3,ΛK )] corresponding to l, m, s, then the contribution of u to Legendrian

contact homology with this enhanced coefficient ring is

(−1)|a|+1σ(u)λ̃l(u)μ̃m(u)σ̃ s(u).

But this is precisely the coefficient of the contribution of u to ∂∞, once we make the
global substitutions λ̃ = λ/U , μ̃ = μU , σ̃ = U V .

It follows that this global substitution turns (K CA ∞(K ), ∂∞) into the unfiltered
Legendrian contact homology DGA of ΛK with coefficients in Z[H2(S∗

R
3,ΛK )].

Since the latter is a topological invariant, the result follows.
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We remark that our choice of basis (l, m, s) for H2(S∗
R

3,ΛK ) in the proof of
Theorem 1.2 is canonical, depending only on the topological type of K ; as a conse-
quence, the (stable tame) isomorphisms on Theorem 1.2 act as the identity, not just
an isomorphism, on the base ring Z[λ±1, μ±1, U±1, V ±1]. This is clear for m, which
can be defined using the orientation on K rather than the contact structure, and for
s. For l, suppose that there is a topological isotopy Kt between two transverse knots
K0 and K1, with a corresponding isotopy �t of Seifert surfaces, such that Kt fails
to be a transverse knot at finitely many moments. At these moments, the self-linking
number may jump, generically by ±2, but nU ([�t ]) and nV ([�t ]) also each jump
by ±1. Thus the quantity nU ([�t ]) − sl(Kt )−1

2 remains unchanged during the isotopy.

Since l (which is [�t ] plus some multiple of s) is chosen so that nU (l) = sl(Kt )−1
2 , the

isotopy Kt preserves l.

4 Computing the filtered DGA of a transverse link

In this section we compute the filtered DGA of a transverse link to prove Theorem 1.3.
We begin by describing the main strategy used in [4] for calculating knot contact
homology. This description leads to a sufficient understanding of the behavior of all
holomorphic disks needed for the calculation of the filtered differential.

4.1 Scheme for calculating knot contact homology

The calculation of knot contact homology in [4] proceeds as follows. Consider a link
K braided around the unknot U with n strands and view it as a multisection of a
fibration U × D2, where D2 is the 2-disk, corresponding to a tubular neighborhood
of U . As we degenerate the multisection toward U the conormal lift ΛK approaches the
conormal lift of the unknot ΛU (with multiplicity n). More precisely, a neighborhood
of ΛU ⊂ S∗

R
3 is contactomorphic to the 1-jet space J 1(ΛU ) of ΛU and for K

sufficiently close to U , ΛK is a multisection of J 1(ΛU ) → ΛU with n sheets. In other
words, over any open disk W ⊂ ΛU , ΛK is given by the 1-jet extension of n functions
Fj : W → R, j = 1, . . . , n.

It will be useful to recall that when a Legendrian submanifold Λ in J 1(S2) is given
locally as the 1-jet of n functions Fi then its Reeb chords (that is double points of
πC(Λ)) correspond to critical points with positive critical values of the difference of
these local functions Fi − Fj .

By [4, §3], we know that close to the limit as ΛK approaches ΛU , the Reeb chords
of ΛK are of two types:

I Near each Reeb chord ch of ΛU there are n2 Reeb chords chi j , 1 ≤ i, j ≤ n of
ΛK , where we write chi j for the chord near ch that starts on the j th local sheet
of ΛK near the start point of ch and ends at the i th local sheet near the endpoint
of ch.

II There are n(n − 1) small Reeb chords corresponding to critical points of positive
local function differences of the form Fi − Fj . These critical points are either
maxima or saddle points. We denote the former by bi j and the latter by ai j , where
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1 ≤ i, j ≤ n, i �= j , and we use the same notational conventions for subscripts as
above.

Thus Reeb chords of ΛK are either Reeb chords of ΛU with a small chord added or
subtracted or small Reeb chords entirely inside the neighborhood of ΛU .

One of the main technical results of [4] (see [5] for a similar result) shows that
holomorphic disks admit a similar description. Near the limit as ΛK approaches ΛU ,
rigid holomorphic disks in T ∗S with boundary on ΛK = πC(ΛK ) and one positive
puncture are of two types:

I They can lie in an arbitrarily small neighborhood of the union of the following: a
disk with one positive puncture and boundary on ΛU ; and, certain flow trees of
the function differences Fi − Fj attached along the disk’s boundary.

II They can lie entirely inside a small neighborhood of ΛK and are given locally as
flow trees of the functional differences Fi − Fj .

Furthermore, any disk with its positive puncture at a chord of type I (resp. II) is of
type I (resp. II). For the notion of flow trees we refer to [2, Section 2]. We do not give a
complete definition of flow trees here, but merely note that they are made from pieces
of flow lines of the functional differences Fi − Fj and that as ΛK collapses onto ΛU

the corresponding holomorphic disks stay in smaller and smaller neighborhoods of
ΛU .

In conclusion, in order to compute the differential ∂ : K CA (K ) → K CA (K ) we
need to understand holomorphic disks with boundary on ΛU and flow trees determined
by Fi − Fj . The latter can be understood using finite dimensional Morse theory. In
order to understand the former we use the correspondence between holomorphic disks
and flow trees on fronts from [2].

4.2 The conormal lift of the unknot

One may easily compute (or see [3,4] and Lemma 4.1 below) the conormal lift ΛU

of the unknot U represented as the circle of radius r < δ in the x1x2-plane. This lift
can be slightly perturbed in J 1(S) so that it has two Reeb chords denoted c and e, see
Fig. 1.

For purposes of finding holomorphic disks via flow trees, ΛU must be perturbed to
be in general position with respect to the front projection into S2 × R. Notice that in
Fig. 1 there is a circle in ΛU that is mapped to the north pole and a circle mapped to
the south pole. Since ΛU is already in general position outside the fibers over the north
and south pole of S we concentrate our attention there. Near the poles, the projection
ΛU looks as described in the following lemma.

Lemma 4.1 If U is the circle of radius r < δ in the x1x2-plane, then

ΛU ∩ T ∗E2δ0 ={(q, p) : q = (ξ1, ξ2,±1), p = (x1, x2, 0)} ∼= S1×(−1, 1) × {±1},

where
√

x2
1 + x2

2 = r , −ξ1x2 + ξ2x1 = 0, and ∼= denotes diffeomorphism.
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c e

Fig. 1 On the left is R
3 with the unknot in the xy-plane and a normal circle at one point is shown. The

middle figure shows the normal circle seen in S2 × R ∼= R
3 − {(0, 0, 0)} which is thought of as the (front)

projection of S∗
R

3 ∼= J 1(S2) to S2 × R. On the right is the front projection of the entire conormal lift of
the unknot which is obtained by rotating the circle shown in the middle figure about the line through the
north and south poles. We have also slightly perturbed the picture on the right so that there are only two
Reeb chords, labeled c and e in the figure

Fig. 2 Along the top of the figure is an annular neighborhood of the circle in ΛU that maps to the fiber
above the north pole. On the middle left, we see the image of this annulus near the north pole in the front
projection, a cone whose boundary is two circles. On the bottom left is the image of this annulus near the
north pole in S2 (that is, the top view of the cone where we have slightly offset the circles so that they
are both visible). On the middle right, we see the top view of the cone after it has been perturbed to have
a generic front projection. More specifically, the lighter outer curve is the image of the cusp curves, the
dotted lines are the image of double points in the front projection and the darkest inner curve is the image
of the circle that mapped to the cone point before the perturbation. On the bottom right, we see the image
in S2 of the cusp curve and the two boundary circles on ΛU
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Fig. 3 The rigid disks from Lemma 4.2 in the northern hemisphere of S2

Fig. 4 The one dimensional families of trees from Lemma 4.2 in the northern hemisphere of S2

Proof This is immediate from the definition.

In Fig. 2 we see the front projection of ΛU over the region where S is flat. The left
pictures show ΛU in a neighborhood of the circle over the north (or south) pole, as
described in Lemma 4.1, and the corresponding cone in the front projection of ΛU .
The right pictures show ΛU after small perturbation near the cone point that makes
the front projection generic. Using the right representation we get the following result
describing holomorphic disks of ΛU , taken from [4, §3]. See Fig. 5 for a description
of the flow trees on the front (which are close to the projection of the disk boundaries)
and Fig. 3 for a description of their lifts into ΛU .

Lemma 4.2 (Ekholm et al. [4]) There are exactly six rigid holomorphic disks with
boundary on ΛU : four (IN , YN , IS, and YS) with positive puncture at c and no negative
puncture, and two (E1,E2) with positive puncture at e and negative puncture at c.
If q is any point in ΛU lying over a point where the front of ΛU has 2 sheets then
there are exactly two constrained rigid holomorphic disks with positive puncture at
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e and boundary constrained to pass through q. These two disks correspond to two
constrained rigid flows which lie in two of the 1-parameter families ˜IN , ˜YN , ˜IS, and
˜YS of flow trees with positive puncture at e, and are rigidified by the condition that
their 1-jet lift passes through q. The boundaries of these 1-parameter families are as
follows:

∂˜IN = (E1 # IN ) ∪ (E2 # IN ), ∂˜YN = (E1 # YN ) ∪ (E2 # YN ),

∂˜IS = (E1 # IS) ∪ (E2 # IS), ∂˜YS = (E1 # YS) ∪ (E2 # YS).

Here E1 # IN denotes the broken flow tree obtained by adjoining IN to E1 etc., see
Fig. 4.

Using the capping path convention and isomorphism H1(ΛU ) = Z〈μ, λ〉 specified
in [4], the disks IN , YN , IS, YS contribute 1, λ, λμ,μ, respectively, to ∂c. Similarly
E1 and E2 contribute −λ−1c and λ−1c, respectively, to ∂e. This gives the differential

∂c = 1 + λ + λμ + μ

∂e = (−λ−1 + λ−1)c = 0.

As in [4, §3], it suffices to consider constrained rigid trees when studying the filtered
contributions of the curves. (See the third result of Theorem 4.6 below.) Although not
needed for the purposes of calculating the filtered differential in this paper, it is possible,
as mentioned in [4, §3], to prove that 1-parameter families of holomorphic disks with
positive puncture at e are in natural one-to-one correspondence with the 1-parameter
families of flow trees mentioned in Lemma 4.2.

4.3 Intersection numbers for disks with boundary on ΛU

Now that we have recalled the computation of the knot contact homology of the
standard unknot in the x1x2-plane, we turn to computing the filtration on this knot
thought of as a transverse knot.

Theorem 4.3 Let U be the transverse unknot with self-linking number −1. The filtered
DGA (K CA −(U ), ∂−) is filtered stable tame isomorphic to the algebra over R[U, V ]
generated by c and e, where |c| = 1 and |e| = 2, and

∂−c = U + λ + λμV + μ and ∂−e = 0.

Proof From the explicit description of the knot contact homology differential in
Lemma 4.2, it suffices to compute the intersection numbers of the four holomorphic
disks IN , YN , IS, YS with H±. To this end, we will compute the intersection numbers
of H± with a disk D+ homotopic to “YN − IN ” to determine the relative intersection
numbers of YN and IN with H±. The absolute intersection numbers will follow from
positivity of intersections. A similar argument will apply to IS and YS .

We first note that Lemma 3.8 implies that any point in the intersection between
H± and a holomorphic disk with boundary on ΛU must lie in T ∗E2δ0 so it will be
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Fig. 5 Boundaries of holomorphic disks on ΛU

sufficient to consider the parts of the holomorphic disks which lie in this region. As
we shrink the unknot U towards the x3 axis in R

3, its conormal lift ΛU approaches
the 0-section in J 1(S). We can also see that the perturbed front generic version of ΛU

collapses onto the 0-section. As we degenerate ΛU onto the 0-section, the boundaries
of the holomorphic disks converge to the curves on the torus ΛU depicted in Fig. 5.

The Legendrian torus ΛU can be described as the 1-jet of a multifunction from S2

to R and we notice that the curves in Fig. 5 are given by gradient flow lines for the
functional differences of the multifunction. Furthermore, for an appropriate almost
complex structure, the holomorphic disks C1-converge to the strips corresponding
to these flow lines outside any fixed neighborhood of its vertices, see [2, Lemma
5.13, Remark 5.14, and Subsection 6.4], and inside neighborhoods of its vertices they
converge to other local models, see [2, Subsection 6.1]. Here the strip of a flow line
consists of the line segments in the cotangent fibers between its cotangent lift. In
particular, if we choose a perturbation of ΛU so that its projection to T ∗S consists
of affine subspaces in a neighborhood of (0, 0, 1) ∈ S then the standard complex
structure for which H± is a complex hypersurface is appropriate in the above sense,
see [2, Subsection 4.1, 2nd bullet from the end].

Consider the flow-line disks depicted in Fig. 6. These flow lines lie in the two
distinct homotopy classes of the disks IN and YN . (Which of these disks looks like the
letter I or Y depends on the perturbation of ΛU which makes its front generic, see also
Fig. 4.) The disks I1 and I2 correspond to flow lines of the difference of two functions
that locally describe part of ΛU near the north pole. With notation and coordinates
near the north pole of S2 indicated in Fig. 6, the gradient of the function describing
the upper sheet of I1 equals −∂u1 and that of its lower sheet is ∂u2 , and the flow line
corresponding to I1 in S follows the curve C1 = (t, t), −T ≤ t ≤ ε where ε > 0 is
arbitrarily small and not yet fixed. Thus the flow line strip of I1 is
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Fig. 6 Two holomorphic disks
in distinct homotopy classes. We
have chosen coordinates on S2

near the north pole so that the
north pole corresponds to (0, 0)

(t, s) �→ ((t, t), (s(−∂u1) + (1 − s)∂u2)), −T ≤ t ≤ ε, 0 ≤ s ≤ 1,

near the origin. Similarly, the flow line strip of I2 is

(t, s) �→ ((−t, t), (s∂u1 + (1 − s)∂u2)), −T ≤ t ≤ ε, 0 ≤ s ≤ 1.

On the other hand the intersection of H+ with the fibers of T ∗S over the point (t, t) ∈
C1 is a(t∂u1 − t∂u2) for some a > 0, see Eq. (3.5). That is,

H+ ∩ T ∗C1 = {((t, t), a(t∂u1 − t∂u2))},

and we see that the strip and the hypersurface intersect once (over the point
(− 1

2a ,− 1
2a )). Similarly, over the flow line of I2 we have

H+ ∩ T ∗C1 = {((−t, t), a(t∂u1 + t∂u2))},

and we see that the strip and the hypersurface do not intersect: the solution of the
equation which sets the fiber coordinates equal would lie over the point (−t, t) where
t = 1

2a but if we set ε < 1
2a , this point does not lie on the flow line of I2.

In order to relate the above calculation to Lemma 4.2, consider the disk D± in
the fiber of T ∗S bounded by the circle ((0, 0,±1), p) ∈ ΛU ∩ T ∗E2δ0 and oriented
according to the induced orientation on the fiber. We notice that this circle is a lift of a
longitude for U. Using the description of H± in Lemma 3.7 it is easy to see that D±
intersects H± with intersection number ∓1. (Note here that the orientation of the base
followed by the orientation of the fiber gives the orientation opposite to the complex
orientation on T ∗S and that the orientation induced on the normal bundle to the fiber
by H+, respectively H−, agrees, respectively disagrees, with the orientation on the
base.) Consulting Fig. 5 and considering the algebraic topology of ΛU ⊂ T ∗S2 one
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may easily see that the difference cycle between the disk corresponding to IN and YN is
homologous to D+. Since the intersection number of these disks with H+ equals 1 or 0
(by the above calculation) it follows that the disk corresponding to IN has intersection
number 1 with H+ and the disk corresponding to YN has intersection number 0.
Similarly, the disks corresponding to IS and YS intersect H− with intersection number
1 and 0, respectively. In addition, since D∓ does not intersect H±, we find that the IS

and YS (respectively IN and YN ) disks do not intersect H+ (respectively H−).

4.4 The filtered DGA of a transverse link

We begin by recalling the computation of the knot contact homology from [4, Theorem
1.1]. Using the notation in the introduction we have the following result.

Theorem 4.4 (Ekholm et al. [4]) The differential in the Legendrian DGA associated
to the conormal lift ΛK of a framed knot K is (K CA (K ), ∂) where K CA (K ) is
generated over Z[μ±, λ±] by the ai j , bi j , ci j , and ei j described in Sect. 4.1 and 4.2 and
the map ∂ : K CA (K ) → K CA (K ) is determined by the following matrix equations:

∂A = 0,

∂B = −λ−1 · A · λ + ΦL
B · A · Φ R

B ,

∂C = A · λ + A · Φ R
B ,

∂E = B · (Φ R
B )−1 + B · λ−1 − ΦL

B · C · λ−1 + λ−1 · C · (Φ R
B )−1,

where A, B, C, E,λ,ΦL
B,ΦR

B are as in Sect. 1.2, and if M is an (n × n)-matrix, the
matrix ∂M is defined by (∂M)i j = ∂Mi j .

In Sect. 4.1 above we discussed the holomorphic curves involved in the computation
of the differential. In particular, one may easily conclude the following result.

Lemma 4.5 (Ekholm et al. [4]) Given any δ′ > 0, ΛK can be Legendrian isotoped
to be close enough to ΛU so that any holomorphic disk with boundary on ΛK , one
positive puncture, and involving only the chords ai j and bi j , has its image contained
within a δ′-neighborhood of ΛU .

Proof While this lemma follows from the results in [4, §3.4], we comment that it
can also be seen by observing that the Reeb chords ai j and bi j have small action.
This action can be made arbitrarily small as we isotop K to be close to U. Now a
monotonicity argument will confine the holomorphic curves to stay close to ΛU . ��
To compute the filtration on a transverse knot we will need to explicitly describe the
holomorphic disks used in the computation of the differential. More specifically we
need to understand disks of Type I, discussed in Sect. 4.1. To this end we summarize
the computations from [4, §4.4].

Theorem 4.6 (Ekholm et al. [4]) Given any δ′ > 0, ΛK can be Legendrian isotoped
to be close enough to ΛU so that any rigid holomorphic disk with boundary on ΛK

either has its image contained within a δ′-neighborhood of ΛU and one of the rigid
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disks described in Lemma 4.2, or has its image contained within a δ′-neighborhood
of ΛU and one of the constrained rigid disks described in Lemma 4.2 constrained by
the projection q ∈ ΛU of one of the endpoints of a Reeb chord bi j .

1. The holomorphic disks that contribute to the terms in ∂ci j satisfy
– the terms in Aλ with μ coefficients are contained in neighborhoods of IS (and

ΛU ),
– the terms in Aλ without μ coefficients are contained in neighborhoods of YN

(and ΛU ),
– the terms in AΦ R

B with μ coefficients are contained in neighborhoods of YS

(and ΛU ), and
– the terms in AΦ R

B without μ coefficients are contained in neighborhoods of
IN (and ΛU ).

2. The holomorphic disks that contribute to the ΦL
B · C · λ−1 + λ−1 · C · (Φ R

B )−1

terms in ∂ei j are contained in neighborhoods of either E0 or E1 (and ΛU ).
3. The holomorphic disks that contribute to the B · (Φ R

B )−1 + B · λ−1 terms of ∂ei j

are contained in neighborhoods of one of the disks in the 1-parameter families ˜IN ,
˜YN , ˜IS, and ˜YS (and ΛU ). That is, they are close to the union of ΛU ∪ E1 ∪ E2
and one of the disks IN , YN , IS, YS, shifted in the λ-direction some fixed distance
(the same distance for all disks). More precisely,

– disks associated to those terms in Bλ−1 with μ coefficients correspond to YS,

– disks associated to those terms in Bλ−1 without μ coefficients correspond to
IN ,

– disks associated to those terms in B
(

Φ R
B

)−1
with μ coefficients correspond to

IS, and
– disks associated to those terms in B

(

Φ R
B

)−1
without μ coefficients correspond

to YN .

We are now in a position to prove the combinatorial expression for the filtrations
given in Theorem 1.3.

Proof of Theorem 1.3 The first equation in the theorem follows for grading reasons.
The second equation in the theorem follows from Theorem 4.4 and the fact that

none of the holomorphic disk contributing to the differential of a bi j can intersect H±
by Lemma 4.5.

Since the disks E0 and E1 lie close to the equator, Lemma 3.8 and the third paragraph
of Theorem 4.6 imply that there are no intersections of H± with the disks with positive
puncture at an ei j -chord and one negative puncture at an ci j -chord. Thus, ΦL

B · C ·
λ−1 + λ−1 · C · (Φ R

B )−1 appears in both ∂E and ∂−E.

The remainder of the differential involves disks that intersect H±. The formula
for the filtered differential that derives from these intersections is easily derived by
the intersections of H± with the disks from Lemma 4.2 which were worked out in
Sect. 4.3. Some simple bookkeeping yields the desired computation.
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5 Some examples

In this section, we present some computations of the filtered transverse knot DGA,
(K CA −, ∂−). The first shows that the additional filtration structure is nontrivial; the
second is an outline of a computation that shows that the filtered DGA is an effective
invariant of transverse knots.

5.1 The unknot

We compute the transverse knot DGA for three versions of the unknot: the closure
of the trivial 1-braid and the closure of the 2-braids σ1 and σ−1

1 . The first two both
represent the standard transverse unknot in R

3 with self-linking number −1, while the
third represents the transverse unknot with self-linking number −3. We will show that
the filtered DGAs for the first two are stable tame isomorphic and are distinct from
the filtered DGA for the third.

For the trivial 1-braid, Theorem 1.3 or 4.3 yields a DGA with two generators c, e
and differential

∂−c = U + λ + λμV + μ, ∂−e = 0.

For the 2-braid σ1, the relevant matrices are

ΦL
σ1

=
(−a21 1

1 0

)

, Φ R
σ1

=
(−a12 1

1 0

)

, λ =
(

λμ 0
0 1

)

A =
(

1 + μ a12
μa21 1 + μ

)

, AU =
(

U + μ Ua12
μa21 U + μ

)

, AV =
(

1 + μV a12
μV a21 1 + μV

)

,

BU =
(

0 Ub12
μb21 0

)

, BV =
(

0 b12
μV b21 0

)

.

We then calculate from Theorem 1.3 that the DGA for σ1 has generators a12, a21, b12,
b21, c11, c12, c21, c22, e11, e12, e21, e22, and differential given by ∂−(a12) = ∂−(a21)
= 0,

∂−
(

0 b12
b21 0

)

=
(

0 − 1
λμa12 − a21

−λμa21 − a12 0

)

,

∂−
(

c11 c12
c21 c22

)

=
(

λμ + λμ2V − μa12 μ + U + a12
μ + U + λμ2V a21 − μa21a12 1 + μV + μa21

)

,

∂−
(

e11 e12
e21 e22

)

=
(

b12 + 1
λμ (c12 − c21 + a21c11) Ub12 − c22 + a21c12 + b12a12 + 1

λμ(c11 + c12a12)

c22 + 1
λ b21 − 1

λμ c11 μV b21 − c12 + c21 + c22a12

)

.

We want to find a tame automorphism of this algebra that sends ∂− to a stabilization
of the differential for the trivial braid. We do this by replacing generators one by one so
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that the new differential on all generators but c12 and e11 is trivial or nearly trivial, and
the new differential on c12 and e11 is as in the case of the trivial 1-braid; for instance,
since ∂−(c12 + 1

μ
c11) = U + λ + λμV + μ, we can replace c12 by c12 − 1

μ
c11 to get

a generator with differential U + λ + λμV + μ. In full, if we apply successively the
eight tame automorphisms

e12 �→ e12 − b12c12 − 1
λμ

c2
12

c21 �→ c21 − μV b21 + c12 − c22a12

b12 �→ b12 − 1
μ

c22 + 1
λμ2 c11

b21 �→ b21 + 1
μ

c11 − λc22

e11 �→ e11 + 1
λμ2 c22c11 − 1

μ
e12 − 1

λμ
e22 + V e21

c12 �→ c12 − 1
μ

c11

a21 �→ a21 − V − 1
μ

a12 �→ a12 + λ + λμV,

then we obtain a DGA with the same generators but differential

∂−(c11) = −μa12, ∂−(c12) = U + λ + λμV + μ, ∂−(c22) = μa21,

∂−(e12) = −μb12, ∂−(e21) = 1
λ

b21, ∂−(e22) = c21,

∂−(a12) = ∂−(a21) = ∂−(b12) = ∂−(b21) = ∂−(c21) = ∂−(e11) = 0.

Destabilizing yields a DGA generated by c12, e11 with differential ∂−(c12) = U +
λ + λμV +μ, ∂−(e11) = 0, which agrees with the DGA for the trivial 1-braid above.

For the 2-braid σ−1
1 , we use the matrices

Φ R
σ−1

1
=

(

0 1
1 −a21

)

, λ =
(

λμ−1 0
0 1

)

.

The expression for ∂−C from Theorem 1.3 now yields in particular

∂−(c11) = λμ−1 + λV + Ua12.

We claim that the filtered DGA for σ−1
1 differs from the filtered DGA for the trivial

1-braid by setting (U, V ) = (0, 0) and comparing (
̂
K̂ CA ,̂̂∂). For σ−1

1 we find that

̂
̂∂(c11) = λμ−1, a unit in Z[λ±1, μ±1], and so the homology of (

̂
K̂ CA ,̂̂∂) is trivial.

For the trivial 1-braid, we obtain a DGA generated by c, e with ̂
̂∂(c) = λ + μ and

̂
̂∂(e) = 0, and it is clear that this DGA has nontrivial homology.
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5.2 The knot m(76)

Let K1, K2 be the transverse knots given by the closures of the 4-braids

σ1σ
−1
2 σ1σ

−1
2 σ−1

3 σ2σ
3
3 , σ1σ

−1
2 σ1σ

−1
2 σ 3

3 σ2σ
−1
3 ,

respectively. These are both transverse representatives of the mirror of the knot 76,
with self-linking number −1. The following result demonstrates that the filtered DGA
is an effective invariant of transverse knots.

Theorem 5.1 The filtered DGAs for K1 and K2 are not filtered stable tame isomorphic,
and thus K1 and K2 are not transversely isotopic.

Proof Consider the DGAs (K̂ CA (Ki ),̂∂) over Z[λ±1, μ±1] obtained from the filtered
DGAs by setting (U, V ) = (0, 1). One can count by computer the number of DGA
maps (augmentations) from (K̂ CA (Ki ),̂∂) to (Z/3, 0) that send λ to −1 and μ to
+1; there are 5 for K1 and 0 for K2. The result follows. (See [13] for more details.)

As noted in [13], the hat version of knot Floer homology for m(76) is 0 in the
relevant bidegree (0, 0), and so the transverse invariants in knot Floer homology [10,
14] do not distinguish K1 and K2. One similarly finds that other previously developed
transverse invariants (in Khovanov or Khovanov–Rozansky homology, for instance)
do not distinguish K1 and K2. We conclude that the transverse invariant from knot
contact homology is independent of previously known transverse invariants.
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