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Abstract We determine conditions under which the quotient of a Kähler-Hadamard
manifold by a torsion-free, discrete group of isometries admits a big set of nontrivial
holomorphic functions. We also generalize a theorem of G. A. Margulis on center-
less of cocompact discrete groups of automorphisms of a Carathéodory hyperbolic
manifold by a different approach based on the Carathéodory pseudodistance.
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1 Introduction

The general theory of discrete groups which was initiated by Poincaré and Klein
in the late nineteenth century, provides an essential tool of investigating the func-
tion theory, geometry and topology of manifolds through their universal coverings
(cf. [4,18,32,33]). In this paper, we are interested in the following general problem

(Q1) Under which condition the quotient of a Stein manifold by a torsion-free,
discrete group of holomorphic automorphisms is a Stein manifold, or at least
admits nontrivial holomorphic functions?

It is natural to look at manifolds which have a nice geometry and a big group of
automorphisms, especially at Hermitian symmetric spaces. The case of the flat com-
plex Euclidean space C

n is well-understood, in particular, every quotient of C
n by a
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1026 B.-Y. Chen

toroidal group admits no nonconstant holomorphic functions (compare [1]). For the
case of the complex ball, Burns-Shnider [8] discovered firstly some Stein ball quo-
tients, Fabritiis-Iannuzzi [11] showed that every ball quotient by an infinite cyclic
group is Stein.

In this paper, we deal with general Hadamard manifolds, i.e., complete, simply-
connected manifolds of nonpositive sectional curvature. In a popular paper [10],
Eberlein-O’Neill extended some of the basic features of the discrete group theory
from the Poincaré unit disc to Hadamard manifolds. They introduced a suitable topol-
ogy, the cone topology, such that every Hadamard manifold X can be compactified by
adjoining an ideal sphere X (∞) to X such that X := X ∪ X (∞) is homeomorphic
to a closed ball, and every isometry g of X extends to a homeomorphism of X . Let
Isom X denote the group of all orientation-preserving isometrics of X . The elements
of Isom X are divided into three types: elliptic, hyperbolic and parabolic isometries.
The quotient of X by an infinite cyclic group of hyperbolic isometries is called an
axial manifold.

Theorem 1.1 Let X be a Kähler-Hadamard manifold and let G be a discrete Abelian
subgroup of hyperbolic isometries of X. Then X/G is a Stein manifold if one of the
following conditions is verified

(1) X/G is axial.
(2) X is a Hermitian symmetric space of noncompact type.

If a Hadamard manifold X has pinched negative curvature −b2 ≤ K ≤ −a2 < 0,
then every discrete group G ⊂ Isom X acts properly discontinuously on X ∪ �(G)
where�(G) := X (∞)−�(G) and�(G) ⊂ X (∞) is the set of accumulation points
of any orbit G(p), p ∈ X . Thus M = X/G can be added a boundary defined as
M(∞) := �(G)/G. In this special case, a more precise problem is the following

(Q2) Let M be a complete Kähler manifold of curvature −b2 ≤ K ≤ −a2 < 0
and q is a point in M(∞). Does there exist a holomorphic function on M = X/G
which approaches ∞ at q?

It is convenient to use the following terminology

Definition 1.2 Let M be a complex manifold with an ideal boundary ∂M . Let E ⊂
∂M . We say that M is holomorphically convex modulo E if for any discrete {xν}∞ν=1
which has no accumulation points on E , there is a holomorphic function which is
unbounded on this sequence. Furthermore, if holomorphic functions on M separate
points and give local coordinate systems, then M is said to be Stein modulo E .

A discrete group G of isometries of a Hadamard manifold X of pinched negative
curvature is called a parabolic group if all nontrivial elements of G are parabolic isom-
etries with a common fixed point q ∈ X (∞). If G is parabolic, then M = X/G is
called a parabolic manifold. It is known that every parabolic manifold M = X/G is
homeomorphic to a cone over M(∞) with the parabolic vertex q (cf. [10]).

Proposition 1.3 Every Kähler parabolic manifold is Stein modulo the parabolic ver-
tex.
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Discrete groups and holomorphic functions 1027

It is well-known that there are various non-Stein parabolic manifolds with dimen-
sion ≥2, e.g., the case when M(∞) is compact.

The geometry of a complete Riemannian manifold M of curvature −b2 ≤ K ≤
−a2 < 0 is dominated by the thin-thick decomposition of Margulis: roughly speaking,
there is a constant εa,b > 0 such that for any ε < εa,b the thin part of M , i.e., the
set of points whose injectivity radius is less than ε/2, is a disjoint union of parabolic
and axial ends. It induces a natural concept of geometrical finiteness, introduced orig-
inally by Marden [23], Beardon-Maskit [5], Thurston [33] for Kleinian groups, and
generalized by Bowditch [7] to the case of pinched negative curvature. Geometrical
finiteness of M means that M = M ∪ M(∞) has finitely many ends, each a cusp end.

Theorem 1.4 Every Kähler geometrically finite manifold is holomorphically convex
modulo the parabolic vertices corresponding to the cusp ends.

We also have a Hartogs type extension theorem

Theorem 1.5 Let M be a Kähler geometrically finite manifold of dimension ≥2 and
let V be a neighborhood of the union of compact connected components of M(∞) in
M. Then every holomorphic function on M ∩ V has a holomorphic extension to M.
In particular, M(∞) has at most one compact connected component.

The complex ball B
n
C

with the Bergman metric distinguishes itself in Kähler-Had-
amard manifolds of pinched negative curvature since it has plenty of complete, totally
geodesic submanifolds, for instance, the real ball B

n
R

may be isometrically embedded
as a totally real, totally geodesic submanifold of B

n
C

, i.e., the fixed-point-set of the
antiholomorphic involution z → z̄. The Bergman metric of B

n
C

induces a Riemannian
metric on B

n
R

which has constant negative sectional curvature −1/4. The stabilizer of
B

n
R

is the image of the embedding P O(n, 1) ↪→ PU (n, 1), and every torsion-free,
discrete subgroup G ⊂ P O(n, 1) acts on B

n
C

such that the quotient B
n
C
/G is a fiber

bundle over a totally real, totally geodesic submanifold B
n
R
/G (cf. [8]).

Proposition 1.6 For every torsion-free, discrete subgroup G of P O(n, 1),Bn
C
/G is

Stein modulo�(G). Furthermore, B
n
C
/G is a Stein manifold if its injectivity radius is

positive.

Burns-Shnider [8] has shown that B
n
C
/G is Stein when B

n
R
/G is compact. On the

other hand, B
n
R
/G always admits a Stein neighborhood basis in B

n
C
/G according to a

famous result of Grauert [13]. Thus it is natural to ask the following problem

(Q3) Is B
n
C
/G always Stein for every torsion-free, discrete subgroup G of

P O(n, 1)?

Parabolic groups for general Hadamard manifolds (e.g., high-rank Hermitian sym-
metric spaces of noncompact type) are much more complicated. Nevertheless, every
Hermitian symmetric spaces of noncompact type is biholomorphic to an affinely homo-
geneous Siegel domain of the second kind (cf. [34]). Notice that for the Siegel domain
model H

n
C

of B
n
C

, parabolic groups fixing ∞ are precisely those discrete groups of
unimodular affine automorphisms, i.e., whose complex Jacobian has unit modular.
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1028 B.-Y. Chen

A particular important subgroup P(D) of the group A1(D) of all unimodular affine
transformations is the group of parallel translations. There is a natural isomorphism
I from P(D) to the group of translations of R

n × C
m . A subgroup G of P(D) is said

to be totally real if I(G) is a subgroup of translations of R
n × R

m .

Theorem 1.7 Let D be a Siegel domain of the second kind and let G be a torsion-free,
discrete subgroup of A1(D). Then D/G is Stein modulo the ideal boundary point ∞.
Suppose furthermore that G is a totally real, torsion-free, discrete subgroup of P(D),
then D/G is a Stein manifold.

Corollary 1.8 If G is a discrete Abelian group of Heisenberg translations, then H
n
C
/G

is a Stein manifold.

The theory of isometries of a Hadamard manifold X relies heavily on the fact that
the displacement functions d(x, g(x)) is a convex function on X for every g ∈ Isom X
(compare [4]). For general manifolds, such a nice property will lose. Nevertheless, we
still have

Proposition 1.9 Let X be a complex manifold and let g0 be a holomorphic auto-
morphism of X. Suppose that there is a point x0 ∈ X and a bounded holomorphic
function f0 on X such that f0(g0(x0)) 
= f0(x0). Then c2

X (x, g0(x)) is a nonconstant
plurisubharmonic function on X. Here cX denotes the Carathéodory pseudodistance
of X.

As an application, we generalize a theorem of G. A. Margulis as follows

Theorem 1.10 Let X be a complex manifold and let G be a discrete group of auto-
morphisms of X. Suppose that there exist a central element g0 ∈ G, a point x0 ∈ X
and a bounded holomorphic function f0 on X such that f0(g0(x0)) 
= f0(x0). Then
M = X/G cannot be compact or admits a compactification M ′ such that M ′ is a
complex space and M ′ − M is a complex-analytic variety of codimension ≥2 in M ′.

Corollary 1.11 If a Carathéodory hyperbolic manifold (e.g., bounded domain in C
n)

covers a compact complex space or an open set in a compact complex space whose
complement is a complex-analytic variety of codimension ≥2, then the group of deck
transformations of the covering has trivial center.

The compact case of the above theorem and corollary is due to Margulis (cf. [22],
Theorem 3.10, Corollary 3.11). Classical examples satisfying the hypothesis in the cor-
ollary are noncompact irredicible arithmetic quotients of bounded symmetric domains
(cf. [3]).

The main tool involved is the L2−theory for ∂̄−operator on complete Kähler man-
ifolds. Applications of this method to Complex Differential Geometry were initiated
by Siu-Yau, Greene-Wu and Mok (cf. [15,24,30,31]).

The paper is organized as follows. In Sect. 2, we give some backgrounds of Hadam-
ard manifolds. In Sect. 3, we prove Theorem 1.1. In Sect. 4, we prove Propositions 1.3,
1.6. Theorems 1.4, 1.5 are proved in Sects. 5, 6 respectively. In Sect. 7, we investigate
quotients of a Siegel domain of the second kind. Finally, we prove Theorem 1.10 and
Proposition 1.9.
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Discrete groups and holomorphic functions 1029

2 Preliminaries

In this section, we collect some basic materials on the geometry of Hadamard mani-
folds, following the classical papers [6,7,10] and the monograph [4].

Let X be a Hadamard manifold and let d denote the distance function. For a point
p ∈ X , let Tp X denote the tangent space at p. The Cartan-Hadamard theorem states
that the exponential map expp : Tp X → X is a diffeomorphism. Let Sp denote the
unit sphere in Tp X . For every v ∈ Sp, there is a unique geodesic αv : R → X such that
α′
v(0) = v. For two distinct points x1, x2 in X , let αx1x2 denote the unique geodesic

segment between x1 and x2, i.e.,αx1x2(0) = x1 andαx1x2(t) = x2 where t = d(x1, x2).
If x1, x2 are distinct from p, the angle 
 p(x1, x2) subtended by x1, x2 at p is defined
as the angle between α′

px1
(0) and α′

px2
(0), i.e., the vectors in Sp determined by αpx1

and αpx2 respectively.
Two geodesics α, β are called asymptotic if d(α(t), β(t)) ≤ const. for all t ≥ 0.

The set X (∞) of points at infinity for X is defined as the set of all asymptotic classes
of X . A truncated cone T (v, ε, r)with vertex p, axis v, angle ε and radius r is defined
as

T (v, ε, r) := {
x ∈ X : 
 p(αv(∞), x) < ε

} − {x ∈ X : d(p, x) ≤ r}.

The collection of truncated cones at p form a basis for the cone topology. Under
this topology, X = X ∪ X (∞) is homeomorphic to the closed unit ball and X (∞)

is homeomorphic to the unit sphere. Furthermore, every isometry of X extends to a
homeomorphism of X → X .

For a unit speed geodesic αv, v ∈ Sp, the Busemann function associated to αν is
defined as

fαv (x) := lim
t→+∞ d(x, αv(t))− t.

It enjoys the following properties:

(B1) Lipschitz continuity: | fαv (x1)− fαv (x2)| ≤ d(x1, x2),∀ x1, x2 ∈ X .
(B2) fαv is a C2−smooth, convex function on X .
(B3) If αv, βv lie in the same asymptotic class, then fαv − fβv = const.

From (B3) we may define the Busemann function fq at a point q ∈ X (∞) as the
function fαv where αv is a geodesic lying in the asymptotic class of q. The horosphere
at q ∈ X (∞) through a point x1 ∈ X is the set

S(q, x1) := {
x ∈ X : fq(x) = fq(x1)

}
.

The horoball at q determined by x1 is defined as

B(q, x1) := {
x ∈ X : fq(x) < fq(x1)

}
.

We also mention the following property:
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1030 B.-Y. Chen

(B4) If x1, x2 are two distinct points in X , then

| fq(x1)− fq(x2)| = dist (x1, S(q, x2)) = dist (x2, S(q, x1))

= dist (S(q, x1), S(q, x2)).

If W is a closed totally convex subset of X and x ∈ X , then there is a unique point
πW (x) ∈ W of minimal distance to x , which is called the projection of x to W . The
distance d(x,W ) = d(x, πW (x)) to W is a C2 convex function on X . This function
will play a fundamental role in this paper. If g is an isometry of X such that g(W ) = W ,
then we have g(πW (x)) = πW (g(x)) for all x ∈ X (cf. [4], Lemma 6.4). Thus d(·,W )

is g−invariant. Indeed,

d(g(x),W ) = d(g(x), πW (g(x)))

= d(g(x), g(πW (x)))

= d(x, πW (x))

= d(x,W ).

If X has negative curvature, then d(·,W ) is even strictly convex on X − W .
Every isometry 1 
= g ∈ Isom X has to belong to one of the following three classes:

g is said to be elliptic if the displacement function dg(x) = d(x, g(x)) has minimum
zero, hyperbolic if dg has positive minimum and parabolic if dg has non minimum.
A subgroup G of Isom X is called properly discontinuous if each compact set in X
meets only finitely many images of itself under G. A subgroup G of Isom X is dis-
crete as a subgroup if and only if it is properly discontinuous. For a discrete group
G ⊂ Isom X , the limit set �(G) of G is defined as the set of accumulation points
of some (and hence any) orbit G(x0), x0 ∈ X . It is the smallest G−invariant closed
subset in X (∞). The convex hull ch (�(G)) of�(G) is defined as the convex hull of
the orbit G(x0), which is a G−invariant closed totally convex subset of X .

Now suppose that X has pinched negative curvature −b2 ≤ K ≤ −a2 < 0. Then
an isometry g is elliptic, hyperbolic, parabolic iff g has a fixed point in X, g has
exactly two fixed points on X (∞), g has exactly one fixed point on X (∞). If G is a
discrete group of isometries, then it acts properly discontinuously on X ∪�(G)where
�(G) = X (∞) − �(G). Thus one can define the set M(∞) of points at infinity of
M = X/G by M(∞) = �(G)/G. We write M = M ∪ M(∞) and call M(∞) the
boundary of M . An infinite discrete group G ⊂ Isom X is called a parabolic group
if �(G) consists of a single point q. A particular important property for a parabolic
group G is that the Busemann function fq at q is G−invariant. Thus M = X/G such
that is topologically a product F ×R whose horizonal fibers are the level hypersurfaces
of this function. If�(G) consists of two points, then we call G a axial group. A axial
group G is an infinite cyclic group generated by some hyperbolic isometry. Parabolic
and axial groups are called elementary groups.

Definition 2.1 Let � be a subgroup of a discrete subgroup G of Isom X . A subset
Y in X is called precisely invariant under � in G if g(Y ) = Y for all g ∈ � and
g(Y ) ∩ Y = ∅ for all g ∈ G\�.
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Let ε > 0. For a given discrete group G ⊂ Isom X and its orbifold M = X/G, the
ε−thin part thinε(M) of M is defined as

thinε(M) = {x ∈ X : Gε(x) = 〈g ∈ G : d(x, g(x)) < ε〉 is infinite }/G.

The ε−thick part thickε(M) of M is defined as the closure of M\thinε(M) in M .
According to the Margulis lemma, there is a positive constant εa,b (the Margulis con-
stant) such that for any 0 < ε < εa,b, thinε(M) is a disjoint union of its connected
components, and each component has the form Xε(�)/�where� is a maximal infinite
elementary subgroup of G. Here

Xε(�) = {x ∈ X : �ε = 〈g ∈ � : d(x, g(x)) < ε〉 is infinite }

is precisely invariant under � in G. If � is parabolic, then Xε(�)/� is a Margulis
cusp. If � is axial, then Xε(�)/� is a Margulis tube.

The Margulis thin-thick decomposition naturally induces the important concept of
geometrical finiteness. Let G be a discrete subgroup of Isom X and let M = X/G. Let
E be a closed, connected, non-compact set in M and let Y be a connected component
of the lift of E to X ∪ �(G) and let � = stabG(Y ) = {g ∈ G : g(Y ) = Y }. If � is
parabolic with fixed point q ∈ X (∞) and Y is precisely invariant under � in G, then
E is said to be a standard cusp region and q is called a cusp point. We may identify E
as a (closed) subset Y/� of (X −{q})/�. Every standard cusp region E determines an
unique topological end e of M which is called a cusp end of M . The group G is said to
be geometrically finite if M has finitely many ends, each a cusp end. We remark that a
parabolic end may not be a cusp end. An equivalent definition of geometrical finiteness
is that the intersection of the core ch (�(G))/G with thinkε(M) is compact. Classical
examples of geometrically finite groups may be constructed from elementary groups
via the Klein-Maskit Combination Theorems. A geometrically finite group is always
finitely generated and the converse is also true for Fuchsian groups. However, there
exist examples of finitely generated geometrically infinite groups when dimension ≥3.

3 Proof of Theorem 1.1

We need the following

Definition 3.1 Let X be Hadamard manifold and let G be a discrete subgroup of
Isom X . Let X ′ be a closed submanifold of X . We say that X ′ is G−periodic if it is
G−invariant and has a compact quotient X ′/G.

The proof of Theorem 1.1 is based on the following

Proposition 3.2 Let X be a Kähler-Hadamard manifold and let G be a torsion-free,
discrete subgroup of Isom X. If there is a G−periodic, complete, totally real and
totally geodesic submanifold X ′ of X, then X/G is a Stein manifold.

Proof Let dX ′ be the distance to X ′. Since X ′ is totally geodesic, d2
X ′ is a C2−convex

function on X . We claim that d2
X ′ is strictly psh on X . Fix an arbitrary point x ∈ X .
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1032 B.-Y. Chen

Let x ′ = πX ′(x) be the projection of x to X ′. Since at x ′, dX ′(y)2 differs from
d(y, Tx ′ X ′)2 by o(d(y, x ′)2), and since Tx ′ X ′ contains no complex lines, the com-
plex Hessian of d2

X ′ is positive definite in a small neighborhood of x ′. Thus we may
assume x ∈ X − X ′.

By Lemma 1.13 of [15], it suffices to show

D2d2
X ′(v, v)+ D2d2

X ′(Jv, Jv) > 0, for all 0 
= v ∈ Tx X (1)

where J is the complex structure tensor of X . Let γ : [0, 1] → X be a geodesic
satisfying γ (0) = x ′ and γ (1) = x and let β : (−ε, ε) → X be a geodesic such that
β ′(0) = v. Consider the following variation of γ : for every s ∈ (−ε, ε), γs : [0, 1] →
X is the unique geodesic segment connecting πα(β(s)) with β(s). Let E(γs) be the
energy of γs , i.e.,

E(γs) = 1

2

1∫

0

∣
∣
∣
∣
dγs

dt
(t)

∣
∣
∣
∣

2

dt

(
= 1

2
L(γs)

2
)

where L(γs) denotes the length of γs . Let W be the transversal vector field of {γs}. By
the second variation formula of the energy (cf. [17], p. 167), we have

D2d2
X ′(v, v) = 2

d2 E(γs)

ds2 (0) = 2

⎛

⎝
1∫

0

(|Dγ ′ W |2 − 〈R(W, γ ′)W, γ ′〉)dt

⎞

⎠ > 0 (2)

provided Dγ ′ W not identically zero, i.e., W is not parallel along γ . Since parallel
transports along γ preserve J , we conclude that the transversal vector field corre-
sponding to Jv can not be parallel along γ as X ′ is totally real. Thus claim follows
immediately from (1), (2).

Since X ′ is G−invariant and totally geodesic (hence totally convex), d2
X ′ is also

G−invariant. Since X/G is diffeomorphic to the normal bundle of the compact man-
ifold X ′/G in X/G (compare Lemma 3.1 of [6]), we conclude that X/G admits a
strictly psh exhaustion function d2

X ′ , hence is a Stein manifold by Grauert’s solution
of the Levi problem. ��

Proof of Theorem 1.1 (1) Let G = 〈g〉 where g is a hyperbolic isometry. It is well-
known that g translates a geodesic α, that is g(α(t)) = α(t + a) for all t ∈ R and
a > 0 is the minimum value of the displacement function dg (The geodesic α is
called an axis of g). Clearly α is totally real, thus Proposition 3.2 applies.

(2) It is known that every discrete Abelian group of a Hadamard manifold operates
as a lattice on some isometrically embedded flat Euclidean space (as a complete,
totally geodesic submanifold) (cf. [4], p. 86). In the special case of Hermitian sym-
metric spaces of noncompact type, such an embedded Euclidean space contains
no complex lines, thus Proposition 3.2 applies. ��
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4 Proofs of Propositions 1.3, 1.6

We make first of all the following useful observation

Proposition 4.1 Let (M, ω) be complete Kähler manifold and let ρ be a C2 strictly
psh function on M satisfying ∂∂̄ρ+Ricω ≥ 0 where Ricω denotes the Ricci curvature
of ω. Then the holomorphic functions on M separate points and give local coordinate
systems. Furthermore, for any discrete sequence of points {xν} with ρ(xν) → +∞ as
ν → ∞ there is a holomorphic function on M which is unbounded on {xν}.

The proof of this result is based on a standard application of the following L2

estimate for ∂̄−operator (cf. [2,9,16]):

Theorem 4.2 Let (M, ω) be a complete Kähler manifold, dim M = n. Let ϕ : M →
[−∞,∞) be a function which is of C2 outside a discrete subset {xν}∞ν=1 ⊂ M and,
near each point xν, ϕ(zν) = Cν log |zν |2 where Cν is a positive constant and zν =
(zν1, · · · , zνn) are local holomorphic coordinates centered at xν . Assume that ∂∂̄ϕ +
Ricω ≥ cω on M\{xν}∞ν=1 for some positive continuous function c on M. Then for any
C∞∂̄−closed (0, 1)−form η on M with

∫
M |η|2e−ϕdV < ∞, there is a C∞ function

u on M such that ∂̄u = η and

∫

M

|u|2e−ϕdV ≤
∫

M

|η|2
c

e−ϕdV .

Proof of Proposition 4.1 Let x1 
= x2 be arbitrary two points in M and let {xν} ⊂ M be
a discrete sequence of points such that ρ(xν) → +∞ as ν → ∞. By passing to a sub-
sequence if necessary, we may assume thatρ(xν+1) > ρ(xν)+3 for all ν ≥ 2. For each
ν ≥ 1, let zν = (zν1, · · · , zνn) be a local holomorphic coordinate centered at xν . Take
rν > 0 such that the holomorphic coordinate balls Bν = {zν : |zν | < rν}, ν = 1, 2, · · ·,
are mutually disjoint, and Bν ⊂ {ρ(xν)− 1 < ρ < ρ(xν)+ 1} for all ν ≥ 3.

Let χ : R → [0, 1] be a C∞ function such that χ = 1 on (−∞, 1/2) and χ = 0 on
(1,∞). Then one can choose a convex, rapidly increasing function λ ≥ 0 on R such
that

(1) ∂∂̄ϕ̂ > 0 on M where

ϕ̂ = λ ◦ ρ + (n + 1)χ(2|z1|2/r2
1 ) log 2|z1|2/r2

1

+ n
∞∑

ν=2

χ(2|zν |2/r2
ν ) log 2|zν |2/r2

ν .

(2)

∞∑

ν=1

ν2
∫

M

|∂̄χ(2|zν |2/r2
ν )|2

c
e−λ◦ρ−2ρdV < ∞
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1034 B.-Y. Chen

where c is the minimal eigenvalue of ∂∂̄ρ w.r.t. ω. Define ϕ = ϕ̂ + 2ρ. Clearly,
ϕ is C2 outside {xν}∞ν=1 and

∂∂̄ϕ + Ricω ≥ ∂∂̄ρ ≥ cω.

Let

η0 = ∂̄χ(2|z1|2/r2
1 ), η j = z1

j ∂̄χ(2|z1|2/r2
1 ), 1 ≤ j ≤ n

and

ηn+1 =
∞∑

ν=1

ν∂̄χ(2|zν |2/r2
ν ).

By the above theorem, there are C∞ functions u j , j = 0, 1, · · · , n + 1, satisfying
∂̄u j = η j on M and

∫

M

|u j |2e−ϕdV ≤
∫

M

|η j |2
c

e−ϕdV

≤ const.
∞∑

ν=1

ν2
∫

M

|∂̄χ(2|zν |2/r2
ν )|2

c
e−λ◦ρ−2ρdV < ∞.

Let

f0 = χ(2|z1|2/r2
1 )− u0, f j = z1

jχ(2|z1|2/r2
1 )− u j , 1 ≤ j ≤ n

and

fn+1 =
∞∑

ν=1

νχ(2|zν |2/r2
ν )− un+1.

It is easy to see that all f j are holomorphic functions on M satisfying f0(x1) 
= f0(x2),
the Jacobian of the holomorphic map x ∈ M → ( f1(x), · · · , fn(x)) ∈ C

n is non-
vanishing at x1, and fn+1(xν) = ν for every ν ≥ 1. ��
Proof of Proposition 1.3 Let fq denote the Busemann function at q ∈ �(G). Then it
is G−invariant and satisfies fq(x) → +∞ as x → X (∞)− {q} (compare (B4)), and
the Hessian Comparison Theorem implies ∂∂̄ fq ≥ aω (cf. [15,31]). Notice also that

Ricω ≥ −(2n−1)b2ω. Thus it suffices to apply Proposition 4.1 with ρ = (2n−1)b2

a fq .
��

Proof of Proposition 1.6 Let dBn
R

be the distance to the totally geodesic submanifold
B

n
R

of B
n
C

. We are going to verify

∂∂̄d2
Bn

R

≥ const. ωBerg (3)
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where ωBerg denotes the Bergman metric of B
n
C

. Let z ∈ B
n
C

and let πBn
R
(z) be the

projection of z on B
n
R

. Notice that dBn
R

is P O(n, 1)-invariant, thus we may assume
πBn

R
(z) = 0. Since B

n
R

is totally real in B
n
C

, the above inequality holds when dBn
R
(z) ≤

const. � 1. Thus it suffices to consider the case when dBn
R
(z) ≥ const..

Let γ : [0, l] → B
n
C

be a unit speed geodesic from 0 to z. Let Tz(B
n
R
) be the

parallel transport of T0(B
n
R
) to z along γ . Since the complex structure tensor J of

B
n
C

is preserved under parallel transports, we conclude that J (Tz(B
n
R
)) is orthogonal

to Tz(B
n
R
). Thus we may write every holomorphic tangent vector at z as 1

2 (v − i Jv)
where v ∈ Tz(B

n
R
). Without loss of generality, we may assume |v| = 1. Now the

parallel translation v(t) of v to γ (t) along γ induces a variation of γ , thus by the
second variation formula

D2d2
Bn

R

(v, v) = 2l

⎛

⎝
l∫

0

(|Dγ ′v(t)|2 − 〈R(v(t), γ ′)v(t), γ ′〉)dt

⎞

⎠ ≥ l2

2
≥ const.

because the sectional curvature of the Bergman metric is pinched between −1 and
−1/4. By Lemma 1.13 of [15], (3) is verified.

To verify the first assertion of the proposition, it suffices to apply Proposition 4.1
with the G−invariant function

ρ = d2
ch(�(G)) + Cd2

Bn
R

where C is a sufficiently large constant and dch(�(G)) is the distance to the closed
totally convex set ch(�(G)) ⊂ B

n
C

.
If B

n
C
/G has a positive injectivity radius, i.e., it has bounded geometry, then it

is not difficult to construct a C∞ exhaustion function ψ on B
n
C
/G such that ∂∂̄ψ ≥

−const. ωBerg (compare [26]). Thusψ+Cd2
Bn

R

,C � 1, gives a strictly psh exhaustion

function of B
n
C
/G. ��

5 Proof of Theorem 1.4

Let us review some basic facts on the L2−cohomology of ∂̄−operator. Let (M, ω)
be a complete Kähler manifold, dim M = n. Let (L , h) be a holomorphic Hermitian
line bundle on M . Let Cr,s(M, L) (resp. Cr,s

0 (M, L)) denote the space of L−val-
ued C∞ (resp. compactly supported C∞) (r, s)−forms on M . Let Lr,s

(2)(M, L) =
Lr,s
(2)(M, L;ω, h) be the completion of Cr,s

0 (M, L) with respect to the norm

‖u‖ =
⎛

⎝
∫

M

|u|2dV

⎞

⎠

1/2

where | · | = | · |ω,h is the point-wise norm with respect to the metrics ω, h, and
dV = dVω is the volume form with respect toω. The ∂̄−operator is extended naturally
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to a densely definite, closed operator on Lr,s
(2)(M, L). Let ∂̄∗ be the adjoint of ∂̄ and

let Dom ∂̄ , Dom ∂̄∗ denote the domains of ∂̄, ∂̄∗. According to a theorem of Andre-
otti-Vesentini [2], Cr,s

0 (M, L) is dense in Dom ∂̄ ∩ Dom ∂̄∗ with respect to the graph
norm

(
‖u‖2 + ‖∂̄u‖2 + ‖∂̄∗u‖2

)1/2
.

The (irreduced) L2−cohomology group of bi-degree (r, s) is defined as

Hr,s
(2)(M, L) = Lr,s

(2)(M, L) ∩ Ker ∂̄r,s

Lr,s
(2)(M, L) ∩ Im ∂̄r,s−1

.

Definition 5.1 We say that the basic estimate holds at bi-degree (r, s) if there exist a
compact set N ⊂ M such that

‖u‖2 ≤ const.

⎛

⎝‖∂̄u‖2 + ‖∂̄∗u‖2 +
∫

N

|u|2dV

⎞

⎠

for all u ∈ Lr,s
(2)(M, L) ∩ Dom ∂̄ ∩ Dom ∂̄∗.

The following result is well-known (see e.g., [28], Proposition 1.2):

Proposition 5.2 If the basic estimate holds at bi-degree (r, s), then Im ∂̄r,s−1, Im ∂̄∗
r,s+1

are closed and dim Hr,s
(2)(M, L) < ∞.

As an application of Proposition 5.2, we have

Theorem 5.3 Let (M, ω) be a complete Kähler manifold with Ricω ≥ −const.ω.
Suppose that there exists a C2 strictly psh function ρ outside a compact subset N ⊂ M
such that ∂∂̄ρ ≥ const.ω holds on M − N. Then for any discrete sequence {xν} of
points in M with ρ(xν) → +∞ as ν → ∞, there exists a holomorphic function on
M which is unbounded on {xν}.
Proof By a multiplier of some cut-off function, we may assume thatρ is a C2 real func-
tion on M . By passing to a subsequence if necessary, we may assume that {xν} ⊂ M−N
and ρ(xν+1) > ρ(xν)+3 for all ν. Let Bν = {zν : |zν | < rν} ⊂ M − N , ν = 1, 2, . . .,
be mutually disjoint coordinate patches centered at xν such that Bν ⊂ {ρ(xν) − 1 <
ρ < ρ(xν) + 1} for all ν. Let χ be the cut-off function as in the proof of Proposi-
tion 4.1. Choose a convex, rapidly increasing function λ̂ ≥ 0 on R and a sufficiently
large constant C such that

ω̂ := ∂∂̄

[

λ̂ ◦ ρ +
∞∑

ν=1

χ(2|zν |2/r2
ν )(− log(− log |zν |/2rν))

]

+ Cω ≥ ω
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holds on M . Thus ω̂ gives a complete Kähler metric on the punctured manifold M̂ =
M\{xν}∞ν=1. Since Ricω ≥ −const.ω and ∂∂̄ρ ≥ const.ω on M − N , one may choose
a convex, rapidly increasing function λ ≥ 0 on R such that

(i) ∂∂̄ϕ + Ricω ≥ ω̂ holds on M − N where

ϕ = λ ◦ ρ + n
∞∑

ν=1

χ(2|zν |2/r2
ν ) log 2|zν |2/r2

ν

+
∞∑

ν=1

χ(2|zν |2/r2
ν )(− log(− log |zν |/2rν)).

(ii)

∞∑

ν=1

3ν
2
∫

M̂

|∂̄χ(2|zν |2/r2
ν )|2ω̂e−λ◦ρdVω < ∞.

Let K ∗
M̂

denote the anti-canonical line bundle of M̂ . Define a Hermitian metric
h on K ∗

M̂
by

h = e−ϕdet (ω j k̄)

where ω = ∑
j,k ω j k̄dz j d z̄k , in local holomorphic coordinates.

The Bochner-Kodaira-Nakano inequality together with Andreotti-Vesentini’s app-
roximation theorem imply

‖∂̄u‖2
ω̂,h + ‖∂̄∗u‖2

ω̂,h ≥
∫

M̂

〈[√−1∂∂̄ϕ + Ricω,�ω̂]u, u〉ω̂,hdVω̂ (4)

for all u ∈ Ln,s
(2) (M̂, ϕ) ∩ Dom ∂̄ ∩ Dom ∂̄∗. Let L0,s

(2)(M̂, ϕ) be the space of square-

integrable (0, s)−forms on M̂ with respect to the norm

‖u‖ =
⎛

⎜
⎝

∫

M̂

|u|2
ω̂

e−ϕdVω

⎞

⎟
⎠

1/2

.

Clearly we have

L0,s
(2)(M̂, ϕ)

∼= Ln,s
(2) (M̂, K ∗

M̂
; ω̂, h).

Let R be a sufficiently large number so that M̂\B̂(p, R) ⊂ M − N ,where B̂(p, R) =
{x ∈ M̂ : d̂(p, x) < R}, p ∈ M̂ being fixed, and d̂ denotes the distance with respect
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to ω̂. If u ∈ L0,1
(2) (M̂, ϕ) ∩ Dom ∂̄ ∩ Dom ∂̄∗, let û = [1 − χ(d̂(p0, ·)/2R)]u. By (4)

and hypothesis i), we have

‖∂̄ û‖2 + ‖∂̄∗û‖2 ≥ ‖û‖2.

But

∂̄ û = [1 − χ(d̂(p, ·)/2R)]∂̄u − ∂̄χ(d̂(p, ·)/2R) ∧ u

∂̄∗û = [1 − χ(d̂(p, ·)/2R)]∂̄∗u + ∂̄χ(d̂(p, ·)/2R)� u

where ′′�′′ is the contraction operator, thus by the Schwarz inequality

‖u‖2 ≤ 2(‖∂̄u‖2 + ‖∂̄∗u‖2)+ const.R

∫

B̂(p,2R)

|u|2
ω̂

e−ϕdVω.

It follows from Proposition 5.2 that l := dim H0,1
(2) (M̂, ϕ) < ∞.

Now consider linear independent (0, 1)−forms

η j =
∞∑

ν=1

(2 + zν1/rν)
jν ∂̄χ(2|zν |2/r2

ν ), 0 ≤ j ≤ l.

By hypothesis i i), each η j ∈ L0,1(M̂, ϕ) ∩ Ker ∂̄ . Thus there are non-all zero com-
plex numbers c0, c1, . . . , cl such that the equation ∂̄u = ∑l

j=0 c jη j has a solution

u ∈ L0,0
(2) (M̂, ϕ). Without loss of generality, we may assume that cl = 1. Thus the

function

f =
l∑

j=0

∞∑

ν=1

c j (2 + zν1/rν)
jνχ(2|zν |2/r2

ν )− u

is holomorphic on M̂ . Since f is square-integrable on the holomorphic coordinate
patches {zν : |zν | < rν}, ν ≥ 1, it extends holomorphically across {xν} and we have

| f (xν)| =
∣
∣
∣
∣
∣
∣

l∑

j=0

c j 2
jν

∣
∣
∣
∣
∣
∣
≥ const.2lν, ν � 1.

��
Proof of Theorem 1.4 Since M = M ∪ M(∞) is the union of a compact set and a
finite number of mutually disjoint standard cusp regions Ek, 1 ≤ k ≤ m, there are
subsets Yk ⊂ X and parabolic subgroups �k ⊂ G such that Yk is precisely invariant
under �k in G and Ek = Yk/�k . Let fqk be a Busemann function at qk ∈ Fix(�k).
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Clearly, fqk descends to a C2 function on int(Ek), where int(Ek) = Ek ∩ M . Let E ′
k

be a closed subset of Ek satisfying

(1) Ek\E ′
k is relatively compact in M ,

(2) the closure of M\Ek in M does not intersect E ′
k .

Thus by a multiplier of certain cut-off function we get C2 real functions ψk on
M such that ψk = fqk on int(E ′

k), 1 ≤ k ≤ m. Let dch(�(G)) be the distance to the
convex hull ch(�(G)) of the limit set �(G). Then d2

ch(�(G)) is a G−invariant, C2

convex (hence psh) function on X and is strictly convex (hence strictly psh) outside
ch(�(G)). Furthermore, d2

ch(�(G))(x) → +∞ as x → �(G). To complete the proof,
it suffices to apply Theorem 5.3 with

ρ = λ ◦ d2
ch(�(G)) +

∑

k

ψk

where λ ≥ 0 is a convex, rapidly increasing function. ��

6 Proof of Theorem 1.5

The idea of the proof is based on Kohn-Rossi [20]. Without loss of generality, we
assume that V does not intersect noncompact components of M(∞). Let ψ =
d2

ch(�(G)) and let ρ be as in the proof of Theorem 1.4. Choose a sufficiently large
number R such that the set {ψ < R} ∩ V contains a compact strong pseudoconvex
boundary. Let MR = M − ({ψ ≥ R}∩ V ) and let φ = − log(R −ψ), ϕ = ρ+φ, and
ωR = ω + ∂∂̄φ. Then ωR is a complete Kähler metric on MR and ∂∂̄ϕ ≥ const.ωR

holds outside of a compact set of MR .
Let Ln,s

(2) (MR, ϕ) = Ln,s
(2) (MR,MR × C;ωR, e−ϕ) and let ‖ · ‖ϕ denote the norm.

Let Hn,s
(2) (MR, ϕ) denote the corresponding L2 cohomology group for (n, s) forms on

MR . A similar argument as § 5 shows that there is a compact set NR of MR such that

‖u‖2
ϕ ≤ 2(‖∂̄u‖2

ϕ + ‖∂̄∗u‖2
ϕ)+ const.R

∫

NR

|u|2ωR
e−ϕdVωR

for all u ∈ Ln,s
(2) (MR, ϕ) ∩ Dom ∂̄ ∩ Dom ∂̄∗ and s > 0, hence by Proposition 5.2 we

have dim Hn,s
(2) (MR, ϕ) < ∞ and the Hodge decomposition

Ln,s
(2) (MR, ϕ) = Hn,s

(2) (MR, ϕ)⊕ ∂̄ Ln,s−1
(2) (MR, ϕ)⊕ ∂̄∗Ln,s+1

(2) (MR, ϕ).

Let L0,s
(2)(MR,−ϕ) = L0,s

(2)(MR,MR × C;ωR, eϕ) and let L0,s
0 (MR,−ϕ) denote the

space of (0, s) forms η ∈ L0,s
(2)(MR,−ϕ) satisfying supp η ∩ ∂MR ∩ V = ∅. Let

H0,s
0 (MR,−ϕ)

=
{
η ∈ L0,s

0 (MR,−ϕ) : η is C∞ and ∂̄η = 0
}

{
η ∈ L0,s

0 (MR,−ϕ) : η = ∂̄ξ, ξ is C∞ and lies in L0,s−1
0 (MR,−ϕ)

} .
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Proposition 6.1 dim H0,1
0 (MR,−ϕ) ≤ dim Hn,n−1

(2) (MR, ϕ).

Proof Let u ∈ Ln,n−1
(2) (MR, ϕ), ∂̄u = 0, and η ∈ L0,1

0 (MR,−ϕ), ∂̄η = 0. Put

Lη(u) =
∫

MR

u ∧ η = (u, eϕ ∗ η̄)ϕ,

where ∗ is the Hodge star operator with respect to ωR . This depends only on the
cohomology classes of u and η for, if u = ∂̄w, then

Lη(u) =
∫

MR

∂̄(w ∧ η) =
∫

MR

d(w ∧ η) = 0

by the Gaffney L1−lemma. If η = ∂̄ξ , where ξ ∈ L0,0
0 (MR,−ϕ), then similar as

above,

Lη(u) =
∫

MR

d(u ∧ ξ) = 0.

Thus the correspondence η → Lη induces a homomorphism from H0,1
0 (MR,−ϕ)

to the dual space
(

Hn,n−1
(2) (MR, ϕ)

)∗
of Hn,n−1

(2) (MR, ϕ). It suffices to show that this

homomorphism is injective. Suppose that η ∈ L0,1
0 (MR,−ϕ), ∂̄η = 0, and Lη = 0.

Then eϕ∗η̄ ∈ Ln,n−1
(2) (MR, ϕ) and eϕ∗η̄⊥ Hn,n−1

(2) (MR, ϕ). Since ∂̄∗ = −eϕ∗∂(∗e−ϕ),
we have

∂̄∗ (
eϕ ∗ η̄) = −eϕ∗∂∗ ∗ η̄ = eϕ∗∂η̄ = 0.

Hence by the Hodge decomposition, there are ξ ∈ Ln,n
(2) (MR, ϕ) andς ∈ Ln,n−2

(2) (MR, ϕ)

such that eϕ ∗ η̄ = ∂̄∗ξ + ∂̄ς . But

‖∂̄ς‖2
ϕ = (∂̄∗∂̄ς, ς)ϕ = 0 ⇒ ∂̄ς = 0,

hence eϕ ∗ η̄ = ∂̄∗ξ . Furthermore, ξ is C∞ if η is, by the elliptic operator theory.
Then η = ∂̄ζ where ζ = e−ϕ∗ξ . Since η = 0 in a neighborhood V1 of ∂MR ∩ V, ζ
is holomorphic on V1 ∩ MR . Thanks to the lemma below, ζ = 0 on V1. Thus ζ ∈
L0,0

0 (MR,−ϕ) and the cohomology class of η in H0,1
0 (MR,−ϕ) is zero, completing

the proof. ��

Lemma 6.2 If f lies in L0,0
(2) (MR,−ϕ) and is holomorphic in V1 ∩ MR, then f = 0

on V1 ∩ MR.
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Proof Notice first the ωR is equivalent to the Bergman metric of MR near ∂MR ∩ V .
Thus for any sufficiently small ε, there is a number rε with rε → ∞ as ε → 0, such
that for every x ∈ ∂MR−ε, the geodesic ball B(x, rε) with respect to the Bergman
metric is contained in V1 ∩ MR . Notice that the Bergman metric on MR and its curva-
ture form approaches near ∂MR ∩ V to those of the Bergman metric on the unit ball
(cf. [12,19]). Thus the mean value inequality of Li-Schoen (cf. [21], Theorem 1.2)
applies to the psh function | f |2eϕ on B(x, rε) showing that

| f (x)|2eϕ(x) ≤ 1

vol (B(x, rε))

∫

B(x,rε)

| f |2eϕdV ≤ const. ‖ f ‖2−ϕe−crε

for some positive number c. Since ϕ(x) ≥ const.,

| f (x)|2 ≤ const. ‖ f ‖2−ϕe−crε .

Fix any point y0 ∈ ∂MR ∩ V . We may take a local holomorphic coordinate centered at
y0 such that ∂MR is strongly convex near y0. Then a sufficiently small part of MR near
y0 can be foliated by complex hyperplanes which intersects ∂MR ∩ V transversely.
By the maximal principle, f = 0 on every such hyperplance. Hence f = 0 on V1∩MR

by the Identity Theorem for holomorphic functions. ��
Proof of Theorem 1.5 We follow the standard argument in [20]. Let f be a noncon-
stant holomorphic function on V ∩ M . Choose a C∞ function κ : M → [0, 1] which
equals to 1 on M\V and supp κ ∩ (∂MR ∩ V ) = ∅. Let u0, . . . , ud0 be a basis for
Hn,n−1
(2) (MR, ϕ), and let

ci j =
∫

MR

f j ∂̄κ ∧ ui , 0 ≤ j ≤ d0, 1 ≤ i ≤ d0.

Let a j , 0 ≤ j ≤ d0 be non-all zero complex numbers such that
∑d0

j=0 a j ci, j = 0 for

all 1 ≤ i ≤ d0. Thus −
(∑d0

j=0 a j f j
)
∂̄κ is a ∂̄−closed C∞ form in L0,1

0 (MR,−ϕ)
which is orthogonal to Hn,n−1

(2) (MR, ϕ), and similar as in the proof of Proposition 6.1

there is a function u ∈ L0,0
0 (MR,−ϕ) satisfying ∂̄u = −

(∑d0
j=0 a j f j

)
∂̄κ . Thus we

get a holomorphic function given by � =
(∑d0

j=0 a j f j
)
(1 − κ) − u on MR which

coincides with
∑

j a j f j at ∂MR ∩ V .
On the other hand, by Theorem 1.4, there is a non-constant holomorphic function

h on M . Since dim H0,1
0 (MR,−ϕ) ≤ d0 by Proposition 6.1, there exist non-all zero

complex numbers c0, c1, · · · , cd0 , such that there is a function u1 ∈ L0,0
0 (MR,−ϕ)

satisfying ∂̄u1 = −
(∑d0

j=0 c j h j
)

f ∂̄κ . Then F =
(∑d0

j=0 c j h j
)
(1 − κ) f − u1 is

holomorphic on MR . Let H = ∑d0
j=0 c j h j . Since h is non-constant, it takes infi-

nitely many values, so H is not identically zero. The function F/H is holomorphic
on MR − {H = 0} and equals to f on (MR ∩ V )− {H = 0}.
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Since
∑d0

j=0 a j (F/H) j = � in (∂MR ∩ V )− {H = 0}, the identity also holds on
the whole MR − {H = 0}, thanks to the Identity Theorem for holomorphic functions.
Thus F/H is locally bounded on MR and thus holomorphic on MR by the Riemann
extension theorem. Thus F/H is the desired extension of f .

Suppose that M(∞) has m connected compact components N1, N2, . . . , Nm with
m ≥ 2. Let V1, V2, . . . , Vm be disjoint neighborhoods of N1, N2, . . . , Nm in M . Let
f be a function which equals 1 on V1 and equals 0 on Vj for j ≥ 2. Then f may be
extended holomorphically to M , contradicts with the Identity Theorem for holomor-
phic functions. ��

7 Quotients of Siegel domains

Let us recall the following

Definition 7.1 Let V ⊂ R
n be an open convex cone contains no straight lines. A map

F : C
m × C

m → C
n is said to be an V −hermitian form if it satisfies the following

conditions

(i) For each z′ ∈ C
m , the map Fz′ : C

m → C
n defined by Fz′(z) = F(z, z′) is

complex linear.
(ii) F(z, z′) = F(z′, z).

(iii) F(z, z) ∈ V : the closure of V , for all z ∈ C
m .

(iv) F(z, z) = 0 if and only if z = 0.

Definition 7.2 Let V ⊂ R
n be an open convex cone contains no straight lines and

F : C
m × C

m → C
n be an V −hermitian form. Then the set

D = D(V, F) = {(z, w) ∈ C
m × C

n : Imw − F(z, z) ∈ V }

is called a Siegel domain (of the second kind) associated to the pair (V, F).

Lemma 7.3 Let K D be the Bergman kernel of D. Then

(1) log K D approaches ∞ at the boundary of D.
(2) Ric ∂∂̄ log K D ≥ −const. ∂∂̄ log K D.

Proof Since every Siegel domain is a convex domain containing no complex lines,
thus according to Nikolov–Pflug–Zwonek [27] there is, for each p ∈ D, an embedded
polydisc P centered at p such that K D is uniformly comparable to K P inside a slightly
smaller polydisc. In particular, (1) holds. It is not difficult to see that the technique
in [27] is also valid for the Bergman metric and its curvature tensors, from which
(2) immediately follows (the case when D is affinely homogeneous is trivial since the
Bergman metric is Kähler–Einstein). ��

A Siegel domain D has an affine automorphism group A(D) which consists of the
following linear transformations (cf. [29], p. 25):

(z, w) �→ (Bz + η, Aw + ξ + 2i F(Bz, η)+ i F(η, η))
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where ξ ∈ R
n, η ∈ C

m, A is a linear transformation of V onto itself, and B is a
complex linear transformation satisfying AF(z, z′) = F(Bz, Bz′) for all z, z′ ∈ C

m .
Let A1(D) = {g ∈ A(D) : | jg| ≡ 1 } where jg denotes the complex Jacobian of
g, and let P(D) be the subgroup of A1(D) which consists of the following parallel
translations

gξ,η(z, w) = (z + η,w + ξ + 2i F(z, η)+ i F(η, η)), ξ ∈ R
n, η ∈ C

m .

There is a natural isomorphism I from P(D) to Isom (Rn × C
m) defined as

I : gξ,η �→ identity + (ξ, η).

Proof of Theorem 1.7 It is well-known that the Bergman metric is complete on D,
thus D/G is a complete Kähler manifold. Since

K D(p) = K D(g(p))| jg(p)|2, g ∈ Aut(D),

we conclude that log K D is A1(D)−invariant. Thus by virtue of Lemma 7.3, in order
to get the first assertion it suffices to apply Proposition 4.1 with ρ = C log K D where
C is a sufficiently large constant.

Now suppose that G is a totally real, torsion-free, discrete group. By the cele-
brated Bieberbach theorem, I(G) is an Abelian group generated by a finite number
of R−linear independent real vectors (ξk, ηk) ∈ R

n × R
m, 1 ≤ k ≤ k0. It turns out

that G is generated by a finite number of parallel translations {gξk ,ηk } Without loss of
generality, we assume that the cone V is contained in the positive octant R

n+. Thus we
have Imw j > 0 for any 1 ≤ j ≤ n and for all (z, w) ∈ D. Put

�(z, w) = Im (w − i F(z, z̄)).

Since

� ◦ gξk ,ηk (z, w) = Im (w + ξk +2i F(z, ηk)+ i F(ηk, ηk)− i F(z + ηk, z̄ + ηk))

= �(z, w)

for all k, we conclude that

ψ(z, w) =
n∑

j=1

Im (w j − i Fj (z, z̄))

where F = (F1, . . . , Fn), is a G−invariant psh function on D.
Let E1 be the complex affine subspace of C

n spanned by ξ1, . . . , ξk0 and Jξ1, . . . ,

Jξk0 , and let E2 be the real affine subspace of R
m spanned by η1, . . . , ηk0 . Let

deucl(·, E1) and deucl(·, E2) denote the Euclidean distance to E1 ⊂ C
n and to E2 ⊂ C

m
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1044 B.-Y. Chen

respectively. Since E2 is 〈η1, . . . , ηk0〉−period, we may choose a convex, rapidly
increasing function λ ≥ 0 such that the G−invariant function

K D((z, w))+ d2
eucl(w, E1)+ ψ(z, w)+ λ ◦ d2

eucl(z, E2)

gives a strictly psh exhaustion function of D/G. ��
Remark 7.4 The construction of ψ is somewhat inspired by [11].

The group A(D) also contains dilations

gt (z, w) = (
√

t z, tw), t > 0.

They correspond to hyperbolic isometries for the case of Kähler-Hadamard manifolds.

Proposition 7.5 For every dilation gt , t 
= 1, D/〈gt 〉 is a Stein manifold.

Proof Without loss of generality, we assume that t > 1. Let

ψ = log K D(z)+ (m + 2n) log |w1|.

Clearly,ψ ◦gt = ψ because K D = (K D ◦gt )tm+2n . Notice that there is a fundamental
domain of G on which we have 1 ≤ |w j | ≤ t1/2, 1 ≤ j ≤ n, thus ψ is a strictly psh
exhaustion function on the quotient D/〈gt 〉. ��
Proof of Corollary 1.8. Following Mok [25], p. 9, we consider two Heisenberg trans-
lations

g j (z, w) =
(

z + η j , w + ξ j + 2i z · η̄ j + i |η j |2
)
, j = 1, 2.

From

gk ◦ g j (z, w)

=
(

z+ηk + η j , w+(ξk + ξ j )+ 2i z · (η̄k + η̄ j )+ 2iη j · η̄k + i(|ηk |2 + |η j |2)
)

we learn that g1 commutes with g2 if and only if η1 · η̄2 = η2 · η̄1, in other words,
η2 = rη1 + ζ2 for some real number r and for some ζ2 orthogonal to η1. Now G is
Abelian, thus we may make a unitary transformation in z such that every g ∈ G is of
the form

g(z, w) =
(

z + η,w + ξ + 2i z · η + i |η|2
)
, ξ ∈ R, η ∈ R

n−1.

Thus the assertion follows immediately from Theorem 1.7. ��
Remark 7.6 It remains open whether H

n
C
/G is always non-Stein for every non-Abe-

lian discrete group of Heisenberg translations.
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8 Proofs of Proposition 1.9, Theorem 1.10

Let � be the unit disc in C and let ds2
Poin denote the Poincaré metric of constant

negative curvature −1. The Poincaré distance is defined as

dPoin(w1, w2) = 1

2
log

1 +
∣
∣
∣ w1−w2

1−w̄1w1

∣
∣
∣

1 −
∣
∣
∣ w1−w2

1−w̄2w1

∣
∣
∣
, w1, w2 ∈ �.

Let X be a complex manifold and let O(X,�) denote the set of holomorphic map-
pings from X to �. The Carathéodory pseudodistance between two points x, y ∈ X
is defined as

cX (x, y) = sup {dPoin( f (x), f (y)) : f ∈ O(X,�)} .
A manifold X is said to be Carathéodory hyperbolic if bounded functions on X sep-
arate points and give local coordinates.

Lemma 8.1 d2
Poin(w1, w2) is convex on �×� and strictly convex on �×�\{(w1,

w2) : w1 = w2}.
Proof The argument is standard (compare [17], p. 205). For the sake of complete-
ness, we still include the proof here. Since every geodesic α(t) in � × � is given
as (α1(t), α2(t)) where α1, α2 are geodesics in �, it suffices to show that λ(t) :=
d2

Poin(α1(t), α2(t)) is a convex function of t and strictly convex when α1(t) 
= α2(t).
For each t with α1(t) 
= α2(t), let γ (·, t) : [0, 1] → � denote the geodesic from α1(t)
to α2(t). Then

λ(t) = 2

1∫

0

∣
∣
∣
∣
∂γ

∂s

∣
∣
∣
∣

2

ds

and the second variation theorem (cf. [17], p. 167) implies

λ′′(t) = 2

⎛

⎝
1∫

0

∣
∣
∣
∣D ∂

∂s

∂γ

∂t

∣
∣
∣
∣

2

ds −
1∫

0

〈
R

(
∂γ

∂s
,
∂γ

∂t

)
∂γ

∂t
,
∂γ

∂s

〉
ds

⎞

⎠ > 0

since the Poincaré metric has negative curvature. ��
Proof of Proposition 1.9 Since pull-backs of psh functions by holomorphic mappings
are still psh, we conclude from the above lemma that d2

Poin( f (x), f (g0(x))) is psh on
X for any f ∈ O(X,�). Thus

c2
X (x, g0(x)) = sup

{
d2

Poin( f (x), f (g0(x))) : f ∈ O(X,�)
}

is also psh on X .
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Now we show that c2
X (x, g0(x)) is nonconstant. By assumption we have cX (x0, g0

(x0)) > 0. Thus there is a nonconstant f ∈ O(X,�) such that cX (x0, g0(x0)) =
dPoin( f (x0), f (g0(x0))). Fix a point x1 in a sufficiently small coordinate neighbor-
hood of x0 such that ∂ f (x1) 
= 0. We assume ∂ f/∂z1(x1) 
= 0 for the sake of
simplicity. If c2

X (x, g0(x)) is a constant function, then the psh function φ(x) :=
d2

Poin( f (x), f (g0(x))) has to be constant since it attains the maximum at a point
x0 ∈ X . On the other hand, by the above lemma, we may take a holomorphic coordi-
nate (w1, w2) at ( f (x1), f (g0(x1))) ∈ �×� such that

∂2

∂w j∂w̄k
d2

Poin = δ jk at ( f (x1), f (g0(x1)))

where δ jk is the Kronecker delta. Thus

∂2φ

∂z1∂ z̄1
=

∣
∣
∣
∣
∂ f

∂z1

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂ f ◦ g0

∂z1

∣
∣
∣
∣

2

> 0 at x1,

contradictory. ��
Proof of Theorem 1.10 By Proposition 1.9, ψ(x) := c2

X (x, g0(x)) is a nonconstant
psh function on X . Since c2

X (g(x), g0(g(x))) = c2
X (g(x), g(g0(x))) = c2

X (x, g0(x))
for any g ∈ G, ψ induces a nonconstant psh function on M = X/G. If M is compact,
then ψ has to be constant by the maximum principle of psh functions, contradictory.
If M admits a compactification M ′ such that M ′ is a complex space and M ′ − M is
a complex-analytic variety of codimension ≥2 in M ′, then ψ is also constant by an
extension theorem of Grauert-Remmert [14], contradictory. ��
Remark 8.2 It seems that the assumption of codim (M ′ − M) ≥ 2 is superfluous. Lin
[22] has proved that this is true under the additional hypothesis that G is amenable.

References

1. Abe, Y., Kopfermann, K.: Toroidal groups. Lecture Notes in Mathemtaics, vol. 1759. Springer, Berlin
(2001)

2. Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace-Beltrami equation in complex mani-
folds. Publ. Math. IHES 25, 81–130 (1965)

3. Baily, W., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann.
Math. 84, 442–528 (1966)

4. Ballman, W., Gromov, M., Schroeder, V.: Manifolds of nonpositive curvature: progress in mathematics,
vol. 61. Birkhäser, Boston (1985)

5. Beardon, A., Maskit, B.: Limit sets of Kleinian groups and finite sided fundamental polyhedra. Acta.
Math. 132, 1–12 (1974)

6. Bishop, R., O’Neill, B.: Manifolds of negative curvature. Trans. Am. Math. Soc. 145, 1–49 (1969)
7. Bowditch, B.H.: Geometrical finiteness with variable negative curvature. Duke Math. J. 77, 227–

274 (1995)
8. Burns, D., Shnider, S.: Spherical hypersurfaces in complex manifolds. Invent. Math. 33, 223–

246 (1976)
9. Demailly, J.-P.: Estimations L2 pour l’opérateur ∂̄ d’un fibré vectoriel holomorphe semi-positif

au-dessus d’une variété kählérienne complète. Ann. Sci. École Norm. Sup. 15, 457–511 (1982)

123



Discrete groups and holomorphic functions 1047

10. Eberlein, P., O’Neill, B.: Visibility manifolds. Pacific J. Math. 46, 45–109 (1973)
11. de Fabritiis, C., Iannuzzi, A.: Quotients of the unit ball of C

n for a free action of Z. J. D’Analyse
Math. 85, 213–224 (2001)

12. Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent.
Math. 26, 1–65 (1974)

13. Grauert, H.: On Levi’s problem and the imbedding of real analytic manifolds. Ann. Math. 68, 460–
472 (1958)

14. Grauert, H., Remmert, R.: Plurisubharmonische Funktionen in komplexen Räumen. Math. Z. 65, 175–
194 (1956)

15. Greene, R.E., Wu, H.: Function theory on manifolds possess a pole. Lecture Notes in Mathematics,
vol. 699. Springer, Berlin (1979)

16. Hörmander, L.: An introduction to complex analysis in several complex variables, 3rd edn. Else-
vier, New York (1990)

17. Jost, J.: Riemannian geometry and geometric alaysis. Universitext, Springer, Berlin (2002)
18. Kapovich, M.: Hyperbolic groups and discrete groups, Progress in Mathematics, vol. 183. Birkhäuser,

Boston (2000)
19. Klembeck, P.: Kähler metrics of negative curvature, the Bergman metric near the boundary and the

Kobayashi metric on smooth bounded strictly pseudoconvex sets. Indiana Univ. Math. J. 27, 275–
282 (1978)

20. Kohn, J.J., Rossi, H.: On the extension of holomorphic functions from the boundary of a complex
manifold. Ann. Math. 81, 451–472 (1965)

21. Li, P., Schoen, R.: L p and mean value properties of subharmonic functions on Riemannian mani-
folds. Acta Math. 153, 279–301 (1984)

22. Ya Lin, V.: Liouville coverings of complex spaces, and amenable groups. Math. USSR Sbornik 60,
197–216 (1988)

23. Marden, A.: The geometry of finite generated Kleinian groups. Ann. Math. 99, 383–462 (1974)
24. Mok, N., Siu, Y.T., Yau, S.T.: The Poincaré-Lelong equation on complete Kähler manifolds. Composito

Math. 44, 183–218 (1981)
25. Mok, N.: Projective-algebraicity of minimal compactifications of complex-hyperbolic space forms of

finite volume. Perspectives in analysis, geometry, and topology. Progr. Math. 296, 331–354 (2012)
26. Napier, T.: Convexity properties of coverings of smooth projective varieties. Math. Ann. 286, 433–

479 (1990)
27. Nikolov, N., Pflug, P., Zwonek, W.: Estimates for invariant metrics on C−convex domains. Trans. Am.

Math. Soc. 363, 6245–6256 (2011)
28. Ohsawa, T.: Isomorphism theorems for cohomology groups of weakly 1−complete manifolds. Publ.

RIMS Kyoto Univ. 18, 191–232 (1982)
29. Piatetskii-Shapiro, I.I.: Automorphic functions and the geometry of classical domains. Gordon and

Breach, New York (1969)
30. Siu, Y.T., Yau, S.T.: Complete Kähler manifolds with nonpositive curvature of faster than quadratic

decay. Ann. Math. 105, 225–264 (1977)
31. Siu, Y.T., Yau, S.T.: Compactification of negatively curved complete Kähler manifolds of finite volume.

Seminar on Differential Geomentry, Annals of Mathematical Students, Princeton University Press,
Princeton (1982)

32. Sullivan, D.: Related aspects of positivity in Riemannian geometry. J. Diff. Geom. 25, 327–351 (1987)
33. Thurston, W.: Geometry and topology of 3−manifolds. Princeton Lecture Notes (1978–1981)
34. Vinberg, E.B., Gindikin, S.G., Piatetskii-Shapiro, I.I.: Classification and canonical realization of com-

plex bounded homogeneous domains. Trans. Moscow Math. Soc. 12, 404–437 (1963)

123


	Discrete groups and holomorphic functions
	Abstract
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1.1
	4 Proofs of Propositions 1.3, 1.6
	5 Proof of Theorem 1.4
	6 Proof of Theorem 1.5
	7 Quotients of Siegel domains
	8 Proofs of Proposition 1.9, Theorem 1.10
	References


