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Abstract We consider the Dirichlet boundary value problem for a singular elliptic
PDE like F[u] = p(x)u−μ, where p, μ ≥ 0, in a bounded smooth domain of R

n .
The nondivergence form operator F is assumed to be of Hamilton–Jacobi–Bellman
or Isaacs type. We establish existence and regularity results for such equations.

1 Introduction

In this paper we study a class of boundary value problems of the form

F(D2u, Du, u, x) + f (x, u) = 0 in Ω, u = 0 on ∂Ω, (1)

where F is a positively homogeneous fully nonlinear elliptic operator, Ω is a bounded
C2-domain and f is singular at u = 0. Our main results concern existence, uniqueness
and regularity of solutions of (1).

The semi-linear version of this problem, that is, (1) with F replaced by a linear
operator
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378 P. Felmer et al.

L = ai j (x)∂2
xi x j

+ bi (x)∂xi + c(x), (2)

has been attracting continuous attention since the 1970’s and the literature nowadays is
very large. A cornerstone in the study of singular problems of this type is the classical
work by Crandall et al. [10], whose results, applied to the model equation

Lu + p(x)u−μ = 0 in Ω, u = 0 on ∂Ω, (3)

μ > 0, p(x) > 0 in Ω , state that (3) has a unique positive solution which is Hölder
continuous, that is u ∈ Cγ (Ω), and it satisfies

C1dγ (x) ≤ u(x) ≤ C2dγ (x),

where d is the distance to the boundary of Ω, γ = 2/(μ + 1) and 0 < C1 ≤ C2. In
addition, they showed that if μ < 1 then the solution is Lipschitz in Ω . Later, Lazer
and McKenna [25] developed a simplified approach to this problem, in particular when
L is in divergence form.

Concerning the regularity of solutions of (3), exact results were obtained by del
Pino [12] and Gui-Lin [18], for L = Δ and functions p which behave like powers
of the distance to the boundary. In particular, they showed that solutions of (3) are
actually in C2(Ω) ∩ C1,β(Ω), for some β > 0, provided μ < 1 (see also an earlier
result by Gomes [17]). Notice that this is the best regularity one can expect, as the
equation itself shows.

Then, in the last 15 years numerous and various extensions of these results were
obtained, mostly to more general nonlinearities f (x, u) and to quasilinear equations.
In addition to the papers we already quoted we refer to [6,7,11,13,20,21,31,34,37,38]
and the references therein. An excellent starting point to these studies is the survey
[19], where very extensive literature is available.

Despite the large literature on semi- and quasi-linear equations with singular non-
linearities, we do not know of any works where such a study is done in the setting of
fully nonlinear equations. This is the main goal of this paper. We are going to show
that the recently developed theory of Hamilton–Jacobi–Bellman and Isaacs equations
[1,5,8,9,29,22] permits us to prove the same existence results as in the semi-linear
setting, when weak (viscosity) solutions to (1) are considered. The regularity result
requires a new approach, since none of the methods used in the previous papers on
singular problems applies in the fully nonlinear setting. In particular, no linear theory
for adjoint operators nor Green functions are available for fully nonlinear operators.

Throughout the paper all differential (in)equalities will be understood to hold in the
L N -viscosity sense—see [5] for a detailed description of this notion. We now state our
hypotheses and results. We assume F is a Hamilton–Jacobi–Bellman (HJB) operator,
that is, a supremum of linear operators like (2)

F[u] = F(D2u, Du, u, x) = sup
α∈A

{Lαu(x)}, (4)

where the index α varies in some set A and
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Fully nonlinear equations with singularities 379

(S) for some constants 0 < λ ≤ Λ, γ ≥ 0,the matrix Aα(x) := (aα
i j (x)) is such that

Aα ∈ C(Ω), λI ≤ Aα(x) ≤ΛI , and |bα(x)|, |cα(x)| ≤ γ , for almost all x ∈ Ω

and all α ∈ A.
(C) F satisfies the following comparison principle : if u, v ∈ C(Ω) are L N -viscosity

solutions of F[u] ≥ F[v] in Ω and one of u, v is in W 2,N
loc (Ω), then u ≤ v in Ω .

Notice we do not assume much regularity on the coefficients of F , however all our
results are new even for operators with smooth coefficients. For detailed description of
the theory and the numerous applications of HJB operators, we refer to the book [15]
and to the surveys [3,24,33]. In particular, it is shown in [26,29] that, under (S) the
operator F has two real “principal half-eigenvalues” λ+

1 (F) ≤ λ−
1 (F) that correspond

to a positive and a negative eigenfunction and

F satisfies (C) ⇐⇒ λ+
1 (F) > 0.

In order to keep the statements simple, we are going to restrict to nonlinearities f
which have the same form as in (3). This model case is sufficient to expose the ideas
needed in order to study fully nonlinear equations with singular nonlinearities. More
general results can be obtained by mingling our techniques with already existing ones,
for instance for general decreasing nonlinearities like in [10], or for nonlinearities
with an added nonlinear perturbation like λu p, p > 0 (these types of nonlinearities
for fully nonlinear equations were considered in [14,28]). We could also consider
operators with unbounded coefficients and quadratic dependence in the gradient, like
in [32] or operators whose coefficients have some singularity on the boundary of Ω ,
like in [20]. We leave these extensions to future studies.

Furthermore, all results below extend to Isaacs operators, that is, operators like
in (4), with the supremum replaced by a combination of suprema and infima of linear
operators, provided more regularity in x is assumed, and the operator F is proper (that
is, decreasing in u) so that comparison principles are still available. We refer to [9,22]
for more precise conditions under which comparison is available for Isaacs operators.
All our statements and proofs remain almost unchanged in this case, only the spaces
W 2,p which appear in them are to be replaced by C1,α . Here is our existence and
uniqueness theorem.

Theorem 1 Suppose F[u] is in the form (4) and it satisfies (S) and (C). Assume μ > 0
and p ∈ L N (Ω), further satisfying p ≥ 0 in Ω and p > 0 on a subset of Ω with
positive measure. Then the problem

F[u] + p(x)u−μ = 0, u > 0 in Ω, u = 0 on ∂Ω, (5)

has a unique viscosity solution, such that u ∈ W 2,N
loc (Ω) ∩ C(Ω).

In order to prove this theorem we use the method of sub- and super-solutions, as
developed for viscosity solutions in [8], which we combine with the recent results
on existence of eigenvalues and eigenfunctions of fully nonlinear operators in [29].
We construct super- and sub-solutions by solving a fully nonlinear eigenvalue problem
with a weight. Uniqueness follows from the comparison principle.

123



380 P. Felmer et al.

Our second main result concerns the behaviour of the solution of (5) near the bound-
ary of Ω . Naturally, in order to give precise results we need to put some restrictions on
the weight p, the most important (and the simplest) situation being when p is bounded
away from zero in Ω . In order to parallel previous results in [12,18], we are going to
assume that p behaves like a power of the distance function.

Theorem 2 Under the hypotheses of Theorem 1, assume there are constants
c1, c2 > 0 such that

c1dα(x) ≤ p(x) ≤ c2dα(x), for some α ≥ 0, (6)

where d(x) = d(x, ∂Ω). Then for the solution u of Eq. (5) we have:

(i) If μ < 1 + α then u ∈ C1,β(Ω), for some β which depends only on μ, α, λ,
,

γ, δ, N and Ω .
(ii) If μ = 1+α then u ∈ Cβ(Ω) for all β < 1, and there exist constants a1, a2, D >

0 such that

a1d(x)(D − log d(x))1/(1+μ) ≤ u(x) ≤ a2d(x)(D − log d(x))1/(1+μ),

(iii) If μ > 1 + α then u ∈ C
α+2
1+μ (Ω) and for some constants a1, a2 > 0

a1d(x)(α+2)/(1+μ) ≤ u(x) ≤ a2d(x)(α+2)/(1+μ), x ∈ Ω.

The most interesting part of this theorem is statement (i), whose proof uses an exten-
sion to (5) of the celebrated method of Krylov and Safonov [23], that proved global
C1,β -bounds for solutions of linear equations with measurable coefficients, essentially
opening up the theory of equations in non-divergence form. More precisely, we are
going to build up on a simplified version of this method due to Caffarelli. To prove
our regularity theorem we need to get sharp bounds on the solution near the boundary,
which are obtained by appropriate comparison with radially symmetric solutions for
related extremal equations. See Sect. 3 for details.

We further mention that as a by-product of our results we provide solutions for the
following degenerate parabolic equation:

p(x)vt = vβ F(D2v, Dv, v, x) in Ω × (0,∞), (7)

v(x, 0) = v0(x) and v(x, t) = 0 on ∂Ω × (0,∞). (8)

Indeed, if we take v = uη, where u is a solution of (1) and η is a solution of ηt =
−ηβ+1, with μ = β − 1 and β > 0, then v satisfies the parabolic equation (7). This
special solution is suitable for sub- and/or super-solutions of the initial value problem
(7, 8) for a large class of initial conditions v0.
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Fully nonlinear equations with singularities 381

2 Proof of Theorem 1

2.1 Preliminaries and a weighted eigenvalue problem

We begin this section by restating the structural hypotheses we made on F in the intro-
duction. We assume F : SN × R

N × R × Ω → R satisfies, with S = (M, p, u), T =
(N , q, v) ∈ SN × R

N × R, the following hypotheses:

(H0) F is positively 1-homogeneous : F(t S, x) = t F(S, x) for t ≥ 0.
(H1) There exist 0 < λ ≤ Λ, γ ≥ 0 such that for all S, T

M−(M − N ) − γ (|p − q| + |u − v|) ≤ F(S, x) − F(T, x)

≤ M+(M − N ) + γ (|p − q| + |u − v|).

(H2) −F(T − S, x) ≤ F(S, x) − F(T, x) ≤ F(S − T, x) for all S, T .
(H3) The function F(M, 0, 0, x) is continuous in SN × Ω .

Here M−,M+ denote the Pucci extremal operators, defined as follows : M+(M) =
supA∈Sλ,


N
tr(AM),M−(M) = inf A∈Sλ,


N
tr(AM), where Sλ,


N denotes the set of

symmetric matrices whose eigenvalues lie in the interval [λ,
]. We have the follow-
ing alternative way of defining M− and M+

M−(M) = λ
∑

μ j >0

μ j + 

∑

μ j <0

μ j and M+(M) = λ
∑

μ j <0

μ j + 

∑

μ j >0

μ j , (9)

where μ1, . . . , μn are the eigenvalues of M , see for instance [4].
Hypotheses (H0)–(H1) define an uniformly elliptic Isaacs operator with bounded

measurable coefficients. Such an operator is convex, that is, is in the form (4) if and
only if it satisfies (H2). As we already noticed, in all what follows (H2) could be
replaced by an hypothesis on the regularity of F with respect to x and monotonicity
of F with respect to u, for instance F is Cα in x with α > 1/2 and cα ≤ 0 in (4). See
the remarks at the end of Section 1 of [9] and the papers quoted there. These hypoth-
eses guarantee the comparison principle (C) holds, with W 2,N replaced by C1,α in
its statement. Hypothesis (H3) is used to ensure the well-posedness of the Dirichlet
problem. As it is well-known, even a linear equation ai j∂i j u = 0 can have more than
one viscosity solution if its coefficients are discontinuous, see [27].

Next we recall several known results which we use in the sequel. First we give the
comparison and existence results from [5,9,29,36].

Theorem 3 Suppose F satisfies (H0), (H1), (H2) and (H3). Then the operator
F̃[u] = F[u] − γ u satisfies (C) and for any f ∈ L N (Ω), there exists a unique
viscosity solution u ∈ W 2,N (Ω) of

F(D2u, Du, u, x) − γ u = f in Ω, u = 0 on ∂Ω.

We also recall the following strong maximum principle (Hopf’s lemma), which is
a consequence from the results in [2] (a simple proof can be found in the appendix of
[1]).
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382 P. Felmer et al.

Theorem 4 Suppose w ∈ C(Ω) is a viscosity solution of

M−(D2w) − γ |Dw| − γw ≤ 0 in Ω,

and w ≥ 0 in Ω . Then either w(≡ 0 in Ω or w > 0 in Ω and at any point x0 ∈ ∂Ω

at which w(x0) = 0 we have lim inf t↘0
w(x0+tν)−w(x0)

t > 0, where ν is the interior
normal to ∂Ω at x0.

The next theorem is a simple consequence of the compactness result of [9] (Prop-
osition 4.2 in that paper) and the convergence properties of viscosity solutions (see
Theorem 3.8 in [5]).

Theorem 5 Let fn → f in L N (Ω). Suppose F satisfies (H1) and un is a solution
of F(D2un, Dun, un, x) = fn in Ω, un = 0 on ∂Ω , such that the sequence un is
bounded in L∞(Ω). Then a subsequence of {un} converges uniformly to a function u,
which solves F(D2u, Du, u, x) = f in Ω, u = 0 on ∂Ω .

Now we give a proof of the existence of first half-eigenvalues for fully nonlin-
ear elliptic operators with a non-negative weight. More precisely, we consider the
eigenvalue problem

F(D2u, Du, u, x) = −λp(x)u in Ω, u = 0 on ∂Ω (10)

and we prove the following

Theorem 6 Assume F satisfies (H0)–(H3). Let p ∈ L N (Ω) be such that p(x) ≥ 0
in Ω and p(x) > 0 on a subset of Ω with positive measure. Then there exists a couple
(λ+, ϕ+) ∈ R × W 2,N (Ω) of solutions to (10), such that ϕ+ > 0 in Ω .

Proof of Theorem 6. We are going to use the Leray–Schauder alternative given in Cor-
ollary 1 of of Theorem VIII.1 in [30]. For that purpose we consider the solution L(g)

of the equation

F(D2u, Du, u, x) − γ u = −p(x)g in Ω, u = 0 on ∂Ω, (11)

which is well defined for every g ∈ C(Ω), thanks to Theorem 3. Then we define the
cone K = {u ∈ C(Ω) | u ≥ 0 in Ω, u = 0 on ∂Ω} and we observe that L(g) ∈ K
for all g ∈ K . Next, from the hypothesis on the weight p, we can choose a smooth
u0 ∈ K \ {0}, with compact support, such that p(x)u0(x) > 0 on a set of non-zero
measure. Then, using Theorem 2.2 we can find M > 0 such that ML(u0) ≥ u0.

Now we are in a position to define the map Tε : IR+ × K → K as Tε(μ, u) =
μL(u) + μεL(u0), for ε > 0. We notice that by Theorem 3 and well known compact
imbedding theorems, Tε is a well defined compact operator. Moreover Tε(0, u) = 0.
Thus, by quoted Leray–Schauder alternative there exists an unbounded connected
component Cε ⊂ R

+ × K of solutions to Tε(μ, u) = u, containing (0, 0). We claim
that Cε ⊂ [0, M] × K . To verify this, we have that for all (μ, u) ∈ Cε

u = μL(u) + μεL(u0)

123



Fully nonlinear equations with singularities 383

and then u ≥ μL(u) and u ≥ μεL(u0) ≥ μ
M εu0. If we apply L again, by Theorem 3

we get

u

μ
≥ L(u) ≥ μ

M
εL(u0) ≥ μ

M2 εu0

so that u ≥ (
μ
M )2εu0. Repeating this step we get

u ≥
( μ

M

)n
εu0 for all n ≥ 2,

and we conclude that μ ≤ M . This and the fact that Cε is unbounded imply that for
each ε > 0 there exists (με, uε) ∈ Cε such that ‖uε‖∞ = 1. Now Theorem 5 allows
us to pass to the limit as ε → 0, to find μ+ ∈ [0, M] and ϕ+ ≥ 0, ϕ+ �= 0 such that
ϕ+ = μ+L(ϕ+). From here we also deduce that μ+ > 0 and by the Theorem 2.2 that
ϕ+ > 0. Finally we define λ+

1 = −γ + μ+. ��
Remark In Theorem 2.4 we have only stated the existence of an eigenvalue associated
to a positive eigenfunction, which is the only result we need here. However it can also
be proved that this eigenfunction is simple and that there is a negative eigenfunction
associated to a second eigenvalue λ− ≥ λ+. Actually, nearly all results from [29] can
be extended to (10).

In all that follows we denote the above eigenvalues with λ+(F, p) to emphasize
the weight p.

2.2 Proof of the existence theorem

In this subsection we are going to prove our existence and uniqueness Theorem 1.
Recall that we assume λ+(F, 1) > 0, that is, (C) holds. It follows from the definition
of λ+(F), see [29], that this eigenvalue is monotone in the domain Ω . Hence the first
eigenvalue of F is positive in any subdomain of Ω as well, so the comparison principle
is valid in any subdomain of Ω (including non-smooth ones, as explained in [29], or
as can be seen by approximation).

We now state a comparison theorem for super and sub-solutions of our equation
and regularized version of it.

Theorem 7 (Comparison) Assume F satisfies (S) and (C). Let δ ≥ 0 and u, v ∈
W 2,N

loc (Ω) be respectively a sub- and a super-solution of

H(w) := F(D2w, Dw,w, x) + p(x)(w + δ)−μ = 0 in Ω, (12)

with u ≤ v on ∂Ω . Then u ≤ v in Ω .

Proof Suppose by contradiction that Z = {x ∈ Ω | u > v} is not empty. Let Z∗ be a
connected component of Z and z = v − u. Then, since z = 0 on ∂ Z∗ and p, μ ≥ 0
in Ω , by (C) we get z ≥ 0 in Z∗, a contradiction. ��
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384 P. Felmer et al.

Next we prove the existence and uniqueness of a solution for a regularized ver-
sion of our problem. We consider the eigenvalue λ+

p := λ+(F, p) and the associated
positive eigenfunction ϕ+.

Proposition 1 Assume F satisfies (S) and (C). For every δ > 0 there exists a unique
solution to (12), with uδ = 0 on ∂Ω . Moreover, there are positive constants a, b and
0 < η < 1, independent of δ, such that

aϕ+ ≤ u ≤ b(ϕ+)η in Ω. (13)

Proof Let φ+ be the eigenfunction corresponding to λ+
1 := λ+(F, 1) > 0. We first

observe that

H(aϕ+) = −p(x)(aλ+
p ϕ+ − (aϕ+ + δ)−μ) ≥ 0,

for sufficiently small a > 0, independently of δ > 0. Thus v1 = aϕ+ is a sub-solution
to (12).

Now we take v2 = (φ+)η + bφ+, where b > 0 is chosen later and 0 < η < 1 is a
fixed constant such that η < 2/(μ+1). Computing Dv2, D2v2, and using hypotheses
(H0) and (H1) we see that v2 satisfies

H(v2) ≤ F[(φ+)η] + bF[φ+] + p(x)(v2 + δ)−μ

≤ η(φ+)η−1 F(D2φ+, Dφ+, φ+, x) + (1 − η)γ (φ+)η

+ (η − 1)η(φ+)η−2M−
λ,
(Dφ+ ⊗ Dφ+)

+ bF(D2φ+, Dφ+, φ+, x) + p(x)(v2 + δ)−μ

≤ (φ+)η{−λ+
1 η + (1 − η)γ } − bλ+

1 φ+

+ (η − 1)η(φ+)η−2M−
λ,
(Dφ+ ⊗ Dφ+) + p(x)(φ+)−ημ. (14)

Notice that the matrix Dφ+ ⊗ Dφ+ has |Dφ+|2 as the only nontrivial eigenvalue.
By using Theorem 4 we see that there exists a neighborhood V of ∂Ω such that
|Dφ+| ≥ c0 > 0 in V , that is, for some k > 0

η(φ+)η−2M−
λ,
(Dφ+ ⊗ Dφ+) ≥ k(φ+)η−2, (15)

in V . Now, recalling that η − 1 < 0 and 2 − η > μη, by the fact that φ+ vanishes on
∂Ω and the inequalities (14) and (15), we find that for large b the inequality H(v2) ≤ 0
holds in V . On the other hand, in Ω \ V we find that H(v2) ≤ 0, again by choosing
b large enough.

Using v1 and v2 as a sub- and a super-solution for (12), we may now use the stan-
dard method of monotone iterations, to find a solution uδ for (12), which vanishes on
∂Ω . By the regularity result of [35], uδ is in W 2,N

loc (Ω). Moreover, by enlarging b we
find that uδ ≤ b(ϕ+)η in Ω , so that (13) also holds. ��
Remark In the proof of this proposition we need that λ+(F, 1) > 0 and that the
weighted eigenvalue problem has a solution, but we do not use the sign of λ+(F, p).
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We end this section with a proof of Theorem 1.1, the existence and uniqueness
result for the singular equation.

Proof of Theorem 1.1. Take a sequence δn = 1/n and use Proposition 1 to find a
monotone sequence of solutions un = uδn to Eq. (12) satisfying (13) in Ω . Then, by
Theorem 5 and a standard diagonal procedure, we find a solution u to (1). Uniqueness
follows from Theorem 7. ��

3 Estimates on the solution near the boundary of the domain

The first goal of this section is to obtain a sharp bound for the solutions to (1) near the
boundary of Ω , under some extra assumptions on p. Precisely, we prove the following
theorem:

Theorem 8 Assume F satisfies (S) and (C). Suppose there are constants c1, c2 > 0
such that

c1dα(x) ≤ p(x) ≤ c2dα(x), α ≥ 0, (16)

where d(x) = d(x, ∂Ω). Let u be the solution to (1). Then

(i) If μ < 1 + α then there exist constants a1, a2 > 0 such that

a1d(x) ≤ u(x) ≤ a2d(x), x ∈ Ω.

(ii) If μ = 1 + α then there exist constants a1, a2, D > 0 such that

a1d(x)(D − log d(x))1/(1+μ) ≤ u(x) ≤ a2d(x)(D − log d(x))1/(1+μ).

(iii) If μ > 1 + α then there exist constants a1, a2 > 0 such that

a1d(x)(α+2)/(1+μ) ≤ u(x) ≤ a2d(x)(α+2)/(1+μ), x ∈ Ω.

In what follows we consider the following two operators

F±(u) = M±
λ,
(D2u) ± γ |Du| ± γ u, (17)

which are the extremal operators appearing in hypothesis (H1).
Let us denote by Br the ball with radius r centered at the origin, and set Aρ,R =

{x | ρ < r < R}, for 0 < ρ < R (we denote r = |x |). In our first lemma we construct
an appropriate comparison function, to be used as super-solution for (1) near the
boundary of Ω . Note that this construction can only be done in a small neighbourhood
of the boundary, since F+ contains a positive zero order term, and is therefore not
coercive (that is, its first eigenvalue is not positive) in large domains.
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Lemma 1 Assume α ≥ 0, μ > 0. There exists R0 > 0 such that for every 0 < ρ <

R ≤ R0, C > 0 and M > 0, the problem

F+(v) + C(r − ρ)αv−μ = 0 in Aρ,R, (18)

v = 0 on ∂ Bρ, v = M on ∂ BR, (19)

has a unique positive solution.

Proof Since F+ satisfies (H0)–(H3), by Theorem 6 there exist ϕ+ > 0 and λ+ ∈ R,
such that

F+(ϕ+) + λ+(r − ρ)αϕ+ = 0 in Aρ,R, ϕ+ = 0 on ∂ Aρ,R .

We also have an eigenpair (λ+
1 , φ+) which solves

F+(φ+) + λ+
1 φ+ = 0 in Aρ,R, φ+ = 0 on ∂ Aρ,R,

so, in particular

M+
λ,
(D2φ+) + γ |Dφ+| ≥ (−λ+

1 − γ )φ+ in Aρ,R, φ+ = 0 on ∂ Aρ,R .

Applying the ABP inequality (see [5]) to φ+ we obtain

sup
Ω

φ+ ≤ Cdiam(Aρ,R)(λ+
1 + γ ) sup

Ω

φ+,

so

λ+
1 ≥ C

R − ρ
− γ.

Hence if we choose R0 small enough we have λ+
1 > 0. Thus, proceeding as in the

proof of Proposition 1 and that of Theorem 1.1, we only need to find appropriate sub
and super solutions for

F+(v) + C(r − ρ)α(v + δ)−μ = 0, in Aρ,R, (20)

v = 0 on ∂ Bρ, v = M on ∂ BR, (21)

which are independent of δ > 0. If we consider a small enough then v1 = aϕ+, is a
sub-solution for (18), (19), as we proved in Proposition 1. We observe that v1(ρ) = 0
and v1(R) = 0 < M .

Next we find a super-solution for (18), (19). As in Proposition 1, we consider a
constant 0 < η < 1 such that η < 2/(μ+1). Let us prove that v2 = (φ+)η +bφ+ +v

is a super-solution, with v := M(r − ρ)/(R − ρ). In fact, if we define for a function
w

H(w) = F+(w) + C(r − ρ)α(w + δ)−μ,
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Fully nonlinear equations with singularities 387

we easily check that

H(v2) ≤ F+((φ+)η) + bF+(φ+) + F+(v) + C(r − ρ)α(φ+)−ημ

≤ γ2(1 − η)(φ+)η − bλ+
1 φ+ + F+(v)

+η(η − 1)λ(φ+)η−2|(φ+)′|2 + C(r − ρ)α(φ+)−ημ. (22)

Recalling that η − 2 < −ημ < 0 and α ≥ 0, since we have |(φ+)′(R)| > 0, |(φ+)′
(ρ)| > 0, φ+(ρ) = F+(v̄)(ρ) = 0 and F+(v) ≤ C , for a certain constant C , we see
that the right hand side in (22) is negative near r = ρ and r = R. Then we choose b
large enough so that H(v2) ≤ 0 in the whole interval, completing the proof that v2 is
a super-solution. We notice that v2 satisfy the boundary conditions (19).

Now we take λ0 large enough so that the function

G(s, r) = −C(r − ρ)α(s + v(r) + δ)−μ − λ0s

is decreasing in s for all r ∈ (ρ, R). Then by the usual iteration procedure we can
solve the hierarchy of equations

F(D2wi+1 + D2v, Dwi+1 + Dv,wi+1 + v, r) − λ0wi+1 = G(wi , r), r ∈ (ρ, R),

with Dirichlet boundary conditions wi+1(ρ) = wi+1(R) = 0. The sequence vi =
wi + v is decreasing and bounded, so convergent to a solution of (20, 21). By letting
δ → 0 we then get a solution to our problem. ��

Proof of Theorem 8
Proof of statement (i) We first consider the case α − μ > −1. We start by analyzing
the behavior of the radial solution u of (18, 19), found in Lemma 1. We will prove that
there is a positive constant a2 such that

u(r) ≤ a2(r − ρ), for all r ∈ [ρ, R]. (23)

We will assume, without loss of generality, that R ≤ 1. It is convenient to define the
function θ(s) by θ(s) = 
 if s ≥ 0, and θ(s) = λ if s < 0. Then, since u is radially
symmetric, the eigenvalues of D2u are u′′(r) and u′(r)/r , so by the properties of M+
we have

M+(D2u)(r) = θ(u′′(r))u′′(r) + θ(u′(r))(N − 1)
u′(r)

r
.

Thus u satisfies the equation

θ(u′′(r))u′′ + θ(u′(r))(N − 1)
u′

r
+ γ |u′| + γ u + C(r − ρ)αu−μ = 0. (24)
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In order to write this equation in a simpler form, we define

ν(r) = θ(u′(r))(N − 1)

θ(u′′(r))r
,

ζ(r) = exp

⎛

⎝
r∫

1

ν(s)ds

⎞

⎠ and ζ̃ (r) = ζ(r)

θ(u′′(r))
.

Then (24) can be written as

(ζu′)′ + ζ̃ {−γ |u′| − γ u + C(r − ρ)αu−μ} = 0. (25)

If we set N+ = λ



(N − 1) + 1, and N− = 

λ
(N − 1) + 1, then we easily see that for

all ρ ≤ r ≤ R ≤ 1 we have

N+ − 1 ≤ ν(r)r ≤ N− − 1,

r N−−1 ≤ ζ(r) ≤ r N+−1 and
ζ(r)



≤ ζ̃ (r) ≤ ζ(r)

λ
.

Let r0 = sup{r ∈ [ρ, R] | u′(s) > 0, s ≤ r}. By Hopf’s lemma r0 > ρ. Integrating
for r ∈ (ρ, r0), we find

u′(r) ≤ (ζ(r))−1

r0∫

r

ζ̃ (s)[Ca−μ
1 (s − ρ)α−μ + γ u′(s) + γ u(s)]ds

≤ C

⎧
⎨

⎩1 + 1

ξ(r)

r0∫

r

u′(s)ξ(s) ds +
r0∫

r

(s − ρ)α−μ ds

⎫
⎬

⎭ < ∞,

since α − μ > −1, 0 < c(ρ) ≤ ξ(r), ξ̃ (r) ≤ C , and u is bounded. Thus u′(r) is
bounded for r ∈ [ρ, r0], from which we deduce the existence of a constant a2 such
that u(r) ≤ a2(r − ρ) for all r ∈ [ρ, R], completing the proof of (23).

Now we prove Theorem 8 (i). Since Ω is smooth and bounded we can find ρ > 0
such that for every point x0 ∈ Ω such that d(x0) < ρ, there exist points y0 = y(x0) ∈
∂Ω and z0 = z(x0) �∈ Ω along the normal direction at y0, with |y0 − z0| = ρ.
Set R = 2ρ and decrease ρ, if necessary, to have 2ρ < R0, where R0 was given in
Lemma 1. Note that B(z0, ρ) is an exterior tangent ball to ∂Ω .

Using the hypothesis (16) we see that for all x ∈ Ω ∩ B(z0, R)

p(x) ≤ c2dα(x) ≤ c2(|x − z0| − ρ)α.

Now we consider the solution u of the singular equation (1), given by Theorem 1.1,
together with the solution v of (18, 19) with C ≥ c2 and M = supx∈Ω u(x). By using
Theorem 7 we conclude that u(x) ≤ v(x) for all x ∈ B(z0, R) \ B(z0, ρ). Finally,
using (23) we get that
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u(x0) ≤ v(x0) = v(|x0 − z0|) ≤ a2(|x0 − z0| − ρ) = a2d(x0). (26)

Since x0 is arbitrary among the points x ∈ {x ∈ Ω | d(x) < ρ} we obtain the desired
upper estimate. The lower estimate is given in the proof of Theorem 1.1, thus case (i)
is complete.

Remark Note that only the inequality p(x) ≤ dα(x) was needed for this proof.

Proof of statement (ii) This case can be treated by giving explicit super and sub-solu-
tions as in [18]. Let us construct a super-solution, in order to obtain the upper estimate.
As above, we consider ρ and R = (1 + σ)ρ, with ρ small enough and σ > 0 to be
fixed later. We further assume R = (1 + σ)ρ < 1. We define

u2(r) = C̄(r − ρ)(D − log(r − ρ))1/(1+μ), (27)

where D > 1 + log(2diam(Ω)) and C̄ are chosen later. Setting

h(r) = (D − log(r − ρ))−μ/(1+μ),

a simple computation shows that

u′
2(r) = C̄h(r)(D − log(r − ρ) − 1/(1 + μ)) (28)

u′′
2(r) = −C̄

(1 + μ)(r − ρ)
h(r)

{
1 + μ

1 + μ
(D − log(r − ρ))−1)

}
, (29)

c2(r − ρ)α

uμ
2

= c2h(r)

C̄μ(r − ρ)
, (30)

where we used the assumption μ = α+1. Next we observe that u′
2(r) > 0, u′′

2(r) < 0,
and we claim that σ can be chosen to have

M+
λ,
(D2u2) = λu′′

2 + 
(N − 1)
u′

2

r

≤ − C̄λ h(r)

2(1 + μ)
(r − ρ)−1 (31)

for all r ∈ (ρ, R). In fact, we compute

M+
λ,
(D2u2) = C̄(r − ρ)−1h(r)Aλ,
(r),

where Aλ,
(r) denotes the following expression


(N − 1)(r − ρ)

r

(
D − 1

1 + μ
− log(r − ρ)

)

− λ

1 + μ

(
1 + μ

1 + μ
(D − log(r − ρ))−1

)
.
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Then we see that for every r ∈ (ρ, R)

Aλ,
(r) ≤ − λ

1 + μ
+ 
(N − 1)σ (D − 1

1 + μ
− log σ),

from which we infer that σ can be chosen small enough to verify the claim. Then,
from (17), (31) and the explicit formulae (27)–(30) we easily see that by choosing C̄
large and σ small we obtain

F+(u2) + c2(r − ρ)α

uμ
2

≤ − C̄h(r)

r − ρ

(
1 + k1(r − ρ) log(r − ρ) − k2

C̄μ+1

)
≤ 0.

We may choose C̄ even larger so that u2(R) ≥ M , where M = supx∈Ω u(x). As before
we use Theorem 7 and obtain

u(x0) ≤ u2(x0) = cd(x0)(D − log(d(x0)))
1/(1+μ) (32)

for all x0 ∈ {x ∈ Ω | d(x) < ρ}. By enlarging D, if necessary, we see that this
inequality holds for all x0 ∈ Ω , as desired.

To obtain the lower bound the argument is symmetric. We consider ρ small enough
and

u1(r) = c̄(ρ − r)(D − log(ρ − r))1/(1+μ), (33)

where D and c̄ are chosen later. From the definition of F− given in (17) and the
formulae (28)–(30) we easily see that by choosing c̄ small enough we obtain for
r ∈ (ρ/2, ρ)

F−(u1) + c1(ρ − r)α

uμ
1

≥ c̄h(r)

r − ρ

(
−A
,λ(r) − k1(r − ρ) log(r − ρ) + k2

c̄μ+1

)
,

which is positive for small c̄ > 0, since A
,λ(r) ≤ const. We decrease c̄, if necessary,
so that u1(ρ/2) ≤ m, where

m = min{u(x) | d(x) ≥ ρ/2}.
Now, given x0 ∈ Ω such that d(x0) < ρ/2, there are points y0 = y(x0) ∈ ∂Ω

and z0 = z(x0) ∈ Ω such that |y0 − z0| = ρ and d(x0) = ρ − |x0 − z0|. Now
B(z0, ρ) is an interior tangent ball to ∂Ω . Then we again use Theorem 7 in the annu-
lus B(z0, ρ) \ B(z0, ρ/2), to obtain in particular that

u(x0) ≥ u1(x0) = cd(x0)(D − log(d(x0)))
1/(1+μ). (34)

This inequality holds for all x0 ∈ {x ∈ Ω / d(x) < ρ/2}. By decreasing c even more,
if necessary, we see that this inequality holds for all x0 ∈ Ω , as desired.
Proof of statement (iii) Finally we study the case α + 1 < μ. We take again ρ small
and R = (1 + σ)ρ, with σ to be chosen later. We consider
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u2(r) = C̄(r − ρ)(2+α)/(1+μ), u′
2(r) = C̄(2 + α)

1 + μ
(r − ρ)h(r),

u′′
2(r) = C̄(2 + α)(1 + α − μ)

(1 + μ)2 h(r) and

c2(ρ − r)α

uμ
2

= c2h(r)

C̄μ
, with h(r) = (r − ρ)(2+α)/(1+μ)−2.

Then we claim that, if we choose σ small enough, we have

M+
λ,
(D2u2) ≤ C̄λ

(2 + α)(1 + α − μ)

2(1 + μ)2 h(r) (35)

for all r ∈ (ρ, R). We compute and we find

M+
λ,
(D2u2) = (2 + α)h(r)

1 + μ

(
λ(1 + α − μ)

1 + μ
+ 
(N − 1)(r − ρ)

r

)
.

Since (r − ρ)/r ≤ σ , for all r ∈ (r, R), by choosing σ small enough, the claim
follows. Now, taking into account the formulae obtained above we easily see that, by
choosing c large enough we we obtain

F+(u2) + c2(r − ρ)α

uμ
2

≤ 0.

Then we continue with the comparison exactly as in case (ii).
In order to obtain the lower bound, we proceed as in case (ii), but taking as sub-

solution u1(r) = c̄(r − ρ)(2+α)/(1+μ). This completes the proof of Theorem 8. ��

4 Global regularity of the solution in Ω

In this section we prove Theorem 2, that is, we obtain regularity results in the whole
domain Ω . We notice that interior regularity of the solutions can be obtained by the
general theory as in [35]. However, due to the singularity of the equation at u = 0,
that is, on the boundary of the domain, global regularity requires additional arguments
which we provide in this section. We recall that we have already obtained bounds on
the solutions in Theorem 8.

Our first theorem deals with the case of a strong singularity which occurs when
α − μ + 1 ≤ 0.

Theorem 9 Assume F satisfies (S) and (C).

(i) Assume α + 1 < μ and (16) holds. Then the solution u of (1) is in C
α+2
1+μ (Ω).

(ii) Assume α + 1 = μ and (16) holds. Then the solution u of (1) is in Cβ(Ω), for
all β < 1.
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Proof The first step is to straighten the boundary, which is assumed at least C2-smooth.
This can be done easily by using the computation in the proof of Lemma 6.5 in [16]
and the representation of F as a supremum (or a sup-inf) of linear operators. With
the change of variables each linear operator is modified, but the resulting supremum
satisfies (H0)–(H3), possibly with modified constants. More precisely, if x0 is fixed
point on ∂Ω there exists a neighbourhood Ax0 and a C2-diffeomorphism y = �0(x)

such that �0(Ax0 ∩ ∂Ω) is a hyperplane portion of the boundary of �0(Ax0 ∩Ω), say
a portion of {yN = 0}. From now on we assume u is a viscosity solution in C0(B̄+)

of

F(D2u, Du, u, x) = g(x) in B+, u = 0 on T, (36)

where B+ := BR0 ∩ R
N+ and T = BR0 ∩ ∂R

N+ , for some ball BR0 of small radius R0.
We first consider the case α − μ + 1 < 0. By (H1) and Theorem 8 we know that

the solution of (5) satisfies (36), with a function g such that for some a > 0

|g(x ′, xN )| ≤ ax (α−2μ)/(μ+1)
N in B+. (37)

Let 0 < R2 < R1 < R0 and T2 = BR2 ∩∂R
N+ . There is ρ0 > 0 so that (x ′, 6ρ0) ∈ B+

R1

for all (x ′, 0) ∈ T2. Then fix (x̄ ′, 0) ∈ T2, define xρ = (x̄ ′, 3ρ), for 0 < ρ < ρ0 and
the scaled function

w(y) = u(ρy + xρ)

ρτ1
, y ∈ B3,

where τ1 := (2 +α)/(1 +μ). By Theorem 8 w is bounded independently of ρ in B3,
and satisfies

Fρ[w] := F(D2w, ρDw, ρ2w, ρy + xρ) = gρ(y) in B3, (38)

where gρ(y) = g(ρy+xρ)ρ2−τ1 . By (37) and our choice of τ1 we see that |gρ(y)| ≤ c
for all y ∈ B2, with c independent of ρ. Observe that Fρ satisfies (H0)–(H3), since
ρ ≤ 1. Then we use the interior elliptic estimates for this problem, as in [35], to deduce
that w ∈ C1(B̄2). Thus there exists a constant C independent of ρ, such that

|w(y1) − w(y2)| ≤ C |y1 − y2|, for all y1, y2 ∈ B2.

From this we infer that

|u(x1) − u(x2)| ≤ C |x1 − x2|τ1 , for all y1, y2 ∈ B(xρ, ρ), (39)

where the estimate is uniform in ρ ∈ (0, ρ0) and x̄ ′ ∈ T2.
Next we claim that for a given x̄ ′ the one-dimensional function z(s) = u(x̄ ′, s)

satisfies

|z(s1) − z(s2)| ≤ C |s1 − s2|τ1 , for all s1, s2 ∈ [0, 4ρ0), (40)
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where the constant C can be chosen independently of x̄ ′ ∈ T2. To prove the claim we
define the sequence ρi = (1/2)iρ0 for i ∈ N. We assume first that s1 > s2 > 0 and
later consider the case s2 = 0. Let i ≤ j be indices such that s1 ∈ [2ρi+1, 2ρi ] and
s2 ∈ [2ρ j+1, 2ρ j ]. If i = j then (x̄ ′, s1), (x̄ ′, s2) ∈ B(xρi+1, ρi+1) and (40) holds, by
(39). If j = i + 1 then

|z(s1) − z(s2)|
|s1 − s2|γ ≤ |z(s1) − z(2ρi+1)|

|s1 − s2|γ + |z(2ρ j ) − z(s2)|
|s1 − s2|γ ≤ 2C,

since s1 − s2 ≥ s1 − 2ρi+1 and s1 − s2 ≥ 2ρ j − s2. If i < j + 1 then we have

|z(s1) − z(s2)|
|s1 − s2|γ ≤ |z(s1) − z(2ρi+1)|

|s1 − s2|γ +
k= j−1∑

k=i+1

{ |z(2ρk) − z(2ρk+1)|
|s1 − s2|γ

}

+ |z(2ρ j ) − z(s2)|
|s1 − s2|γ

≤ 2C + C
k= j−1∑

k=i+1

(
1

2

)γ (k−i−1)

≤ kC,

where k > 0 independent of i, j since the series converges, proving the claim in case
s2 > 0. Here we used that s1 − s2 ≥ (1/2)i+1ρ0 = (1/2)i+1−k(2ρk − 2ρk+1) In the
case s2 = 0, we use the continuity of u to obtain that

z(s1) − z(0) = z(s1) − z(2ρi+1) +
k=∞∑

k=i+1

{z(2ρk) − z(2ρk+1)},

from where we proceed as before, completing the proof of the claim.
Then we prove Hölder continuity of u in all B̄+

R2
as follows. Given x = (x ′, xN ), y =

(y′, yN ) ∈ B̄+
R2

we consider two cases:

(i) If we have |x − y| < xN /3 (or |x − y| < yN /3) we just apply (39) in a ball
containing both x and y.

(ii) Otherwise we have

|u(x) − u(x ′, 0)|
|x − y|γ ≤ 3γ |u(x) − u(x ′, 0)|

xγ

N

≤ 3γ C,

|u(y) − u(y′, 0)|
|x − y|γ ≤ 3γ |u(y) − u(y′, 0)|

xγ

N

≤ 3γ C,

by using (40). Since u(x ′, 0) = u(y′, 0) = 0, the Hölder continuity follows.

In case α − μ = −1, we just take any τ1 < 1 and the same argument applies. ��
Next, we are going to show that in the case α − μ + 1 > 0 we can improve the

global regularity of the solution, obtaining a Hölder estimate for the gradient in Ω .
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Here naturally the interesting case occurs when α − μ < 0, since otherwise there is
no singularity on the boundary, and the proof is much easier.

Theorem 10 Assume that F satisfies (S) and (C), and that (16) holds, with α − μ ∈
(−1, 0). Then there exists β ∈ (0, 1) such that the solution u of (1) is of class C1,β(Ω).

In order to prove Theorem 10 we start with a preliminary result, which is an exten-
sion of Theorem 9.31 in [16] to viscosity solutions of fully nonlinear equations with
singular right-hand sides.

Proposition 2 Assume F satisfies (H0)–(H3) and u ∈ C0(B̄+) is a solution of

F(D2u, Du, u, x) = g(x) in B+, u = 0 on T, (41)

where B+ := BR0 ∩ R
N+ and T = BR0 ∩ ∂R

N+ , for some R0 ≤ 1. Suppose that u/xN

is bounded in B+, and for some a > 0

|g(x ′, xN )| ≤ axα−μ
N in B+. (42)

Then there are R1 ∈ (0, R0) and τ, C > 0 such that for all 0 < R ≤ R1

oscB+
R

u

xN
≤ C Rτ .

Proof Suppose first that u ≥ 0. By (42) g ∈ L∞
loc(B+), so u ∈ W 2,p

loc (B+), for each
p < ∞. As in [16] we start by proving that there exists δ > 0 such that

inf
|x ′|<R
xN =δR

v ≤ 2 inf
BR/2,δ

v (43)

for any R ≤ R0, where

v(x) = u(x)

xN
and BR,δ = {x | |x ′| < R, 0 < xN < δR}.

We may assume that the left hand side in (43) is positive, since otherwise the inequality
is trivial, and we normalize so that R = 1 and inf |x ′|<R xN =δR v = 1.

Now we consider in B1,δ the following barrier function

w(x) =
(

1 − |x ′|2 + x1−ν
N − δ1−ν

δ(1−ν)/2

)
xN ,
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where ν is some fixed number in the interval (μ − α, 1). Then we compute

Dw = (−2x1xN , . . . ,−2xN−1xN , 1 − |x ′|2 + δ(ν−1)/2((2 − ν)x1−ν
N − δ1−ν)),

D2w(x) =

⎡

⎢⎢⎢⎢⎢⎣

−2xN 0 . . . 0 − 2x1
0 −2xN . . . 0 − 2x2
...

. . .
...

0 . . . 0 −2xN − 2xN−1

−2x1 . . . −2xN−1 bx−ν
N

⎤

⎥⎥⎥⎥⎥⎦
,

with b = (2 − ν)(1 − ν)/(δ(1−ν)/2). Note that b is large when δ is small.
It is convenient to write D2w(x) = A + B, where

A := diag(−2xN , . . .,−2xN , b(2 − ν)(1 − ν)x−ν
N )

and the matrix B has only two nontrivial eigenvalues, which are ±2|x ′|. To see this
last point, take χ = (x̃, 0) with x̃ ⊥ x ′, x̄± = (x ′,±|x ′|), and check that

B(χ) = 0 and Bx̄± = ±2|x ′|x̄±.

It is simple to check that xN ∈ (0, δ) implies |w|, |Dw| ≤ C in B1,δ . Then we estimate

M−
λ,
(D2w) − γ |Dw| ≥ M−

λ,
(A) + M−
λ,
(B) − γ |Dw|

≥ −
xN (N − 1) + 2(λ − 
)|x ′| + λbx−ν
N − C

≥ 2c0x−ν
N − C ≥ c0x−ν

N ,

provided δ is sufficiently small. On the other hand

M−
λ,
(D2u) − γ |Du| ≤ F[u] + γ |u| ≤ axα−μ

N + C ≤ c0x−ν
N ,

since α − μ > −ν, again for sufficiently small δ. Finally, we observe that w ≤ 0 on
the lateral and the lower boundaries of B1,δ , while w/xN ≤ 1 ≤ u/xN on the upper
boundary of B1,δ . Hence w ≤ u on ∂ B1,δ , and we can apply the usual comparison
principle to the inequality

M−
λ,
(D2w) − γ |Dw| ≥ M−

λ,
(D2u) − γ |Du|

which holds in the strong sense in B1,δ . More precisely, w−u ∈ W 2,p
loc (B1,δ)∩C(B1,δ)

satisfies M+
λ,
(D2(w − u)) + γ |D(w − u)| ≥ 0 in B1,δ and hence is a solution of a

linear inequality to which for instance Theorem 9.1 in [16] applies. So u ≥ w in B1,δ .
Therefore

v ≥
(

1 − |x ′|2 + x1−ν
N − δ1−ν

δ(1−ν)/2

)
≥ 3

4
− δ1−ν/2 ≥ 1

2
in B 1

2 ,δ,
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where the last inequality holds by making δ smaller, if necessary. By removing the
normalization we get (43).

Define now the set

B∗
R/2,δ := {x | |x ′| < R, δR/2 < xN < 3δR/2}.

Then by the Harnack inequality, applied in B∗
R/2,δ , we obtain

sup
B∗

R/2,δ

u ≤ C

(
inf

B∗
R/2,δ

u + R‖ax−ν
N ‖L N (B∗

R/2,δ)

)
. (44)

But ‖ax−ν
N ‖L N (B∗

R/2,δ)
≤ C1 R1−ν and

2

3δ

u

R
≤ v ≤ 2

δ

u

R
in B∗

R/2,δ,

so, using (43) and dividing (44) by R, we obtain

sup
B∗

R/2,δ

v ≤ C

(
inf

B∗
R/2,δ

v + C1 R1−ν

)
≤ C

⎛

⎜⎝ inf|x |<R
xn=δR

v + C1 R1−ν

⎞

⎟⎠

≤ C

(
inf

BR/2,δ

v + C1 R1−ν

)
.

Now we set M = supB2R,δ
v and m = inf B2R,δ

v. We define the positive functions
v1 = M − v, v2 = v − m and the associated u1 = MxN − u, u2 = u − mxN .
Applying the above argument to v1 and v2 we get

sup
B∗

R/2,δ

(M − v) ≤ C(M − m1 + C1 R1−ν)

and

sup
B∗

R/2,δ

(v − m) ≤ C(M1 − m + C1 R1−ν),

where M1 = supBR/2,δ
v1 and m1 = supBR/2,δ

v1. Here we should notice that u1 and
u2 satisfy elliptic equations with modified right-hand sides, which however satisfy
(42) with a replaced by a + 1, provided we restrict to a sufficiently small neighbour-
hood of the boundary. Also, u1 satisfies an equation with the operator F replaced by
G[u] := −F[−u], which also satisfies (H1).

Adding the last two inequalities we obtain

M − m ≤ C(M − m1 + M1 − m + C1 R1−ν),
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which implies

oscBR/2,δ
v ≤ σ(oscB2R,δ

v + C R1−ν),

with 0 < σ = (C − 1)/C < 1. From this and Lemma 8.23 in [16] we obtain τ and C
with the desired property. ��

Proposition 3 Under the hypothesis of Proposition 2, there are numbers R1 ∈ (0, R0)

and β ∈ (0, 1) such that u ∈ C1,β(B̄+
R1

).

Proof It is a direct consequence of Proposition 2 that the function u is differentiable
on T1 = BR1 ∩ ∂R

N+ and that Du(·, 0) ∈ Cτ (T1). We observe that we also have

lim
(x ′,xN )→(x̄ ′,0)

∂u(x ′, 0)

∂xN
− u(x ′, xN )

xN
= 0, (45)

uniformly in (x̄ ′, 0) ∈ T2 = BR2 ∩ ∂R
N+ , for any fixed R2 ∈ (0, R1).

Now, let us consider ρ0 > 0 so that (x ′, 6ρ0) ∈ B+
R1

for all (x ′, 0) ∈ T2 and define
τ1 = min{1 − ν, τ }. Then for any fixed (x̄ ′, 0) ∈ T2 we define xρ = (x̄ ′, 3ρ), for
0 < ρ < ρ0, and the scaled function

w(y) = 1

ρ1+τ1
{u(ρy + xρ) − d0ρ(yN + 3)}, y ∈ B3,

where d0 = d0(x̄ ′) := ∂u(x̄ ′,0)
∂xN

is uniformly bounded. By Proposition 2

u(x) − xN d0(x̄ ′) ≤ Cx1+τ
N ,

so w is a bounded function in B3 satisfying

F(D2w, ρDw + ρ1−τ1 d, ρ2w + ρ2−τ1 dyN , ρy + xρ) = gρ(y),

where gρ(y) = g(ρy + xρ)ρ1−τ1 . By our choice of τ1 we see that |gρ(y)| ≤ c for all
y ∈ B2, with c independent of ρ. Then the interior elliptic estimates for this problem
give a constant β ∈ (0, 1) such that w ∈ C1,β(B1), that is, for some constant C we
have

|Dw(y1) − Dw(y2)| ≤ C |y1 − y2|β, for all y1, y2 ∈ B1.

Here, as in Theorem 9, β and C are independent of ρ and x ′ ∈ T2. We decrease β, if
necessary, so that β ≤ τ1 and we see that, by the definition of w,

|Du(x1) − Du(x2)| ≤ C |x1 − x2|γ , for all x1, x2 ∈ B(xρ, ρ), (46)
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where the estimate is uniform in ρ ∈ (0, ρ0) and x̄ ′ ∈ T2. Hence we can prove, fol-
lowing the same steps as in the proof of Theorem 9, that for any given x̄ ′ the one
dimensional function z(s) = Du(x̄ ′, s) satisfies

|z(s1) − z(s2)| ≤ C |s1 − s2|γ , for all s1, s2 ∈ (0, 4ρ0), (47)

where the constant C can be chosen independent of x̄ ′ ∈ T2.
To extend this to s1 = 0 we need to prove that the gradient of u is continuous in

B̄+
R2

. Observe that

|Du(x ′, xN ) − u(x ′, xN )

xN
| = |Du(x ′, xN ) − D(x ′, ξ)|
≤ C |xN − ξ |γ ≤ C |xN |γ , (48)

where we used the mean value theorem to find ξ ∈ (0, xN ) and then (47), recalling
that this inequality holds uniformly in x ′ ∈ T2. Hence if (x̄ ′, 0) ∈ T2, then by

Du(x ′, xN ) − D(x̄ ′, 0) = Du(x ′, xN ) − u(x ′, xN )

xN
+ u(x ′, xN )

xN
− D(x̄ ′, 0),

we get the continuity, thanks to (45) and (48).
Therefore we can extend (47) to all s ∈ [0, 4ρ0], exactly as in Theorem 9. Then

we can finally prove the global Hölder continuity in B̄+
R2

as follows. Given x =
(x ′, xN ), y = (y′, yN ) ∈ B̄+

R2
, we consider two cases:

(i) If we have |x − y| < xN /3 or |x − y| < yN /3 we just apply (46) in a ball
containing both x and y.

(ii) Otherwise we have, by using (47),

|Du(x) − Du(x ′, 0)|
|x − y|γ ≤ 3γ |Du(x) − Du(x ′, 0)|

xγ

N

≤ 3γ C,

|Du(y) − Du(y′, 0)|
|x − y|γ ≤ 3γ |Du(y) − Du(y′, 0)|

xγ

N

≤ 3γ C,

and

|Du(x ′, 0) − Du(y′, 0)

|x − y|γ ≤ |Du(x ′, 0) − Du(y′, 0)

|x ′ − y′|γ C,

where we used |x − y| ≥ |x ′ − y′| and the Hölder continuity of Du on T2,
as mentioned at the beginning of the proof. Here may need to decrease γ , if
necessary to have γ ≤ τ . ��
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