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Abstract In a recent paper, the first author proved the log-concavity of the
coefficients of the characteristic polynomial of a matroid realizable over a field of
characteristic 0, answering a long-standing conjecture of Read in graph theory. We
extend the proof to all realizable matroids, making progress towards a more general
conjecture of Rota–Heron–Welsh. Our proof follows from an identification of the
coefficients of the reduced characteristic polynomial as answers to particular intersec-
tion problems on a toric variety. The log-concavity then follows from an inequality of
Hodge type.

1 Introduction

In a recent paper [9], the first author proved that if M is a rank r +1 matroid realizable
over a field of characteristic 0 with characteristic polynomial,

χM(q) = μ0qr+1 − μ1qr + · · · + (−1)r+1μr+1

then the sequence μ0, . . . , μr+1 is log-concave, that is, for 1 ≤ i ≤ r ,

μi−1μi+1 ≤ μ2
i .
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Because graphic matroids are realizable over any field, this result proved a conjecture
due to Read [17] that chromatic polynomials of graphs are unimodal. There is a more
general conjecture of Rota–Heron–Welsh [18] that the coefficients of the character-
istic polynomial of any finite matroid form a log-concave sequence. The purpose of
this paper is to extend the result of the first author to include all realizable matroids
and to give some hints to an approach for proving the Rota–Heron–Welsh conjecture
in general. A nice overview of the conjecture can be found in [1].

Let us explain the first author’s proof and our extension. His proof uses a Morse-
theoretic argument to relate μi to Milnor numbers of the singularity at the origin of
a hyperplane arrangement with matroid M. These numbers are mixed multiplicites
and are log-concave by the Khovanskii–Teissier inequality [13, Example 1.6.4]. Our
method in this paper is to interpret the numbers μi as intersection numbers and apply
the Khovanskii–Teissier inequality in a more classical framework. To identify the
coefficients as intersection numbers, we use the combinatorial interpretation of the
intersection theory on toric varieties developed by Fulton–Sturmfels [8] and studied
in the context of tropical intersection theory by Mikhalkin [16], Allermann–Rau [3],
and the second author [10,11]. We use the fact that there is an explicit Poincaré dual
to a compactification of the complement of a hyperplane arrangement in a particular
toric variety. The Poincaré dual arises from the description of the Bergman fan studied
by Ardila–Klivans [2].

Let A be an arrangement of hyperplanes on an r -dimensional projective subspace
V ⊂ P

n realizing M. Let ˜V ⊂ P
n × P

n be the closure of the graph of the Cremona
transformation

Crem : P
n ��� P

n, (z0 : · · · : zn) �→ (z−1
0 : · · · : z−1

n )

restricted to V \A. ˜V is a compactification of V \A whose boundary is a divisor with
normal crossings. By virtue of the description of the class of ˜V , we have the following
result:

Theorem 1.1 Write

χM(q) := χM(q)/(q − 1) =
r

∑

i=0

(−1)iμi qr−i .

Then

[˜V ] =
r

∑

i=0

μi [Pr−i × P
i ] ∈ Ar (P

n × P
n)

in the Chow homology group of P
n × P

n.

The log-concavity of μ0, . . . , μr , and hence that of μ0, . . . , μr+1, follows from
applying the Khovanskii–Teissier inequality to the irreducibility variety ˜V . Our proof
is largely combinatorial except for establishing the Khovanskii–Teissier inequality
in Lemma 3.3 which requires the work of Fulton–Sturmfels and a classical proof of
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Log-concavity of characteristic polynomials

Khovanskii–Teissier. For that reason, we do not know if our proof can be extended to
general matroids.

There is a related conjecture of Welsh and Mason that the number fi of independent
subsets of cardinality i form a log-concave sequence for any matroid [15,24]. Theorem
1.1 implies that fi of a realizable matroid form a log-concave sequence because fi

of a matroid is the coefficient μi of the reduced characteristic polynomial of its free
coextension: See [4, Section 7.4], [5, Theorem 4.2], and also [14, Proposition 3.3].
We refer to [14] for further implications of Theorem 1.1.

2 Matroids

Let M be a rank r + 1 matroid on the set E = {0, . . . , n} with rank function r . The
characteristic polynomial of M is defined to be

χM(q) =
∑

F∈LM

μ(0̂, F)qr+1−r(F)

where LM is the lattice of flats, 0̂ is the minimum of LM, and μ is the Möbius function
of LM. We write

χM(q) = μ0qr+1 − μ1qr + · · · + (−1)r+1μr+1.

If M is realizable, then there is an r -dimensional projective subspace V ⊂ P
n which

represents M, that is, for I ⊂ E ,

r(I ) = codim
(

(V ∩ FI ) ⊆ V
)

where FI is the coordinate flat given by zi = 0 for i ∈ I . The coordinate hyperplanes
of P

n restrict to V and define a projective arrangement A on V .
In the sequel, we will restrict ourselves to simple matroids. Recall that M is simple

if it has no loops or pairs of parallel points. If M is not simple, then we can replace
it by ̂M, the associated combinatorial geometry of M, a matroid obtained by deleting
loops and contracting parallel points [21, Section 3.2]. ̂M is a simple matroid whose
lattice of flats is isomorphic to that of M. Therefore, ̂M has the same characteristic
polynomial as M. If M is realizable over a field k, then so is ̂M. Therefore, by proving
the simple case, we establish the log-concavity for all realizable matroids.

Definition 2.1 Let cA be the cone of A, an essential central arrangement on A
r+1

obtained by pulling back A by A
r+1 \ {0} → V . Let dA be the decone of A, an affine

arrangement on A
r obtained from A by declaring the hyperplane labelled by 0 ∈ E

to be the hyperplane at infinity.

We have the posets of flats LM,LcA,LdA. The first is ordered by inclusion, and
the others are ordered by reverse inclusion. LcA is a geometric lattice isomorphic to
LM while LdA is a meet-semilattice but not a lattice in general.

Note that χM(q) is divisible by q − 1 in Z[q].
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Definition 2.2 The reduced characteristic polynomial χM(q) is

χM(q) = χM(q)/(q − 1).

Define the numbers μ0, μ1, . . . , μr by

χM(q) =
r

∑

i=0

(−1)iμi qr−i .

χM(q) is the characteristic polynomial of dA. Note that the log-concavity of χM

implies that of χM.

Definition 2.3 Let ∅ � F1 � F2 � · · · � Fk be a k-step flag of flats in M.

(1) The flag is said to be initial if r(Fi ) = i .
(2) The flag is said to be descending if min(F1) > min(F2) > · · · > min(Fk) > 0.

Write Sk for the set of initial, descending k-step flags of flats.

The condition 0 
∈ Fk implies that the flag is, in fact, a flag in dA.

Proposition 2.4 We have the following expression for μk ,

μk = |Sk |.

Proof We use the fact that μk is given by

μk = (−1)k
∑

I∈(LdA)k

μ(0̂, I )

where the sum is over rank k flats. As a consequence of Weisner’s theorem [20, Section
3.9], we have the following equality for any a ∈ I [21, Theorem 3.10],

μ(0̂, I ) = −
∑

a /∈F�I

μ(0̂, F)

where A � B means that A ⊂ B and r(A) = r(B)− 1. Therefore, if I is a rank k-flat,
we can iterate this formula to obtain

μ(0̂, I ) = −
∑

0/∈Fk−1�I

μ(0̂, Fk−1)

= +
∑

0/∈Fk−1�I

⎛

⎝

∑

min(Fk−1)/∈Fk−2�Fk−1

μ(0̂, Fk−2)

⎞

⎠

= (−1)k−1
∑

0/∈Fk−1�I

⎛

⎝

∑

min(Fk−1)/∈Fk−2�Fk−1

⎛

⎝· · ·
⎛

⎝

∑

min(F2)/∈F1�F2

(−1)

⎞

⎠

⎞

⎠

⎞

⎠ .
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Therefore, we are counting initial k-step flags of flats ∅ � F1 � F2 � · · · � I sat-
isfying min(F1) > min(F2) > · · · > min(Fk−1) > min(I ) > 0. By summing over
rank k flats I , we obtain the theorem. ��
Definition 2.5 For a matroid M of rank r + 1 on E and k ≤ r , let the truncation
Trunck(M) be the matroid on E with rank function rk given by

rk(I ) = min
{

r(I ), k + 1
}

.

Trunck(M) is a rank k+1-matroid. If M corresponds to an r -dimensional projective
subspace V ⊂ P

n, Trunck(M) corresponds to V ∩W where W is a sufficiently general
k-dimensional subspace of P

n .

3 Intersection theory on toric varieties

We review some notions from the theory of toric varieties. A toric variety X = X (�) is
defined by a rational fan � in NR = N ⊗Z R for a lattice N � Z

n . The k-dimensional
torus-invariant closed subvarieties of X are of the form V (σ ), as σ varies over the
codimension k cones in �. We write Nσ for the sublattice of N generated by σ ∩ N .

When X is complete, the operational Chow cohomology A∗(X) has a combinatorial
description given by Fulton and Sturmfels [8]. Let �(k) denote the set of all cones in
� of codimension k. If τ ∈ �(k+1) is contained in a cone σ ∈ �(k), let vσ/τ ∈ N/Nτ

be the primitive generator of the ray (σ + Nτ )/Nτ .

Definition 3.1 A function c : �(k) → Z is said to be a Minkowski weight of codi-
mension k if it satisfies the balancing condition, that is, for every τ ∈ �(k+1),

∑

σ⊃τ

c(σ )vσ/τ = 0

in N/Nτ .

The main result of [8] is that Ak(X) is canonically isomorphic to the group of
codimension k Minkowski weights. The correspondence between Chow cohomol-
ogy classes and Minkowski weights is as follows: given d ∈ Ak(X), define c(σ ) =
deg

(

d ∩[V (σ )]). The content of the Fulton-Stumfels result is that Chow cohomology
classes are determined by their values on orbit closures. The balancing condition is
a combinatorial translation of the fact that cohomology classes are constant on linear
equivalence classes.

Taking the cup product and taking the degree of a zero-dimensional class can be
described combinatorially. The cup product is given by the fan displacement rule. Let
c1, c2 be Minkowski weights of codimension k1, k2 respectively, and v be a generic
(as described in [8]) vector in NR. Given c1, c2, we can take v outside a finite union
of proper subspaces of NR. Then

(c1 ∪ c2)(γ ) =
∑

(σ1,σ2)∈�(k1)×�(k2)

mγ
σ1,σ2

c1(σ1)c2(σ2)
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where mγ
σ1,σ2 are defined by

mγ
σ1,σ2

=
{

[N : Nσ1 + Nσ2 ] if γ ⊂ σ1, σ2 and σ1 ∩ (σ2 + v) 
= ∅,

0 if otherwise.

The degree deg(c) of a zero-dimensional class c ∈ An(X) is defined to be c(0), the
value of c on the unique zero-dimensional cone 0.

There is a notion of Poincaré duality in the intersection theory of toric varieties.
Suppose X is smooth and let Y ⊂ X be a subvariety of dimension r . Define a function

c : �(n−r) → Z, σ �→ deg
([Y ] · [V (σ )]).

Then c is a Minkowski weight, called the associated cocycle of Y . The class c acts as
a Poincaré dual to Y in the following sense:

Lemma 3.2 [10, Lemma 9.2] If c is the associated cocycle of Y , then

c ∩ [X ] = [Y ] ∈ Ar (X).

Let T be the dense torus in X and Y ◦ = Y ∩ T . The associated cocycle of Y is
closely related to the tropicalization of Y ◦. Recall that the tropicalization Trop(Y ◦) is
the set of vectors v ∈ NR such that the initial degeneration inv(Y ◦) in T is nonempty,
which is the underlying set of a rational fan of pure dimension r , together with the
tropical multiplicity function m [19]. Proposition 2.2 of [23] states that Y intersects
torus orbits of X properly iff Trop(Y ◦) is a union of cones of �. In this case, Trop(Y ◦)
is the closure union of cones in � on which c is positive. Each r -dimensional cone σ

of � has tropical multiplicity c(σ ).
The equivariant Chow cohomology ring with integer coefficients A∗

T (X) is nat-
urally isomorphic to the ring of integral piecewise polynomial functions on �, and
there is a canonical map to ordinary Chow cohomology with integer coefficients

ι∗ : A∗
T (X) → A∗(X)

induced by inclusions of X in the finite dimensional approximations of the Borel mixed
space [7]. For α ∈ A∗

T (X) and c ∈ A∗(X), we write α ∪ c to mean ι∗α ∪ c.
A T -Cartier divisor α is an integral piecewise linear function on � viewed as an

element of A1
T (X). If c ∈ Ak(X) is a Minkowski weight, we may compute the cup

product ι∗α ∪ c as an element of Ak+1(X) by using a formula that first appeared in
[3]: for σ ∈ �(k), τ ∈ �(k+1), let uσ/τ be a vector in Nσ descending to vσ/τ in N/Nτ ;
then the value of ι∗α ∪ c on a cone τ ∈ �(k+1) is

(ι∗α ∪ c)(τ ) = −
∑

σ∈�(k)|σ⊃τ

ασ (uσ/τ )c(σ ) + ατ

⎛

⎝

∑

σ∈�(k)|σ⊃τ

c(σ )uσ/τ

⎞

⎠

where ασ (respectively ατ ) is the linear function on Nσ (on Nτ ) which equals α on σ

(on τ ). A T -Cartier divisor α is said to be nef if for every codimension 1 cone τ ∈ �(1),
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we have ι∗α(τ) ≥ 0. This says that the cohomology class ι∗α is non-negative on any
1-dimensional orbit closure. This notation is appropriate because a T -Cartier divisor
α induces a T -equivariant line bundle on X whose first Chern class is nef if and only
if α is nef.

We have the following version of the Khovanskii–Teissier inequality.

Lemma 3.3 Let X = X (�) be a smooth complete toric variety over an algebraically
closed field. Let c be Poincare-dual to an r-dimensional irreducible variety Y ⊂ X
and α1, α2 be nef T -Cartier divisors on �. Then the numbers

ai = (ι∗αr−i
1 ∪ ι∗αi

2 ∪ c) ∩ [X ]

form a log-concave sequence.

Proof The piecewise linear functions α1, α2 induce T -equivariant line bundles on
L1, L2 on X . Because every curve in X is algebraically equivalent to a union of
1-strata, the non-negativity condition on α j ensures that c1(L j ) is nef [6, Theorem
6.3.12]. Now

(ι∗αr−i
1 ∪ ι∗αi

2 ∪ c) ∩ [X ] = (ι∗αr−i
1 ∪ ι∗αi

2) ∩ [Y ]

and the result follows from the classical Khovanskii–Teissier inequality [13, Example
1.6.4]. ��

We do not know a purely combinatorial condition on the Minkowski weight c for
the above lemma to hold.

4 Bergman fans

Let V be an r -dimensional projective subspace of P
n over the field C of complex

numbers. The amoeba of V is the set of all vectors of the form

(

log |x1|, log |x2|, . . . , log |xn|) ∈ R
n

where (x1, . . . , xn) runs over all points of V in the torus (C∗)n . The asymptotic behav-
ior of the amoeba is given by an r -dimensional polyhedral fan in R

n called the Bergman
fan of V . The Bergman fan of a projective subspace V depends only on the associated
matroid. More generally, one can associate to an arbitrary matroid M its Bergman fan
which reflects combinatorial properties of M [22, Section 9.3].

We introduce the Bergman fans of matroids following the exposition of Katz-Payne
[12]. Let M be a rank r + 1 matroid on the set E = {0, . . . , n}. Let N be the lattice

N = Z
E/〈e0 + · · · + en〉.

We pick coordinates on N in such a way that e1, . . . , en are the standard unit basis
vectors and e0 = (−1, . . . ,−1). The matroid fan �M is a simplicial fan in NR that
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encodes the lattice of flats of M. Ardila and Klivans introduced this fan in [2] and
called it the fine subdivision of the Bergman fan of the matroid; the fan is defined as
follows. For a subset I ⊂ E , let eI be the vector

eI =
∑

ei ∈I

ei

in NR. The rays of the matroid fan �M are R≥0eF for proper flats F of the matroid.
In general, the k-dimensional cones of the matroid fan, σF are the non-negative spans
of {eF1 , . . . , eFk } for k-step flags of proper flats F = {∅ � F1 � · · · � Fk}. Since
each cone σF in �M is spanned by a subset of a basis for the lattice N , the toric
variety X (�M) is smooth. Furthermore, since every flag of flats in a matroid can be
extended to a maximal flag of proper flats of length r , the matroid fan �M is of pure
dimension r .

Example 4.1 Let Un be the uniform matroid on {0, . . . , n}, the matroid in which every
subset is a flat. Then the matroid fan �Un in N = R

n+1/(1, . . . , 1) is the first bary-
centric subdivision of the fan corresponding to P

n , and X (�Un ) is the toric variety
obtained from P

n by a sequence of blowups

X (�Un ) = Xn−1 → · · · → X1 → X0 = P
n,

where Xi+1 → Xi is the blowup along the strict transforms of the i-dimensional
torus-invariant subvarieties of P

n . The Cremona transformation

Crem : P
n ��� P

n, (z0 : · · · : zn) �→ (z−1
0 : · · · : z−1

n )

induces multiplication by −1 on N . Crem extends to an automorphism

Crem : X (�Un ) → X (�Un )

of X (�Un ) since �Un is invariant under the multiplication by −1.

Note that the labeling E = {e0, . . . , en} of the underlying set of the matroid M

induces an inclusion of the matroid fan �M as a subfan of �Un . Furthermore, the
dense torus T in X (�M) is naturally identified with the dense torus in P

n .
Let A be an arrangement of hyperplanes on an r -dimensional projective subspace

V ⊂ P
n realizing M. We can identify �M as the tropicalization of the complement

V ◦ := V \ A = V ∩ T .

Theorem 4.2 [22, Section 9.3] The tropicalization of V ◦ is �M.

Let ˜V denote the closure of V ◦ in X = X (�Un ). Since the underlying set of �M

is a union of cones of �Un ,
˜V intersects torus orbits of X properly. Consequently,

�M considered as a Minkowski weight of X is the associated cocycle of ˜V .
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5 Intersection theory computations

Let α = min{0, x1, . . . , xn} be a piecewise linear function on R
n . Note that α is linear

on each cone of �Un . It is nef because α takes the value 1 or 0 on each 1-dimensional
orbit closure of X (�Un ). In fact, α corresponds to a line bundle p∗O(1) on X (�Un )

where p is the blowup p : X (�Un ) → P
n . We have the following lemma which is to

be expected from our geometric description of truncation:

Lemma 5.1 Let M be a rank r + 1 matroid on E = {0, . . . , n}. Then,

α ∪ �M = �Truncr−1(M)

in A∗(X (�Un )
)

.

Proof The Minkowski weight α ∪ �M is supported on codimension 1 cones in �M.
They correspond to (r − 1)-step flags of proper flats

F = {∅ � F1 � F2 � · · · � Fr−1}.

The cone σF is contained in σG iff the flag G is obtained from F by inserting a
single flat. Write this relation as G � F . This flat must be inserted between two flags
Fj ⊂ Fj+1 where r(Fj+1) = r(Fj )+2. Setting Fr := E , there is a unique choice of j
where this happens. Suppose G is obtained from inserting a flat F between Fj ⊂ Fj+1.
Let uG/F be an integer vector in σG that generates the image of σG in N/NσF . We
may choose uG/F to be eF . The value of α ∪ �M on σF is given by

(α ∪ �M)(σF ) = −
∑

G�F
αG(uG/F ) + αF

⎛

⎝

∑

G�F
uG/F

⎞

⎠

where αG (respectively αF ) is the linear function on NσG (on NσF ) which equals α

on σG (on σF ).
We now compute the right-hand side. In any case

αG(uG/F ) =
{

−1 if 0 ∈ F

0 if otherwise.

Let f be the number of flats that can be inserted between Fj and Fj+1. Because every
element of Fj+1 \ Fj is contained in exactly one flat F , we have

∑

G�F
αG(uG/F ) =

⎧

⎪

⎨

⎪

⎩

− f if 0 ∈ Fj

−1 if 0 ∈ Fj+1 \ Fj

0 if otherwise.
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and

∑

G�F
uG/F = eFj+1 + ( f − 1)eFj .

It follows from the latter equality that if j < r − 1, then

αF

⎛

⎝

∑

G�F
uG/F

⎞

⎠ =

⎧

⎪

⎨

⎪

⎩

− f if 0 ∈ Fj

−1 if 0 ∈ Fj+1 \ Fj

0 if otherwise.

If j = r − 1, then eFj+1 = eE = 0, and we have

αF

⎛

⎝

∑

G�F
uG/F

⎞

⎠ =
{

− f + 1 if 0 ∈ Fj

0 if otherwise.

Putting everything together, we have

(α ∪ �M)(σF ) =
{

1 if j = r − 1

0 if otherwise.

Therefore α ∪ �M is non-zero on exactly the top-dimensional cones in �Truncr−1(M).
��

The next proposition relates coefficients of the reduced characteristic polynomial
to certain intersection products on X (�Un ). If � is a weighted fan considered as a
Minkowski weight, then Crem∗(�) is the weighted fan whose cones are −σ for each
σ ∈ � where the weight of −σ in Crem∗(�) is equal to that of σ in �.

Proposition 5.2 The coefficients of χM(q) are given by

μk = deg
(

�Truncn−k (Un) ∪ Crem∗(�Trunck (M))
)

.

Proof We use the Fulton–Sturmfels fan displacement rule. The right-hand side is the
sum of the structure constants m0

σ,τ for top-dimensional cones σ ∈ �Truncn−k (Un) and
τ ∈ Crem∗(�Trunck (M)). We will show that m0

σ,τ is always equal to 0 or 1 and the set
of pairs (σ, τ ) with m0

σ,τ = 1 can be put in bijective correspondence with Sk , the set
of initial, descending k-step flags of flats.

Top-dimensional cones in �Truncn−k (Un) are of the form σI for a flag

I = {∅ � I1 � · · · � In−k}, |I j | = j.

Taking union of σI over all I as above, we see that the underlying set of �Truncn−k (Un)

is exactly the set of points where the minimum of {0, x1, . . . , xn} is achieved at least
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k + 1 times. The acheived minimum on σI is 0 iff In−k does not contain 0. In this
case,

NσI = Span{ei | i ∈ In−k}.

Top-dimensional cones in Crem∗(�Trunck (M)) are of the form −σF for a flag

F = {∅ � F1 � · · · � Fk}, rk(Fi ) = i.

Fix a generic vector v = (v1, v2, . . . , vn) ∈ R
n with 0 < v1 < v2 < · · · < vn . The

claimed equality follows from Proposition 2.4 and the lemma below.

Lemma 5.3 The following are equivalent.

(1) |�Truncn−k (Un)| ∩ (−σF + v) is a singleton set.
(2) |�Truncn−k (Un)| ∩ (−σF + v) is nonempty.
(3) min(F1) > min(F2) > · · · > min(Fk) > 0.

If one of the above holds, then

NσI + N−σF = N

for the unique top-dimensional cone σI of �Truncn−k (Un) intersecting −σF + v.

Proof Suppose (−x + v) is an element of |�Truncn−k (Un)| ∩ (−σF + v). We write

x = t1eF1 + · · · + tkeFk , ti ≥ 0.

Let s ∈ E be the element with 0 ∈ Fs \ Fs−1, where we set F0 = ∅, Fk+1 = E . Then
for any l ∈ Fj \ Fj−1,

xl =

⎧

⎪

⎨

⎪

⎩

t j + · · · + ts−1 if j < s

0 if j = s

−ts − · · · − t j−1 if j > s.

Note that the minimum of vl − xl as l ranges among elements Fj \ Fj−1 is achieved
uniquely by l j := min(Fj \ Fj−1) by our choice of v. Therefore the minimum of
{0, v1 − x1, . . . , vn − xn} can be achieved by at most one element from each set
Fj \ Fj−1. For the minimum to be achieved k + 1 times, it must be achieved by 0.
It follows that 0 /∈ Fk and xl = vl j for l ∈ Fj \ Fj−1. Since

xl1 = vl1 > xl2 = vl2 > · · · > xlk = vlk ,

we must have l1 > l2 > · · · > lk > 0. In other words,

min(F1) > min(F2) > · · · > min(Fk) > 0.
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Conversely, suppose l1 > l2 > · · · > lk > 0 so that vl j is an increasing sequence.
Let x = (x1, . . . , xn) ∈ R

n be the point obtained by setting xl = vl j for l ∈ Fj \ Fj−1.
Then x is contained in σF because

x = (vl1 − vl2)eF1 + · · · + (vlk−1 − vk)eFk−1 + (vlk )eFk .

The above analysis shows that this x is the unique element of |�Truncn−k (Un)|∩(−σF +
v). We have shown that the conditions (1), (2), and (3) are equivalent.

Let σI be the cone of �Truncn−k (Un) corresponding to the flag

I = {∅ � I1 � · · · � In−k}, |I j | = j.

If σI intersects −σF + v, then the above argument shows that 0 /∈ In−k and

{l1, . . . , lk} ∪ In−k = {1, . . . , n}.

The span of −eF1 , . . . ,−eFk in N/NσI is generated by

−el1 ,−el1 − el2 , . . . ,−el1 − el2 − · · · − elk .

This gives all of N/NσI , and hence NσI + N−σF = N . ��

6 Log-concavity

In this section we establish the log concavity of the numbers μk by interpreting them
as intersection numbers.

Lemma 6.1

μk = deg
(

αr−k ∪ (Crem∗ α)k ∪ �M

)

.

Proof We observe that �Un = Crem∗(�Un ) is the associated cocycle of X (�Un ). By
Proposition 5.2 and Lemma 5.1,

μk = deg
(

�Truncn−k (Un) ∪ Crem∗(�Trunck (M))
)

= deg
(

Crem∗(�Truncn−k (Un)) ∪ �Trunck (M)

)

= deg
(

Crem∗(αk ∪ �Un ) ∪ (αr−k ∪ �M)
)

= deg
(

αr−k ∪ (Crem∗ α)k ∪ �M

)

.

��
Theorem 6.2 If M is realizable, then the numbers μk form a log-concave sequence.
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Proof Suppose M is realized by a projective subspace V in P
n over a field k. Then M

is realizable over the algebraic closure k. Note that �M is Poincaré-dual to the closure
˜V of V ◦ = V ∩ T in X (�Un ). Since Crem is an automorphism of X (�Un ) and α is
nef, Crem∗ α is nef. Now, Lemma 3.3 applies to the formula of Lemma 6.1. ��
Proof of Theorem 1.1 Let π1, π2 be the projection of P

n × P
n onto the first and the

second factor respectively. Write L1, L2 for the pull-back of the line bundle O(1) on
P

n by π1, π2 respectively. Note that X = X (�Un ) is realized in P
n ×P

n as the closure
of the graph of Crem : P

n ��� P
n . With this identification, the closure ˜V of V ◦ in X

is the graph closure of Crem restricted to V \ A. Note that the pull-back of L1, L2 to
X is the line-bundle corresponding to α, Crem∗ α respectively. Consequently,

(Lr−k
1 ∪ Lk

2) ∩ [˜V ] = (αr−k ∪ (Crem∗ α)k ∪ �M) ∩ [X ] = μk .

Therefore

[˜V ] =
r

∑

i=0

μi [Pr−i × P
i ] ∈ Ar (P

n × P
n)

in the Chow homology group of P
n × P

n . ��
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