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Abstract We show that the complex Radon transform realizes an isomorphism
between the quotient-space of residual ∂̄-cohomologies of a locally complete inter-
section algebraic subvariety in a linearly concave domain of CPn and the space of
holomorphic solutions of the associated homogeneous system of differential equations
with constant coefficients in the dual domain in (CPn)∗.

1 Introduction

In this article we consider two related problems: the first one is the description of
infinite-dimensional spaces of ∂̄-cohomologies of subvarieties in linearly concave
domains of CPn in terms of inverse Radon transform of the spaces of holomorphic
solutions of associated systems of differential equations in dual domains, and the sec-
ond one is the realization of the spaces of holomorphic solutions of systems of linear
differential equations in convex domains by Radon transforms of ∂̄-cohomologies of
associated subvarieties in dual domains.

The study of these problems was started by Martineau in [24,25] and was con-
tinued in the papers [2,7,11,16–18]. The main result of Martineau in [24] was inter-
preted in [11] as the existence of an isomorphism defined by the complex Radon
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498 G. M. Henkin, P. L. Polyakov

transform between the space of (n, n−1)∂̄-cohomologies of a linearly concave domain
D ⊂ CPn and the space of holomorphic functions on the dual linearly convex domain
D∗ ⊂ (CPn)∗.

We begin by describing the result that was produced by the study of the problems
mentioned above in [16,18] for the case of complex submanifolds in linearly concave
domains in CPn .

Let (z0, . . . , zn) and (ξ0, . . . , ξn) be the homogeneous coordinates of points z ∈
CPn and ξ ∈ (CPn)∗. Let 〈ξ ·z〉 def= ∑n

k=0 ξk ·zk , and let CPn−1
ξ denote the hyperplane

CPn−1
ξ = {z ∈ CPn : 〈ξ · z〉 = 0}.

Following [11,24] we call a domain D ⊂ CPn a linearly concave domain, if there
exists a continuous family of hyperplanes CPn−1(z) ⊂ D defined for z ∈ D and
satisfying z ∈ CPn−1(z). We notice that in the original definition of linearly concave
domains in [24] the continuity of the family was not required, but the main results of
[11,16,18,24,25] are valid only under the assumption of existence of such family.
The following theorem was obtained in [16].

Theorem 1 Let D be a linearly concave domain in CPn, n ≥ 2, and let D∗ ⊂ (CPn)∗
be the dual domain

D∗ = {ξ ∈ (CPn)∗ : CPn−1
ξ ⊂ D}.

Let V be a (n − m)-dimensional connected algebraic manifold of the form

V = {z ∈ CPn : P1(z) = . . . = Pr (z) = 0},

where homogeneous polynomials P1, . . . , Pr are such that everywhere on V

rank [grad P1, . . . , grad Pr ] = m.

Let VD = V ∩ D, let Z (n−m,n−m−1)(VD) denote the space of ∂̄-closed smooth forms
on VD of bidegree (n − m, n − m − 1), and let H0 (D∗) and H (1,0) (D∗) denote the
spaces of holomorphic functions and respectively holomorphic 1-forms on D∗.
Then the Radon transform

RV : Z (n−m,n−m−1)(VD) → H (1,0)(D∗)

defined by the formula

RV [φ](ξ) =
n∑

j=0

⎛

⎜
⎜
⎝

∫

z∈CPn−1
ξ ∩V

〈ξ · dz〉 z jφ

⎞

⎟
⎟
⎠ dξ j (1)

123



Residual ∂̄-cohomology 499

induces a continuous linear operator on the space of cohomologies

RV : H (n−m,n−m−1)(VD) → H (1,0)(D∗).

Moreover, the following properties are satisfied:

(i) the subspace K erRV ⊂ H (n−m,n−m−1)(VD) is finite-dimensional and consists
of restrictions to VD of ∂̄-cohomologies from H (n−m,n−m−1)(V ),

(ii) the image of RV is the following subspace in H (1,0)(D∗)

RV (H
(n−m,n−m−1)(VD)) =

{

f ∈ H (1,0) (D∗) : f = dg with g ∈ H0 (D∗)

such that

{

Pk

(
∂

∂ξ

)

g = 0

}r

1

}

. (2)

Remarks

• If V ⊂ CPn is a smooth complete intersection, and D ⊂ CPn is a linearly con-
cave domain, then in ([16] Theorem 5.1) an explicit inversion formula for RV is
obtained in the spirit of explicit fundamental principle of [3].

• For m = n − 1 the statement (i) of Theorem 1 is a corollary of the inverse Abel
theorem (see Saint-Donat [33], Griffiths [12]). For m < n − 1 and V —complete
intersection, the statement (i) of Theorem 1 is a consequence of Theorem 3.3 from
[18].

• In the statement (ii) of Theorem 1 if φ ∈ Z (n−m,n−m−1) (VD) is such that φ = ∂ψ

forψ ∈ Z (n−m−1,n−m−1) (VD), then g is the image ofψ under the map introduced
by Andreotti and Norguet (see [1,26]).

The main result of this article is a natural generalization of Theorem 1 to the case
of an arbitrary locally complete intersection in a linearly concave domain. In order to
formulate this theorem we need to introduce some additional definitions and notations.

Throughout the whole article we will denote by D ⊂ CPn a linearly concave
domain and by G = CPn\D its complement. We will also denote by Dδ linearly
concave subdomains of D with smooth boundaries bDδ such that

Dδ ⊂ Dν for ν < δ, and
⋃

δ

Dδ = D.

The existence of a sequence of subdomains with the above properties is proved in
Proposition 2.4. We will denote by Gδ = CPn\Dδ ⊃ G and by G̊ = G\bG.

Definition 1.1 (Locally Complete Intersections) An analytic subvariety V ⊂ CPn is
called a locally complete intersection subvariety in CPn of pure dimension n − m
if there exist a finite open cover {Uα}N

α=1 of CPn and collections of holomorphic
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500 G. M. Henkin, P. L. Polyakov

functions {F (α)k } in Uα , such that

V ∩ Uα = {z ∈ Uα : F (α)1 (z) = · · · = F (α)m (z) = 0} (3)

with the structure sheaf O/I, where O is the structure sheaf of CPn , and I is the
sheaf of ideals defined by {Fαk }m

k=1.

In our construction of ∂̄-closed residual currents on a locally complete intersection
variety V we will use a special vector bundle, the so-called conormal vector bundle.
To describe this bundle we consider a domain U ⊂ CPn , a finite cover {Uα}N

α=1 of
U , and V ⊂ U—a locally complete intersection subvariety in U of pure dimension
n − m, locally defined in Uα by the holomorphic vector function

F(α)(z) =
⎡

⎢
⎣

F (α)1 (z)
...

F (α)m (z)

⎤

⎥
⎦ ,

i.e.

V ∩ Uα = {z ∈ Uα : F (α)1 (z) = · · · = F (α)m (z) = 0}.

Definition 1.2 (Conormal and Dualizing Bundles) The conormal vector bundle N (V )
on a locally complete intersection subvariety V is defined by the nondegenerate ho-
lomorphic transition matrices A−1

αβ (z) ∈ H
(
Uαβ

)
such that

F(α)(z) = Aαβ(z) · F(β)(z) (4)

on Uαβ = Uα ∩ Uβ .
Following [14,15] we define the dualizing bundle on a locally complete intersection

subvariety V as

ω◦
V = ωCPn ⊗ det N (V )−1 (5)

where ωCPn is the canonical bundle on CPn .

Remark Adjunction formula (see Proposition 8.20 in Ch. II of [15]) shows that for
a nonsingular V the bundle defined in (5) coincides with the canonical bundle ωV ,
implicitly used in Theorem 1, making ω◦

V a natural generalization of the canonical
bundle for locally complete intersection subvarieties of CPn .

We define further the spaces of residual currents and of residual ∂̄-cohomologies on
VD , where V ⊂ CPn is a locally complete intersection subvariety, and D a domain in
CPn . In what follows we denote by E the space of infinitely differentiable functions.
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Residual ∂̄-cohomology 501

Definition 1.3 (Residual currents) For a subvariety V ⊂ CPn of the pure dimension
n − m locally satisfying (3) we say that an (n,m + q) current φ with support in V is
a residual current φ ∈ C (0,q)(VD, ω

◦
V ) if there exists a finite collection of open neigh-

borhoods {Uα ⊂ CPn}N
α=1 and differential forms �α ∈ E (n,q)(Uα ∩ D), such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⋃N
α=1 Uα ⊃ V,

〈φ,ψ〉 =
∫

Uα
ψ ∧�α ∧ ∂̄

(
1

F (α)1

)

∧ · · · ∧ ∂̄
(

1

F (α)m

)
def= lim

t→0

∫

T ε{F(α)}(t)

ψ ∧�α
∏m

k=1 F (α)k

,

�α = (det Aαβ) ·�β +∑m
k=1 F (α)k ·(αβ)k on Uα ∩ Uβ ∩ D,

(6)

where ψ ∈ E (0,n−m−q)
c (Uα ∩ D) is a smooth form with compact support in Uα ∩ D,

T ε{F(α)}(t) = {|F (α)1 (z)| = ε1(t), . . . , |F (α)m (z)| = εm(t)}
is a family of tubular varieties depending on the real parameter t , the limit in the right-
hand side is taken along an admissible path {εk(t)}m

1 in the sense of Coleff–Herrera–
Lieberman [4,20], i.e. an analytic map ε : [0, 1] → R

m satisfying the conditions
⎧
⎪⎨

⎪⎩

lim
t→0

εm(t) = 0,

lim
t→0

ε j (t)

εl
j+1(t)

= 0, for any l ∈ N,
(7)

Aαβ are holomorphic matrices from (4), and (αβ)k ∈ E( Uα ∩ Uβ ∩ D).
A residual current φ ∈ C (0,q)(VD, ω

◦
V ) is called ∂̄-closed—φ ∈ Z (0,q)(VD, ω

◦
V ),

if the following condition is satisfied

∂̄�α =
m∑

k=1

F (α)k ·(α)k on Uα ∩ D, (8)

where (α)k ∈ E ( Uα ∩ D).

Remarks

• Condition (7), though looking technical, can not be replaced by a simpler con-
dition ε j (t) → 0, t → 0, j = 1, . . . ,m, as was shown by Passare and Tsikh in
[29].

• Notation in the definition above is substantiated by the fact that the collection

{

�α ∧ ∂̄
(

1

F (α)1

)

∧ · · · ∧ ∂̄
(

1

F (α)m

)}N

α=1

naturally defines a current of type (0, q) on VD with coefficients in holomorphic
bundle ω◦

V defined in (5).
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Definition 1.4 (Residual ∂̄-cohomologies) A ∂̄-closed residual current φ ∈ Z (0,q)

(VD, ω
◦
V ) is called ∂̄-exact (φ ∈ B(0,q)(VD, ω

◦
V )) if there exists a residual current

ψ ∈ C (0,q−1)(VD, ω
◦
V ) such that ∂̄ψ = φ.

Therefore

B(0,q)(VD, ω
◦
V ) ⊆ Z (0,q)(VD, ω

◦
V ),

and the spaces of residual ∂̄-cohomologies of VD of the type (0, q):

H (0,q)(VD, ω
◦
V ) = Z (0,q)(VD, ω

◦
V )/B(0,q)(VD, ω

◦
V )

are well defined.

Before defining the complex Radon transform we introduce an additional notation.
We denote by SV the following set of hyperplanes

SV = {ξ ∈ D∗ : dimC(V ∩ CPn−1
ξ ) �= n − m − 1}.

Using the arguments similar to those in the proof of Bertini’s theorem (see [15]) we
obtain that SV is a subset of an analytic set in D∗.

In the definitions below we define the complex Radon transform of residual currents
and the Fantappié transform of linear functionals in H0(V,O/I)′.

Definition 1.5 (Complex Radon Transform) Let V ⊂ CPn be a locally complete
intersection subvariety of pure dimension n −m. Then we define the Radon transform

RV : Z (0,n−m−1)(VD, ω
◦
V ) → H (1,0)(D∗\SV )

on the space of ∂̄-closed residual currents by the formula (see Proposition 2.5)

RV [φ](ξ) = 1

(2π i)m+1

n∑

j=0

⎛

⎝
N∑

α=1

∫

D

ϑα(z) · z j ·�(n,n−m−1)
α (z)

∧∂̄
(

1

〈ξ · z〉
) m∧

k=1

∂̄

(
1

F (α)k (z)

))

dξ j , (9)

where {ϑα}N
1 is a partition of unity subordinate to a finite cover {Uα}N

1 of D by open
subdomains in CPn , and the forms

{

�(n,n−m−1)
α

m∧

k=1

∂̄

(
1

F (α)k

)}N

α=1

are the local representatives of the current φ.
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Residual ∂̄-cohomology 503

Definition 1.6 (Fantappié Transform) Let V ⊂ CPn be a locally complete intersec-
tion subvariety, let G be a linearly convex compact in CPn , and let I be the sheaf
of ideals, associated with V . We define the Fantappié transform of a linear functional
μ ∈ H0(G,O/I)′ by the formula

FV [μ](ξ) =
n∑

j=0

μ

(
z j

〈ξ · z〉
)

dξ j , (10)

where ξ ∈ D∗ = (CPn\G)∗.

The theorem below is the main result of the present article. In this theorem we
describe the action of the Fantappié and complex Radon transforms on the spaces of
residual cohomologies of linearly concave locally complete intersection subvarieties
of CPn .

Theorem 2 Let

V = {z ∈ CPn : P1(z) = · · · = Pr (z) = 0} (11)

be a locally complete intersection subvariety of pure dimension (n−m)with the struc-
ture sheaf O/I, where I is the sheaf of ideals defined by homogeneous polynomials
{Pk}r

1, r ≥ m. Let D ⊂ CPn be a linearly concave domain, and let D∗ be its dual
domain.

Then transform RV defined in (9) induces a continuous linear operator on the
space of residual ∂̄-cohomologies

RV : H (0,n−m−1)(VD, ω
◦
V ) → H (1,0)(D∗),

and transform FV defined in (10) induces a continuous linear operator

FV : H0(G,O/I)′ → H (1,0)(D∗).

Moreover, transforms RV and FV satisfy the following properties:

(i) Ker FV = {0},Ker RV ⊂ H (0,n−m−1)(VD, ω
◦
V ) is finite-dimensional and

consists of restrictions to VD of classes of residual ∂̄-cohomologies from
H (0,n−m−1)(V, ω◦

V ),
(ii) the images of FV and RV are the following subspaces in H (1,0)(D∗):

Image FV =
{

f ∈ H (1,0)(D∗) : f = dg with g ∈ H0(D∗) such that

{

Pk

(
∂

∂ξ

)

g = 0

}r

1

}

,

Image RV = { f ∈ Image FV : f = FV [μ], where μ(h) = 0 for

∀h ∈ H0(CPn,O/I)},

(12)
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504 G. M. Henkin, P. L. Polyakov

(iii) if V is connected in the sense that dim H0(V,O/I) = 1, then

Image RV = Image FV ,

(iv) for a functional μ ∈ H0(G,O/I)′ defined for h ∈ H0(G,O/I) through the
residual current φ = {�α} by the formula

μ(h) =
N∑

α=1

∫

bDδ

ϑα(z)h(z)�α(z)
m∧

k=1

∂̄

(
1

F (α)k (z)

)

,

the following equality holds

RV [ϕ](ξ) =
(

1

2π i

)m+1

FV [μ](ξ). (13)

Remark • The statements in (ii) of Theorem 2 can be interpreted as versions of the
Ehrenpreis “fundamental principle” for systems of partial differential equations
(see [8,10,27]) in terms of Fantappié and complex Radon transforms instead of
Fourrier-Laplace transform.

• If V is an arbitrary, not necessarily reduced, complete intersection in CPn and
D is a linearly concave domain in CPn , then in [19] an explicit inversion for-
mula for Radon transform RV is obtained together with a formula for solutions of
appropriate boundary value problem for the corresponding system of homogeneous
differential equations with constant coefficients in D∗.

• For the case m = n−1 the statement (i) of Theorem 2 for Radon transform follows
from the result of Fabre [9].

• If V is a complete intersection in CPn , then the property of V to be connected in
the sense of (iii) is always satisfied (see Ex. 5.5 §III.5 in [15]).

• Theorem 2 admits a generalization for analytic subvarieties of a linearly concave
domain D. If m < n − 1, then an analytic subvariety V ′ ⊂ D of D is a trace
of an algebraic subvariety V ⊂ CPn (see [32,35]), and an appropriate version of
Theorem 2 applies. If m = n − 1, then V ′ ⊂ D is a trace of an algebraic curve
V ⊂ CPn if there exists a form φ ∈ Z (0,1)(V ′, ω◦

V ), such that φ �= 0 almost
everywhere on V and RV ′ [φ] ≡ 0 (see [9,12]).

In Sect. 2 we prove the correctness of Definition 1.5 and some properties of RV

and FV , and in Sects. 3 and 4 we prove propositions representing different parts of
Theorem 2.

2 Properties of residual currents

In this section we describe some properties of residual currents used in the proof of
Theorem 2 and prove some properties of the Radon transform defined by formula (9).
In the proposition below we describe the dependence of a local formula for a residual
current on the choice of a basis of the ideal for the case of a complete intersection.
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Residual ∂̄-cohomology 505

Proposition 2.1 Let U ⊂ CPn be a domain in CPn and let V ⊂ U be a com-
plete intersection subvariety of pure dimension n − m in U, defined by two different
collections of holomorphic functions F = {Fk}m

1 and P = {Pk}m
1 such that

F = A · P (14)

where A(z) is a nondegenerate holomorphic matrix-function.
Let {ε(t)} be an admissible path, and let

T ε{F}(t) = {z ∈ U : |F1(z)| = ε1(t), . . . , |Fm(z)| = εm(t)} ,
T ε{P}(t) = {z ∈ U : |P1(z)| = ε1(t), . . . , |Pm(z)| = εm(t)} ,

be the corresponding tubular varieties.
Then for an arbitrary γ ∈ E (n,n−m)

c (U ) we have the following equality

lim
t→0

∫

T ε{P}(t)

γ (z)
∏m

k=1 Pk(z)
= lim

t→0

∫

T ε{F}(t)

det A(z) · γ (z)
∏m

k=1 Fk(z)
. (15)

Proof In the proof of Proposition 2.1 we will use the following proposition describing
the transformation of the Grothendieck’s residue under the change of basis in the ideal
for the case of isolated point in C

n .

Proposition 2.2 [13,36] Let U ∈ C
n be a neighborhood of the origin {0} ∈ C

n and
let P = {P1, . . . , Pn} and F = {F1, . . . , Fn} be two different collections of holo-
morphic functions on U having {0} as an isolated zero, and satisfying (14) with a
nondegenerate holomorphic matrix-function A(z) on U.

Then for an arbitrary function h ∈ Ec(U ) we have the following equality

lim
t→0

∫

T ε{P}(t)

h(z)
∏n

k=1 Pk(z)
= lim

t→0

∫

T ε{F}(t)

det A(z) · h(z)
∏n

k=1 Fk(z)
. (16)

��
To prove equality (15) we use the fibered residual currents from [4]. Namely, we

consider a polydisk Pn = {|zi | < 1, i = 1, . . . , n} ⊂ U such that the restriction of
the projection

π : Pn → Pn−m,

defined by the formulaπ(z1, . . . , zn) = (zm+1, . . . , zn), to V ∩P is a finite proper cov-
ering. Then we use Theorem 1.8.3 from [4] and obtain the existence of a holomorphic
function g on Pn such that dim{V ∩ {|g(z)| = 0}} ≤ n − m − 1, and

lim
t→0

∫

T ε{P}(t)

γ (z)
∏m

k=1 Pk(z)
= lim
δ→0

∫

V ∩{|g(z)|>δ}
res{P,π}(γ, z), (17)
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where

res{P,π}(γ, z) = lim
t→0

∫

T ε{P̃}(t)

γ̃ (zm+1, . . . , zn)
∏n

k=1 P̃k(z)
,

γ̃ (zm+1, . . . , zn) = γ

∣
∣
∣
π−1(zm+1,...,zn)

, P̃k = Pk

∣
∣
∣
π−1(zm+1,...,zn)

,

and z ∈ V ∩ π−1(zm+1, . . . , zn).
Applying Proposition 2.2 to the right-hand side of equality (17) we obtain equality

(15). ��
The next proposition is a reformulation of Theorem 1.7.6(2) from [4], which will

be used in the article.

Proposition 2.3 Let U be a domain in C
n, and let

V = {z ∈ U : F1(z) = · · · = Fm(z) = 0}

be a complete intersection in U. If a differential form� ∈ E (n,n−m)
c (U ) with compact

support in U admits a representation

� =
m∑

k=1

Fk ·�k,

where forms �k ∈ E (n,n−m) (U ) have compact support in U, then

∫

U

�

m∧

k=1

∂̄

(
1

Fk

)

= 0.

��

In the proposition below we prove the existence of a family of smoothly bounded
linearly concave domains approximating D. Existence of such family provides a con-
venient tool in many constructions of the present article.

Proposition 2.4 Let a linearly concave domain D ⊂ CPn admit continuos map
η : D → D∗ satisfying condition 〈η(z) · z〉 = 0. Then there exist a sequence of real
numbers {δn}∞1 such that δn > δm for n < m and limn→∞ δn = 0, and of smoothly
bounded linearly concave domains

Dδn ⊂ D = {z ∈ D : ρδn (z) < 0} (18)

satisfying

Dδn ⊂ Dδm for m > n, and
∞⋃

n=1

Dδn = D. (19)
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Proof We construct a sequence of smoothly bounded linearly concave domains satis-
fying (19) in two steps. On the first step we construct a family of domains exhausting
D∗. We consider the functionρ∗(ξ) = dist(ξ, bD∗) on D∗, and averaging this function
with the kernel Kδ(ζ ) = δ−2n · K (ζ/δ), where

K (ζ ) =
{

Ce1/(|ζ |2−1) if |ζ | < 1,
0 if |ζ | ≥ 1,

and C = (
∫
|ζ |≤1 e1/(|ζ |2−1)dζ )−1, obtain a smooth function

ρ∗
δ (ξ) =

∫

ρ∗(ζ )Kδ(ξ − ζ )dζ

on the set {ξ ∈ D∗ : ρ∗(ξ) > δ}. We define then for ν < δ/2

D∗
δ,ν = {ξ ∈ D∗ : ρ∗

δ (ξ) > 3δ − ν}.

To see that

{ξ ∈ D∗ : ρ∗(ξ) > 4δ} ⊂ D∗
δ,ν ⊂ {ξ ∈ D∗ : ρ∗(ξ) > δ} (20)

for ν < δ/2 we use the inequality

|ρ∗
δ (ξ)− ρ∗(ξ)| =

∣
∣
∣
∣

∫

(ρ∗(ζ )− ρ∗(ξ))Kδ(ξ − ζ )dζ

∣
∣
∣
∣

≤ δ−2n
∫

|ρ∗(ζ )− ρ∗(ξ)|K
(
ξ − ζ

δ

)

dζ

=
∫

|u|≤1

|ρ∗(ξ + δ · u)− ρ∗(ξ)|K (u)du ≤ δ.

Relation (20) shows that the family of domains D∗
δ,ν exhausts the domain D∗.

On the second step we consider the domain

W ∗
δ = {ξ ∈ D∗ : ρ∗(ξ) > δ},

and apply a smoothing procedure, similar to the described above, to the continuous
family of hyperplanes η : D → D∗ restricted to the domain η−1(W ∗

δ ). For z in the
domain

η−1(W ∗
δ ) ∩ U j = {z ∈ η−1(W ∗

δ ) : z j �= 0}

123
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we define

ηi
j,δ′(z) =

⎧
⎪⎨

⎪⎩

∫

ηi (ζ )Kδ′(z − ζ )dζ if i �= j,

η
j
j,δ′(z) = −

∑

i �= j
ηi

j,δ′(z)
zi

z j
,

for δ′ > 0 small enough, and set

ηδ′(z) = (η0,δ′(z), . . . , ηn,δ′(z)),

where

ηk,δ′(z) =
n∑

j=0

ϑ j (z) · ηk
j,δ′(z),

and {ϑ j }n
j=0 is a partition of unity subordinate to the cover {U j } of CPn .

We notice that for every j ∈ (0, . . . , n) we have

n∑

k=0

zk · ηk
j,δ′(z) = 0,

and therefore

n∑

k=0

zk · ηk,δ′(z) =
n∑

k=0

zk ·
⎛

⎝
n∑

j=0

ϑ j (z) · ηk
j,δ′(z)

⎞

⎠

=
n∑

j=0

ϑ j (z) ·
(

n∑

k=0

zk · ηk
j,δ′(z)

)

= 0.

Then we obtain a continuous and smooth in a neighborhood of η−1(D∗
δ ) family of

hyperplanes ηδ′(z) ∈ D∗ such that z ∈ ηδ′(z) for

z ∈ η−1{ξ ∈ D∗ : ρ∗(ξ) > δ}.

We define

D′
δ,ν = {z ∈ D : CPn−1(z) ⊂ D∗

δ,ν} = {z ∈ D : ρδ(z) def= 3δ − ν − ρ∗
δ (ηδ′(z)) < 0},

and applying the Sard’s theorem find ν′ < δ/2 such that Dδ = D′
δ,ν′ has smooth

boundary.
Sequences {δn}∞1 and {Dδn }∞1 satisfying (19) can be chosen as subsequences cor-

responding to an arbitrary sequence of decreasing δn tending to zero as n → ∞ based
on the exhaustion property. To construct an “explicit” sequence {Dδn }∞1 satisfying
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(19) we can choose for example the sequence {δn = δ1/8n−1}∞1 . The numbers δ′n can
be chosen so that

|ρ∗
δn
(ηδ′n (z))− ρ∗

δn
(η(z))| < δn

16
(21)

and therefore |ρ∗
δn
(ηδ′(z))− ρ∗(η(z))| ≤ 17

16δn , for z ∈ η−1{ξ ∈ D∗ : 4δn > ρ∗(ξ) >
δn}.

The boundary of the domain

D′
δn ,νn

= {z ∈ D : 3δn − νn − ρ∗
δn
(ηδ′n (z)) < 0}

will satisfy the condition ρ∗
δn
(ηδ′n (z)) = 3δn − νn , and for z ∈ bD′

δn ,νn
we will have

using (21)

57

16
δn ≥ ρ∗(η(z)) ≥ 21

16
δn .

Since 57
16·8 <

21
16 we obtain that bD′

δn ,νn
∩bD′

δn+1,νn+1
= ∅, and therefore the sequence

Dδn is strictly monotonous. ��
In the next proposition we prove a useful boundary formula for the Radon transform.

As a corollary of this formula we obtain that Definition (9) of the Radon transform RV

coincides with the standard definition of Radon transform for the case of a differential
form on a nonsingular variety V .

Proposition 2.5 Let D ⊂ CPn be a linearly concave domain, let {Uα}N
α=1 be a finite

cover of D, let {ϑα}N
α=1 be a partition of unity subordinate to the cover {Uα}N

α=1, and
let V ⊂ D be a locally complete intersection subvariety of pure dimension n − m,
locally defined in Uα by the holomorphic functions {F (α)k }m

k=1.
Then for a ∂̄-closed residual current φ defined locally by the differential forms

�α ∈ E (n,n−m−1)(Uα)

and a subdomain Dδ ⊂ D with smooth boundary bDδ the following equality holds

N∑

α=1

∫

D

ϑα(z) · z j ·�α(z) ∧ ∂̄
(

1

〈ξ · z〉
) m∧

k=1

∂̄

(
1

F (α)k (z)

)

=
N∑

α=1

lim
τ→0

lim
t→0

∫

T ε{F(α),τ }(t)

ϑα(z)
z j ·�α(z)

〈ξ · z〉 ·∏m
k=1 F (α)k (z)

=
N∑

α=1

lim
t→0

∫

bDδ∩T ε{F(α)}(t)

ϑα(z)
z j ·�α(z)

〈ξ · z〉 ·∏m
k=1 F (α)k (z)

, (22)

123



510 G. M. Henkin, P. L. Polyakov

where

T ε{F(α),τ }(t) =
{

z ∈ Uα : {|F (α)k (z)| = εk(t)}m
k=1,

χ(ξ, z)
def=

N∑

α=1

ϑα(z) · |〈ξ · z(α)〉| = τ

}

with admissible path {εk(t)}m
k=1.

Under the hypotheses of Theorem 2 the transform RV from (9) maps the ∂̄-closed
residual currents on D with support on VD into holomorphic forms on D∗, and induces
a linear map on the spaces of cohomologies.

In the proof of Proposition 2.5 we will use the following two lemmas.

Lemma 2.6 Let U ⊂ CPn be a domain in CPn, let {Uα}N
α=1 be a finite cover of U,

and let V ⊂ U be a locally complete intersection subvariety in U of pure dimen-
sion n − m, locally defined in Uα by holomorphic functions {F (α)k }m

1 . Let ω be a
∂̄-closed residual current with support on V locally defined by the differential forms
α ∈ E (n,n−m−1)(Uα).

Then for an arbitrary function η ∈ Ec(U ) we have

N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

η(z)∂̄ϑα(z) ∧ α(z)
∏m

k=1 F (α)k (z)
= 0. (23)

Proof To prove equality (23) we apply the Stokes’ formula, and using equality

∂̄α =
m∑

k=1

F (α)k ·(α)k

for i = 1 . . . N and Proposition 2.3 obtain

N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

η(z)∂̄ϑα(z) ∧ α(z)
∏m

k=1 F (α)k (z)

= −
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z)∂̄η(z) ∧ α(z)
∏m

k=1 F (α)k (z)

−
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z)η(z) ∧ ∂̄α(z)
∏m

k=1 F (α)k (z)

= −ω
(

N∑

α=1

ϑα · ∂̄η
)

= −ω(∂̄η) = ±∂̄ω(η) = 0.

��
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Lemma 2.7 Let D ⊂ CPn be a linearly concave domain, let V ⊂ D be a locally
complete intersection subvariety of pure dimension n − m, locally defined in Uα by
holomorphic functions {F (α)k }m

1 .
Then for a fixed ξ ∈ D∗\SV and a ∂̄-closed residual current ω defined locally by

the differential forms

α ∈ E (n,n−m−1)(Uα\{〈ξ · z〉 = 0})

the expression

N∑

α=1

lim
t→0

∫

T ε{F(α),τ }(t)

ϑα(z)
α(z)

∏m
k=1 F (α)k (z)

(24)

is well defined, does not depend on τ , and the following equality holds

N∑

α=1

lim
t→0

∫

T ε{F(α),τ }(t)

ϑα(z)
α(z)

∏m
k=1 F (α)k (z)

=
N∑

α=1

lim
t→0

∫

bDδ∩T ε{F(α)}(t)

ϑα(z)
α(z)

∏m
k=1 F (α)k (z)

.

(25)

Proof We fix a sufficiently small μ > 0 and consider for an arbitrary τ > 0 such that
τ < μ a family of nonnegative functions ην ∈ E(D) such that

ην(z) =
⎧
⎨

⎩

0 if χ(ξ, z) < τ − ν,

1 if τ + ν < χ(ξ, z) < μ,

0 if χ(ξ, z) > 2μ,

and such that ην(z) = η(z) for z with χ(ξ, z) > μ, where 1 ≥ η(z) ≥ 0 is a fixed
smooth function.

Applying then the Stokes’ formula we obtain

N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ην(z)∂̄ϑα(z) ∧ α(z)
∏m

k=1 F (α)k (z)

+
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z)∂̄ην(z) ∧ α(z)
∏m

k=1 F (α)k (z)

+
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z)ην(z) ∧ ∂̄α(z)
∏m

k=1 F (α)k (z)
= 0,

123



512 G. M. Henkin, P. L. Polyakov

which we transform using Proposition 2.3 and Lemma 2.6 into

N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z)∂̄ην(z) ∧ α(z)
∏m

k=1 F (α)k (z)
= 0,

and then further into

−
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)∩{τ−ε<χ(ξ,z)<τ+ε}
ϑα(z)∂̄ην(z) ∧ α(z)

∏m
k=1 F (α)k (z)

=
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)∩{μ<χ(ξ,z)<2μ}
ϑα(z)∂̄η(z) ∧ α(z)

∏m
k=1 F (α)k (z)

for arbitrary small τ > 0.
Considering then the limit of the equality above as ν → 0 we obtain the equality

N∑

α=1

lim
t→0

∫

T ε{F(α),τ }(t)

ϑα(z)
α(z)

∏m
k=1 F (α)k (z)

=
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)∩{μ<χ(ξ,z)<2μ}
ϑα(z)∂̄η(z) ∧ α(z)

∏m
k=1 F (α)k (z)

. (26)

The limit in the right-hand side of (26) exists according to the following proposition,
which is a reformulation of item (2) of Theorem 1.7.2 from [4]. ��
Proposition 2.8 Let U be a relatively compact domain in C

n, let

V = {z ∈ U : F1(z) = · · · = Fm(z) = 0}

be a complete intersection subvariety in U, let β ∈ E (n,n−m)
c (U ) be a differential form

with compact support in U, and let T ε{F}(t) be an admissible path. Then the following
limit

lim
t→0

∫

T ε{F}(t)

β(z)
∏m

k=1 Fk(z)

exists.

From the form of the integral in the right-hand side of (26) we conclude that it
doesn’t depend on the choice of τ , and therefore the same is true for the left-hand side
of this equality.
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To prove equality (25) we change the choice of the family of functions ην to the
following:

ην(z) =
{

0 if χ(ξ, z) < τ − ν or ρδ(z) > ν,

1 if χ(ξ, z) > τ + ν and ρδ(z) < −ν,

where ρδ is the function from Proposition 2.4.
Applying then the Stokes’ formula we obtain the equality

N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ην(z)∂̄ϑα(z) ∧ α(z)
∏m

k=1 F (α)k (z)

+
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)
ϑα(z)∂̄ην(z) ∧ α(z)

∏m
k=1 F (α)k (z)

+
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z)ην(z) ∧ ∂̄α(z)
∏m

k=1 F (α)k (z)
= 0,

and then using Lemma 2.6 and Proposition 2.3

−
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)∩{τ−ν<χ(ξ,z)<τ+ν}
ϑα(z)∂̄ην(z) ∧ α(z)

∏m
k=1 F (α)k (z)

=
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)∩{−ν<ρδ(z)<ν}
ϑα(z)∂̄ην(z) ∧ α(z)

∏m
k=1 F (α)k (z)

.

Passing to the limit as ν → 0 we obtain equality (25).

Proof of Proposition 2.5 Equality (22) is an immediate corollary of equality (25). In
view of (22) formula (9) defines a bounded holomorphic function on the intersection
of an arbitrary compact set in D∗ with D∗\SV . Therefore, since SV is a subset of an
analytic set in D∗, there exists a unique extension of this function to D∗.

To prove that RV [φ] = 0 for a ∂̄-exact residual current φn,n−1 we assume the
existence of a current ψ ∈ K(n,n−2)(D) such that equality

〈γ (0,1), φ(n,n−1)〉 = 〈∂̄γ (0,1), ψ(n,n−2)〉

is satisfied for an arbitrary γ (0,1) ∈ E (0,1)c (D).
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Then, using formula (22) and Proposition 2.3 we obtain

RV [φ](ξ) = 1

(2π i)m+1

n∑

j=0

⎛

⎜
⎜
⎝

N∑

α=1

lim
t→0

∫

bDδ∩T ε{F(α)}(t)

ϑα(z)
z j ·�α(z)

〈ξ · z〉 ·∏m
k=1 F (α)k (z)

⎞

⎟
⎟
⎠ dξ j

= 1

(2π i)m+1

n∑

j=0

⎛

⎜
⎜
⎝

N∑

α=1

lim
ν→0

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z)∂̄ην(z) ∧ z j ·�α(z)
〈ξ · z〉 ·∏m

k=1 F (α)k (z)

⎞

⎟
⎟
⎠ dξ j

+ 1

(2π i)m+1

n∑

j=0

⎛

⎜
⎜
⎝

N∑

α=1

lim
ν→0

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z)ην(z)
z j · ∂̄�α(z)

〈ξ · z〉 ·∏m
k=1 F (α)k (z)

⎞

⎟
⎟
⎠ dξ j

= 1

(2π i)m+1

n∑

j=0

(
N∑

α=1

lim
ν→0

〈
z j

〈ξ · z〉 · ∂̄ην, φ
〉)

dξ j

= 1

(2π i)m+1

n∑

j=0

(
N∑

α=1

lim
ν→0

〈
z j

〈ξ · z〉 · ∂̄2ην, ψ

〉)

dξ j = 0,

where

ην(z) =
{

1 if ρδ(z) > ν,

0 if ρδ(z) < −ν.

The equality above allows to define the Radon transform RV [φ] = 0 for an arbitrary
∂̄-exact current φ with support on V ∩ D. ��

In the proposition below we prove the inclusion of the images of FV and RV in
the space of solutions in the right-hand side of (12).

Proposition 2.9 Radon and Fantappié transforms defined in (9) and (10) satisfy the
following properties:

Image FV

⊆
{

f ∈ H (1,0)(D∗) : f =dg with g ∈ H0(D∗) such that

{

Pk

(
∂

∂ξ

)

g = 0

}r

1

}

,

Image RV

⊆ { f ∈ Image FV : f = FV [μ], where μ(h) = 0 for ∀h ∈ H0(CPn,O/I)}.
(27)

Proof For the Fantappié transform of a linear functional μ ∈ H0(G,O/I)′ we have

F[μ] =
n∑

j=0

μ

(
z j

〈ξ · z〉
)

dξ j = dξ g(ξ),
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where

g(ξ) = μ (log〈ξ · z〉) . (28)

We notice that analytic function log 〈ξ · z〉, and therefore g(ξ), is well defined on
D∗(z). It is a corollary of the contractibility of

D∗(z) = {ξ ∈ D∗ : 〈ξ · z〉 = 0}

for any z ∈ D under the condition of existence of a continuous family of hyperplanes
covering the whole D. Namely, as it was proved in [11], the existence of such family
implies the isomorphism

H(CPn\D)′ ∼= H(D∗),

and then the result in [37,38] and the isomorphism above imply the contractibility of
D∗(z).
For g defined in (28) we have

Pj

(
∂

∂ξ

)

(g) = (−1)deg Pj −1(deg Pj − 1)!μ
(

Pj (z)

〈ξ · z〉deg Pj

)

= 0,

which concludes the proof of inclusion for F .
To prove the inclusion for the image of RV we consider for an arbitrary residual
current φ ∈ Z (0,n−m−1)

(
VD, ω

◦
V

)
the analytic functional on H(G)

μφ(h) =
N∑

α=1

lim
t→0

∫

bDδ∩T ε{F(α)}(t)

ϑα(z)
h(z) ·�α(z)
∏m

k=1 F (α)k (z)
.

From Proposition 2.3 we obtain that μφ(h) = 0 for any h ∈ H0(G, I), and therefore
μφ defines a functional on H0(G,O/I). From equality (22) we obtain equality

FV [μφ] = (2π i)m+1 RV [φ],

which implies the inclusion

Image RV ⊆ Image FV

and equality (13).
To conclude the proof of inclusion for the image of RV we have to prove equality

μφ(h) = 0 (29)

for an arbitrary h ∈ H0 (CPn,O/I). To prove this equality we assume that in every
Uα function h is defined in some neighborhood of V ∩ Uα and consider a sequence
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of nonnegative functions ην ∈ Ec(D) approximating the characteristic function of Dδ
as ν → 0. Then, applying the Stokes’ formula in each Uα we obtain the equality

N∑

α=1

lim
t→0

∫

D∩T ε{F(α)}(t)

ϑα(z)∂̄ην(z) ∧ h(z) ·�α(z)
∏m

k=1 F (α)k (z)

+
N∑

α=1

lim
t→0

∫

D∩T ε{F(α)}(t)

ην(z)∂̄ϑα(z) ∧ h(z) ·�α(z)
∏m

k=1 F (α)k (z)
= 0,

which is transformed into equality

N∑

α=1

lim
t→0

∫

D∩T ε{F(α)}(t)

ϑα(z)∂̄ην(z) ∧ h(z) ·�α(z)
∏m

k=1 F (α)k (z)
= 0

after application of Lemma 2.6.
Passing to the limit as ν → 0 in the equality above we obtain equality (29). ��

3 Kernels of RV and FV

In this section we describe the kernels of FV and RV . In the next proposition we prove
the triviality of the kernel of FV .

Proposition 3.1 For the Fantappié transform defined in (10) we have

Ker FV = {0}. (30)

Proof To prove property (30) we use the linear concavity of D and contractibility of
D∗(z) for every z ∈ D, and obtain as in Proposition 2.9 the connectedness of D∗. Then
using the connectedness of D∗ and the Cauchy–Fantappié–Leray integral formula on
G (see [21]) we obtain the density of the set of functions

{
1

ξ0 +∑n
j=1 ξ j u j

}

ξ∈D∗

in H(G), where we used the assumption D ⊃ {z0 = 0} and changed variables in G
to u j = z j/z0.

Then from equality FV [μ] (z0/〈ξ · z〉) = 0 we obtain the equality μ = 0. ��
In the proposition below we prove the necessity of the condition on Ker RV in the

statement (i) of Theorem 2.
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Proposition 3.2 Let V ⊂ CPn be a locally complete intersection subvariety, let D ⊂
CPn be a linearly concave domain. If a residual current φ ∈ Z (0,n−m−1)(VD, ω

◦
V )

admits an extension to CPn as a ∂̄-closed residual current supported on V , then
RV [φ] = 0.

Proof Let φ ∈ Z (0,n−m−1)(VD, ω
◦
V ) be the restriction of a ∂̄-closed residual current

on V . Then from equality (25) in Lemma 2.7 we obtain

RV [φ](ξ) = 1

(2π i)m+1

n∑

j=0

⎛

⎜
⎜
⎝

N∑

α=1

lim
t→0

∫

bDδ∩T ε{F(α)}(t)

ϑα(z)
z j ·�α(z)

〈ξ · z〉 ·∏m
k=1 F (α)k (z)

⎞

⎟
⎟
⎠ dξ j .

We choose an open domain U1 ⊂ G from the cover ∪N
α=1Uα of G such that

U1 = {z ∈ G : τ(z) < 0}

for a function τ ∈ E(G). Then we consider for a fixed μ > 0 a family of smooth
nonnegative functions ην with compact support such that

ην(z) =
{

0 if τ(z) < −μ− ν, or ρδ(z) < −ν
1 if τ(z) > −μ+ ν, and ρδ(z) > ν.

As in Lemma 2.6 we have the equality

N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z)∂̄ην(z) ∧ z j ·�α(z)
〈ξ · z〉 ·∏m

k=1 F (α)k (z)
= 0,

which, after passing to the limit as ν → 0 implies the equality

N∑

α=1

lim
t→0

∫

bDδ∩T ε{F(α)}(t)

ϑα(z)
z j ·�α(z)

〈ξ · z〉 ·∏m
k=1 F (α)k (z)

=
N∑

α=1

lim
t→0

∫

{z∈U1: τ(z)=−μ}∩T ε{F(α)}(t)

ϑα(z)
z j ·�α(z)

〈ξ · z〉 ·∏m
k=1 F (α)k (z)

.
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Choosing the partition of unity such that ϑ1

∣
∣
∣{z∈U1: τ(z)≤−μ} ≡ 1 we obtain

RV [φ](ξ) = 1

(2π i)m+1

n∑

j=0

⎛

⎜
⎜
⎝

N∑

α=1

lim
t→0

∫

bDδ∩T ε{F(α)}(t)

ϑα(z)
z j ·�α(z)

〈ξ · z〉 ·∏m
k=1 F(α)k (z)

⎞

⎟
⎟
⎠ dξ j

= 1

(2π i)m+1

n∑

j=0

⎛

⎜
⎜
⎜
⎜
⎝

lim
t→0

∫

{z∈U1: τ(z)=−μ}∩T ε{
F(1)

}(t)

z j ·�1(z)

〈ξ · z〉 ·∏m
k=1 F(1)k (z)

⎞

⎟
⎟
⎟
⎟
⎠

dξ j .

(31)

Then applying the Stokes’ formula to the form

z j ·�1(z)

〈ξ · z〉 ·∏m
k=1 F (1)k (z)

on the manifold

{z ∈ U1 : τ(z) < −μ} ∩ T ε{F(1)}(t)

with the boundary

{z ∈ U1 : τ(z) = −μ} ∩ T ε{F(1)}(t),

and using Proposition 2.3 we obtain RV [φ] = 0. ��
Remark The referee has drawn our attention to the fact that Proposition 3.2 must be
valid for any current φ ∈ Z (0,n−m−1)(VD, ω

◦
V ) admitting an extension to CPn as a

∂̄-closed current. This is indeed true and can be reduced to the following statement:
If a current φ ∈ Z (0,n−m−1)(VD, ω

◦
V ) ⊂ �(D,K(n,n−1)) is ∂̄-cohomologically equiv-

alent to a ∂̄-closed form � ∈ C (n,n−1)(D), then RV [φ] = R[�], where R[�] is the
standard Radon transform of � defined using the manifold of incidence

{(ξ, z) ∈ D∗ × D : 〈ξ · z〉 = 0}.

(See similar statement for a reduced V on p. 242 in [16].)

In the next Proposition we prove the sufficiency of the condition in the statement
(i) of Theorem 2.

Proposition 3.3 If a ∂̄-closed residual current φ on VD satisfies RV [φ] = 0, then φ
is the restriction to VD of a ∂̄-closed residual current on V .
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Proof Without loss of generality we may assume that the ∂̄-closed forms �α associ-
ated with φ are defined in some linearly concave domain D−δ ⊃ D. We fix ν such that
δ > ν > 0 and extend current φ into CPn by extending the forms �α by the formula
ϑ�α , where

ϑ(z) =
{

1 if z ∈ D−ν,
0 if z /∈ D−δ,

is a smooth function. Then we consider current ψ defined on G̊ by the formula

ψ( f ) =
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z) f (z)
∂̄ϑ(z) ∧�α(z)
∏m

k=1 F (α)k (z)
(32)

for f ∈ Ec(G̊).
Using the Stokes’ formula, Lemma 2.6, and Proposition 2.3 we obtain the following

equality

N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z) f (z)
∂̄ϑ(z) ∧�α(z)
∏m

k=1 F (α)k (z)

= −
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z)∂̄ f (z) ∧ ϑ(z)�α(z)
∏m

k=1 F (α)k (z)

−
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

f (z)ϑ(z)∂̄ϑα(z) ∧ �α(z)
∏m

k=1 F (α)k (z)

−
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

f (z)ϑ(z)ϑα(z) ∧ ∂̄�α(z)
∏m

k=1 F (α)k (z)

= −
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z)∂̄ f (z) ∧ ϑ(z)�α(z)
∏m

k=1 F (α)k (z)
,

i.e. ψ is a current with compact support in G̊ satisfying the condition

ψ = ∂̄ (ϑφ) .
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Considering the extension of ψ to the space of holomorphic functions on G̊ and using
the Stokes’ formula we obtain

N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z)h(z)
∂̄ϑ(z) ∧�α(z)
∏m

k=1 F (α)k (z)

=
N∑

α=1

lim
t→0

∫

bD−ν∩T ε{F(α)}(t)

ϑα(z)h(z)
�α(z)

∏m
k=1 F (α)k (z)

(33)

for a holomorphic h ∈ H(G̊).
Using condition RV [φ] = 0 and introducing variables

u j = z j

z0
for j = 1, . . . , n,

in the neighborhood {z0 �= 0} we obtain the equality

RV [φ]0(ξ) = 1

(2π i)m+1

N∑

α=1

lim
t→0

∫

bD−ν∩T ε{F(α)}(t)

ϑα(u)
�α(u)

(ξ0 +∑n
l=1 ξl · ul) ·∏m

k=1 F (α)k (u)
= 0

for arbitrary ξ ∈ D∗.
From the linear concavity of D and contractibility of D∗(z) for every z ∈ D,

which we pointed out above in Proposition 3.1, we obtain the connectedness of D∗.
Then again using the connectedness of D∗ and the Cauchy–Fantappié–Leray integral
formula on G (see [21]) we obtain the density of the set of functions

{
1

ξ0 +∑n
j=1 ξ j u j

}

ξ∈D∗
δ

in H(G̊). Then the equality

N∑

α=1

lim
t→0

∫

bD−ν∩T ε{F(α)}(t)

ϑα(u)
h(u)�α(u)
∏m

k=1 F (α)k (u)
= 0

holds for an arbitrary h ∈ H(G̊), which implies, according to (33), the equality

ψ (h) =
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z)h(z)
∂̄ϑ(z) ∧�α(z)
∏m

k=1 F (α)k (z)
= 0. (34)
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From the Serre–Malgrange duality (see [23,34]) one can obtain (see [5], §2, Lemma
2.2) that

H0(G̊,O/I)′ = �c(G̊,K(n,n)
I )/∂̄{�c(G̊,K(n,n−1)

I )}, (35)

where I is the sheaf of ideals defined by the polynomials {P1, . . . , Pr } and K(p,q)
I is

the sheaf of germs of currents γ (p,q) on G̊ with compact support in V such that for
any open subset U ⊂ G̊ the current γ satisfies

γ (g · f ) = 0

for any g ∈ H0(U, I) and f ∈ E (n−p,n−q)
c (U ).

From equality (35) applied to the current ψ defined in (32) using (34), we obtain
the existence of β ∈ �c(G̊,K(n,n−1)

I ) satisfying

∂̄β = ψ,

and therefore, the current β − ϑφ is an extension of the current φ into G as a ∂̄-
closed current. The existence of such current is precisely the appropriate modification
of the statement of Theorem 2 mentioned in the remark to this theorem. Namely, if
m < n − 1, V ⊂ D is a locally complete intersection in D, and a ∂̄-closed residual
current φ on VD satisfies RV [φ] = 0, then φ admits a ∂̄-closed extension to a current
γ on CPn satisfying

γ (g · f ) = 0

for any g ∈ H0(U, I) and f ∈ E (n−p,n−q)
c (U ).

If V is a locally complete intersection in CPn , then a residual current extension can
be found. In this case using the partition of unity {ϑα}N

α=1 we rewrite the last equality as

N∑

α=1

∂̄(ϑαβ) = ψ

with currents ϑαβ having compact supports in Uα and satisfying

ϑαβ(g · f (0,1)) = 0

for any g ∈ H0(U, I) and f (0,1) ∈ E (0,1)c (U ).
Using then the result of Dickenstein–Sessa [6] motivated by Palamodov [28] (see

also Theorem 3.4 from [5]) we obtain the existence in {Uα}N
α=1 of a collection of

residual currents θα with compact support in Uα of the form

θα( f ) = lim
t→0

∫

T ε{F(α)}(t)

f (u) ∧�α(u)
∏m

k=1 F (α)k (u)
,
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where�α are ∂̄-closed forms of type (n, n − m − 1) in some neighborhood of Uα ∩ V
with compact support in Uα , such that

∂̄(ϑαβ − θα) = 0.

Therefore, the current ϑφ−θ is an extension of current φ into G as a ∂̄-closed residual
current. ��

4 Images of FV and RV

In this section we complete the proof of Theorem 2 by proving the second part of
statement (ii), namely the inclusions

Image FV ⊇
{

f ∈ H (1,0)(D∗) : f =dg with g ∈ H0(D∗) such that

{

Pk

(
∂

∂ξ

)

g = 0

}r

1

}

,

Image RV ⊇ { f ∈ Image FV : f = FV [μ], where μ(h) = 0 for ∀h ∈ H0(CPn,O/I)},
(36)

and statement (iii) of this theorem.
In the proposition below we prove the inclusion above for the image of the Fantappié

transform.

Proposition 4.1 Under the hypotheses of Theorem 2 for any f = dg ∈ H (1,0) (D∗)
with g satisfying equations

P1

(
∂

∂ξ

)

g = · · · = Pr

(
∂

∂ξ

)

g = 0, (37)

there exists a linear functional μ ∈ H0(G,O/I)′, such that FV [μ] = f .

Proof To prove the proposition we use the following version of the Martineau’s (see
[25]) inversion formula from [11].

Proposition 4.2 (Generalized Martineau inversion formula [11,25].) Let D ⊂ CPn

be a linearly concave domain such that D∗ ⊂ {ξ0 �= 0}, and let g ∈ H0(D∗) be a
holomorphic function of homogeneity 0 on D∗.

Let μg be the linear functional on H(G) defined by the formula (see [11,25])

μg(h) =
∫

bGν

h ·g, (38)

123



Residual ∂̄-cohomology 523

where

g(z) = (−1)

(2π i)n
∂ng

∂ξn
0
(η(z))ω′ (η(z))

n∧

j=1

d

(
z j

z0

)

,

ω′ (η) =
n∑

j=1

(−1) jη j dη1∧
j∨· · · ∧dηn,

and a map η : bGν → D∗ satisfies 〈η(z) · z〉 = 0 for z ∈ bGν .
Then the following equality holds:

F[μg](ξ) = dg(ξ), (39)

or

(−1)

(2π i)n

∫

bGν

zk

〈ξ · z〉
∂ng

∂ξn
0
(η(z))ω′ (η(z))

n∧

j=1

d

(
z j

z0

)

= ∂g

∂ξk
(ξ) for k = 0, . . . , n

for ξ ∈ D∗. ��

Using Proposition 4.2 we construct for an arbitrary g ∈ H0(D∗) the current μg

satisfying equality (39). To prove that μg(h) = 0 for any h ∈ H0(G, I), and that
therefore μg defines a functional on H0(G,O/I) we use the assumption on g, to
obtain the equality

(−1)1+deg Pk (deg Pk)! ·
∫

bGν

z0

〈ξ · z〉1+deg Pk
Pk(z)g(z) = Pk

(
∂

∂ξ

)[
∂g

∂ξ0

]

= 0.

Then from the connectedness of D∗ (see discussion in Proposition 3.1), and therefore
the density of the set of functions

{
z0

〈ξ · z〉1+deg Pk

}

ξ∈D∗

in the space H0(G), we obtain the equality

μg(h · Pk) = (−1)

(2π i)n

∫

bGν

h(z) · Pk(z) · ∂
ng

∂ξn
0
(η(z))ω′ (η(z))

∧
d

(
z j

z0

)

= 0 (40)

for an arbitrary h ∈ H0(G). ��
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We prove the second inclusion from (36) and statement (iii) of Theorem 2 using
the following proposition.

Proposition 4.3 Under the hypotheses of Theorem 2 for any f = dg ∈ H (1,0) (D∗)
with g satisfying equations (37) and μg constructed in Proposition 4.1 satisfying

F[μg] = dg, and μg(h) = 0 for ∀h ∈ H0(CPn,O/I), (41)

there exists a residual current φ ∈ Z (0,n−m−1)(VD, ω
◦
V ), such that RV [φ] = f .

Such current in particular exists if V is connected in the sense that
dim H0(V,O/I) = 1.

Proof To construct a ∂̄-closed residual current with support on VD , such that its Radon
transform coincides with dg, we need an identification described below.

First we consider the following equality of Hartshorne (see [15], Ch.III, Corollary
7.7, Theorem 7.11), specifying the results of Serre [34], Grothendieck [14], Ramis,
Ruget, Verdier [30,31] for locally complete intersections

H0(V,O/I)′ ∼= Hn−m(V, ω◦
V ), (42)

where I is the sheaf of germs of ideals corresponding to V , and ω◦
V = ωCPn ⊗

det N (V )−1 is the dualizing sheaf of V defined earlier in (5).
Using the exactness of the ∂̄-complex of sheaves

0 → O/I ⊗ ωCPn → O/I ⊗ E (n,0) ∂̄→ · · · ∂̄→ O/I ⊗ E (n,n) → 0,

which follows from the Malgrange’s theorem on O-flatness of E (see [22], n◦25, Th. 2),
we obtain the equality

Hn−m(V, ω◦
V )

∼= Hn−m
∂̄

(V, ω◦
V )

∼= {φ ∈ E (n,n−m)(U, det N (V )−1) : ∂̄φ ∈ I ⊗ E (n,n−m+1)(U, det N (V )−1)}
{φ ∈ ∂̄E (n,n−m−1)(U, det N (V )−1)+ I ⊗ E (n,n−m)(U, det N (V )−1)}

(43)

for a small enough neighborhood U ⊃ V .
On the other hand, for any representative � ∈ Hn−m

∂̄

(
V, ω◦

V

)
using the Coleff-

Herrera theory we can construct a linear functional on H0 (V,O/I) by the formula

〈φ, h〉 =
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z)
h(z)�α(z)
∏m

k=1 F (α)k (z)
, (44)

explicitly defining the isomorphism in (42).
Continuing then with the construction of the sought current we observe that for an

arbitrary fixed δ > 0 and the analytic functional μg on H(G̊δ) defined in (38) we can
use equality (35) and obtain the existence of a current ψ(δ) ∈ �c(G̊δ,K(n,n)

I ) with
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support in V ∩ G̊δ , coinciding with the analytic functional μg on H(G̊δ) defined in
(38). Considering current ψ(δ) as a current on V and using equality (40) we obtain the
existence of a ∂̄-closed differential form

�(δ) ∈ E (0,n−m) (V, ω◦
V

)

corresponding to μg by equality (42) and such that

ψ(δ)(h) =
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(z)
h(z)�(δ)α (z)
∏m

k=1 F (α)k (z)
(45)

by equality (44).
Using condition (41) for functional μg and equality (43) we obtain that the func-

tional in (45) is equal to zero, i.e. ψ(δ) = 0 in Hn−m
∂̄

(V, ω◦
V ). Therefore, there exists

an element

�(δ) ∈ E (0,n−m−1)(U, ω◦
V )

in some neighborhood U of V such that

∂̄�(δ)|V = �(δ)|V .

Since�(δ) has a support in Gδ , it follows that the restriction of the form�(δ) to Dδ is
a ∂̄-closed form on V ∩ Dδ , and the current

θ(δ)(γ (0,1)) =
N∑

α=1

lim
t→0

∫

T ε{F(α)}(t)

ϑα(ζ )
γ ∧�(δ)α (ζ )
∏m

k=1 F (α)k (ζ )

is a ∂̄-closed closed residual current in Dδ with support in V ∩ Dδ .
Applying the Radon transform to the current θ(δ) and using equality (25) we obtain

the equality

RV [(2π i)m+1 · θ(δ)] =
n∑

j=0

⎛

⎜
⎜
⎝

N∑

α=1

lim
t→0

∫

bDδ∩T ε{F(α)}(t)

ϑα(z)
z j ·�(δ)α (z)

〈ξ · z〉 ·∏m
k=1 F (α)k (z)

⎞

⎟
⎟
⎠ dξ j

=
n∑

j=0

⎛

⎜
⎜
⎝

N∑

α=1

lim
t→0

∫

G∩T ε{F(α)}(t)

z j ·�(δ)α (z)

〈ξ · z〉 ·∏m
k=1 F (α)k (z)

⎞

⎟
⎟
⎠ dξ j

=
n∑

j=0

ψ(δ)
(

z j

〈ξ · z〉
)

dξ j =
n∑

j=0

μg
(

z j

〈ξ · z〉
)

dξ j

= F[μg](ξ) = dg(ξ). (46)
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Using the same arguments as above we construct currentsψ(δ
′) and θ(δ

′) for an arbitrary
δ′ < δ. Then, from (46) we obtain the equality

RV [θ(δ) − θ(δ
′)](ξ) = 0

for ξ ∈ D∗
δ , and therefore, applying Proposition 3.3 to the current θ(δ) − θ(δ

′) on Dδ
we obtain the existence of a ∂̄-closed current ω(δ) on V , such that

θ(δ) + ω(δ)|V ∩Dδ = θ(δ
′),

and therefore

∂̄θ (δ) = ∂̄θ (δ
′) = ψ(δ

′). (47)

The equality above shows that the support of ∂̄θ (δ) belongs to Gν with arbitrary ν > 0,
i.e. the restriction of the constructed residual current θ(δ) to D is a ∂̄-closed current
satisfying (46).

This completes the proof of the second inclusion in (36).
To prove statement (iii) of Theorem 2 we notice that if dim H0(CPn,O/I) = 1, then
using equality

μg(1) = μg
(

z0

1 · z0 + 0 · z2 + · · · + 0 · zn

)

= [Fμg]0(1, 0, . . . , 0)

= ∂g

∂ξ0
(1, 0, . . . , 0) = 0,

we obtain that functional μg is equal to zero on H0 (CPn,O/I), and therefore using
equality (43) we obtain that ψ(δ) = 0 in Hn−m

∂̄
(V, ω◦

V ). The rest of the proof in this
case goes exactly as in the proof of (36). ��
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