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Abstract We determine conditions under which the quotient of a Kéhler-Hadamard
manifold by a torsion-free, discrete group of isometries admits a big set of nontrivial
holomorphic functions. We also generalize a theorem of G. A. Margulis on center-
less of cocompact discrete groups of automorphisms of a Carathéodory hyperbolic
manifold by a different approach based on the Carathéodory pseudodistance.
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1 Introduction

The general theory of discrete groups which was initiated by Poincaré and Klein
in the late nineteenth century, provides an essential tool of investigating the func-
tion theory, geometry and topology of manifolds through their universal coverings
(cf. [4,18,32,33]). In this paper, we are interested in the following general problem

(Q1) Under which condition the quotient of a Stein manifold by a torsion-free,
discrete group of holomorphic automorphisms is a Stein manifold, or at least
admits nontrivial holomorphic functions?

It is natural to look at manifolds which have a nice geometry and a big group of
automorphisms, especially at Hermitian symmetric spaces. The case of the flat com-
plex Euclidean space C”" is well-understood, in particular, every quotient of C" by a
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1026 B.-Y. Chen

toroidal group admits no nonconstant holomorphic functions (compare [1]). For the
case of the complex ball, Burns-Shnider [8] discovered firstly some Stein ball quo-
tients, Fabritiis-lannuzzi [11] showed that every ball quotient by an infinite cyclic
group is Stein.

In this paper, we deal with general Hadamard manifolds, i.e., complete, simply-
connected manifolds of nonpositive sectional curvature. In a popular paper [10],
Eberlein-O’Neill extended some of the basic features of the discrete group theory
from the Poincaré unit disc to Hadamard manifolds. They introduced a suitable topol-
ogy, the cone topology, such that every Hadamard manifold X can be compactified by
adjoining an ideal sphere X (o0) to X such that X := X U X (c0) is homeomorphic
to a closed ball, and every isometry g of X extends to a homeomorphism of X. Let
Isom X denote the group of all orientation-preserving isometrics of X. The elements
of Isom X are divided into three types: elliptic, hyperbolic and parabolic isometries.
The quotient of X by an infinite cyclic group of hyperbolic isometries is called an
axial manifold.

Theorem 1.1 Let X be a Kiihler-Hadamard manifold and let G be a discrete Abelian
subgroup of hyperbolic isometries of X. Then X /G is a Stein manifold if one of the
following conditions is verified

(1) X/G is axial.
(2) X is a Hermitian symmetric space of noncompact type.

If a Hadamard manifold X has pinched negative curvature —b*> < K < —a® < 0,
then every discrete group G C Isom X acts properly discontinuously on X U Q(G)
where Q2(G) := X (00) — A(G) and A(G) C X (00) is the set of accumulation points
of any orbit G(p), p € X. Thus M = X/G can be added a boundary defined as
M (00) := Q(G)/G. In this special case, a more precise problem is the following

(Q2) Let M be a complete Kiihler manifold of curvature —b* < K < —a®> < 0
and q is a point in M (00). Does there exist a holomorphic functionon M = X/ G
which approaches oo at q?

It is convenient to use the following terminology

Definition 1.2 Let M be a complex manifold with an ideal boundary 0M. Let E C
dM. We say that M is holomorphically convex modulo E if for any discrete {x,}7° |
which has no accumulation points on E, there is a holomorphic function which is
unbounded on this sequence. Furthermore, if holomorphic functions on M separate
points and give local coordinate systems, then M is said to be Stein modulo E.

A discrete group G of isometries of a Hadamard manifold X of pinched negative
curvature is called a parabolic group if all nontrivial elements of G are parabolic isom-
etries with a common fixed point ¢ € X (00). If G is parabolic, then M = X/G is
called a parabolic manifold. It is known that every parabolic manifold M = X/G is
homeomorphic to a cone over M (oco) with the parabolic vertex g (cf. [10]).

Proposition 1.3 Every Kdihler parabolic manifold is Stein modulo the parabolic ver-
tex.
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It is well-known that there are various non-Stein parabolic manifolds with dimen-
sion >2, e.g., the case when M (c0) is compact.

The geometry of a complete Riemannian manifold M of curvature —b> < K <
—a? < 0is dominated by the thin-thick decomposition of Margulis: roughly speaking,
there is a constant ¢, 5 > 0 such that for any ¢ < &, the thin part of M, i.e., the
set of points whose injectivity radius is less than €/2, is a disjoint union of parabolic
and axial ends. It induces a natural concept of geometrical finiteness, introduced orig-
inally by Marden [23], Beardon-Maskit [5], Thurston [33] for Kleinian groups, and
generalized by Bowditch [7] to the case of pinched negative curvature. Geometrical
finiteness of M means that M = M U M (co) has finitely many ends, each a cusp end.

Theorem 1.4 Every Kiihler geometrically finite manifold is holomorphically convex
modulo the parabolic vertices corresponding to the cusp ends.

We also have a Hartogs type extension theorem

Theorem 1.5 Let M be a Kiihler geometrically finite manifold of dimension >2 and
let V be a neighborhood of the union of compact connected components of M (00) in
M. Then every holomorphic function on M 0\'V has a holomorphic extension to M.
In particular, M (00) has at most one compact connected component.

The complex ball Bf- with the Bergman metric distinguishes itself in Kéhler-Had-
amard manifolds of pinched negative curvature since it has plenty of complete, totally
geodesic submanifolds, for instance, the real ball B may be isometrically embedded
as a totally real, totally geodesic submanifold of B, i.e., the fixed-point-set of the
antiholomorphic involution z — Zz. The Bergman metric of Bf, induces a Riemannian
metric on By, which has constant negative sectional curvature —1/4. The stabilizer of
IB%’}R is the image of the embedding PO (n, 1) — PU(n, 1), and every torsion-free,
discrete subgroup G C P O(n, 1) acts on B such that the quotient B~/ G is a fiber
bundle over a totally real, totally geodesic submanifold By, /G (cf. [8]).

Proposition 1.6 For every torsion-free, discrete subgroup G of PO(n, 1), B/ G is
Stein modulo A(G). Furthermore, B(./ G is a Stein manifold if its injectivity radius is
positive.

Burns-Shnider [8] has shown that B, /G is Stein when By, /G is compact. On the
other hand, By, / G always admits a Stein neighborhood basis in Bf./ G according to a
famous result of Grauert [13]. Thus it is natural to ask the following problem

(Q3) Is BG./G always Stein for every torsion-free, discrete subgroup G of
PO, 1)?

Parabolic groups for general Hadamard manifolds (e.g., high-rank Hermitian sym-
metric spaces of noncompact type) are much more complicated. Nevertheless, every
Hermitian symmetric spaces of noncompact type is biholomorphic to an affinely homo-
geneous Siegel domain of the second kind (cf. [34]). Notice that for the Siegel domain
model Hf. of Bf., parabolic groups fixing oo are precisely those discrete groups of
unimodular affine automorphisms, i.e., whose complex Jacobian has unit modular.
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A particular important subgroup B(D) of the group 2 (D) of all unimodular affine
transformations is the group of parallel translations. There is a natural isomorphism
7 from P(D) to the group of translations of R" x C™. A subgroup G of ‘B(D) is said
to be totally real if Z(G) is a subgroup of translations of R" x R™.

Theorem 1.7 Let D be a Siegel domain of the second kind and let G be a torsion-free,
discrete subgroup of A1 (D). Then D/ G is Stein modulo the ideal boundary point co.
Suppose furthermore that G is a totally real, torsion-free, discrete subgroup of P (D),
then D/ G is a Stein manifold.

Corollary 1.8 IfG is adiscrete Abelian group of Heisenberg translations, then H. / G
is a Stein manifold.

The theory of isometries of a Hadamard manifold X relies heavily on the fact that
the displacement functions d(x, g(x)) is a convex function on X for every g € Isom X
(compare [4]). For general manifolds, such a nice property will lose. Nevertheless, we
still have

Proposition 1.9 Let X be a complex manifold and let gy be a holomorphic auto-
morphism of X. Suppose that there is a point xo € X and a bounded holomorphic
function fo on X such that fy(go(x0)) % fo(xo). Then c%( (x, go(x)) is a nonconstant
plurisubharmonic function on X. Here cx denotes the Carathéodory pseudodistance
of X.

As an application, we generalize a theorem of G. A. Margulis as follows

Theorem 1.10 Let X be a complex manifold and let G be a discrete group of auto-
morphisms of X. Suppose that there exist a central element gy € G, a point xg € X
and a bounded holomorphic function fo on X such that fo(go(xo)) # fo(xo). Then
M = X/G cannot be compact or admits a compactification M’ such that M’ is a
complex space and M' — M is a complex-analytic variety of codimension >2 in M.

Corollary 1.11 If a Carathéodory hyperbolic manifold (e.g., bounded domain in C")
covers a compact complex space or an open set in a compact complex space whose
complement is a complex-analytic variety of codimension >2, then the group of deck
transformations of the covering has trivial center.

The compact case of the above theorem and corollary is due to Margulis (cf. [22],
Theorem 3.10, Corollary 3.11). Classical examples satisfying the hypothesis in the cor-
ollary are noncompact irredicible arithmetic quotients of bounded symmetric domains
(cf. [3]). B

The main tool involved is the L?—theory for d—operator on complete Kihler man-
ifolds. Applications of this method to Complex Differential Geometry were initiated
by Siu-Yau, Greene-Wu and Mok (cf. [15,24,30,31]).

The paper is organized as follows. In Sect. 2, we give some backgrounds of Hadam-
ard manifolds. In Sect. 3, we prove Theorem 1.1. In Sect. 4, we prove Propositions 1.3,
1.6. Theorems 1.4, 1.5 are proved in Sects. 5, 6 respectively. In Sect. 7, we investigate
quotients of a Siegel domain of the second kind. Finally, we prove Theorem 1.10 and
Proposition 1.9.
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2 Preliminaries

In this section, we collect some basic materials on the geometry of Hadamard mani-
folds, following the classical papers [6,7,10] and the monograph [4].

Let X be a Hadamard manifold and let d denote the distance function. For a point
p € X, let T, X denote the tangent space at p. The Cartan-Hadamard theorem states
that the exponential map exp,, : 7, X — X is a diffeomorphism. Let S, denote the
unit sphere in 7, X . Forevery v € S, there is a unique geodesic , : R — X such that
o, (0) = v. For two distinct points xj, x2 in X, let ay,x, denote the unique geodesic
segment between x| and x,1.e., oty x, (0) = x1 and oy, x, (1) = x2 wheret = d(x1, x2).
If x1, x2 are distinct from p, the angle Z,(x1, x2) subtended by x, x> at p is defined
as the angle between a;,xl (0) and oz;,xz (0), i.e., the vectors in S, determined by
and « .y, respectively.

Two geodesics «, B are called asymprotic if d(«(t), B(t)) < const. for all + > 0.
The set X (o0) of points at infinity for X is defined as the set of all asymptotic classes
of X. A truncated cone 7 (v, &, r) with vertex p, axis v, angle ¢ and radius r is defined
as

T(v,e,r):= {x € X : Lp(oy(00),x) < 8} —{xeX:dp,x)<r}.

The collection of truncated cones at p form a basis for the cone topology. Under
this topology, X = X U X (oc0) is homeomorphic to the closed unit ball and X (co)
is homeomorphic to the unit sphere. Furthermore, every isometry of X extends to a
homeomorphism of X — X.

For a unit speed geodesic ay, v € Sp, the Busemann function associated to o, is
defined as

Ja, (x) = Lim d(x, 00 (0)) — 1.

It enjoys the following properties:
(B1) Lipschitz continuity: | f, (x1) — fo, (x2)| < d(x1,x2),Vx1, X2 € X.

(B2) fo,1saC 2_smooth, convex function on X.
(B3) If oy, By lie in the same asymptotic class, then f,, — fg, = const.

From (B3) we may define the Busemann function f; at a point ¢ € X (o0) as the
function f,, where «,, is a geodesic lying in the asymptotic class of g. The horosphere
at g € X(oo) through a point x; € X is the set

S(g.x1):={x e X: fy(x) = frx)}.

The horoball at g determined by x; is defined as

B(gq,x1) = {x eX: fx) < fq(xl)}.

We also mention the following property:
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(Bg) If x1, xp are two distinct points in X, then

| £y (1) = fyx2)| = dist (x1. S(g. x2)) = dist (x2. S(g. x1))
= dist (S(q, x1), S(g, x2)).

If W is a closed totally convex subset of X and x € X, then there is a unique point
mw (x) € W of minimal distance to x, which is called the projection of x to W. The
distance d(x, W) = d(x, tw(x)) to Wis a C? convex function on X. This function
will play a fundamental role in this paper. If g is an isometry of X such that g(W) = W,
then we have g(mw (x)) = mw(g(x)) forall x € X (cf. [4], Lemma 6.4). Thus d(-, W)
is g—invariant. Indeed,

d(g(x), W) =d(g(x), mw(g(x)))
=d(g(x), g(rw(x)))
=d(x, 7w (x))
=d(x,W).

If X has negative curvature, then d(-, W) is even strictly convex on X — W.

Every isometry 1 # g € Isom X has to belong to one of the following three classes:
g is said to be elliptic if the displacement function d, (x) = d(x, g(x)) has minimum
zero, hyperbolic if d,; has positive minimum and parabolic if d, has non minimum.
A subgroup G of Isom X is called properly discontinuous if each compact set in X
meets only finitely many images of itself under G. A subgroup G of Isom X is dis-
crete as a subgroup if and only if it is properly discontinuous. For a discrete group
G C Isom X, the limit set A(G) of G is defined as the set of accumulation points
of some (and hence any) orbit G(xg), xo € X. It is the smallest G—invariant closed
subset in X (0c0). The convex hull ch (A(G)) of A(G) is defined as the convex hull of
the orbit G (xp), which is a G—invariant closed totally convex subset of X.

Now suppose that X has pinched negative curvature —b> < K < —a? < 0. Then
an isometry g is elliptic, hyperbolic, parabolic iff g has a fixed point in X, g has
exactly two fixed points on X (00), g has exactly one fixed point on X (c0). If G is a
discrete group of isometries, then it acts properly discontinuously on X U Q2 (G) where
Q(G) = X(00) — A(G). Thus one can define the set M (co) of points at infinity of
M = X/G by M(c0) = Q2(G)/G. We write M = M U M (c0) and call M (c0) the
boundary of M. An infinite discrete group G C Isom X is called a parabolic group
if A(G) consists of a single point g. A particular important property for a parabolic
group G is that the Busemann function f; at g is G—invariant. Thus M = X /G such
that is topologically a product F x R whose horizonal fibers are the level hypersurfaces
of this function. If A(G) consists of two points, then we call G a axial group. A axial
group G is an infinite cyclic group generated by some hyperbolic isometry. Parabolic
and axial groups are called elementary groups.

Definition 2.1 Let I" be a subgroup of a discrete subgroup G of Isom X. A subset
Y in X is called precisely invariant under I' in G if g(Y) = Y for all g € I' and
g¥)yNY =@forall g € G\T.
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Let ¢ > 0. For a given discrete group G C Isom X and its orbifold M = X/ G, the
&—thin part thing (M) of M is defined as

thing(M) ={x € X : Ge(x) = (g € G : d(x, g(x)) < ¢) isinfinite }/ G.

The e—thick part thick, (M) of M is defined as the closure of M\thing(M) in M.
According to the Margulis lemma, there is a positive constant &, 5, (the Margulis con-
stant) such that for any 0 < ¢ < &5, thing (M) is a disjoint union of its connected
components, and each component has the form X, (I")/ " where I is a maximal infinite
elementary subgroup of G. Here

X T)y={xeX :T,=(gel:dx,g(x)) < ¢)isinfinite }

is precisely invariant under I' in G. If T" is parabolic, then X (I")/I" is a Margulis
cusp. If T is axial, then X (I")/ T is a Margulis tube.

The Margulis thin-thick decomposition naturally induces the important concept of
geometrical finiteness. Let G be a discrete subgroup of Isom X andlet M = X/G. Let
E be a closed, connected, non-compact set in M and let ¥ be a connected component
of the lift of E to X UQ(G) andletT" = stabg(Y) ={g € G: g(Y) =Y} IfI'is
parabolic with fixed point ¢ € X (00) and Y is precisely invariant under I" in G, then
E is said to be a standard cusp region and q is called a cusp point. We may identify £
as a (closed) subset Y/ I" of (X —{g})/ I'. Every standard cusp region E determines an
unique topological end e of M which is called a cusp end of M. The group G is said to
be geometrically finite if M has finitely many ends, each a cusp end. We remark that a
parabolic end may not be a cusp end. An equivalent definition of geometrical finiteness
is that the intersection of the core ch (A(G))/ G with think. (M) is compact. Classical
examples of geometrically finite groups may be constructed from elementary groups
via the Klein-Maskit Combination Theorems. A geometrically finite group is always
finitely generated and the converse is also true for Fuchsian groups. However, there
exist examples of finitely generated geometrically infinite groups when dimension >3.

3 Proof of Theorem 1.1

We need the following

Definition 3.1 Let X be Hadamard manifold and let G be a discrete subgroup of
Isom X. Let X’ be a closed submanifold of X. We say that X’ is G—periodic if it is
G —invariant and has a compact quotient X'/ G.

The proof of Theorem 1.1 is based on the following

Proposition 3.2 Let X be a Kdihler-Hadamard manifold and let G be a torsion-free,
discrete subgroup of Isom X. If there is a G—periodic, complete, totally real and
totally geodesic submanifold X' of X, then X/G is a Stein manifold.

Proof Let dx be the distance to X'. Since X' is totally geodesic, d)z(, is a C%—convex
function on X. We claim that d)z(, is strictly psh on X. Fix an arbitrary point x € X.
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Let x' = my/(x) be the projection of x to X'. Since at x’, dx/(y)? differs from
d(y, T+ X")? by o(d(y, x')?), and since T» X' contains no complex lines, the com-
plex Hessian of d)z(, is positive definite in a small neighborhood of x’. Thus we may
assume x € X — X'.

By Lemma 1.13 of [15], it suffices to show

D?d%, (v, v) + D*d% (Jv, Jv) > 0, forall 0# ve T, X (1)
where J is the complex structure tensor of X. Let y : [0, 1] — X be a geodesic
satisfying (0) = x" and y (1) = x and let B : (—¢, ¢) — X be a geodesic such that

B’ (0) = v. Consider the following variation of y: forevery s € (—¢, €), v; : [0, 1] —
X is the unique geodesic segment connecting my (B(s)) with S(s). Let E(ys) be the

energy of yq, i.e.,
2 1
di (=L’
2 S

where L (yy) denotes the length of y;. Let W be the transversal vector field of {y;}. By
the second variation formula of the energy (cf. [17], p. 167), we have

1
1 dyg
Ewo=§/‘£a>
0

1
2
D?d%, (v, v) = 2%(0) =2 /(|Dy/W|2 —(R(W,y"YW,y')dt | >0 (2)
0

provided D, W not identically zero, i.e., W is not parallel along y. Since parallel
transports along y preserve J, we conclude that the transversal vector field corre-
sponding to Jv can not be parallel along y as X’ is totally real. Thus claim follows
immediately from (1), (2).

Since X’ is G—invariant and totally geodesic (hence totally convex), df(, is also
G —invariant. Since X/ G is diffeomorphic to the normal bundle of the compact man-
ifold X'/G in X/G (compare Lemma 3.1 of [6]), we conclude that X/G admits a
strictly psh exhaustion function d)z(,, hence is a Stein manifold by Grauert’s solution
of the Levi problem. O

Proof of Theorem 1.1 (1) Let G = (g) where g is a hyperbolic isometry. It is well-
known that g translates a geodesic «, thatis g(«(¢t)) = «(t +a) forall t € R and
a > 0 is the minimum value of the displacement function d, (The geodesic « is
called an axis of g). Clearly « is totally real, thus Proposition 3.2 applies.

(2) It is known that every discrete Abelian group of a Hadamard manifold operates
as a lattice on some isometrically embedded flat Euclidean space (as a complete,
totally geodesic submanifold) (cf. [4], p. 86). In the special case of Hermitian sym-
metric spaces of noncompact type, such an embedded Euclidean space contains
no complex lines, thus Proposition 3.2 applies. O
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4 Proofs of Propositions 1.3, 1.6

We make first of all the following useful observation

Proposition 4.1 Let (M, w) be complete Kihler manifold and let p be a C? strictly
psh function on M satisfying 39 p+Ric @ > 0 where Ric w denotes the Ricci curvature
of w. Then the holomorphic functions on M separate points and give local coordinate
systems. Furthermore, for any discrete sequence of points {x,} with p(x,) — 400 as
Vv — o0 there is a holomorphic function on M which is unbounded on {x,}.

The proof of this result is based on a standard application of the following L?
estimate for d —operator (cf. [2,9,16]):

Theorem 4.2 Let (M, w) be a complete Kdhler manifold, dim M =n. Let ¢ : M —
[—00, 00) be a function which is of C* outside a discrete subset {(x,}52, C M and,
near each point x,, ¢(z") = C, log |z |2 where C, is a positive constant and 7" =
(z‘l’, .-+, zp) are local holomorphic coordinates centered at x,. Assume that 85<p +
Ricw > cw on M\{x,};2 | for some positive continuous function c on M. Then for any
C>®d—closed (0, 1)—form n on M with fM In|2e=%dV < oo, there is a C™ function
u on M such that du = n and

2
/|u|2e*<ﬂdv g/ﬂﬂ’dv.
C
M M

Proof of Proposition 4.1 Letx| # x; be arbitrary two pointsin M andlet{x,} C M be
a discrete sequence of points such that p(x,) — 400 as v — 0o. By passing to a sub-
sequence if necessary, we may assume that p (x,41) > p(x,)+3 forallv > 2. For each
v>1,letz" = (z},---,z,) be alocal holomorphic coordinate centered at x,. Take
ry > 0such that the holomorphic coordinate balls B, = {z" : |z"| < r,},v=1,2, -,
are mutually disjoint, and B, C {p(x,) — 1 < p < p(xy,) + 1} forall v > 3.

Let x : R — [0, 1] be a C*° function such that x = 1 on (—oo, 1/2) and x = 0 on
(1, 00). Then one can choose a convex, rapidly increasing function A > 0 on R such
that

(1) 93¢ > 0 on M where

~

G=hrop+m+D)xQlz'"/r})log2lz > /r}

oo
+n Y xQl"P/rd)log2lz" | /ry.

v=2

@

00 2712
Zv2/| (2|Z P/ j-se0-204y < oo

v=1
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where c is the minimal eigenvalue of 39 p W.r.t. . Define ¢ = ¢ + 2p. Clearly,
@ is C? outside {xy}52, and

85(p+Rica) > 85,0 > cw.

Let
no=dxQI'"P/rd.  nj=zhax @l /). 1<j<n
and
o
N1 = D vIxQI"1>/rD).
v=1
I_3y the above theorem, there are C*° functions u j»J =0,1,---,n+ 1, satisfying

duj =njon M and

12
/|u,~|2e*¢’dv S/Mﬂ’dv
C
M M

o _

Iy (2|zY 2 r2 2

< const.Zv2/ M(z—)‘”_z"dv < 00.
v=I1 M ¢

Let
fo=xQ@Z'"P/rd) —uwo,  fi=zx @ P/ —uy, 1<j<n

and

o0
far1 =D vx QI P/r]) = untr.

v=1

Itis easy to see thatall f; are holomorphic functions on M satisfying fo(x1) # fo(x2),
the Jacobian of the holomorphic map x € M — (fi(x), -+, fu(x)) € C" is non-
vanishing at x1, and f;,41(x,) = v forevery v > 1. O

Proof of Proposition 1.3 Let f,; denote the Busemann function at ¢ € A(G). Then it
is G—invariant and satisfies f,(x) — +oo0 asx — X (00) — {g} (compare (B4)), and
the Hessian Comparison Theorem implies 99 f; > aw (cf. [15,31]). Notice also that

Ricw > —(2n — 1)b?w. Thus it suffices to apply Proposition 4.1 with p = (2"_(1—1)}’2 fq-
(]

Proof of Proposition 1.6 Let d; n be the distance to the totally geodesic submanifold
B, of Bf.. We are going to verify

Bédﬁﬁ,g > const. WBerg 3)
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where wgery denotes the Bergman metric of IB{(‘:. Letz € IBB?C and let TR (z) be the
projection of z on Bp,. Notice that dgs is P O(n, 1)-invariant, thus we may assume
TRy (z) = 0. Since By, is totally real in B, the above inequality holds when d]% (2) <
const. < 1. Thus it suffices to consider the case when dpr (z) > const..

Let y : [0,1] — B be a unit speed geodesic from 0 to z. Let T;(By) be the
parallel transport of To(Bp) to z along y. Since the complex structure tensor J of
B{. is preserved under parallel transports, we conclude that J (T, (Bp)) is orthogonal
to T;(BR). Thus we may write every holomorphic tangent vector at z as %(v —iJv)
where v € T;(Bp). Without loss of generality, we may assume |v| = 1. Now the
parallel translation v(¢) of v to y(¢) along y induces a variation of y, thus by the
second variation formula

I
2
Dzdﬁ%(v, v) =21 /(lDy/v(t)lz —(Rw(@), Yy v@), y')dt | > % > const.
0

because the sectional curvature of the Bergman metric is pinched between —1 and
—1/4. By Lemma 1.13 of [15], (3) is verified.

To verify the first assertion of the proposition, it suffices to apply Proposition 4.1
with the G —invariant function

2 2
P =deacy t Cdpy

where C is a sufficiently large constant and dch(a(G)) is the distance to the closed
totally convex set ch(A(G)) C Bg..

If B(./G has a positive injectivity radius, i.e., it has bounded geometry, then it
is not difficult to construct a C* exhaustion function ¥ on Bf./G such that 99v >
—const. wperg (compare [26]). Thus ¥ +C dzﬁ, C > 1, gives astrictly psh exhaustion

function of B~/ G. O

5 Proof of Theorem 1.4

Let us review some basic facts on the L>—cohomology of d—operator. Let (M, w)
be a complete Kéhler manifold, dim M = n. Let (L, /) be a holomorphic Hermitian
line bundle on M. Let C™*(M, L) (resp. C,* (M, L)) denote the space of L—val-
ued C* (resp. compactly supported C*°) (r, s)—forms on M. Let Ly (M, L) =
LE’ZS)(M , L; , h) be the completion of C;* (M, L) with respect to the norm

12
2
llull = /IMI av
M
where | - | = | - |, 5 is the point-wise norm with respect to the metrics w, h, and

dV = dV,, is the volume form with respect to w. The d—operator is extended naturally
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to a densely definite, closed operator on L?ZS)(M , L). Let 9* be the adjoint of 3 and

let Dom 8 , Dom 9* denote the domains of 9, 5_ *, Accord_ing to a theorem of Andre-
otti-Vesentini [2], C;* (M, L) is dense in Dom d N Dom 8* with respect to the graph
norm

_ _ 172
(Il + 130l + 13w )2)

The (irreduced) L?—cohomology group of bi-degree (r, s) is defined as

Ly (M, L) N Ker 3.
Ly (M, L) N Im 51

H{g (M, L) =

Definition 5.1 We say that the basic estimate holds at bi-degree (r, s) if there exist a
compact set N C M such that

lu||> < const. ||éu||2+||é*u||2+/|u|2dv
N

forallu e LEQY)(M, L) N Dom d N Dom 9*.

The following result is well-known (see e.g., [28], Proposition 1.2):

*

Proposition 5.2 fthe basic estimate holds at bi-degree (r, s), thenIm 9, 1, Im ér, s+

are closed and dim H(rz’i (M, L) < oo.

As an application of Proposition 5.2, we have

Theorem 5.3 Let (M, w) be a complete Kdihler manifold with Ricw > —const.w.
Suppose that there exists a C? strictly psh function p outside a compact subset N C M
such that 3dp > const.w holds on M — N. Then for any discrete sequence {x,} of
points in M with p(x,) — 400 as v — o0, there exists a holomorphic function on
M which is unbounded on {x,}.

Proof By amultiplier of some cut-off function, we may assume that p is a C real func-
tionon M. By passing to a subsequence if necessary, we may assume that {x,,} C M—N
and p(xy41) > p(xy)+3forallv.Let B, = {z" : |z"| <rn}CM—-N,v=1,2,...,
be mutually disjoint coordinate patches centered at x, such that B, C {p(x,) — 1 <
p < p(xy) + 1} for all v. Let x be the cut-off function as in the proof of Proposi-
tion 4.1. Choose a convex, rapidly increasing function A>0onRanda sufficiently
large constant C such that

o0
@ =09 [2 op+ D xQI"P/r)(~log(~log |z“|/2rv>>} +Cozo

v=1
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holds on M. Thus & gives a complete Kihler metric on the punctured manifold M=
M\ {x,}S2 ;. Since Ricw > —const.w and 99,0 > const.w on M — N, one may choose
a convex, rapidly increasing function A > 0 on R such that

(i) 99¢ + Ricw > & holds on M — N where

o0
¢ =hrop+ny xQl'*/ri)log2lz"*/r]

v=1

+ " % @I2"/rd)(—log(—log [2"1/2r,)).

v=1

(i)

23” /|3X(2lz 2/r)5e P dV,, < oo.

v=I

Let K ;‘/[ denote the anti-canonical line bundle of M. Define a Hermitian metric
honK ;‘;[ by

h = e ¥det (;p)

where w = 3, | @,;dzdZ, in local holomorphic coordinates.

The Bochner-Kodaira-Nakano inequality together with Andreotti-Vesentini’s app-
roximation theorem imply

19l ), + 119%ull? , _/<w—1aéw+mw, Aplu, u)y ,d Vi, )
M

for all u € L(z) (M ¢) N Dom 8 N Dom 8*. Let L(z) (M @) be the space of square-

integrable (0, s)—forms on M with respect to the norm

llull = /|u|§ue*¢’de

1/2

Clearly we have
0,5 - 1% LA
L(;)(M, ) = (2) S(M, K* o, h).

Let R be a sufficiently large number so that M\B(p, R) C M — N, where B(p, R) =
{x € M:d (p,x) <R}, pce M being fixed, and d denotes the distance with respect
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tod. Ifu e LY 2 (M @) NDom d N Dom 8*, let it = [1 — )((d(po, )/2R)]u. By (4)
and hypothes1s 1) we have

302 Sk A2 a2
9a)” + 0% al” = llal~.

But
dit = [1 = x(d(p.)/2R)13u — dx(d(p, )/2R) A u
0% = [1 = x(d(p, )/2R)8"u +dx(d(p.)/2R)u
where 7" is the contraction operator, thus by the Schwarz inequality

> < 2(13ul® + 119*ull*) + const. / ulZe dV.

B(p.2R)

It follows from Proposition 5.2 that [ := dim H(Oz’)1 (M, @) < 0.
Now consider linear independent (0, 1)—forms

o0
=D Q@+ /r)/ ox QP 0<j <L

v=I

By hypothesis ii), each n; € LOY (M, @) N Ker 3. Thus there are non-all zero com-
plex numbers ¢, 1, ..., ¢; such that the equation du = le=0 c¢jn; has a solution

u € L?i())(ll;l , ). Without loss of generality, we may assume that ¢; = 1. Thus the
function

i+ /r) "V x Q1D —u

x5

||M8

is holomorphic on M. Since f is square-integrable on the holomorphic coordinate
patches {z" : |z"| < ry}, v > 1, it extends holomorphically across {x,} and we have

l
1F el =D e27| = const.2, v> 1.
j=0

O

Proof of Theorem 1.4 Since M = M U M (c0) is the union of a compact set and a
finite number of mutually disjoint standard cusp regions E;, 1 < k < m, there are
subsets ¥, C X and parabolic subgroups I'y C G such that Yy is precisely invariant
under I'y in G and E; = Y;/T'k. Let f,, be a Busemann function at g; € Fix(I'y).
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Clearly, f,, descendstoa C 2 function on int(Ey), where int(Ey) = E; N M. Let E ,’{
be a closed subset of Ej satisfying

(1) Ex\E is relatively compact in M,
(2) the closure of M\ Ey in M does not intersect E -

Thus by a multiplier of certain cut-off function we get C? real functions ¥ on
M such that Y = f,, onint(E}), 1 < k < m. Let den(a(G)) be the distance to the
convex hull ch(A(G)) of the limit set A(G). Then dczh(A(G)) is a G—invariant, C?
convex (hence psh) function on X and is strictly convex (hence strictly psh) outside
ch(A(G)). Furthermore, dczh(A(G))(x) — 400 as x — Q(G). To complete the proof,
it suffices to apply Theorem 5.3 with

2
p=hodinay + Dk
k

where A > 0 is a convex, rapidly increasing function. O

6 Proof of Theorem 1.5

The idea of the proof is based on Kohn-Rossi [20]. Without loss of generality, we
assume that V does not intersect noncompact components of M(oco). Let ¢ =
dczh( AG)) and let p be as in the proof of Theorem 1.4. Choose a sufficiently large
number R such that the set {{/ < R} N V contains a compact strong pseudoconvex
boundary. Let Mp = M — ({y > R}NV)andlet¢p = —log(R—v), ¢ = p+ ¢, and
wWR = w + 85(1). Then wpg is a complete Kihler metric on Mg and 85(/) > const.wp
holds outside of a compact set of M.

Let L'(lz";(MR, Q) = LE’Z";(MR, Mg x C; wg, e %) and let || - ||, denote the norm.
Let H ("z’)s (Mg, ¢) denote the corresponding L? cohomology group for (, s) forms on
Mpg. A similar argument as § 5 shows that there is a compact set Ng of My such that

lully < 2(18ul} + 19%u]l;) + const.g / ul e dViy
Ngr
forall u € L3 (Mg, ¢) N Dom 3 N Dom 8* and s > 0, hence by Proposition 5.2 we

have dim H(;’ (Mg, ¢) < 00 and the Hodge decomposition

LI (Mr, @) = HS (Mg, 9) © D L3~ Mz, ) & 5°LI5 ' (M, ),

Let L(3) (Mg, —¢) = L{3}(Mg. Mg x C: wg, e?) and let L™ (Mg, —@) denote the
space of (0, s) forms n € L(()i;‘(MR, —¢) satisfying suppn N dMg NV = . Let
Hy" (Mg, ~¢)
{’7 € Ly (Mg, —¢) : 1is C* and 3y = 0}

{77 c Lg’S(MR, —@) i = 9&, &is C and lies in Lg’s_l(MR, —<P)}.
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Proposition 6.1 dim H0 Y(Mg, —¢) < dim H("z)" Y(Mg, ¢).

Proof Letu € L3} (Mg. @), du = 0,and n € LY (Mg, —@), 3 = 0. Put

Ly(u) = / unn=(u,e’ xn)y,

Mg

where * is the Hodge star operator with respect to wg. This depends only on the
cohomology classes of u and 7 for, if u = dw, then

Ln(u)z/é(w/\n):/d(w/\n)zo

Mg Mg

by the Gaffney L;—lemma. If n = 55, where & € Lg’O(MR, —g), then similar as
above,

Ly(u) = /d(u ANE)=0.

Mg

Thus the correspondence n — L, induces a homomorphism from H(? ’l(M R: —¢)

to the dual space ( ("2)" VMg, (p)) of H(”z)" Y(Mg, ¢). It suffices to show that this

homomorphism is injective. Suppose that n € L0 I(MR, —¢),dn =0, and L, =0.
Thene¥xn € L?zgl (Mg, ¢) and e?s7j L HE' Y(Mg, ¢). Since 3* = —e?+d(xe~ %),
we have

3% (¢ % 1)) = —e¥*d% * i = e¥*37] = 0.

Hence by the Hodge_decom_position, thereare & € L;’z"; (Mg, ¢p)and g € L’Zz’;’fz(M Ry ®)
such that e? x 1 = 9*& + d¢. But

13slly = (8*95.6)y =0 = 35 =0,

hence e¥ * 1 = d*E. Furthermore, § is C™ if 7 is, by the elliptic operator theory.
Then n = 9¢ where ¢ = e~ ¥x*£. Since n = 0 in a neighborhood V| of IMr NV, ¢
is holomorphic on Vi N M. Thanks to the lemma below, ¢ = 0 on V;. Thus ¢ €
L8’O(MR, —¢) and the cohomology class of 1 in H(?’l (Mg, —¢) is zero, completing
the proof. O

Lemma 6.2 If f lies in L(()i())(MR, —) and is holomorphic in Vi N Mg, then f =0
on Vi N Mg.
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Proof Notice first the wp is equivalent to the Bergman metric of Mg near IMgr NV
Thus for any sufficiently small ¢, there is a number r, with r, — oo as ¢ — 0, such
that for every x € dMp_,, the geodesic ball B(x, r,) with respect to the Bergman
metric is contained in V| N M. Notice that the Bergman metric on M and its curva-
ture form approaches near Mg N V to those of the Bergman metric on the unit ball
(cf. [12,19]). Thus the mean value inequality of Li-Schoen (cf. [21], Theorem 1.2)
applies to the psh function | f|?¢® on B(x, r¢) showing that

|f(x)[2e? ™) < |fPe?dV < const. || f|% e

vol (B(x re)) /

B(x,rg)

for some positive number c. Since ¢(x) > const.,

| f(x)]* < const. ||f||2,¢e_”".

Fix any point yp € d Mg N V. We may take a local holomorphic coordinate centered at
yo such that d M, is strongly convex near yg. Then a sufficiently small part of Mg near
yo can be foliated by complex hyperplanes which intersects dMg N V transversely.
By the maximal principle, f = 0 on every such hyperplance. Hence f = Oon ViNMp
by the Identity Theorem for holomorphic functions. O

Proof of Theorem 1.5 We follow the standard argument in [20]. Let f be a noncon-
stant holomorphic function on V N M. Choose a C* function « : M — [0, 1] which
equals to 1 on M\V and suppx N (Mg N V) = . Let uy, ..., uq, be a basis for

("2)” "(Mg, ¢), and let
Cij=/fjélc/\ui, 0<j<dy 1<i<d.

Mpg

Leta;, 0 < j < do be non-all zero complex numbers such that Z;’O 04jCi,j = 0 for
all 1 <i < dy. Thus — ( ;l Oajf/) 9k is a d—closed C™ form in L0 (MR, —p)
which is orthogonal to H("z)" 1(M R, ¢), and similar as in the proof of Proposition 6.1
there is a function u € L0 (MR, —¢) satisfying du = — ( ‘; 0aj ff) dk. Thus we
get a holomorphic function given by ® = ( ‘;":0 ajf J ) (1 — x) — u on Mg which

coincides with > ; ajflatdMgNV.
On the other hand by Theorem 1.4, there is a non-constant holomorphic function
h on M. Since dim H0 (M R, —¢) < do by Proposition 6.1, there exist non-all zero

complex numbers co, c1, - - - , ¢4y, such that there is a function u; € Lg’O(MR, —@)
satisfying du; = — (Z;{OZ() cjhj) fox. Then F = (Z‘?O cjhj) (1 —k)f —uyis
holomorphic on Mg. Let H = Zd" c ]hJ Since A is non-constant, it takes infi-

nitely many values, so H is not ident1cally zero. The function F/H is holomorphic
on Mg —{H =0} and equalsto f on (Mr N V) —{H = 0}.
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Since z’joz 0@ (F/H)) = ®in (Mg N'V) — {H = 0}, the identity also holds on
the whole Mg — {H = 0}, thanks to the Identity Theorem for holomorphic functions.
Thus F/H is locally bounded on Mg and thus holomorphic on Mg by the Riemann
extension theorem. Thus F/H is the desired extension of f.

Suppose that M (co) has m connected compact components Ny, Na, ..., N, with
m > 2. Let Vi, Vo, ..., V, be disjoint neighborhoods of N1, N3, ..., Ny, in M. Let
f be a function which equals 1 on V; and equals O on V; for j > 2. Then f may be
extended holomorphically to M, contradicts with the Identity Theorem for holomor-
phic functions. O

7 Quotients of Siegel domains

Let us recall the following

Definition 7.1 Let V C R” be an open convex cone contains no straight lines. A map
F :C" x C™ — C" is said to be an V —hermitian form if it satisfies the following
conditions

(i) For each 7/ € C™, the map F, : C" — C" defined by F,(z) = F(z,7)) is
complex linear.
(i) F(z,z)=F(, 2.
(iii) F(z,z) € V : the closure of V, for all z € C™.
(iv) F(z,z) =0ifandonlyifz = 0.

Definition 7.2 Let V C R” be an open convex cone contains no straight lines and
F :C" x C" — C" be an V —hermitian form. Then the set

D=DWV,F)={(z,w) eC" xC":Imw — F(z,z) € V}

is called a Siegel domain (of the second kind) associated to the pair (V, F).

Lemma 7.3 Let Kp be the Bergman kernel of D. Then

(1) log Kp approaches oo at the boundary of D.
(2) Ricddlog Kp > —const. dd log Kp.

Proof Since every Siegel domain is a convex domain containing no complex lines,
thus according to Nikolov—Pflug—Zwonek [27] there is, for each p € D, an embedded
polydisc P centered at p such that K p is uniformly comparable to K p inside a slightly
smaller polydisc. In particular, (1) holds. It is not difficult to see that the technique
in [27] is also valid for the Bergman metric and its curvature tensors, from which
(2) immediately follows (the case when D is affinely homogeneous is trivial since the
Bergman metric is Kihler—Einstein). O

A Siegel domain D has an affine automorphism group 2(D) which consists of the
following linear transformations (cf. [29], p. 25):

(z,w) > (Bz+n, Aw +& +2iF(Bz,n) +iF(n,n)
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where & € R",n € C™, A is a linear transformation of V onto itself, and B is a
complex linear transformation satisfying AF(z, z') = F(Bz, BZ') forall z, 7/ € C™.
Let 261(D) = {g € AU(D) : |j;| = 1} where j, denotes the complex Jacobian of
g, and let P(D) be the subgroup of 2 (D) which consists of the following parallel
translations

gz w) =@ +nw+E+2F(@z,n+iF@m,n), &§eR' neC”
There is a natural isomorphism Z from B(D) to Isom (R" x C™) defined as
7 : gey > identity 4+ (&, n).

Proof of Theorem 1.7 1t is well-known that the Bergman metric is complete on D,
thus D/G is a complete Kihler manifold. Since

Kp(p) = Kp(g(p)lje(p)*, g € Aut(D),

we conclude that log K p is 2(; (D)—invariant. Thus by virtue of Lemma 7.3, in order
to get the first assertion it suffices to apply Proposition 4.1 with p = C log K p where
C is a sufficiently large constant.

Now suppose that G is a totally real, torsion-free, discrete group. By the cele-
brated Bieberbach theorem, Z(G) is an Abelian group generated by a finite number
of R—linear independent real vectors (&, nx) € R" x R™, 1 < k < kg. It turns out
that G is generated by a finite number of parallel translations {gg, ,, } Without loss of
generality, we assume that the cone V is contained in the positive octant R’} . Thus we
have Imw; > O forany 1 < j < n and for all (z, w) € D. Put

Yz, w)=Im(w —iF(z,2)).
Since

Vo ge m(z, w) =Im w4+ &2 F(z, ne) + i F(ne, me) — i F (2 + 1k, 24 mi)
= Y(z,w)

for all k, we conclude that
n
¥z w) =D Im(w; —iFj(z 2)
j=1

where F = (F1, ..., Fy), is a G—invariant psh function on D.

Let E be the complex affine subspace of C" spanned by &1, ..., &, and J&{, ...,
Jé&k,, and let E, be the real affine subspace of R™ spanned by nq, ..., n,. Let
deucl (-, E1) and deyc1 (-, E>) denote the Euclidean distance to £ C C" andto E, C C™
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respectively. Since E» is (ny, ..., nk,)—period, we may choose a convex, rapidly
increasing function A > 0 such that the G —invariant function

Kp((z, w)) + d2q(w, E1) + ¥ (z, w) + & 0 d2y(z, E2)

gives a strictly psh exhaustion function of D/G. O

Remark 7.4 The construction of ¥ is somewhat inspired by [11].
The group 2((D) also contains dilations

gz, w) = (Viz,tw), 1> 0.
They correspond to hyperbolic isometries for the case of Kdhler-Hadamard manifolds.
Proposition 7.5 For every dilation g;,t # 1, D/(g;) is a Stein manifold.

Proof Without loss of generality, we assume that r > 1. Let

Y =log Kp(z) + (m + 2n) log |wy|.
Clearly, Y og; = v because Kp = (K pog;)t"+>". Notice that there is a fundamental
domain of G on which we have 1 < |w;| < t!/2,1 < j < n, thus ¥ is a strictly psh

exhaustion function on the quotient D /(g;). O

Proof of Corollary 1.8. Following Mok [25], p.9, we consider two Heisenberg trans-
lations

gj(z.w) = (z+n,-,w+sj +2iz'ﬁj+i|nj|2), j=1.2.
From

gk o gj(z, w)
= (24 + s W G+ 6 + 2z G+ 1)) + 20 e+ i (el + ;1)

we learn that g; commutes with g if and only if 1y - 72 = 12 - 11, in other words,
n2 = rn1 + ¢ for some real number r and for some ¢, orthogonal to 1. Now G is
Abelian, thus we may make a unitary transformation in z such that every g € G is of
the form

g(z,w)=(z+n,w+s+2iz-n+i|n|2), EcR, peR"!

Thus the assertion follows immediately from Theorem 1.7. O

Remark 7.6 1t remains open whether H{./ G is always non-Stein for every non-Abe-
lian discrete group of Heisenberg translations.
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8 Proofs of Proposition 1.9, Theorem 1.10

Let A be the unit disc in C and let a's}%Oin denote the Poincaré metric of constant
negative curvature — 1. The Poincaré distance is defined as

1 + w)—w2
1—wjwq
dpoin (W1, w2) = = log ———,  wi, w2 € A.
2 1 — | wizw
‘l—ﬂ)zwl

Let X be a complex manifold and let &'(X, A) denote the set of holomorphic map-
pings from X to A. The Carathéodory pseudodistance between two points x, y € X
is defined as

cx (x,y) = sup {dpoin (f (x), f(¥)) : f € O(X, A)}.

A manifold X is said to be Carathéodory hyperbolic if bounded functions on X sep-
arate points and give local coordinates.

Lemma 8.1 dlgoin(wl, wy) is convex on A X A and strictly convex on A x A\{(wy,
wy) wy = wsl.

Proof The argument is standard (compare [17], p. 205). For the sake of complete-
ness, we still include the proof here. Since every geodesic «(¢) in A x A is given
as (a(t), ar(r)) where oy, ap are geodesics in A, it suffices to show that A(¢) :=
d%oin (a1 (1), aep (1)) is a convex function of ¢ and strictly convex when o1 (¢) # oz (2).
For each t with o1 (f) # aa(t),lety (-, t) : [0, 1] — A denote the geodesic from o (¢)
to ap(t). Then

1
o [|2Y
A(t)_Z/’as
0

and the second variation theorem (cf. [17], p. 167) implies

1 1
3y |? 3y dy\ 9y @
V(1) =2 /Di—y ds—/ R, VY YN ye) >0
3 ot ds 0t ) 0t Os
0 0

since the Poincaré metric has negative curvature. O

2
ds

Proof of Proposition 1.9 Since pull-backs of psh functions by holomorphic mappings
are still psh, we conclude from the above lemma that dgom( f(x), f(go(x))) is psh on
X forany f € O(X, A). Thus

(. 80(x)) = sup {dBin (£ (), (200 : f € OX. &)

is also psh on X.
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Now we show that c§( (x, go(x)) is nonconstant. By assumption we have cx (xo, go
(x0)) > 0. Thus there is a nonconstant f € &(X, A) such that cx (xg, go(x0)) =
dpoin (f (x0), f(go(xp))). Fix a point x| in a sufficiently small coordinate neighbor-
hood of xp such that df(x;) # 0. We assume df/dz1(x1) # O for the sake of
simplicity. If c%(x, go(x)) is a constant function, then the psh function ¢(x) :=
d%oin( f(x), f(go(x))) has to be constant since it attains the maximum at a point
xp € X. On the other hand, by the above lemma, we may take a holomorphic coordi-
nate (w1, wa) at (f(x1), f(go(x1))) € A x A such that

32

G, fron = 8k at (FGxn). flgol)

where § i is the Kronecker delta. Thus

2

9%

021021

af
971

af o go
071

>0 at xi,

E

contradictory. O

Proof of Theorem 1.10 By Proposition 1.9, ¥ (x) := c%(x, go(x)) is a nonconstant
psh function on X. Since ¢ (g(x), g0(g(x)) = cx(g(x), g(g0(x))) = cx (x, go(x))
for any g € G, v induces a nonconstant psh functionon M = X/G. If M is compact,
then i has to be constant by the maximum principle of psh functions, contradictory.
If M admits a compactification M’ such that M’ is a complex space and M' — M is
a complex-analytic variety of codimension >2 in M’, then 1/ is also constant by an
extension theorem of Grauert-Remmert [14], contradictory. O

Remark 8.2 Tt seems that the assumption of codim (M’ — M) > 2 is superfluous. Lin
[22] has proved that this is true under the additional hypothesis that G is amenable.
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