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Abstract Eigenfunctions of the p-Laplace operator for p > 1 are defined to be
critical points of an associated variational problem or, equivalently, to be solutions
of the corresponding Euler–Lagrange equation. In the highly degenerated limit case
of the 1-Laplace operator eigenfunctions can also be defined to be critical points of
the corresponding variational problem if critical points are understood on the basis of
the weak slope. However, the associated Euler–Lagrange equation has many solutions
that are not critical points and, thus, it cannot be used for an equivalent definition. The
present paper provides a new necessary condition for eigenfunctions of the 1-Laplace
operator by means of inner variations of the associated variational problem and it is
shown that this condition rules out certain solutions of the Euler–Lagrange equation
that are not eigenfunctions.
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1 Introduction

For an open bounded � ⊂ R
n with Lipschitz boundary a solution of the variational

problem

∫

�

|Du|p dx → Min! in W1,p
0 (�) with

∫

�

|u|p dx = 1, (1.1)
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148 Z. Milbers, F. Schuricht

1 < p < ∞, has to satisfy the Euler–Lagrange equation

− div |Du|p−2 Du = λ|u|p−2u on �. (1.2)

By definition, any solution u ∈ W1,p
0 (�) of this Euler–Lagrange equation is a critical

point of the corresponding variational problem (1.1) and it is called an eigenfunction
of the p-Laplace operator. In the limit case p = 1 equation (1.2) becomes

− div
Du

|Du| = λ
u

|u| on � (1.3)

and, due to a number of difficulties, we cannot define eigenfunctions of the 1-Laplace
operator as solutions of (1.3). First we observe that (1.1) for p = 1 does not have a
minimizer in W1,1

0 (�) but merely in BV (�) so that we have to consider

∫

�

d|Du| +
∫

∂�

|u|dHn−1 → Min! in BV (�) with
∫

�

|u| dx = 1 (1.4)

instead of (1.1) where the surface integral replaces homogeneous boundary condi-
tions (cf. Kawohl and Schuricht [21]). Since the characteristic function u = χC of a
Cheeger set C of �, that is a strict subset of � in general, is always a minimizer of
(1.4) (cf. [21]), Eq. (1.3) is highly degenerate and needs a suitable interpretation. In
[21] it is shown that, as necessary condition for a minimizer of (1.4), in a first step
(1.3) can be replaced with one equation, that we want to call single equation, contain-
ing well-defined substitutes for Du/|Du| and u/|u|. But in the end, it turns out that
(1.3) can be even replaced with infinitely many equations for u, a condition that we
want to call multiple equation, cf. Sect. 2. Nevertheless, both interpretations of (1.3)
seem to be inappropriate for a definition of eigenfunctions, since there are either too
many solutions or, eventually, only minimizers solve it. While the definition of first
eigenfunctions of the 1-Laplace operator as minimizers of the variational problem
is clear, the definition of higher eigenfunctions as critical points of the variational
problem is neither obvious nor unique. In Milbers and Schuricht [23] and Chang [6]
eigenfunctions of the 1-Laplace operator are critical points of the variational problem
in the sense that the weak or the strong slope of an assigned function vanishes. Here
the different slopes and an interesting norm dependence may lead to different sets of
eigenfunctions. Moreover, a completely different approach for defining higher eigen-
values of the 1-Laplace operator by means of multiple Cheeger sets is given by Parini
[25]. It is still quite open how both approaches are related to each other.

The eigenfunctions that are critical points of (1.4) with vanishing weak or strong
slope have to satisfy (1.3) in the sense of a single equation. However, this equation
provides many solutions that are not expected to be critical points of the associated vari-
ational problem. Therefore further necessary conditions for critical points are needed
to single out such solutions of (1.3) that are not critical. In calculus of variations
perturbations of a solution u of the form

v(x, t) = u(x) + tξ(x) for ξ ∈ C∞
0 (�),
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Eigensolutions of the 1-Laplace operator 149

also called outer variations, are usually considered to derive the Euler–Lagrange equa-
tion as necessary condition. But, occasionally, also so called inner variations

v(x, t) = u(x + tξ(x)) for ξ ∈ C∞
0 (�, R

n)

are used. However, the corresponding necessary condition is always satisfied for C2-
solutions of the Euler–Lagrange equation and, thus, it plays a minor role for many
problems. But several examples show that inner variations might provide an additional
information for nonsmooth minimizers, cf. Giaquinta and Hildebrandt [19, Chap-
ter 3.1].

If one combines the method of inner variations with a Lagrange multiplier rule, a
minimizer of problem (1.1) for 1 < p < ∞ has to satisfy

∫

�

〈
|Du|p−2 Du, Dξ Du

〉
− |Du|p div ξ dx

= −λ

∫

�

|u|p div ξ dx for all ξ ∈ C∞
0 (�, R

n). (1.5)

Since minimizers are merely in C1,α
loc (�) (cf. DiBenedetto [14, Theorem 2]) but not

in C2(�), it is not clear whether (1.5) follows from (1.2) in general. But this fact is
not disturbing, since eigenfunctions of the p-Laplace operator for 1 < p < ∞ are
defined to be solutions of (1.2) and, by definition, they uniquely correspond to the
critical points of the corresponding variational problem. However, in the limit case
p = 1 there is a completely different situation. Though also here the eigenfunctions
are defined as critical points of the corresponding variational problem, this is done by
means of a notion that is in some sense independent of the Euler–Lagrange equation.
Thus it seems that eigenfunctions cannot be characterized as solutions of a reasonable
version of (1.3).

Having in mind that eigenfunctions of the 1-Laplace operator might be piecewise
constant and, thus, highly nonsmooth, one can expect that the evaluation of inner
variations might provide an extra condition by giving meaning to the formal limit of
(1.5)

∫

�

(〈
Du

|Du| , Dξ
Du

|Du|
〉
− div ξ

)
|Du| dx = −λ

∫

�

|u| div ξ dx . (1.6)

The derivation of a precise condition replacing (1.6) and the investigation of further
consequences is the main purpose of the present paper. Here we have to extend the
classical approach with inner variations, that had been used merely for minimizers
before, to critical points of a highly degenerate variational problem. This way we
provide a new condition that rules out many “artificial” solutions of the Euler–Lagrange
equation (1.3) interpreted as single equation.

In Sect. 2 we briefly discuss difficulties in formulating the eigenvalue problem
for the 1-Laplace operator and we present an example showing that the solutions of
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Eq. (1.3), interpreted as single equation, would provide a continuum of eigenvalues
where “almost” each of them has a continuum of normalized eigenfunctions. Section 3
collects several tools from nonsmooth analysis. In particular we introduce the notions
of weak and strong slope and we prove a new characterization of the weak slope for
lower semicontinuous functions. Moreover we provide the convex subdifferentials for
the nonsmooth functions occurring in problem (1.4). In Sect. 4 first higher eigenfunc-
tions of the 1-Laplace operator are defined as critical points by means of the weak
slope. Then we formulate a precise replacement for the formal limit equation (1.6)
as necessary condition for eigenfunctions that is based on inner variations. The proof
essentially rests on a proposition stated at the end of this section. Consequences of
the new necessary condition are studied in Sect. 5. First it is shown that the “many”
solutions of the single version of Eq. (1.3) that are not expected to be critical points do
not satisfy the new condition. Then the one-dimensional case n = 1 is investigated and
all eigenfunctions are determined. At the end of Sect. 5 some general consequences
of the new necessary condition for eigenfunctions are derived. The major proofs are
collected in Sect. 6.

Notation For a set A let Ā denote its closure and ∂ A its boundary. Its indicator function
IA and its characteristic function χA are defined by

IA(x) :=
{

0 for x ∈ A,

∞ otherwise,
χA(x) :=

{
1 for x ∈ A,

0 otherwise.

The usual sign function on R is sgn(·) and the set-valued sign function is

Sgn(α) :=
⎧⎨
⎩

{1} if α > 0,

[−1, 1] if α = 0,

{−1} if α < 0.

The open δ-neighborhood of u is denoted by Bδ(u) and Hk stands for the k-dimensional
Hausdorff measure. We write Lp(�) for the p-integrable functions on � and Lp′

(�)

with 1
p + 1

p′ = 1 for its dual. The Sobolev space W1,p(�) contains all p-integrable
functions having p-integrable weak derivatives. C∞

0 (�) are the infinitely often differ-
entiable functions with compact support. BV (�) denotes the space of functions of
bounded variation where |Du| is the total variation measure for these functions. spt f
stands for the support of function f and f (x±) for its limit at x from the right or left.
For the Banach space X its dual is X∗ and 〈·, ·〉 is the duality form on X∗ × X . The
convex subdifferential of F is ∂ F and we write id for the identity mapping.

2 Eigenvalue problem

Let � ⊂ R
n be an open bounded set with Lipschitz boundary. For u ∈ BV (�) we

consider the variational problem

E(u) :=
∫

�

d|Du| +
∫

∂�

|u| dHn−1 → Min!, u ∈ BV (�), (2.1)
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Eigensolutions of the 1-Laplace operator 151

with respect to the constraint

G(u) :=
∫

�

|u| dx = 1. (2.2)

Here the surface integral in (2.1) is a replacement for homogeneous boundary condi-
tions in BV (�) (cf. [21]). Problem (2.1), (2.2) has always a solution u ∈ BV (�) which
is not necessarily unique and which is called (first) eigenfunction of the 1-Laplace oper-
ator. In Kawohl and Schuricht [21] it is shown that any minimizer u ∈ BV (�) of (2.1),
(2.2) satisfies the eigenvalue equation

− div z = λs a.e. on �, λ = E(u) (2.3)

where z ∈ L∞(�, R
n) and s ∈ L∞(�) are related to u by the coupling conditions

‖z‖L∞ = 1, div z ∈ Ln(�), E(u) = −
∫

�

u div z dx (2.4)

and

s(x) ∈ Sgn(u(x)) a.e. on �. (2.5)

More precisely, adapting the usual direct methods of calculus of variations to the
nonsmooth situation met in (2.1), (2.2), one obtains the existence of a vector field
z ∈ L∞(�, R

n) and a function s ∈ L∞(�) satisfying (2.4) and (2.5) such that
(2.3) holds. In addition, it is shown in [21] by means of a new argument that for
any s ∈ L∞(�) with (2.5) there is some z ∈ L∞(�, R

n) with (2.4) such that the
eigenvalue equation (2.3) is satisfied. Thus, since a typical minimizer vanishes on a
set with positive measure, a minimizer u has to satisfy infinitely many Euler–Lagrange
equations in general. Let us call u a solution of the single eigenvalue equation if it
satisfies (2.3) for one selection s satisfying (2.5) and a corresponding z with (2.4) and
let us call u a solution of the multiple eigenvalue equation if it satisfies (2.3) for any
selection s satisfying (2.5) with corresponding vector fields z satisfying (2.4).

Now a natural question is that of higher eigensolutions of the 1-Laplace operator.
The eigenfunctions of the p-Laplace operator for p > 1 are, by definition, the solutions
of the Euler–Lagrange equation of the associated variational problem. But, by our
previous arguments, it is not immediately clear how to define eigenfunctions in the
limit case p = 1. The multiple eigenvalue equation seems to be too restrictive for the
definition of higher eigensolutions, since it is expected that merely minimizers of the
variational problem might satisfy it. Alternatively one could consider eigenfunctions
to be solutions of the single eigenvalue equation. But the example below demonstrates
that also the single eigenvalue equation is inappropriate for the definition, since it
possesses “too many” solutions providing a continuum of eigenvalues.
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152 Z. Milbers, F. Schuricht

Example Let B = Br (x0) ⊂ � be a ball with radius r > 0 and center x0 ∈ � that is
compactly contained in � (i.e. ∂ B does not touch ∂�). We claim that the BV -function

v(x) := 1

|B|χB(x) on �

satisfies the single eigenvalue equation (2.3). Clearly,

λ = E(v) = |∂ B|
|B| = n

r
.

We choose the continuous vector field

z(x) :=
{

x0−x
r for x ∈ B,

x0−x
|x0−x | for x ∈ � \ B,

where all z(x) point to the center x0 of B. Obviously,

− div z = n

r
= λ on B.

Since z is the unit normal field to the foliation of �\ B by concentric spheres centered
at x0 and pointing to the center, we have that

− div z(x) = n − 1

|x0 − x | on � \ B

where the expression on the right hand side is just the mean curvature of the sphere
containing point x (notice that div z jumps across ∂ B). We readily see that ‖z‖L∞ = 1,
z ∈ Ln(�), and

−
∫

�

v div z dx = − 1

|B|
∫

B

div z dx = 1

|B|
∫

∂ B

dHn−1 = |∂ B|
|B| = E(v),

i.e. z satisfies the coupling condition (2.4). Certainly

s(x) :=
{

1 for x ∈ B,
n−1

n
r

|x0−x | for x ∈ � \ B,

satisfies the coupling condition (2.5) and we conclude that the eigenvalue equation

− div z = λs a.e. on � with λ = n

r

is satisfied. Consequently, v satisfies the single eigenvalue equation.
Notice that we obtain “very many” solutions of the single eigenvalue equation by

changing the center x0 ∈ � and the radius r > 0 of the ball B. In particular there
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Eigensolutions of the 1-Laplace operator 153

is a solution v for any λ ∈ ( n
r0

,∞) where r0 denotes the radius of the largest ball
contained in �. Moreover, for any λ ∈ ( n

r0
,∞) we have a continuum of normalized

solutions v by slightly moving the center x0.

From the previous example we conclude that, in general, we would get a contin-
uum of eigenvalues λ with a continuum of normalized eigenfunctions v for “most”
eigenvalues if we would define eigenfunctions as solutions of the single eigenvalue
equation. But this seems to be inappropriate. Thus it turns out that neither the single
nor the multiple eigenvalue equation are suitable to define higher eigenfunctions of
the 1-Laplace operator.

Alternatively we can consider to define higher eigenfunctions as critical points of
E subject to the constraint G(v) = 1. But, in contrast to the classical case p > 1,
here we are confronted with the difficulty that both E and G are not differentiable
and, therefore, the usual definition of critical points being solutions of the Euler–
Lagrange equation is not available. However we can use a theory of critical points for
nondifferentiable functionals that uses a notion of critical points independent of an
Euler–Lagrange equation. Let us provide the necessary tools in the next section.

3 Tools of nonsmooth analysis

3.1 Weak slope

Let us introduce the notion of weak slope as formulated in Degiovanni and Marzocchi
[12]. We assume X to be a metric space endowed with metric d and let f : X → R

be a continuous function. For every u ∈ X we denote by |d f |(u) the supremum of all
ω ∈ [0,∞) for which there exist δ > 0 and a continuous map H : Bδ(u)×[0, δ] → X
such that for all v ∈ Bδ(u) and all t ∈ [0, δ]

d(H(v, t), v) ≤ t, (3.1)

f (H(v, t)) ≤ f (v) − ωt. (3.2)

The extended real number |d f |(u) is called the weak slope of f at u. Note that for
differentiable functions the weak slope corresponds to the norm of the gradient.

Now we consider a lower semicontinuous function f : X → R ∪ {∞}. We define
the domain of f by

D( f ) := {u ∈ X | f (u) < ∞} (3.3)

and the epigraph of f by

epi ( f ) := {(u, ξ) ∈ X × R | f (u) ≤ ξ}.

The set X × R will be endowed with the metric

d((u, ξ), (v, μ)) = (d(u, v)2 + (ξ − μ)2)1/2 (3.4)
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154 Z. Milbers, F. Schuricht

and epi ( f ) with the induced metric. Using the continuous function

G f : epi ( f ) → R, G f (u, ξ) = ξ, (3.5)

we define the weak slope of f at u ∈ D( f ) as

|d f |(u) :=
⎧⎨
⎩

|dG f |(u, f (u))√
1−|dG f |(u, f (u))2

for |dG f |(u, f (u)) < 1,

∞ for |dG f |(u, f (u)) = 1.

The idea of this definition is to reduce the study of the lower semicontinuous function
f to that of the Lipschitz continuous function G f . When f is finite and continuous on
X this definition is consistent with the first definition of the weak slope for continuous
functions. Occasionally we denote the weak slope of f at u by |d f |X (u) in order to
indicate that it is taken in the metric space X .

We say that u ∈ D( f ) is a critical point of f if |d f |(u) = 0. The value c ∈ R is
called a critical value of f if there exists a critical point u ∈ D( f ) of f with f (u) = c.
Note that if (u, f (u)) ∈ epi ( f ) is a critical point of G f then u is also a critical point
of f . The bijective correspondence between the critical points of f and those of G f

is given if

inf{|dG f |(u, ξ) | f (u) < ξ} > 0, (3.6)

cf. Canino and Degiovanni [4, Theorem 1.5.5]. If f is finite and continuous, we have
|dG f |(u, ξ) = 1 whenever f (u) < ξ . The same property holds for some important
classes of lower semicontinuous functions (cf. Canino and Perri [5], Corvellec et al.
[9], Degiovanni and Marzocchi [12]).

We are interested in critical points of f under a constraint g(u) = 0 where g :
X → R is a locally Lipschitz continuous function. We set

K := {u ∈ X | g(u) = 0} (3.7)

and call u ∈ D( f ) ∩ K a critical point of f with respect to K (or with respect to
g = 0) if u is a critical point of f on the metric space K with induced metric d
of X , i.e. if |d f |K (u) = 0. Using the indicator function IK we readily obtain the
analytically useful fact that |d f |K (u) = 0 if and only if |d( f + IK )|X (u) = 0 (cf.
Milbers and Schuricht [24]). Notice that this definition of critical points is independent
of an associated Euler–Lagrange equation. But, in order to obtain such an equation as
necessary condition for critical points let us formulate a special version of a Lagrange
multiplier rule given in Degiovanni and Schuricht [13]. Here X is assumed to be a
Banach space, ∂ f (v), ∂g(v) ⊂ X∗ denote the convex subdifferentials of f , g at v,
and g′(v;w) be the directional derivative of g at v in direction w.

Proposition 3.1 Let f : X → R ∪ {∞} be convex and lower semicontinuous and let
g : X → R be convex and locally Lipschitz continuous. If u ∈ D( f ) ∩ K is a critical
point of f with respect to K such that there exist u± ∈ D( f ) with ±g′(u; u−u±) < 0,
then ∂ f (u) �= ∅ and there are λ ∈ R, f ∗ ∈ ∂ f (u), g∗ ∈ ∂g(u) such that f ∗+λg∗ = 0.
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Eigensolutions of the 1-Laplace operator 155

Notice that the property of u ∈ X being critical depends on the metric on X in
general. We say u is a critical point on X if this uniquely refers to the corresponding
metric d on X .

For an upper estimate of the weak slope one can use the strong slope (cf. De Giorgi
et al. [10]) defined for a lower semicontinuous function f : X → R∪{∞} at u ∈ D( f )

by

|∇ f |(u) :=
{

lim sup
v→u

f (u)− f (v)
d(u,v)

if u is not a local minimum,

0 if u is a local minimum.

It is easily seen that |d f |(u) ≤ |∇ f |(u). Occasionally, we call u ∈ X a strong critical
point of f on X if |∇ f |(u) = 0 and, clearly, strong critical points are critical points.
|∇ f |X (u) indicates the underlying metric space X .

For analytical arguments the previous indirect definition of |d f |(u) for a lower
semicontinuous function f is not very convenient. Therefore, let us provide a more
direct characterization where we use the notation

f β := {v ∈ X | f (v) ≤ β}

(cf. Chang [6] for a similar characterization).

Lemma 3.2 Let f : X → R∪{∞} be lower semicontinuous and let u ∈ D( f ). Then
|d f |(u) is the supremum of all ω ∈ [0,∞) for which there exist δ > 0, β > f (u),
and a continuous map H : (Bδ(u) ∩ f β) × [0, δ] → X such that

d(H(v, t), v) ≤ t, f (H(v, t)) ≤ f (v) − ωt (3.8)

for all v ∈ Bδ(u) ∩ f β and all t ∈ [0, δ].
Proof If for some ω ∈ [0,∞) there exist δ, β, H as in the lemma, then |d f |(u) ≥ ω

according to [12, Proposition 2.5]. Hence |d f |(u) ≥ ω̃ if ω̃ denotes the supremum in
the lemma.

If |d f |(u) = 0 the assertion is readily verified with H(v, t) = v. Let us now assume
that |d f |(u) > 0. According to [11], the weak slope |d f |(u) is the supremum of all
ω ∈ [0,∞) for which there exist δ̃ > 0 and a continuous map H̃ : (Bδ̃(u, f (u)) ∩
epi f ) × [0, δ̃] → X such that

d(H̃((v, μ), t), v) ≤ t, f (H̃((v, μ), t)) ≤ μ − ωt (3.9)

for all (v, μ) ∈ Bδ̃ (u, f (u)) ∩ epi ( f ) and all t ∈ [0, δ̃]. Let us now fix some ω ∈
(0, |d f |(u)) and let us choose corresponding δ̃ and H̃ as above. Clearly, there is
δ1 ∈ (0, δ̃) such that

Bδ1(u) × ( f (u) − δ1, f (u) + δ1) ⊂ Bδ̃(u, f (u)).
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Since f is lower semicontinuous, there is δ ∈ (0, δ1) such that

f (v) > f (u) − δ1 for all v ∈ Bδ(u).

With β := δ1/2 we readily get

(v, f (v)) ∈ Bδ̃(u, f (u)) ∩ epi ( f ) for all v ∈ Bδ(u) ∩ f β.

For the continuous map H : Bδ(u)∩ f β ×[0, δ] → X with H(v, t) := H̃((v, f (v)), t)
we obtain (3.8) from (3.9). By the arbitrariness of ω we conclude that |d f |(u) ≤ ω̃

which yields the assertion. ��

3.2 Some special subdifferentials

Let � ⊂ R
n be an open bounded set with Lipschitz boundary and let us consider the

convex functions E, G : BV (�) → R given by

E(u) =
∫

�

d|Du| +
∫

∂�

|u| dHn−1, G(u) =
∫

�

|u| dx = 1

as defined in (2.1), (2.2). Since the structure of the dual space BV (�)∗ is not known
very well, we cannot compute the subdifferentials ∂ E(u) and ∂G(u) directly. There-
fore, for 1 ≤ q ≤ n

n−1 , let us first consider the extended function Eq : Lq(�) →
R ∪ {∞} given by

Eq(u) :=
{∫

�
d|Du| + ∫

∂�
|u| dHn−1 for u ∈ BV (�),

∞ for u ∈ Lq(�) \ BV (�),

and the natural extension Gq : Lq(�) → R according to

Gq(u) :=
∫

�

|u| dx = 1.

Proposition 3.3 Let 1 ≤ q ≤ n
n−1 . Then:

(1) The functional Eq is convex and lower semicontinuous on Lq(�). Moreover, E∗ ∈
∂ Eq(u) for u ∈ Lq(�) ∩ BV (�) if and only if there exists a vector field z ∈
L∞(�, R

n) with

‖z‖L∞ ≤ 1, E∗ = − div z ∈ Lq ′
(�), Eq(u) = 〈E∗, u〉 = −

∫

�

u div z dx .

(3.10)

If E(u) > 0, then ‖z‖L∞ = 1.
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Eigensolutions of the 1-Laplace operator 157

(2) The functional Gq is convex and Lipschitz continuous on Lq(�). Moreover, G∗ ∈
∂Gq(u) for u ∈ Lq(�) if and only if

G∗(x) ∈ Sgn(u(x)) a.e. on �. (3.11)

Proof This is shown in Kawohl and Schuricht [21], but without the case q = 1 for (1)
which remains to be shown.

First let E∗ ∈ ∂ E1(u) for u ∈ BV (�). Then E1(v) − E1(u) ≥ 〈E∗, v − u〉 for all
v ∈ L1(�). Since E1 = Eq on Lq(�) for q > 1, the element E∗ ∈ L∞(�) belongs
also to ∂ Eq(u) and, thus, must have the structure as in (3.10). Now let E∗ = − div z ∈
L∞(�) as in (3.10) for u ∈ BV (�). Obviously E∗ ∈ ∂ Eq(u) for any q ∈ (1, n

n−1 ]
and Eq(v) − Eq(u) ≥ 〈E∗, v − u〉 for all v ∈ Lq(�) ⊃ BV (�). Since E1 = Eq on
BV (�) and E1 = ∞ on L1(�) \ BV (�), the previous inequality remains true with
q = 1 for all v ∈ L1(�) and, hence, E∗ ∈ ∂ E1(u). But this verifies the assertion. ��

Let us now consider an element G∗ ∈ ∂G(u) ⊂ BV (�)∗ for u ∈ BV (�). By
definition,

G(v) − G(u) ≥ 〈G∗, v − u〉 for all v ∈ BV (�). (3.12)

With v = 2u, v = 0 we get G(u) = 〈G∗, u〉 and, thus, 〈G∗, v〉 ≤ G1(v) for all
v ∈ BV (�). The Hahn–Banach theorem provides a continuous linear extension G∗

1 ∈
L∞(�) of G∗ on L1(�) that respects the inequality. Since (3.12) remains valid with
G1 and G∗

1 for all v ∈ L1(�), we obtain G∗
1 ∈ ∂G1(u) (cf. also Chang [6]).

Corollary 3.4 We have ∂G(u) = ∂G1(u) for u ∈ BV (�), i.e. G∗ ∈ ∂G(u) if and
only if (3.11) is satisfied.

The next result describes the relation between the subdifferentials ∂ Eq(u) and
∂ E(u).

Lemma 3.5 Let f : BV (�) → R ∪ {∞} be convex and, for 1 ≤ q ≤ n
n−1 , let fq :

Lq(�) → R∪{∞} be the extension of f with f (v) = ∞ for all v ∈ Lq(�)\ BV (�).
Then

∂ f (u) ∩ Lq ′
(�) = ∂ fq(u) for all u ∈ D( f ) ⊂ BV (�).

This fact is already used in [6] but without proof. Thus let us briefly sketch it for
completeness.

Proof Let f ∗ ∈ ∂ fq(u) ⊂ Lq ′
(�). By BV (�) ⊂ Lq(�), we get f (v) − f (u) ≥

〈 f ∗, v − u〉 for all v ∈ BV (�). Then Lq ′
(�) ⊂ BV (�)∗ implies f ∗ ∈ ∂ f (u). For

f ∗ ∈ ∂ f (u) ∩ Lq ′
(�) we have f (v) − f (u) ≥ 〈 f ∗, v − u〉 for all v ∈ BV (�). This

remains true for fq instead of f and all v ∈ Lq(�) and, hence, f ∗ ∈ ∂ fq(u). ��

4 Higher eigensolutions

Based on our preliminary discussion we define eigenfunctions of the 1-Laplace oper-
ator to be certain constrained critical points of the total variation where we distinguish
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158 Z. Milbers, F. Schuricht

different cases depending on the underlying norm. More precisely, u ∈ BV (�) is
called BV -eigenfunction if it is a critical point of E with respect to G(v) = 1 on
BV (�) (i.e., subject to the BV -norm) and u ∈ BV (�) is called Lq -eigenfunction
if it is a critical point of Eq subject to Gq(v) = 1 on Lq(�) (i.e., subject to the
Lq -norm). Occasionally we use the notion of strong BV -eigenfunction or strong Lq -
eigenfunction which refers to corresponding strong critical points. With

K := {v ∈ BV (�) | G(v) = 1}, Kq := {v ∈ Lq(�) | Gq(v) = 1},

we readily see that u ∈ BV (�) is BV -eigenfunction if and only if u is critical point
of E + IK in BV (�) and it is Lq -eigenfunction if and only if it is critical point of
Eq + IKq in Lq(�).

Now let u ∈ BV (�) be BV -eigenfunction or Lq -eigenfunction, i.e. we have either
|d(E + IK )|BV (u) = 0 or |d(Eq + IKq )|Lq

(u) = 0. Then the assumptions of Propo-
sition 3.1 are obviously satisfied for the functions E , G on BV (�) or for Eq , Gq on
Lq(�), respectively, with u+ = 2u, u− = 0. Thus, correspondingly, there are either
E∗ ∈ ∂ E(u), G∗ ∈ ∂G(u) or E∗ ∈ ∂ Eq(u), G∗ ∈ ∂Gq(u) and λ ∈ R such that

E∗ + λG∗ = 0 in BV (�)∗ or Lq ′
(�).

We call λ eigenvalue corresponding to eigenfunction u. By Proposition 3.3 and Corol-
lary 3.4 we know that G∗ ∈ L∞(�) in any case and, hence, also E∗ ∈ L∞(�).
Consequently, Proposition 3.3 combined with Lemma 3.5 provides the structure of
E∗ and we obtain the next result (cf. also Milbers and Schuricht [24], Chang [6]).

Proposition 4.1 Let u ∈ BV (�) be BV -eigenfunction or Lq-eigenfunction, q ∈
[1, n

n−1 ], of the 1-Laplace operator. Then there exists a measurable selection s(x) ∈
Sgn(u(x)) for a.e. x ∈ � and a vector field z ∈ L∞(�, R

n) with

‖z‖L∞ = 1, div z ∈ L∞(�), E(u) = −
∫

�

u div z dx (4.1)

such that

− div z = λs a.e. on �, λ = E(u). (4.2)

This means that BV -eigenfunctions and Lq -eigenfunctions u satisfy the single
eigenvalue equation (2.3) and that the corresponding eigenvalue λ equals E(u).

In Milbers and Schuricht [24] the existence of a sequence of pairs ±uk ∈ BV (�)

of critical points of Eq + IKq on Lq(�) with λk = E(uk) → ∞ is shown for
1 ≤ q < n

n−1 (critical points ±uk ∈ BV (�) of E1 + IK1 on L1(�) are verified in
Chang [6] without analyzing the convergence of λk ). Clearly, all these critical points are
Lq -eigenfunctions and satisfy the single eigenvalue equation (2.3). Unfortunately that
equation cannot identify the eigenfunctions, since it has too many solutions accord-
ing to our previous example. Therefore it is reasonable to look for further necessary
conditions eigensolutions have to satisfy. We deduce a new additional condition for
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L1-eigenfunctions by means of inner variations that can be considered as precise
interpretation of the formal equation (1.6).

For u ∈ BV (�) let σ : � → R
n be a |Du|-measurable vector field such that

|σ(x)| = 1 |Du|-a.e. on � and Du = σ |Du|, (4.3)

i.e. Du = σ |Du| is the polar decomposition of the measure Du, cf. Ambrosio et al.
[1, Corollary 1.29].

Theorem 4.2 Let � ⊂ R
n be an open bounded set with Lipschitz boundary, let

u ∈ BV (�) be L1-eigenfunction of the 1-Laplace operator, and let σ be the vector
field from the polar decomposition Du = σ |Du|. Then for each ξ ∈ C∞

0 (�, R
n) we

have
∫

�

〈σ, Dξσ 〉 − div ξ d|Du| = −λ

∫

�

|u| div ξ dx (4.4)

with λ = E(u) (notice that Dξσ = (Dξ)σ ).

As a direct consequence of the Gauss–Green formula for the BV-function |u| and
using the continuity of ξ (cf. Milbers and Schuricht [23, Sect. 3]), we obtain an
alternative expression for the right hand side in (4.4) by

− λ

∫

�

|u| div ξ dx = λ

∫

�

ξ · d D|u| for all ξ ∈ C∞
0 (�, R

n). (4.5)

The proof of the theorem will be carried out in several steps in Sect. 6 where the next
observation is an essential ingredient.

Proposition 4.3 Let X ⊂ L1(�) be a Banach space continuously embedded into
L1(�) and let K X := {v ∈ X | G(v) = 1}. Then u ∈ X is a critical point of E with
respect to K X on X if and only if u ∈ X is a critical point of F := E − λG on X with
λ = E(u).

The proof can be found in Sect. 6 below.

5 Consequences

5.1 Previous example

We demonstrate how the new necessary condition from Theorem 4.2 works for our
example from Sect. 2 where we had constructed a continuum of solutions for the single
Euler–Lagrange equation. In fact all these solutions are candidates for eigenfunctions
of the 1-Laplace operator. Recall that for any ball B = Br (x0) ∈ R

n with B ⊂ � the
function

v(x) := 1

|B|χB(x)
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satisfies the single eigenvalue equation (2.3). If v would be an L1-eigenfunction, then
it has to satisfy condition (4.4)

∫

�

〈σ, Dξσ 〉 − div ξ d|Dv| = −λ

∫

�

|v| div ξ dx

for any ξ ∈C∞
0 (�, R

n) with λ = E(v) = n/r (cf. Sect. 2). We pick a ξ ∈C∞
0 (�, R

n)

such that ξ(x) = x on a set containing B. Then we have

Dξ(x) = id and div ξ(x) = n on B.

Moreover, we know that |Dv| = 1
|B|Hn−1�∂ B, cf. Evans and Gariepy [16, p. 169].

Thus we get for the left hand side

∫

�

〈σ, Dξσ 〉 − div ξ d|Dv| = 1

|B|
∫

∂ B

〈σ, σ 〉 − n dHn−1

= 1

|B|
∫

∂ B

(1 − n) dHn−1 = |∂ B|
|B| (1 − n)

= n(1 − n)

r

and for the right hand side

−λ

∫

�

|v| div ξ dx = −n

r

1

|B|
∫

B

n dx = −n2

r
,

which implies the contradiction

n − 1 = n.

Consequently, the new condition (4.4) confirms our expectation and shows its ability
by ruling out all these functions v from being L1-eigenfunctions of the 1-Laplace
operator.

5.2 One-dimensional case n = 1

Here we want to investigate eigensolutions of the 1-Laplace operator for the special
case � ⊂ R

1 where we can restrict our attention to the case � = (0, 1). This case
has been already investigated to some extend in Chang [6] where, however, the focus
was on strong L1-eigenfunctions u, i.e., the strong slope |∇(E1 + IK1)|(u) = 0 with
respect to the L1-norm, cf. Sect. 3. Notice that strong L1-eigenfunctions are also L1-
eigenfunctions, since the strong slope is an upper bound for the weak slope, but the
opposite is not clear in general.
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Let us start with a necessary condition for solutions of the single eigenvalue equation
(2.3) that reduces to

− z′(x) = λs(x) a.e. on (0, 1), λ = E(u) (5.1)

where s and z are coupled with u by

s ∈ L∞(0, 1) with s(x) ∈ Sgn(u(x)) a.e. on (0, 1), (5.2)

z ∈ W1,∞(0, 1) (i.e. zis Lipschitz continuous), ‖z‖L∞ = 1, (5.3)

E(u) = −
1∫

0

uz′ dx . (5.4)

For any (a, b) ⊂ (0, 1) we have the Gauss–Green formula

b∫

a

uz′ dx +
∫

(a,b)

z d(Du) = z(b)u(b−) − z(a)u(a+) (5.5)

(notice that u(a+), u(b−) agree with u on the boundary of (a, b) in the sense of trace)
and we obtain a condition that is equivalent to (5.4)

zDu =|Du| (in the sense of measures), z(0)∈Sgn(u(0+)), −z(1)∈Sgn(u(1−))

(5.6)

(cf. Milbers and Schuricht [23, Sect. 3]).

Proposition 5.1 Let u ∈ BV (0, 1) be a solution of the single eigenvalue equation
(5.1). Then there are points 0 = a0 < a1 < · · · < ak = 1, α j ∈ R, j = 1, . . . , k,
such that with I j := (a j−1, a j )

u =
k∑

j=1

α jχI j a.e. on (0, 1). (5.7)

Though this is already shown in [6] let us provide a brief alternative proof.

Proof Using the polar decomposition Du = σ |Du| (here σ(x) = ±1 for all x) in
(5.6), we get z(x) = σ(x) for |Du|-a.e. x ∈ (0, 1). Thus,

z(x) ∈ {±1} |Du|-a.e. on (0, 1). (5.8)

Since u ∈ BV (0, 1), we have

u(y−) − u(x+) = Du((x, y)) =
∫

(x,y)

d(Du) for all 0 ≤ x < y ≤ 1 (5.9)

(cf. Ambrosio et al. [1, Theorem 3.28]).
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Let I ⊂ (0, 1) be a nonempty open interval with length |I | ≤ 1/λ. If |z(x)| < 1
on an open interval Ĩ ⊂ I , then Du = 0 on Ĩ by (5.8) and u is constant on Ĩ by (5.9).
If {x ∈ I | |z(x)| = 1} �= ∅, then z cannot change sign on I , since |z′| ≤ λ by (5.1).
Assume that z(a) = z(b) = 1 for some a, b ∈ I with a < b. Then zDu = Du on I
in the sense of measures. Hence, by (5.5), (5.1), and (5.9),

−λ

b∫

a

|u| dx + u(b−) − u(a+) = u(b−) − u(a+).

Consequently, u = 0 a.e. on (a, b) and we get the same result in the case z(a) = z(b) =
−1. Summarizing we conclude that I can be covered by at most three subintervals
such that u is constant on each subinterval. Since (0, 1) can be covered by finitely
many intervals of length less than 1/λ, we readily obtain the assertion. ��

Let us now consider the consequences of Theorem 4.2 for L1-eigenfunctions.

Proposition 5.2 Let u ∈ BV (0, 1) be L1-eigenfunction of the 1-Laplace operator
with eigenvalue λ. Then there is some k ∈ N such that, up to sign of u,

u(x) = uk(x) := sgn(sin(kπx)) a.e. on (0, 1) and λ = λk := 2k. (5.10)

Proof Theorem 4.2 with the polar decomposition Du = σ |Du| gives

∫

(0,1)

(σ 2ξ ′ − ξ ′) d|Du| = −λ

1∫

0

|u|ξ ′ dx for all ξ ∈ C∞
0 (0, 1).

Since σ 2 = 1, the left hand side vanishes. Therefore, by the Lemma of Du Bois-
Reymond and by ‖u‖L1 = 1,

|u| = 1 a.e. on (0, 1).

As L1-eigenfunction u has to satisfy the single eigenvalue equation (5.1) by Propo-
sition 4.1 with corresponding functions z and s. Moreover, u must have the form
(5.7) where, clearly, all |α j | = 1. We get that |s| = 1 a.e. on (0, 1) and, thus,
z′(x) = −λ sgn(u(x)) a.e. on (0, 1). Since u can only jump at points where |z| = 1
by (5.8), since |z| = 1 only at isolated points, and since |z(0)| = |z(1)| = 1 by (5.6),
the intervals (a j , a j+1) must all have the length 2/λ = 1/k for some k ∈ N and the
α j have to alternate. But this gives the assertion. ��

Chang [6, Theorem 3.10] has shown that any strong L1-eigenfunction must equal
±uk from (5.10) for some k ∈ N. Proposition 5.2 generalizes this result so far that
already L1-eigenfunctions (i.e., with respect to the weak slope) have to meet that
necessary condition. Since

|d(E1 + IK1)|L
1
(±uk) = |∇(E1 + IK1)|L

1
(±uk) = 0
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by Chang [6, Lemma 3.9], all ±uk are really L1-eigenfunctions. Thus, combined with
Proposition 5.2, we obtain a precise characterization of all L1-eigenfunctions.

Theorem 5.3 For � = (0, 1) the L1-eigenfunctions of the 1-Laplace operator are
the functions ±uk, k ∈ N, given in (5.10) with corresponding eigenvalues λk = 2k.

The eigenvalues λk can be characterized by a usual min-max principle and the
eigenfunctions uk are the pointwise limit of the normalized eigenfunctions u p

k of the
p-Laplace operator according to [6].

Interestingly, the L1-eigenfunctions are exactly the same as the strong L1-
eigenfunctions in the case n = 1 which might be wrong in higher dimensions. Notice
that the existence of a sequence of eigenfunctions is shown in general merely for
L1-eigenfunctions and not for strong L1-eigenfunctions. Moreover, it turns out that
the case R

1 is somehow special, since, in contrast to higher dimensions, the selection
s(x) ∈ Sgn(u(x)) is uniquely determined (in the sense of L∞) and, thus, single and
multiple eigenvalue equation agree.

The rich structure of the eigenvalue problem for the 1-Laplace operator also
becomes visible in the case of BV -eigenfunctions. In Chang [6, Theorem 3.12], it
is shown that all functions

u = ±
k∑

j=1

(−1) jα jχI j with α j > 0, I j =
(

j−1
k ,

j
k

)
, j = 1, . . . , k,

k∑
j=1

α j = k

are local minimizers of E + IK in BV (�). Hence |d(E + IK )|BV (u) = |∇(E +
IK )|BV (u) = 0, i.e., all these u are BV -eigenfunctions and even strong BV -
eigenfunctions on � = (0, 1) with eigenvalue λ = 2k. Consequently, the set of
BV -eigenfunctions is strictly larger than that of L1-eigenfunctions and the same is
true for strong eigenfunctions. More general, let us consider

u = ±
k∑

j=1

(−1) jα jχI j with α j ≥ 0, I j =
(

j−1
k ,

j
k

)
, j = 1, . . . , k,

k∑
j=1

α j = k

(5.11)

where we assume that α j = 0 for at least one index j . For ε > 0 we define u±
ε as in

(5.11) with coefficients

α±
ε, j :=

{±ε if α j = 0,

α j − cε if α j > 0

where c > 0 is a constant such that
∑k

j=1 |α±
ε, j | = k. Thus u±

ε ∈ K for all ε > 0 and

u±
ε → u in BV (�) as ε → 0. Clearly α+

ε, j > 0 for all j if ε > 0 is sufficiently small.
Hence, all u+

ε are local minimizers of E + IK in BV (�) and

|d(E + IK )|BV (u+
ε ) = 0 for all small ε > 0.
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Since the weak slope is lower semicontinuous, we have |d(E + IK )|BV (u) = 0.
Moreover, a simple computation shows that

|∇(E + IK )|BV (u) ≥ lim sup
ε→0

E(u) − E(u−
ε )

‖u − u−
ε ‖BV

≥ c̃

for some c̃ > 0. Consequently, u according to (5.11) with α j = 0 for at least one index
j is BV -eigenfunction but not strong BV -eigenfunction. This in particular means that,
in contrast to the L1-case, the set of BV -eigenfunctions is strictly larger than that of
strong BV -eigenfunctions.

5.3 General case

Let us start with some generalization of the arguments from Sect. 5.1. Let u ∈ BV (�)

and let �0 ⊂ � be an open compactly contained subset with Lipschitz boundary such
that u = 0 on a neighborhood of ∂�0 (inside and outside). If u were L1-eigenfunction
of the 1-Laplace operator, then we multiply the single eigenvalue equation (2.3) by u
and integrate to get

λ

∫

�0

|u| dx = −
∫

�0

u div z dx =
∫

�0

d|Du|

where the most right equality follows from the Gauss–Green formula with (z, Du) =
|Du| and u = 0 on ∂�0 in the sense of trace (cf. Milbers and Schuricht [23, Sect. 3]).
Now we consider (4.4) with ξ(x) = x on �0 and spt ξ contained in a small neighbor-
hood of �0 and obtain

∫

�0

(1 − n) d|Du| = −λn
∫

�0

|u| dx

which leads to the contradiction 1 − n = −n. Therefore a function u ∈ BV (�) of the
kind described above cannot be L1-eigenfunction.

If u would be a smooth L1-eigenfunction with Du(x) �= 0 and u(x) �= 0, then z in
the single eigenvalue equation (2.3) would coincide with Du/|Du| in a neighborhood
of x , i.e., z were a unit normal field on the level sets of u that must have the constant
mean curvature − div z = λ sgn(u). Therefore we expect L1-eigenfunctions to be step
functions in general though exceptions might be possible.

Let us consider an L1-eigenfunction u ∈ BV (�) such that on an open ball B ⊂ �

u = c1χ�1 + c2χ�2 , ∂�1 = ∂�2
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with �1,�2 ⊂ � being disjoint open subsets having smooth boundary and outer unit
normals ν1, ν2. For the left hand side in (4.4) with spt ξ ⊂ B we get

∫

B

〈σ, Dξ σ 〉 − div ξ d|Du| = −
∫

B

div∂�1 ξ d|Du|

= |c1 − c2|
∫

B∩∂�1

H∂�1〈ξ, ν1〉 − divgξ∂�1 dHn−1

= |c1 − c2|
∫

B∩∂�1

H∂�1〈ξ, ν1〉 dHn−1

where div∂�1 denotes the tangential part of the divergence, divg the divergence in
the manifold ∂�1, ξ∂�1 the tangential part of ξ , and H∂�1 the mean curvature of
∂�1 (with respect to the normal field ν1) while we have used the divergence theorem
in the manifold ∂�1 for the last equality, cf. [22, Proposition 8.7]. Using (4.5) and
D|u| = (|c2| − |c1|

)
ν1Hn−1�∂�1, we derive from (4.4)

|c1 − c2|
∫

B∩∂�1

H∂�1〈ξ, ν1〉 dHn−1 = λ
(|c2| − |c1|

) ∫

B∩∂�1

〈ξ, ν1〉 dHn−1

for all ξ ∈ C∞
0 (B, R

n). Consequently,

H∂�1 |c1 − c2| = λ
(|c2| − |c1|

)
on B ∩ ∂�1.

Let us consider some special cases of that condition. First,

H∂�1 = −λ if c2 = 0,

i.e. on a “free” part of ∂�1 we have a curvature condition as for the boundary of a
Cheeger set. Notice that one obtains the same condition for the “free” parts of ∂�2.
Next,

H∂�1 = −λ if c1 > c2 > 0 or c1 < c2 < 0.

Finally,

H∂�1 = −λ
|c1| − |c2|
|c1 − c2| if c1 > 0 > c2 or c2 > 0 > c1.

Notice that, in the last case, H∂�1 = 0 if and only if |c1| = |c2|. Summarizing
we can say that the new necessary condition (4.4) provides additional information
supplementing the single eigenvalue equation (2.3).
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6 Proofs

In this section we first carry out the proof of Proposition 4.3 and then, in several steps,
the proof of Theorem 4.2.

Proof of Proposition 4.3 In this proof Bδ(u) denotes the δ-neighborhood with respect
to ‖ · ‖X and ‖ · ‖ denotes the norm in L1(�). By assumption there is some c > 0 such
that

‖v‖ ≤ c‖v‖X for all v ∈ X. (6.1)

(a) Let u ∈ X be a critical point of E with respect to K X on X and, by contradiction,
let |d F |X (u) > 0. Hence, there is ω > 0, δ > 0, β > F(u), and H : (Bδ(u) ∩ Fβ) ×
[0, δ] → X continuous such that

‖H(v, t) − v‖X ≤ t, F(H(v, t)) ≤ F(v) − ωt (6.2)

for all v ∈ Bδ(u) ∩ Fβ , t ∈ [0, δ]. With F = E − λG and the 1-homogeneity of E ,
G, the inequality on the right implies

‖H(v, t)‖E
( H(v, t)

‖H(v, t)‖
)

− E(u)‖H(v, t)‖ ≤ ‖v‖E
( v

‖v‖
)

− E(u)‖v‖ − ωt.

Using H̃(v, t) := H(v, t)/‖H(v, t)‖, ṽ := v/‖v‖ we get

‖H(v, t)‖(E(H̃(v, t)) − E(ṽ)
) + (‖H(v, t)‖ − ‖v‖)E(ṽ)

≤ E(u)
(‖H(v, t)‖ − ‖v‖) − ωt

and, thus,

‖H(v, t)‖(E(H̃(v, t)) − E(ṽ)
) ≤ (

E(u) − E(ṽ)
)(‖H(v, t)‖ − ‖v‖) − ωt (6.3)

for all v ∈ Bδ(u) ∩ Fβ , t ∈ [0, δ].
Since E is lower semicontinuous (also on X ), we can choose an eventually smaller

δ > 0, denoted the same way, such that

E(u) − E
(

v
‖v‖

)
= E(u) − E(ṽ) ≤ ω

2c
for all v ∈ Bδ(u). (6.4)

Using (6.1), we get

∣∣‖u‖ − ‖v‖∣∣ ≤ ‖u − v‖ ≤ c‖u − v‖X ≤ cδ for v ∈ Bδ(u). (6.5)

With ‖u‖ = 1 and since H is continuous (with respect to the norm on X ), we can
assume that δ > 0 is so small that

‖H(v, t)‖ ≤ 2, ‖H(v, t)‖ ‖v‖ ≥ 1

2
, ‖v‖ ≥ 1

2
for all v ∈ Bδ(u), t ∈ [0, δ].

(6.6)
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Furthermore, with some eventually smaller β > F(u) = 0, denoted the same way,
and satisfying 2β ≤ ω

2c , we obtain for all v ∈ Bδ(u) ∩ Fβ

E(ṽ) − E(u) = 1

‖v‖
(
E(v) − λG(v)

) = 1

‖v‖ F(v) ≤ 2β ≤ ω

2c
.

By (6.1), (6.2)

∣∣ ‖H(v, t)‖ − ‖v‖ ∣∣ ≤ ‖H(v, t) − v‖ ≤ c‖H(v, t) − v‖X ≤ ct.

Consequently, by (6.3), (6.4),

‖H(v, t)‖(E(H̃(v, t)) − E(ṽ)
) ≤ ω

2
t − ωt = −ω

2
t

and, moreover,

E(H̃(v, t)) − E(ṽ) ≤ −ω

2

t

‖H(v, t)‖ ≤ −ω

4
t

for all v ∈ Bδ(u) ∩ Fβ , t ∈ [0, δ]. Using (6.6) we can also estimate

‖H̃(v, t) − ṽ‖X =
∥∥∥ H(v, t)

‖H(v, t)‖ − v

‖v‖
∥∥∥

X

= 1

‖H(v, t)‖‖v‖
∥∥∥‖v‖H(v, t) − ‖H(v, t)‖v

∥∥∥
X

≤ 2
(‖v‖ ‖H(v, t) − v‖X + ∣∣ ‖v‖ − ‖H(v, t)‖ ∣∣ ‖v‖X

)
≤ 2

(
c‖v‖X t + ct‖v‖X

) ≤ 4ct (δ + ‖u‖X )

for all v ∈ Bδ(u) ∩ Fβ , t ∈ [0, δ].
For v ∈ Bδ(u) ∩ (E + IK X )E(u)+β with K X := {v ∈ X | G(v) = 1} we get

F(v) = E(v) − λG(v) = E(v) − E(u) ≤ β.

Thus, with β̃ := E(u) + β,

Bδ(u) ∩ (E + IK X )β̃ ⊂ Bδ(u) ∩ Fβ.

With c0 := 4c(δ + ‖u‖X ) and Ĥ(v, t) := H̃(v, t/c0) we finally get for all v ∈
Bδ(u) ∩ (E + IK X )β̃ , t ∈ [0, δ]

‖Ĥ(v, t) − v‖X = ‖H̃(v, t/c0) − v‖X ≤ t

and

(E + IK X )(Ĥ(v, t)) − (E + IK X )(v) = E(H̃(v, t/c0)) − E(v) ≤ − ω

4c0
t
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(notice that v = ṽ ∈ K X and Ĥ(v, t) ∈ K X in that case). But this implies that u is
not a critical point of E with respect to K X , which is a contradiction and verifies the
assertion.

(b) Assume that |d(E−λG|X (u) = 0 and, by contradiction, let |d(E+IK X )|X (u) >

0. Then there exist ω > 0, δ > 0, β > (E + IK X )(u) = E(u), and H : Bδ(u) ∩ (E +
IK )β × [0, δ] → X continuous such that

‖H(v, t) − v‖X ≤ t, (E + IK X )(H(v, t)) ≤ (E + IK X )(v) − ωt

for all v ∈ Bδ(u) ∩ (E + IK X )β , t ∈ [0, δ]. Clearly, (E + IK X )β = Eβ ∩ K X and

H(v, t) ∈ K X for all v ∈ Bδ(u) ∩ Eβ ∩ K X , t ∈ [0, δ].

Hence,

E(H(v, t)) ≤ E(v) − ωt for all v ∈ Bδ(u) ∩ Eβ ∩ K X , t ∈ [0, δ]. (6.7)

Using (6.5) we can choose δ̃ ∈ (0, δ) so small that

v

‖v‖ ∈ Bδ(u) and ‖v‖ ≥ 1

2
for all v ∈ Bδ̃(u).

Then there is c1 ≥ 1 with ‖v‖ ≤ c‖v‖X ≤ c(‖u‖X + δ̃) ≤ c1 on Bδ̃ (u). With

β̃ := β−E(u)
2 we have for all v ∈ Bδ̃ (u) ∩ (E − λG)β̃

E
(

v
‖v‖

) = 1
‖v‖

(
E(v) − λG(v)

) + E(u) ≤ 2β̃ + E(u) = β.

Let us now define the continuous map

H̃(v, t) := ‖v‖H(
v

‖v‖ , t
c1

)
on

(
Bδ̃(u) ∩ (E − λG)β̃

) × [0, δ̃].

We conclude,

‖H̃(v, t) − v‖X =
∥∥∥ ‖v‖H

( v

‖v‖ ,
t

c1

)
− v

∥∥∥
X

= ‖v‖
∥∥∥ H

( v

‖v‖ ,
t

c1

)
− v

‖v‖
∥∥∥

X

≤ c1
t

c1
= t

and, by (6.7) and G(H( v
‖v‖ , t

c1
)) = 1,

E(H̃(v, t)) − λG(H̃(v, t)) = ‖v‖E
(
H

(
v

‖v‖ , t
c1

))
− λ‖v‖G

(
H

(
v

‖v‖ , t
c1

))

≤ ‖v‖E
(

v
‖v‖

)
− ω‖v‖ t

c1
− λG(v)

≤ E(v) − λG(v) − ω

2c1
t
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for all v ∈ Bδ̃ (u) ∩ (E − λG)β̃ , t ∈ [0, δ̃]. Consequently, |d(E − λG)|X (u) > 0. But
this contradicts our assumption and yields the assertion. ��

Let us now start with preliminary considerations for the proof of Theorem 4.2. We
set

Diff� := {η ∈ C∞
0 (�, R

n)|(id + η) : � → � is a diffeomorphism}

and, clearly, 0 ∈ Diff�. For v ∈ BV (�) and η ∈ Diff� we consider perturbations

vη : � → R with vη(x) := v(x + η(x)).

For v in a L1-neighborhood of a critical point u we claim to study the functions

Ev : Diff� → R with Ev(η) := E(vη) =
∫

�

d|Dvη| +
∫

∂�

|vη| dHn−1,

Gv : Diff� → R with Gv(η) := G(vη) =
∫

�

|vη| dx

near η = 0. In particular, for ξ ∈ C∞
0 (�, R

n) we want to derive a first order expansion
of the real functions t → Ev(tξ) and t → Gv(tξ) at t = 0 by computing the directional
derivatives δEv(0, ξ) and δGv(0, ξ). But first we have to clarify that Ev , Gv are well
defined.

Lemma 6.1 If v ∈ BV (�) and η ∈ Diff�, then vη ∈ BV (�). With ỹ(x) := x +η(x)

and x̃(·) being the inverse of ỹ on �, we have

∫

�

|vη(x)| dx =
∫

�

|v(y)| det Dx̃(y) dy, (6.8)

∫

�

d|Dvη| =
∫

�

|Dỹ(x̃(y))T σ(y)| det Dx̃(y) d|Dv| (6.9)

where σ : � → R
n denotes the vector field according to the polar decomposition of

Dv = σ |Dv| (cf. (4.3)).

Proof By the change of variables formula we have vη ∈ L1(�) with (6.8). Relation
(6.9) is shown in Giusti [20, Lemma 10.1], and, since the integrand on the right hand
side is bounded, vη ∈ BV (�). ��

For an arbitrary but fixed ξ ∈ C∞
0 (�, R

n) we define

ỹ(x, t) := x + tξ(x), Dỹ(x, t) := ∂

∂x
ỹ(x, t) on � × R.

Using the implicit function theorem we readily obtain the next lemma.
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Lemma 6.2 There is t0 > 0 such that tξ ∈ Diff� and ỹ(·, t) is a C∞-diffeomorphism
from � to � for all t ∈ (−t0, t0). Moreover Dỹ(x, t) is regular for all (x, t) ∈
� × (−t0, t0) and

det Dỹ(x, t) ≥ 1

c
for all x ∈ �, t ∈ (−t0, t0)

for some constant c > 0.

For any t ∈ (−t0, t0) we denote the inverse of ỹ(·, t) on � by

x̃(·, t) and set Dx̃(y, t) := ∂

∂y
x̃(y, t).

The next corollary summarizes standard results about inner variations (cf. Giaquinta
and Hildebrandt [19, Chapter 3.1]).

Corollary 6.3 We have x̃ ∈ C∞(
�×(−t0, t0),�

)
and x̃(·, t) is a C∞-diffeomorphism

on � with

x̃(y, t) = y for all y ∈ � \ spt ξ, t ∈ (−t0, t0).

Moreover, there are C∞-functions r j : � × (−t0, t0) → R, j = 1, 2, such that

x̃(y, t) = x̃(y, 0) − tξ(y) + r1(y, t), det Dx̃(y, t) = 1 − t div ξ(y) + r2(y, t)

for all y ∈ �, t ∈ (−t0, t0) and

r j (y, t) = o(t) as t → 0 uniformly in y ∈ �, j = 1, 2.

We readily conclude that the real functions t → Ev(tξ), t → Gv(tξ) are well
defined on (−t0, t0) for any v ∈ BV (�). Notice that t0 and the r j from Corollary 6.3
depend on ξ but not on v. Moreover, the surface integral in the definition of Ev(tξ) is
independent of t .

Lemma 6.4 Let v ∈ BV (�) with polar decomposition Dv = σ |Dv| (cf. (4.3)) and
let ξ ∈ C∞

0 (�, R
n). Then we have the directional derivatives

δEv(0, ξ) :=
∫

�

〈σ, Dξσ 〉 − div ξ d|Dv|, δGv(0, ξ) := −
∫

�

|v| div ξ dx .

Moreover, there are functions rE , rG : (−t0, t0) → R depending on ξ but not on v and
satisfying

rE (t) = o(t), rG(t) = o(t) as t → 0
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such that

Ev(tξ) = Ev(0) + δEv(0, ξ)t + rE (t)Ev(0)

Gv(tξ) = Gv(0) + δGv(0, ξ)t + rG(t)Gv(0)

for all t ∈ (−t0, t0).

Proof For v ∈ BV (�), σ from the corresponding polar decomposition, and |t | small,
we get by Lemma 6.1 and Corollary 6.3

Ev(tξ) =
∫

�

d|Dvtξ | +
∫

∂�

|vtξ | dHn−1

=
∫

�

|Dỹ(x̃(y, t), t)T σ(y)| det Dx̃(y, t) d|Dv| +
∫

∂�

|v| dHn−1

=
∫

�

|Dỹ(x̃(y, t), t)T σ(y)|(1 − t div ξ(y) + r2(y, t)) d|Dv| +
∫

∂�

|v| dHn−1

=
∫

�

|Dỹ(x̃(y, t), t)T σ(y)| d|Dv| (6.10)

−
∫

�

t |Dỹ(x̃(y, t), t)T σ(y)| div ξ(y) d|Dv| (6.11)

+
∫

�

|Dỹ(x̃(y, t), t)T σ(y)| r2(y, t) d|Dv| +
∫

∂�

|v| dHn−1. (6.12)

We calculate the directional derivative

δEv(0, ξ) = ∂

∂t

( ∫

�

d|Dvtξ | +
∫

∂�

|vtξ | dHn−1
) ∣∣

t=0

by treating the terms in (6.10), (6.11), (6.12) separately and using a majorizing result
for the differentiability of parameter-dependent integrals, cf. Schilling [26, Theorem
11.5].

Let us calculate the derivatives of the integrands. For the first one, cf. (6.10), we
obtain

F(y, t) := ∂

∂t
|Dỹ(x̃(y, t), t)T σ(y)|

=
〈

Dỹ(x̃(y, t), t)T σ(y)

|Dỹ(x̃(y, t), t)T σ(y)| ,
∂

∂t
Dỹ(x̃(y, t), t)T σ(y)

〉
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=
〈

Dỹ(x̃(y, t), t)T σ(y)

|Dỹ(x̃(y, t), t)T σ(y)| ,
∂

∂t

(
id +t Dξ(x̃(y, t))

)T
σ(y)

〉

=
〈

Dỹ(x̃(y, t), t)T σ(y)

|Dỹ(x̃(y, t), t)T σ(y)| ,
(
Dξ(x̃(y, t))+t D2ξ(x̃(y, t))

∂

∂t
x̃(y, t)

)T
σ(y)

〉
.

(6.13)

Since Dỹ(x̃(y, 0), 0) = id, |σ(y)| = 1,

F(y, 0) = 〈σ(y), Dξ(y) σ (y)〉 for all y ∈ �.

For the second integrand, cf. (6.11),

∂

∂t

(
t |Dỹ(x̃(y, t), t)T σ(y)|

)
div ξ(y)=

(
|Dỹ(x̃(y, t), t)T σ(y)|+tF(y, t)

)
div ξ(y).

(6.14)

Since r2 is smooth, we get for the third part, cf. (6.12),

∂

∂t

(
|Dỹ(x̃(y, t), t)T σ(y)| r2(y, t)

)
= F(y, t)r2(y, t)

+|Dỹ(x̃(y, t), t)T σ(y)| ∂

∂t
r2(y, t).

(6.15)

Notice that r2(y, 0) = ∂
∂t r2(y, 0) = 0 for all y ∈ � by Corollary 6.3. Since r2(·, t)

has compact support on �, the right hand sides in (6.13), (6.14), (6.15) are uniformly
bounded by a constant for y ∈ � and |t | small. Thus

δEv(0, ξ) =
∫

�

〈σ(y), Dξ(y) σ (y)〉 + div Dξ(y) d|Dv|.

Clearly all integrands in (6.10), (6.11), (6.12) are even twice continuously differ-
entiable with respect to t (|t | small) and all second derivatives are uniformly bounded
with respect to y ∈ � by a constant c̃ > 0. Therefore we find some function
rE : (−t0, t0) → R with rE (t) = o(t) as t → 0 such that

Ev(tξ) = Ev(0) + δEv(0, ξ)t + rE (t)
∫

�

d|Dv|.

Notice that rE depends on ξ but not on v.
By Lemma 6.1,

Gv(tξ) =
∫

�

|vtξ (x)| dx =
∫

�

|v(y)| det Dx̃(y, t) dy. (6.16)
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Using Lemma 6.3 we calculate the derivative of the integrand

∂

∂t

(|v(y)| det Dx̃(y, t)
) = ∂

∂t

(|v(y)|(1 − t div ξ(y) + r2(y, t))
)

= −|v(y)| div ξ(y) + |v(y)| ∂

∂t
r2(y, t) (6.17)

and, hence,

∂

∂t

(|v(y)| det Dx̃(y, t)
) ∣∣

t=0 = −|v(y)| div ξ(y).

Since the terms in (6.17) are uniformly bounded in y and t , we get the directional
derivative

δGv(0, ξ) = −
∫

�

|v(y)| div ξ(y) dy.

Again the function t → det Dx̃(y, t) is twice continuously differentiable and the
second derivative is uniformly bounded with respect to y ∈ � and |t | small. Therefore
we find some function rG : (−t0, t0) → R with rG(t) = o(t) as t → 0 such that

Gv(tξ) = Gv(0) + δGv(0, ξ)t + rG(t)
∫

�

|v| dy.

Also rG depends on ξ but not on v. ��
Proof of Theorem 4.2 Notice that Eq. (4.4) is equivalent to

δEu(0, ξ) − λδGu(0, ξ) = 0 for all ξ ∈ C∞
0 (�, R

n).

By contradiction let us assume that the assertion is wrong, i.e., there is some ξ ∈
C∞

0 (�) such that

δEu(0, ξ) − λδGu(0, ξ) < −ω < 0 (6.18)

for some ω > 0. We claim to show that |d(E − λG)|L1
(u) > 0.

For the fixed ξ from (6.18) we choose t0 > 0 as in Lemma 6.2 and we fix δ, β with

δ := t0, β > F(u) := E(u) − λG(u) = 0.

By Lemma 6.2,

0 <
1

det(id + t Dξ(x))
≤ c for all |t | < δ, x ∈ �.
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Now we define a map H : (Bδ(u) ∩ Fβ) × [0, δ] → L1(�), where Bδ(u) denotes the
δ-ball in L1(�), with

H(v, t) := vtξ = v(· + tξ(·))

(recall Fβ = {v ∈ L1| F(v) < β}). Notice that v ∈ Fβ implies v ∈ BV (�) and,
hence,

H(v, t) ∈ BV (�) for all v ∈ Bδ(u) ∩ Fβ, t ∈ [0, δ]

by Lemma 6.1.
Assume there is a sequence vk → u in L1(�) with F(vk) → F(u) and

δEvk (0, ξ) − λδGvk (0, ξ) ≥ −ω for all k ∈ N.

Obviously E(vk) → E(u) and, with the extensions v̄k, ū of vk, u on R
n by zero,

|Dv̄k |(�) → |Dū|(�). With the polar decompositions Dvk = σk |Dvk | Reshetnyak’s
theorem (cf. Ambrosio et al. [1, Theorem 2.39]) implies

∫

Rn

〈σk, Dξσk〉 − div ξ d|Dv̄k | →
∫

Rn

〈σ, Dξσ 〉 − div ξ d|Dū|.

Since ξ has compact support on � we obtain δEvk (0, ξ) → δEu(0, ξ). Moreover, for
some c1 > 0,

|δGvk (0, ξ) − δGu(0, ξ)| ≤
∫

�

∣∣|vk | − |u|∣∣ | div ξ | dx ≤ c1

∫

�

|vk − u| dx

= c1‖vk − u‖L1 → 0.

We derive δEu(0, ξ) − λδGu(0, ξ) ≥ −ω which contradicts (6.18). Therefore, with
eventually smaller constants δ > 0 and β > F(u),

δEv(0, ξ) − λδGv(0, ξ) < −ω for all v ∈ Bδ(u) ∩ Fβ. (6.19)

Let us now verify the continuity of H on (Bδ(u) ∩ Fβ) × [0, δ] as mapping from
L1(�) × [0, δ] to L1(�) where the next lemma is a first step.

Lemma 6.5 We have for v ∈ BV (�), t1, t2 ∈ [0, δ]

‖v(· + t2ξ(·)) − v(· + t1ξ(·))‖L1 ≤ c‖ξ‖L∞|Dv|(�)|t2 − t1|.

Proof Notice that tξ ∈ Diff� for all t ∈ [0, δ] and, thus, all expressions in the lemma
are well defined. Let (vk)k∈N ⊂ BV (�) ∩ C∞(�) be such that ‖vk − v‖L1 → 0 and
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|Dvk |(�) → |Dv|(�). Note that we have v
tξ
k ∈ BV (�) for all k ∈ N, t ∈ (−t0, t0)

by Lemma 6.1. We get

∫

�

|vk(x + t2ξ(x)) − vk(x + t1ξ(x))| dx

=
∫

�

∣∣∣∣∣∣
t2∫

t1

Dvk(x + τξ(x))ξ(x) dτ

∣∣∣∣∣∣ dx

≤ ‖ξ‖L∞

t2∫

t1

∫

�

|Dvk(x + τξ(x))| dx dτ

= ‖ξ‖L∞

t2∫

t1

∫

�

|Dvk(y)| 1

det(id +τ Dξ(x(y)))
dy dτ

≤ c‖ξ‖L∞|Dvk |(�)|t2 − t1|
→ c‖ξ‖L∞|Dv|(�)|t2 − t1|.

For the left-hand side we have

∫

�

∣∣|vk(x + t2ξ(x)) − vk(x + t1ξ(x))| − |v(x + t2ξ(x)) − v(x + t1ξ(x))|∣∣ dx

≤
∫

�

|vk(x + t2ξ(x)) − v(x + t2ξ(x))| + |vk(x + t1ξ(x)) − v(x + t1ξ(x))| dx

=
∫

�

|vk(y)−v(y)| 1

det(id +t2 Dξ(x(y)))
dy +

∫

�

|vk(y)−v(y)| 1

det(id +t1 Dξ(x(y)))
dy

≤ 2c‖vk − v‖L1 → 0.

Thus we get

‖v(· + t2ξ(·)) − v(· + t1ξ(·))‖L1 ≤ c‖ξ‖L∞|Dv|(�)|t2 − t1|.

��
Lemma 6.6 The mapping H : (Bδ(u) ∩ Fβ) × [0, δ] → BV (�) with

H(v, t) = v(· + tξ(·))

is continuous as mapping from L1(�) × [0, δ] to L1(�).

Proof Let v1, v2 ∈ Bδ(u) ∩ Fβ , t1, t2 ∈ [0, δ]. Then

|Dv2|(�)| ≤ E(v2) = F(v2) + λG(v2) ≤ β + λ(1 + δ)
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and
∫

�

|v1(x + t1ξ(x)) − v2(x + t2ξ(x))| dx

≤
∫

�

|v1(x + t1ξ(x)) − v2(x + t1ξ(x))| + |v2(x + t1ξ(x)) − v2(x + t2ξ(x))| dx

≤
∫

�

|v1(y) − v2(y)| 1

det(id +t1 Dξ(x(y)))
dx + c‖ξ‖L∞|Dv2|(�)|t2 − t1|

≤ c
(‖v1 − v2‖L1 + ‖ξ‖L∞|Dv2|(�)|t2 − t1|

)
≤ c

(‖v1 − v2‖L1 + ‖ξ‖L∞(β + λ(1 + δ))|t2 − t1|
) → 0

as (v1, t1) → (v2, t2) in L1(�) × (−t0, t0). ��
We continue the proof of Theorem 4.2 with estimates used in the definition of the

weak slope |d F |L1
(u). By Lemma 6.5 with c̃ := c‖ξ‖L∞(β + λ(1 + δ))

‖H(v, t) − v‖L1 ≤ c‖ξ‖L∞|Dv|(�)t ≤ c‖ξ‖L∞
(
F(v) + λG(v)

)
t ≤ c̃t

for all v ∈ (Bδ(u) ∩ Fβ), t ∈ [0, δ]. Hence, with H̃(v, t) := H(v, t/c̃) and δ̃ :=
min{δ, c̃δ}

‖H̃(v, t) − v‖L1 ≤ t for all v ∈ Bδ̃ (u) ∩ Fβ, t ∈ [0, δ̃]. (6.20)

Moreover, by Lemma 6.4 and (6.19),

F(H(v, t)) − F(v) = E(H(v, t)) − E(v) − λ
(
G(H(v, t)) − G(v)

)
= Ev(tξ) − Ev(0) − λ

(Gv(tξ) − Gv(0)
)

= (
δEv(0, ξ) − λδGv(0, ξ)

)
t + rE (t)Ev(0) − λrG(t)Gv(0)

< −ωt + rE (t)E(v) − λrG(t)G(v)

≤ −ωt + |rE (t)|(β + λ(1 + δ)) + λ|rG(t)|(1 + δ)

≤ −ωt + ω

2
t = −ω

2
t

for all v ∈ Bδ(u) ∩ Fβ , t ∈ [0, δ]. Consequently,

F(H̃(v, t)) − F(v) ≤ − ω

2c̃
t for all v ∈ Bδ̃ (u) ∩ Fβ, t ∈ [0, δ̃].

With (6.20) we conclude that |d F |L1
(u) > 0 by Lemma 3.2. Since u is L1-

eigenfunction, it is also critical point of F = E − λG in L1 by Proposition 4.3.
Thus |d F |L1

(u) = 0, a contradiction to the previous estimate. Hence (6.18) cannot
be true and the assertion of Theorem 4.2 follows. ��
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