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Abstract We study the dynamics of possibly singular foliations by Riemann
surfaces. The main examples are holomorphic foliations by Riemann surfaces in pro-
jective varieties. We introduce the heat equation relative to a positive ∂∂-closed cur-
rent and apply it to the directed currents associated with Riemann surface laminations
possibly with singularities. This permits to construct the heat diffusion with respect
to various Laplacians that could be defined almost everywhere with respect to the
∂∂-closed current. We prove two kinds of ergodic theorems for such currents: one
associated to the heat diffusion and one of geometric nature close to Birkhoff’s aver-
aging on orbits of a dynamical system. Here the averaging is on hyperbolic leaves and
the time is the hyperbolic time. The heat diffusion theorem with respect to a harmonic
measure is also developed for real laminations.
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332 T.-C. Dinh et al.

Equation de la chaleur et théorèmes ergodiques pour les
laminations par surfaces de Riemann

Résumé On étudie la dynamique des feuilletages, éventuellement singuliers, par
surfaces de Riemann. Les exemples principaux sont les feuilletages dans des variétés
projectives. Nous introduisons l’équation de la chaleur relative à un courant positif ∂∂
fermé et nous appliquons cette approche aux courants associés à un feuilletage (ou à
une lamination) par surfaces de Riemann. Nous démontrons deux types de théorèmes
ergodiques. Le premier concerne la diffusion de la chaleur relativement aux courants
dirigés par un feuilletage. Le second est analogue au théorème ergodique de Birkhoff.
On moyenne sur les feuilles revêtues par le disque de Poincaré, le temps étant le temps
hyperbolique. La convergence a lieu pour presque tout point de base (relativement au
courant). Nous développons également la théorie de la diffusion de la chaleur dans le
cas des feuilletages réels, sans hypothèse de géométrie bornée, mais relativement à
une mesure harmonique donnée.

Notation

Throughout the paper, D denotes the unit disc in C, rD denotes the disc of center 0
and of radius r and DR ⊂ D is the disc of center 0 and of radius R with respect to the
Poincaré metric on D, i.e. DR = rD with R := log[(1 + r)/(1 − r)]. Poincaré metric
on a Riemann surface, in particular on D and on the leaves of a lamination, is given
by a positive (1, 1)-form that we denote by ωP . The notation U � B×T is a flow box
which is often identified with an open set of the lamination. Here, T is a transversal and
B is an open set in R

n for real laminations or in C for Riemann surface laminations.

1 Introduction

The main goal of this paper is to prove ergodic theorems for possibly singular compact
foliations by Riemann surfaces in complex manifolds. The main examples of such foli-
ations are foliations by Riemann surfaces in the complex projective space P

k of arbi-
trary dimension (in which case there are always singularities) or in algebraic manifolds.

The dynamics of foliations in P
2 with the line at infinity invariant is well-under-

stood (see the recent book by Ilyashenko–Yakovenko [24]). The analysis relies on the
study of the holonomy group on the line at infinity. However, as shown by Jouanolou
[25] in dimension 2 and by Lins Neto–Soares [29] for arbitrary k, generic foliations
of degree d in P

k do not have an invariant algebraic curve. So, it is not clear where to
start the analysis.

In order to develop an ergodic theory of foliations, Garnett [21] introduced the
notion of harmonic measure for non singular foliations. In [1] it was shown that for
a foliation by Riemann surfaces in a compact complex manifold with finitely many
singular points, there exists a positive current directed by the foliation which is ∂∂-
closed. Considering the trace of the current with respect to a Hermitian form gives
a harmonic measure with respect to that Hermitian metric (see Sect. 5 below). More
general cases are considered in [1] and in [17].
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Heat equation and ergodic theorems for Riemann surface laminations 333

Surprisingly enough, Bonatti et al. [3,4] have shown a unique ergodicity result
for non singular foliations obtained by suspensions (Ricatti equation). They use deep
results on the geodesic flows.

Fornæss and the third author [19] have shown that foliations in P
2,with hyperbolic

singularities and without algebraic leaves are uniquely ergodic in the following sense.
There is a unique positive ddc-closed current T of mass 1 tangent to the foliation. This
implies in particular the following. Let φa : D → La denote a universal covering map
of the leaf La passing through a with φa(0) = a. Then, the sequence of currents

Ta,R := 1

MR
(φa)∗

(
log+ r

|ζ |
)

with R := log
1 + r

1 − r

converges to T as R → ∞ independently of the leaf La . Here, MR is a constant
to normalize the mass so that the current Ta,R has mass 1. The theorem is based on
a cohomological intersection theory for positive ddc-closed currents. This theory is
useful only in dimension two. Observe that the foliations considered in that result are
generic among foliations of fixed degree.

In the present paper, we deal with foliations in manifolds of arbitrary dimension.
We obtain in particular the following result with the notation as above.

Theorem 1.1 Let M be a Hermitian complex compact manifold. Let F be a foliation
by Riemann surfaces on M with a finite number of singularities. Assume that all the
singularities are linearizable. Let T be an extremal positive ddc-closed current of
mass 1 tangent to the foliation. Assume that T has no mass on the union of parabolic
leaves, i.e. the leaves which are not uniformized by the unit disc. Then, Ta,R → T
as R → ∞ for T -almost every a. Moreover, if φa : D → La denotes as above a
universal covering map, then

∫

DR

|φ′
a(ζ )|2(r − |ζ |) · idζ ∧ dζ � log

1

1 − r
as R → ∞

for T -almost every a.

If ω denotes a Hermitian metric on M, we can also express the previous result as

1

MR
(φa)∗

(
log+ r

|ζ |
)

∧ ω → T ∧ ω as R → ∞.

In which case T ∧ ω is identified with a harmonic measure in the usual sense (see
Sect. 7 below).

For foliations in P
k of degree d > 1,Glutsyuk [23] and Lins Neto [28] have shown

that if all the singular points have non degenerate linear part, then the leaves of the
foliation are covered by the unit disc. Hence, the previous theorem applies if we just
assume that the singularities are linearizable. This is the generic case for foliations
of degree d. Brunella [2] has shown that generic foliations of degree d do not admit
a positive closed current tangent to the foliation. So, we have to study the statistical
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behavior with respect to ddc-closed currents. We obtain the above result as a conse-
quence of a Birkhoff type ergodic theorem for abstract laminations, with singularities,
by Riemann surfaces with leaves covered by the unit disc (see Theorem 7.1 below).
The invariant measure in the classical Birkhoff’s theorem (see [27]) is replaced by a
ddc-closed current directed by the laminations, the Birkhoff sums are replaced by the
averaging on leaves given by the current Ta,R and the time is replaced by the hyperbolic
time in the unit disc. The theorem also applies to laminations without singularities.
The reader will find a number of examples of laminations by Riemann surfaces in the
survey paper by Ghys [22], in [18] and also in [20]. In the study of the complex Hénon
maps, natural laminations with a finite number of singularities appear [16].

The other objective of this paper is to develop the study of the diffusion of the heat
equation for laminations (possibly with singularities) with respect to a positive ddc-
closed current tangent to the lamination. This permits to extend the classical theory
of Garnett [21] and Candel [7] to foliations with singularities or to foliations with not
necessarily bounded geometry.

When F is a smooth foliation of a compact Riemannian manifold (M, g) with
smooth leaves (or more generally a lamination by Riemannian manifolds), Garnett
[21] has studied a diffusion process on the leaves of the foliation. The metric g induces
a Laplace operator � along the leaves and the diffusion process is associated to the
heat equation

du

dt
−�u = 0 and u(0, ·) = u0.

Since the leaves have bounded geometry, the classical theory, based on Malliavin [30]
and McKean [31] analytic estimates, applies and one can study the diffusion pro-
cess associated to that equation. L. Garnett proved also an ergodic theorem for the
semi-group S(t) of diffusion operators associated to the heat equation. Recall that a
positive harmonic measure for F is a positive measure m such that 〈�u,m〉 = 0
for all smooth functions u. The measure m can be decomposed in a flow box as an
average of measures on plaques which are given by harmonic forms. We refer to
Candel–Conlon [7,8] and Walczak [37] for a more recent treatment of L. Garnett’s
theory. Their approach relies on uniform estimates of the heat kernel using that the
leaves have bounded geometry with respect to a smooth Riemannian metric.

Candel gives in [7] a nice treatment of L. Garnett’s theory. He studies the regularity
of the heat equation using spaces of differentiable functions. The theory does not apply
to Riemann surface laminations with singularities, e.g. to the study of polynomial vec-
tor fields in C

k+1, for which we can associate a foliation in P
k . More precisely, let

F(z) :=
k∑

j=0

Fj (z)
∂

∂z j

with Fj homogeneous polynomials of degree d ≥ 1 without non-trivial common fac-
tor. It induces a foliation with singularities in P

k .The singularities correspond either to
indeterminacy points of F = [F0 : · · · : Fk] or to fixed points of F in P

k . In general,
the leaves are not of bounded geometry nor even complete for the induced metric.
They have bounded geometry with respect to the Poincaré metric on the leaves that
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Heat equation and ergodic theorems for Riemann surface laminations 335

we will consider, but then the metric is not in general transversally smooth. Moreover,
the regular part of the foliation is not compact.

Here we construct the heat diffusion in a slightly different context. We consider
compact laminations by Riemann surfaces with singularities in a Hermitian manifold
or abstract laminations by Riemannian leaves without singularities. In the real case,
assume that we have a Laplacian � along leaves such that for a test function u, reg-
ular enough, �u is continuous. Then, an application of the Hahn–Banach theorem
permits to obtain a harmonic measure m, see e.g. Garnett [21]. In the complex case
with singularities, the construction of m is different, see [1]. One has to use the notion
of plurisubharmonic functions. They have the property to be subharmonic on every
leaf independently of the lamination. One can also use an averaging process as in [17].
We get a positive ∂∂-closed current directed by the foliation.

When such a current is given, we can consider other natural Laplacians. They
are obtained by considering Hermitian forms on the foliation which vary measurably
in the transversal directions. We then get harmonic measures m with respect to these
Laplacians and we introduce a heat equation associated to m.We can develop a Hilbert
space theory with respect to that equation using Lax–Milgram and Hille–Yosida
theorems. More precisely, given u0 in the domain Dom(�) of �, we solve

du

dt
= �u and u(0, ·) = u0

with u(t, ·) ∈ Dom(�). The theory is sufficient to get an ergodic theorem for that
diffusion. So, we rather get the heat equation in the space (M,F ,m). The Laplacians
are not necessarily symmetric operators in L2(m) and the natural ones depend on m.
The idea is to consider the heat equation on a highly irregular object: the harmonic
current. We replace manifolds and foliations by currents. Consequently, we can relax
the assumption of smoothness. Our metrics are only transversally measurable and the
most interesting one is defined only almost everywhere with respect to the current. It
is the one which gives a self adjoint Laplacian and for which we can prove that the
heat diffusion is mixing. The question of speed of mixing for appropriate classes of
observables is open.

For clarity, we first develop the theory of the heat diffusion with respect to a har-
monic measure in the context of real laminations without singularities. So, we give
a self-contained proof of the ergodic theorem in the Riemannian case without any
use of bounded geometry nor delicate estimates on the heat kernel. This will permit
further generalizations. We get also the mixing for the diffusion associated to a natural
Laplacian with coefficients defined only m-almost everywhere. We then apply the same
ideas to the complex case with singularities. In some sense, we treat harmonic measures
and ddc-closed currents as manifolds and we solve the heat equation relatively to those
measures and currents. The case of ∂-equation induced on a current was studied by
Berndtsson and the third author in [1]. The methods here are however quite different.

In Sect. 2 we discuss some general facts about harmonic currents on real or complex
laminations.

In Sect. 3 we introduce the Poincaré metric on leaves. The main point there is the
introduction of a measurable way to choose “good large discs” on the leaves (Corollary
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3.3 will be crucial in our proof of Theorem 7.1). The results are written for locally
compact laminations with hyperbolic leaves.

In Sect. 4 we give precise estimates for the Poincaré metric on a “hyperbolic folia-
tion” with linearizable singularities. This permits to introduce the trace measure of a
positive ddc-closed current with respect to the Poincaré metric on a foliation.

In Sect. 5 we develop the theory of the heat diffusion with respect to a harmonic
measure. This allows us to develop the classical theory of L. Garnett and A. Candel
without any smoothness assumption on the transverse regularity of the laminations.
We obtain in particular an ergodic theorem and mixing results for the heat diffusion
in a quite general context.

In Sect. 6 we study the heat equation with respect to a positive ddc-closed current
T of bidimension (1, 1) with very weak regularity assumptions. The fact that the cur-
rent is associated to a lamination is not needed, though the main application we have
in mind is singular foliations by Riemann surfaces in complex manifolds. We obtain
ergodicity and mixing results for the heat equation with respect to a harmonic measure
for these foliations. We also prove L p ergodic theorems, 1 ≤ p < ∞, for foliations
with singularities.

A Birkhoff’s type ergodic theorem is given in Sect. 7. The proof of this result uses
the preliminary results from Sect. 3 to 6. We need only that Poincaré metric is trans-
versally measurable. In some important cases this metric is known to be continuous
out of the singularities [6,9,18,28]. It turns out that this continuity would not simplify
very much our study.

2 Currents on a lamination

In this section, we will give some basic notions and properties of currents for lamina-
tions. We refer to Demailly [13] and Federer [15] for currents on manifolds.

Let X be a locally compact space. Consider an atlas L of X with charts

�i : Ui → Bi × Ti ,

where Ti is a locally compact metric space, Bi is a domain in R
n and �i is a homeo-

morphism defined on an open subset Ui of X . We say that (X,L ) is a real lamination
of dimension n if all the changes of coordinates �i ◦�−1

j are of the form

(x, t) �→ (x ′, t ′), x ′ = �(x, t), t ′ = 	(t)

where �,	 are continuous functions, � is smooth with respect to x and its partial
derivatives of any order with respect to x are continuous.

The open set Ui is called a flow box and the manifold�−1
i {t = c} in Ui with c ∈ Ti

is a plaque. The property of the above coordinate changes insures that the plaques
in different flow boxes are compatible in the intersection of the boxes. A leaf L is
a minimal connected subset of X such that if L intersects a plaque, it contains the
plaque. So, a leaf L is a connected real manifold of dimension n immersed in X which
is a union of plaques. It is not difficult to see that L is also a lamination. We will
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Heat equation and ergodic theorems for Riemann surface laminations 337

only consider oriented laminations, i.e. the case where the �i preserve the canonical
orientation on R

n . So, the leaves of X inherit the orientation given by the one of R
n .

A transversal in a flow box is a closed set of the box which intersects every plaque in
one point. In particular, �−1

i ({x} × Ti ) is a transversal in Ui for any x ∈ Bi . In order
to simplify the notation, we often identify Ti with�−1

i ({x} × Ti ) for some x ∈ Bi or
even identify Ui with Bi × Ti via the map �i .

From now on, we fix an atlas on X which is locally finite. For simplicity, assume
that the associated local coordinates extend to a neighbourhood of the closure of each
flow box in the atlas. If � : U → B × T is such a flow box, we assume for simplicity
that B is contained in the ball of center 0 and of radius 3 in R

n and T is a locally
compact metric space of diameter ≤ 1. If the lamination is embedded in a Riemannian
manifold, it is natural to consider the metric on that manifold. In the abstract setting,
it is useful to introduce a metric for the lamination. First, consider the metric on the
flow box U � B × T which is induced by the ones on R

n and on T. So, the flow box
has diameter ≤ 7 with respect to this metric. Consider two points a, b ∈ X , a sequence
a0, . . . , am with a0 = a, am = b and ai , ai+1 in a same flow box Ui . Denote by li the
distance between ai and ai+1 in Ui . Define the distance between a, b as the infimum
of

∑
li over all choices of ai and Ui . This distance is locally equivalent to the distance

in flow boxes.
We recall now the notion of currents on a manifold. Let M be a real oriented man-

ifold of dimension n. We fix an atlas of M which is locally finite. Up to reducing
slightly the charts, we can assume that the local coordinates system associated to each
chart is defined on a neighbourhood of the closure of this chart. For 0 ≤ p ≤ n and
l ∈ N, denote by D

p
l (M) the space of p-forms of class C l with compact support in

X and D p(X) their intersection. If α is a p-form on X , denote by ‖α‖C l the sum of
the C l -norms of the coefficients of α in the local coordinates. These norms induce
a topology on D

p
l (M) and D p(M). In particular, a sequence α j converges to α in

D p(M) if these forms are supported in a fixed compact set and if ‖α j − α‖C l → 0
for every l.

A current of degree p and of dimension n − p on M (a p-current for short) is a
continuous linear form T on Dn−p(M)with values in C. The value of T on a test form
α in Dn−p(M) is denoted by 〈T, α〉 or T (α). The current T is of order ≤ l if it can
be extended to a continuous linear form on D

n−p
l (M). The order of T is the minimal

integer l ≥ 0 satisfying this condition. It is not difficult to see that the restriction of T
to a relatively compact open set of M is always of finite order. Define

‖T ‖−l,K := sup
{
|〈T, α〉|, α ∈ Dn−p(M), ‖α‖C l ≤ 1, supp(α) ⊂ K

}

for l ∈ N and K a compact subset of M . This quantity may be infinite when the order
of T is larger than l.

Consider now a real lamination of dimension n as above. The notion of differential
forms on manifolds can be extended to laminations, see Sullivan [35]. A p-form on X
can be seen on the flow box U � B × T as a p-form on B depending on the parameter
t ∈ T. For 0 ≤ p ≤ n, denote by D

p
l (X) the space of p-forms α with compact support

satisfying the following property: α restricted to each flow box U � B×T is a p-form
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of class C l on the plaques whose coefficients and all their derivatives up to order l
depend continuously on the plaque. The norm ‖ · ‖C l on this space is defined as in the
case of real manifold using a locally finite atlas of X . We also define D p(X) as the
intersection of D

p
l (X) for l ≥ 0. A current of bidegree p and of dimension n − p on X

is a continuous linear form on the space Dn−p(X) with values in C. A p-current is of
order ≤ l if it can be extended to a linear continuous form on D

n−p
l (X). The restric-

tion of a current to a relatively compact open set of X is always of finite order. The
norm ‖ · ‖−l,K on currents is defined as in the case of manifolds. The following result
gives us the local structure of a current. It shows in particular that we can consider the
restriction of a current to a measurable family of plaques.

Proposition 2.1 Let T be a p-current on a lamination X and let U � B×T be a flow
box as above which is relatively compact in X. Let l be the order of the restriction of
T to U. Then, there is a positive Radon measure μ on T and a measurable family of
p-currents Ta of order l on B for μ-almost every a ∈ T such that if K is compact in
B, the integral 〈μ, ‖Ta‖−l,K 〉 is finite and

〈T, α〉 =
∫

T

〈Ta, α(·, a)〉dμ(a) for α ∈ D
n−p
l (U).

Proof Observe that if we have a local disintegration as above for two currents T, T ′,
then it is easy to get such a disintegration for T + T ′ using the sum μ + μ′ of the
corresponding measures μ,μ′. This property allows us to make several reductions
below. Using a partition of unity, we can reduce the problem to the case where T
has compact support in U ⊂ R

n × T. If (x1, . . . , xn) is a coordinate system in R
n

and 1 ≤ i1 < · · · < in−p ≤ n, we only have to prove the proposition for the cur-
rent T ∧ dxi1 ∧ · · · ∧ dxin−p . Therefore, we can assume that T is an n-current, i.e. a
distribution.

Now, since T is of order l, it can be seen as a continuous linear form on the deriv-
atives ϕI of order l of a test function ϕ ∈ D0

l (U). By Hahn–Banach theorem, there
are distributions TI of order 0 such that T = ∑

TI (ϕI ). It is enough to prove the
proposition for each TI instead of T . So, we can assume that T is of order 0, i.e. a
Radon measure.

Since T can be written as a difference of two positive measures, we only have to
consider the case where T is positive. Define π the canonical projection from U to T

and μ := π∗(T ). The disintegration of T along the fibers of π gives the result. ��
The following result shows that the above local decomposition of a current is almost

unique.

Proposition 2.2 With the notation of Proposition 2.1, ifμ′ and T ′
a are associated with

another decomposition of T in U, then there is a measurable function λ > 0 on a mea-
surable set S ⊂ T such that Ta = 0 for μ-almost every a �∈ S, T ′

a = 0 for μ′-almost
every a �∈ S, μ′ = λμ on S and Ta = λ(a)T ′

a for μ and μ′-almost every a ∈ S.

Proof Consider first the case where T = 0. We show that Ta = 0 for μ-almost every
a. Let α be a test form in Dn−p(B). Define η(a) := 〈Ta, α〉. If χ is a continuous
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function with compact support in T, we have by Proposition 2.1

∫
χηdμ = 〈T, χα〉 = 0.

It follows that η(a) = 0 for μ-almost every a. Applying this property to a dense
sequence of test forms α j ∈ Dn−p(B) allows us to conclude that Ta = 0 for μ-almost
every a.

Consider now the general case. Define

S := {a ∈ T, Ta �= 0, T ′
a �= 0}.

Observe that the restriction of T to

E := {a ∈ T, Ta �= 0, T ′
a = 0} and E ′ := {a ∈ T, Ta = 0, T ′

a �= 0}

vanishes. Then, using the first case, we obtain that μ has no mass on E and μ′ has no
mass on E ′. Therefore, Ta = 0 for μ-almost every a �∈ S and T ′

a = 0 for μ′-almost
every a �∈ S. Using the first case, we also deduce that a measurable subset of S has
positive μ measure if and only if this is the case for μ′. Therefore, there is a function
λ > 0 such that μ′ = λμ on S. Observe that Ta − λT ′

a and μ define a decomposition
of 0 in U. It follows that Ta = λT ′

a for μ-almost every a ∈ S. ��
A 0-current T on a lamination is positive if it is of order 0 and if in the local

description as in Proposition 2.1, the currents Ta are given by positive functions on B

for μ-almost every a ∈ T. Consider a Riemannian metric g which is smooth on the
leaves of X and such that its restriction to a flow box depends in a measurable way
on the plaques. A 0-current T of order 0 is called g-harmonic (or simply harmonic if
there is no confusion) if in the local description as above, the currents Ta are given by
g-harmonic functions.

Consider now the complex setting. In the definition of the lamination (X,L ), when
the Bi are domains in C

n and�i are holomorphic with respect to x , we say that X is a
complex lamination of dimension n. In this case, the complex structure on Bi induces
a complex structure on the leaves of X . Therefore, in the definition of lamination, it is
enough to assume that �i (x, t) depends continuously on t ; indeed Cauchy’s formula
implies that all partial derivatives of this function with respect to x satisfy the same
property.

Let X be a complex lamination of dimension n. Denote by D
p,q

l (X) and D p,q(X)

the spaces of forms in D
p+q

l (X) and D p+q(X) respectively whose restriction to
plaques is of bidegree (p, q). A (p + q)-current is of bidegree (p, q) if it vanishes on
forms of bidegree (n − p′, n − q ′) with (p′, q ′) �= (p, q). The operators ∂ and ∂ act
on currents as in the case of manifolds. If T is a (p, q)-current, then ∂T and ∂T are
defined by

〈∂T, α〉 := (−1)p+q+1〈T, ∂α〉 for all test (n − p − 1, n − q)-form α
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340 T.-C. Dinh et al.

and

〈∂T, α〉 := (−1)p+q+1〈T, ∂α〉 for all test (n − p, n − q − 1)-form α.

We call ∂∂-closed current or pluriharmonic current a (0, 0)-current T on X such that
∂∂T = 0 (in dimension n = 1, we will say simply “harmonic” instead of “plurihar-
monic”). The following result shows that in dimension n = 1 this notion coincides
with the notion of g-harmonic current if we consider Poincaré metric on the hyperbolic
leaves of X and standard metrics on the parabolic ones or more generally conformal
metrics on the leaves.

Proposition 2.3 Let T be a pluriharmonic current on a complex lamination X. Let
U � B × T be a flow box as above which is relatively compact in X. Then, T is a
normal current, i.e. T and dT are of order 0. Moreover, there is a positive Radon
measure μ on T and for μ-almost every a ∈ T there is a pluriharmonic function ha

on B such that if K is compact in B the integral 〈μ, ‖ha‖L1(K )〉 is finite and

〈T, α〉 =
∫

T

⎛

⎝
∫

B

ha(z)α(z, a)

⎞

⎠ dμ(a) for α ∈ Dn,n
0 (X).

Proof Using Proposition 2.1, we easily deduce that Ta is ∂∂-closed forμ-almost every
a ∈ T. It follows that Ta is given by a pluriharmonic function ha on B. If K , L are
compacts in B with K � L , the harmonic property implies that ‖ha‖L1(K ) � ‖ha‖−l,L

for 0 ≤ l < ∞ and ‖dha‖L1(K ) � ‖ha‖L1(L). This implies that T and dT are of order
0 and completes the proof. ��

For complex laminations, there is a notion of positivity for currents of bidegree
(p, p) which extends the same notion for (p, p)-currents on complex manifolds. We
shortly recall the last one that we will use later.

A (p, p)-form on a complex manifold M of dimension n is positive if it can be
written at every point as a combination with positive coefficients of forms of type

iα1 ∧ α1 ∧ · · · ∧ iαp ∧ α p

where the α j are (1, 0)-forms. A (p, p)-current or a (p, p)-form T on M is weakly
positive if T ∧ϕ is a positive measure for any smooth positive (n − p, n − p)-form ϕ.
A (p, p)-current T is positive if T ∧ ϕ is a positive measure for any smooth weakly
positive (n − p, n − p)-form ϕ. If M is given with a Hermitian metric ω, T ∧ ωn−p

is a positive measure on M . The mass of T ∧ ωn−p on a measurable set E is denoted
by ‖T ‖E and is called the mass of T on E . The mass ‖T ‖ of T is the total mass of
T ∧ ωn−p. We will use the following local property of positive ∂∂-closed currents
which is due to Skoda [33]. Recall that dc := i

2π (∂ − ∂) and ddc = i
π
∂∂ .

Lemma 2.4 Let Br denote the ball of center 0 and of radius r in C
n. Let T be

a positive ∂∂-closed (p, p)-current in a ball Br0 . Define β := ddc‖z‖2 the stan-
dard Kähler form where z is the canonical coordinates on C

n. Then the function

123



Heat equation and ergodic theorems for Riemann surface laminations 341

r �→ π−(n−p)r−2(n−p)‖T ∧ βn−p‖Br is increasing on 0 < r ≤ r0. In particular, it is
bounded on ]0, r1] for any 0 < r1 < r0.

The limit of the above function when r → 0 is called the Lelong number of T at 0.
The lemma shows that Lelong’s number exists and is finite.

Lemma 2.5 Let T be a positive current of bidimension (1, 1) with compact support
on a complex manifold M. Assume that ddcT is a negative measure on M\E where
E is a finite set. Then, T is a ddc-closed current on M.

Proof Since E is finite, we prove first as in [20] that T has finite mass and that ddcT
is a negative measure on M. On the other hand, we have

〈ddcT, 1〉 = 〈T, ddc1〉 = 0.

It follows that ddcT = 0 on M . ��

3 Riemann surface laminations

In this section, we consider a Riemann surface lamination, i.e. a complex lamination
X as above of dimension n = 1. The lamination has no singular points but we do not
assume that it is compact. What we have in mind as an example is the regular part
of a compact lamination with singularities. Consider also a Hermitian metric on X ,
i.e. Hermitian metrics on the leaves of L whose restriction to each flow box defines
Hermitian metrics on the plaques that depend continuously on the plaques. It is not
difficult to construct such a metric using a partition of unity. Observe that all the Her-
mitian metrics on X are locally equivalent. So, from now on, fix a Hermitian metric
on X . It is given by a strictly positive smooth (1, 1)-form ω on X .

We will need some basic properties of these laminations. Let S be a hyperbolic
Riemann surface, i.e. a Riemann surface whose universal covering is the unit disc D

in C. Let φ : D → S be a universal covering map which is unique up to an auto-
morphism on D. The fundamental group π1(S) can be identified with a group of
automorphisms of D. Since the Poincaré metric on D is invariant under the automor-
phism group, it induces via φ a metric on S that we also call the Poincaré metric. It
is smooth and the surface S is complete with respect to that metric. By convention,
Poincaré metric (pseudo-metric to be precise) on a parabolic Riemann surface vanishes
identically.

Poincaré metric on the leaves of X defines a positive (1, 1)-form ωP , which a priori
is not necessarily transversally continuous. The continuity is proved in some important
cases, see Candel and Gómez-Mont [9] and [18]. Consider a hyperbolic leaf La pass-
ing through a point a and a universal covering map φa : D → La such that φa(0) = a.
The map φa is unique up to a rotation on D. Define

ϑ(a) := ‖Dφa(0)‖−2,

where ‖Dφa(0)‖ is the norm of the differential of φa at 0 with respect to the Euclidean
metric on D and the fixed Hermitian metric on L . Recall that at 0 the Poincaré metric
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on D is equal to twice the Euclidean metric. The above definition does not depend on
the choice of φa . We obtain that

ωP = 4ϑω.

Recall also that ωP is an extremal metric in the sense that if τ : D → La is a holo-
morphic map such that τ(0) = a, then ‖Dτ(0)‖ ≤ ϑ(a)−1/2. The equality occurs in
the last estimate only when τ is a universal covering map of La .

Consider an open set V ⊂ C and a sequence of holomorphic maps τn : V → X , i.e.
holomorphic maps from V to leaves of X . We say that τn converge locally uniformly
to a holomorphic map τ : V → X if any point z0 ∈ V admits a neighbourhood V0
such that for n large enough τn and τ restricted to V0 have values in the same flow box
and τn converge uniformly to τ on V0. This notion coincides with the local uniform
convergence with respect to the metric on X introduced in Sect. 2. A family F of
holomorphic maps from V to X is said to be normal if any infinite set F ′ ⊂ F admits
a sequence which converges locally uniformly to a holomorphic map. We have the
following proposition.

Proposition 3.1 Let X be a Riemann surface lamination as above. Then the Poincaré
metric ωP is a measurable (1, 1)-form on X. In particular, the union of parabolic
leaves is a measurable set. Moreover, the function ϑ associated with ωP is locally
bounded.

Proof By definition, ϑ is a non-negative function. We first show that it is locally
bounded. Consider a small neighbourhood W of a point a ∈ X and a flow box U �
B × T containing W . We can assume that B is the disc of center 0 and of radius 3 in C

and that W is contained in D×T where D is the unit disc in C. Consider the family of
holomorphic map τ : D → U such that τ(z) = (z + b, t) with (b, t) ∈ W . It is clear
that ‖Dτ(0)‖ is bounded from below by a strictly positive constant independent of
(b, t). Therefore, the extremality of Poincaré metric implies that ϑ is bounded from
above on W . This gives the last assertion in the proposition.

It remains to show that ϑ is a measurable function. Fix a sequence Kn of compact
subsets of X such that Kn is contained in the interior of Kn+1 and that X = ∪Kn .
We only have to show that ϑ is measurable on K0. For all positive integer n, denote
by Fn the family of holomorphic maps τ : D → Kn such that ‖Dτ‖∞ ≤ n. It is not
difficult to see using flow boxes that this family is compact. Therefore, the function

ξn(a) := sup
{
‖Dτ(0)‖ : τ ∈ Fn with τ(0) = a

}

is upper semi-continuous on a ∈ K0. The extremality of Poincaré metric implies that
ξn ≤ ϑ−1/2. It is now enough to show that ϑ−1/2 = supn ξn . We distinguish two cases.

Let a ∈ K0 be a point such that La is hyperbolic and consider a universal covering
map φa : D → La with φa(0) = a. Define τr (z) := φa(r z) for z ∈ D and 0 < r < 1.
It is clear that τr (D) is relatively compact in X and ‖Dτr‖ is finite. So, τr belongs to
Fn for n large enough. On the other hand, we have

ϑ−1/2(a) = ‖Dφa(0)‖ = lim
r→1

‖Dτr (0)‖.
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Therefore, ϑ−1/2 = supn ξn on hyperbolic leaves.
Let a ∈ K0 be a point such that La is parabolic and consider a map φa : C → La

with φa(0) = a. Define τr (z) := φa(r z). It is also clear that τr belongs to Fn for n
large enough and we have

ϑ−1/2(a) = +∞ = lim
r→∞ ‖Dτr (0)‖.

It follows that ϑ−1/2 = supn≥0 ξn and this completes the proof. ��
Consider now a flow box � : U → B × T as above. Recall that for simplicity, we

identify U with B × T and T with the transversal�−1({z} × T) for some point z ∈ B.
We have the following result.

Proposition 3.2 Let ν be a positive Radon measure on T. Let T1 ⊂ T be a measurable
set such that ν(T1) > 0 and La is hyperbolic for any a ∈ T1. Then, for every ε > 0
there is a compact set T2 ⊂ T1 with ν(T2) > ν(T1) − ε and a family of universal
covering maps φa : D → La with φa(0) = a and a ∈ T2 that depends continuously
on a.

Proof Recall that the universal covering maps φa : D → La are obtained from each
other by composing with a rotation on D. For the rest of the proof, denote by φa the
universal covering map such that in the coordinates on the flow box U, the derivative
of φa at 0 is a positive real number. We can replace T1 with some compact set in the
support of ν in order to assume that T1 is compact and contained in the support of ν.
We will use the notation in the previous proposition with K0 larger than T1. By Lusin’s
theorem, we can replace T1 by a suitable compact set in order to assume that ξn and
ϑ are continuous on T1. So, the sequence ξn is increasing and converge uniformly to
ϑ−1/2 on T1.

Claim Let 0 < r < 1 and δ > 0 be two constants. Then, there is a compact set
Tr ⊂ T1 with ν(Tr ) > ν(T1)− δ and an integer N such that ‖Dφa‖ ≤ N on rD and
φa(rD) ⊂ KN for all a ∈ Tr .

We first explain how to deduce the proposition from the claim. Using this prop-
erty for rn = 1 − 1/n, δn = 2−nε with n ≥ 2, define T2 := ∩Trn . It is clear that
ν(T2) > ν(T1)−ε and the family {φa}a∈T2 is locally bounded on D. If an → a in T2,
since ϑ is continuous, any limit value φ of φan satisfies ‖Dφ(0)‖ = ϑ(a)−1/2. There-
fore, φ is a universal covering map of La . We deduce that φ is equal to φa because the
derivatives of φan and φa are real positive. Hence, the family {φa}a∈T2 is continuous.

It remains to prove the above claim. Let En denote the family of τ ∈ Fn such
that a := τ(0) is in T1 and ‖Dτ(0)‖ = ξn(a). This family is not empty since Fn is
compact. Let E +

n be the family of τ ∈ En as above such that in the coordinates on the
flow box U, the derivative of τ at 0 is a positive real number. We can obtain such a
map by composing a map in En with an appropriate rotation on D. The continuity of
ξn implies that En and E +

n are compact.
The map which associates to τ ∈ E +

n its value at 0 is continuous. We recall that if
f : X1 → X2 is a continuous surjective map between two compact metric spaces, then
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f admits an inverse measurable selection, i.e. there is g : X2 → X1 measurable such
that f ◦ g is identity, [12, p. 82]. So, the map τ �→ τ(0) on E +

n admits a measurable
inverse map. More precisely, there is a measurable family {τn,a}a∈T1 ⊂ E +

n such that
τn,a(0) = a. Therefore, the measure ν on T1 induces a measure on E +

n . We can extract
from {τn,a}a∈T1 a compact subset of measure almost equal to ν(T1). Hence, there is
a compact set T

′
1 ⊂ T1 such that ν(T′

1) > ν(T1) − δ and {τn,a}a∈T
′
1

is compact for
every n. In other words, the family {τn,a}a∈T

′
1

depends continuously on a ∈ T
′
1.

For each a fixed in T
′
1, the extremal property of Poincaré metric implies that τn,a →

φa locally uniformly when n → ∞. Define for all positive integer N ,T1,N the set
of a ∈ T

′
1 such that ‖Dτn,a‖ ≤ N on rD and τn,a(rD) ⊂ KN for all n. This is an

increasing sequence of compact sets which converges to T
′
1. So, for N large enough,

ν(T1,N ) > ν(T1)− δ. We can choose a compact subset Tr ⊂ T1,N such that ν(Tr ) >

ν(T1)− δ. Clearly, Tr satisfies the claim. ��

Let φa : D → La be a covering map of La with φa(0) = a. Denote La,R :=
φa(DR), where DR ⊂ D is the disc of center 0 and of radius R. Here, the radius is with
respect to the Poincaré metric on D. Since φa is unique up to a rotation on D, La,R is
independent of the choice of φa . We will need the following result.

Corollary 3.3 Let R > 0 be a positive constant. Then, under the hypothesis of Propo-
sition 3.2, there is a countable family of compact sets Sn ⊂ T1, n ≥ 1, with ν(∪nSn) =
ν(T1) such that La,R ∩ Sn = {a} for every a ∈ Sn. Moreover, there are universal cov-
ering maps φa : D → La with φa(0) = a which depend continuously on a ∈ Sn.

Proof We first show that there is a compact set S ⊂ T2 with ν(S) > 0 such that
La,R ∩ S = {a} for every a ∈ S. By Proposition 3.2, the last assertion in the corol-
lary holds for S. Consider T

′
2 the support of the restriction of ν to T2 and an open

neighbourhood T
′ of T

′
2 which is relatively compact in T. By Proposition 3.2, the

number of points in �a := La,R ∩ T
′ is bounded independently on a ∈ T

′
2 because

the minimal number plaques covering La,R is bounded. Fix an a0 ∈ T
′
2 such that

#�a0 is maximal. Also by Proposition 3.2, #�a is lower semi-continuous on a ∈ T
′
2.

The maximality of #�a0 implies that if V is a neighbourhood of a, small enough,
#�a = #�a0 for a ∈ T

′
2 ∩ V . It follows that�a depends continuously on a ∈ T

′
2 ∩ V .

We then deduce that if V is small enough,�a ∩ V = {a} for a ∈ T
′
2 ∩ V . It is enough

to take S := T
′
2 ∩ V ; we have ν(S) > 0 by definition of T

′
2.

Consider now the family G of all countable unions G of such compact sets S.
Let λ denote the supremum of ν(G) for G ∈ G . So, there is a sequence Gn in G
such that ν(Gn) → λ. The union G∞ := ∪nGn is also an element of G . So, we
have ν(G∞) = λ. Now, it is enough to check that λ = ν(T1). If not, we have
ν(T1\G∞) > 0. Hence, we can apply the above construction of S in T1\G∞ instead
of T1. We necessarily have ν(G∞ ∪ S) > λ which is a contradiction. So, we can
choose compact sets Sn satisfying the corollary with ∪Sn = G∞. ��
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4 Laminations with singularities

We call Riemann surface lamination with singularities the data (X,L , E)where X is
a locally compact space, E a closed subset of X and (X\E,L ) is a Riemann surface
lamination. The set E is the singularity set of the lamination. In order to simplify the
presentation, we will mostly consider the case where X is a closed subset of a complex
manifold M of dimension k ≥ 1 and E is a locally finite subset of X . We assume that
M is endowed with a Hermitian metric ω. We also assume that the complex structures
on the leaves of the foliation coincide with the ones induced by M , that is, the leaves of
(X\E,L ) are Riemann surfaces holomorphically immersed in M . The main example
we have in mind is a foliation by Riemann surfaces in the projective space P

k described
in the introduction.

Proposition 4.1 Let (X,L , E) be a lamination with isolated singularities in a com-
plex manifold M as above. Let T be a positive harmonic current of X\E. Then, the
linear form α �→ 〈T, α|X\E 〉 for α ∈ D1,1(M\E) defines a positive ∂∂-closed current
on M\E. Moreover, it has locally finite mass on M and when X is compact, the exten-
sion of T by zero, always denoted by T , is a positive ∂∂-closed current of bidimension
(1, 1) on M.

Proof Observe that α|X is smooth with compact support in X\E which is positive
(resp. ∂∂-exact) if α is positive (resp. ∂∂-exact). Therefore, using a partition of unity
and the local description of T , we see that T defines a positive ∂∂-closed current on
X\E . Since E is finite, T has locally finite mass on M , see [20]. If moreover X is
compact, the extension of T by zero is a positive ∂∂-closed current on M , see Lemma
2.5. ��

So, if T is a positive harmonic current on X\E , its mass with respect to the Hermi-
tian metric on M is locally finite. We call Poincaré mass of T the mass of T with respect
to Poincaré metric ωP on X\E , i.e. the mass of the positive measure m P := T ∧ωP .
A priori, Poincaré mass may be infinite near the singular points. The following prop-
osition gives us a criterion for the finiteness of this mass. It can be applied to generic
foliations in P

k .
We say that a vector field F on C

k is generic linear if it can be written as

F(z) =
k∑

j=1

λ j z j
∂

∂z j

where λ j are non-zero complex numbers. The integral curves of F define a Riemann
surface foliation on C

k . The condition λ j �= 0 implies that the foliation has an isolated
singularity at 0. Consider a lamination X with isolated singularities E in a manifold
M as above. We say that a singular point a of X is linearizable if there is a local
holomorphic coordinates system of M near a on which the leaves of X are integral
curves of a generic linear vector field.

Proposition 4.2 Let (X,L , E) be a compact lamination with isolated singularities
in a complex manifold M. If a is a linearizable singularity of X, then any positive
harmonic current on X has locally finite Poincaré mass near a.
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Fix a positive harmonic current T on X . So, by Proposition 4.1, we can identify T
with a positive ∂∂-closed current on M . For the rest of the proof, we don’t need the
compactness of M . Since the Poincaré metric increases when we replace M with an
open subset, it is enough to consider the case where M is the polydisc (2D)k in C

k

and X is the lamination associated with the vector field

F(z) =
k∑

j=1

λ j z j
∂

∂z j

where λ j = s j + i t j and s j , t j ∈ R. We need the following lemma.

Lemma 4.3 For every point a ∈ D
k\{0}, there is a holomorphic map τ : D →

La ∩ (2D)k such that τ(0) = a and ‖Dτ(0)‖ ≥ c‖a‖| log ‖a‖| where c > 0 is a
constant independent of a.

Proof We only have to consider a very close to 0. Let ψa : C → C
k\{0} be the

holomorphic map defined by

ψa(ξ) :=
(

a1eλ1ξ , . . . , akeλkξ
)

for ξ ∈ C

where a j are the coordinates of a. We have ψa(0) = a and ψa(C) is an integral curve
of F . Write ξ = u + iv with u, v ∈ R. The domain ψ−1

a (Dk) in C is defined by the
inequalities

s j u − t jv ≤ − log |a j | for j = 1, . . . , k.

So, ψ−1
a (Dk) is a convex polygon (not necessarily bounded) which contains 0 since

ψa(0) = a ∈ D
k . Observe that the distance between 0 and the line s j u − t jv =

− log |a j | is proportional to − log |a j |. Therefore, ψ−1
a (Dk) contains a disc of center

0 and of radius

c′ min{− log |a1|, . . . ,− log |ak |} ≥ −c′ log ‖a‖

for some constant c′ > 0 independent of a.
Define the map τ : D → C

l by τ(ξ) := ψa(−c′ log ‖a‖ξ). It is clear that τ(0) = a
and τ(D) ⊂ La ∩ D

k . We also have

‖Dτ(0)‖ = −c′ log ‖a‖‖Dψa(0)‖ ≥ −c′ log ‖a‖ min
j

|λ j |‖a‖.

The lemma follows. ��
Proof of Proposition 4.2. We use in C

k the standard Kähler metric β := i∂∂‖z‖2.
Recall that ωP = 4ϑβ. Lemma 4.3 implies that ϑ(a) � ‖a‖−2| log ‖a‖|−2. Let
T be a positive ∂∂-closed current on (2D)k . We only have to show that the inte-
gral on the the ball B1/2, with respect to the measure T ∧ β, of the radial function
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ϑ̃(r) := r−2| log r |−2 is finite. Let m(r) denote the mass of T ∧ β on Br . By Lemma
2.4, we have m(r) � r2. Using an integration by parts, the considered integral is equal,
up to finite constants, to

−
1∫

0

m(r)ϑ̃ ′(r)dr

It is clear that the last integral is finite. The proposition follows. ��
It is shown in Candel and Gómez-Mont [9], see also [18] that when a is a hyperbolic

singularity, ϑ(z) → ∞ when z → a. We only consider in this paper Poincaré metric
on the regular part of the lamination. It is quite often that some leaves of the lamina-
tion can be compactified near singular points by adding these points and sometimes
it is natural to consider the Poincaré metric of the extended leaves. Since Poincaré
metric decreases when we extend these leaves, several results we obtain also apply to
extended leaves as well.

If T is a transversal in X\E then all positive harmonic currents on (X,L , E) have
finite mass near T with respect to the Poincaré metric on the leaves of X\(E ∪ T).
This may give us a technical tool in order to study parabolic leaves. Another situation
where we have currents with finite Poincaré mass is the following. Let π : M ′ → M
be a proper finite holomorphic map and (X ′,L ′, E ′) be a compact Riemann surface
lamination on M ′ with isolated singularities which is the pull-back of a lamination
(X,L , E) with linearizable singularities as above. If T ′ is a positive harmonic cur-
rent on M ′, then its Poincaré mass is bounded by the Poincaré mass of the positive
harmonic current π∗(T ′) of X since π contracts the Poincaré metric.

We have the following properties of positive harmonic currents where the existence
of positive harmonic currents was obtained in [1,17,21]. We also refer to [8, p. 105]
for a version of the proposition in the case without singularities and to [17, Th. 3.14]
for a result related to the last assertion.

Proposition 4.4 Let (X,L , E) be a compact Riemann surface lamination with iso-
lated singularities in a Hermitian complex manifold (M, ω). Let G be the family of
positive harmonic currents directed by L of mass 1 on X. Then, G is a non-empty
compact simplex and for any T ∈ G there is a unique probability measure ν on the
set of extremal elements in G such that T = ∫

T ′dν(T ′). Moreover, two different
extremal elements in G are mutually singular.

Proof Recall that the mass of T is the mass of the measure T ∧ ω. The fact that G is
compact convex is clear. By Choquet’s representation theorem [11], we can decom-
pose T into extremal elements as in the proposition. We show that the decomposition
is unique. According to Choquet–Meyer’s theorem [11, p. 163], it is enough to check
that the cone generated by G is a lattice. More precisely, there is a natural order in
this cone: T1 ≺ T2 if T2 − T1 is in the cone. We have to show that given two elements
T1, T2 in the cone there is a minimal element max{T1, T2} larger than T1, T2 and a
maximal element min{T1, T2} smaller than T1, T2 with respect to the above order.
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Define T := T1 + T2. Using the description of currents in flow boxes, we see that
Ti = θi T for some functions θi in L1(T ∧ω), 0 ≤ θi ≤ 1. Define also max{T1, T2} :=
max{θ1, θ2}T and min{T1, T2} := min{θ1, θ2}T . It is enough to show that these cur-
rents belong to the cone generated by G . In a flow box U � B × T as above, if μ
is the transversal measure associated to T , then Ti is given by harmonic functions
hi,a on the plaques B × {a} for μ-almost every a. The current min{T1, T2} is asso-
ciated with min{h1,a, h2,a} which is positive superharmonic. Therefore, min{T1, T2}
is a positive current on M and ddc min{T1, T2} is a negative measure on M\E . By
Lemma 2.5, min{T1, T2} is harmonic and is proportional to an element of G . It follows
that max{T1, T2} = T − min{T1, T2} is also proportional to an element of G . This
completes the proof of the first assertion in the proposition.

Let T, T ′ be two different extremal elements in G . We show that they are mutually
singular. Using the local description of currents, we can write T ′ = θT + T ′′ where
θ is a positive function in L1(T ∧ω) and T ∧ω, T ′′ ∧ω are mutually singular. Using
also the local description of currents, we see that θT and T ′′ are necessarily harmonic.
There is a union � of leaves such that T ′′ has no mass outside � and T has no mass
on �. If T ′′ is non-zero, since T ′ is extremal, it has no mass outside � and then T, T ′
are mutually singular. Assume that T ′′ = 0.

We can find a number c > 0 such that {θ ≥ c} and {θ ≤ c} have positive measure
with respect to T ∧ ω. Define T +

c := max{θ − c, 0}T, T −
c := max{c − θ, 0}T . Since

T +
c = max{T ′, cT } − cT and T −

c = max{cT, T ′} − T ′, these currents are harmonic.
So, we can choose a set�′ which is a union of leaves such that T +

c has no mass outside
�′ and θ > c on �′. The choice of c implies that T has positive mass outside �′.
Since T is extremal, we deduce that T has no mass on �′. It follows that T +

c = 0
and then θ ≤ c almost everywhere. Using T −

c , we prove in the same way that θ ≥ c
almost everywhere. Finally, we have T ′ = cT and since T, T ′ have the same mass we
get T = T ′. This is a contradiction. ��

Recall that a leaf L in (X,L , E) is wandering if it is not closed in X\E and if
there is a point p ∈ L and a flow box U containing p such that L ∩ U is just one
plaque. Note that if L is wandering, the above property is true for every p ∈ L . The
set of closed leaves and the set of wandering leaves are measurable. We get as for real
smooth foliations [8, p. 113] the following result.

Theorem 4.5 Let M be a complex manifold and ω a Hermitian form on M. Let
(X,L , E) be a compact lamination with isolated singularities in M and T a positive
harmonic current on X. Then the set of wandering leaves of X has zero measure with
respect to the measure T ∧ ω.

Proof Assume that the set Y of wandering leaves has positive T ∧ωmeasure. Choose
a flow box U � B × T such that Y ∩ U has positive measure. For each m ≥ 1, cover
T by a finite family of open sets Sm,n of diameter ≤ 1/m. Denote by Ym,n the set
of leaves which intersect Sm,n at only one point. So, the union of Ym,n has positive
measure since it contains Y ∩ U. We can choose m, n such that Ym,n has positive
measure.

By Proposition 2.3, the restriction of T to Ym,n is a harmonic current. So, we can
restrict T to Ym,n in order to assume that T has no mass outside Ym,n . We deduce from
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the definition of Ym,n that T can be decomposed into extremal harmonic currents sup-
ported on one single leaf of Ym,n . We can assume that T is extremal. So, there is a leaf
L in Ym,n and a positive harmonic function h such that T = h[L]. We show that L is
closed in X\E and this will give us a contradiction. For this purpose, one only has to
prove that L has finite area.

Observe that h is integrable on L with respect to the metric ω since it defines a
positive current on M . Therefore, it is enough to show that h is constant. Assume that
h is not constant. Let t < s be two different values of h. Let χ : R+ → R+ be a
smooth concave increasing function such that χ(x) = x if x ≤ t and χ(x) = s if
x ≥ s + 1. So, χ(h) ≤ h and then χ(h) is integrable on L . Moreover, we have since
h is harmonic

i∂∂χ(h) = χ ′(h)i∂∂h + χ ′′(h)i∂h ∧ ∂h = χ ′′(h)i∂h ∧ ∂h ≤ 0.

We deduce using flow boxes that T ′ := χ(h)[L] is a positive current with compact
support in M such that i∂∂T ′ ≤ 0 on M\E . By Lemma 2.5, i∂∂T ′ = 0 and then
χ(h) is harmonic. Finally, since χ(h) has a maximum on L , it is constant. This gives
a contradiction. ��

5 Heat equation on a real lamination

Consider a real lamination (X,L ) of dimension n as in Sect. 2. We assume that X is
compact and endowed with a continuously smooth Riemannian metric g on the leaves.
By continuous smoothness, we mean that in flow boxes the coefficients of g and their
derivatives, of any order, along the plaques depend continuously on the plaques. So,
we can consider the corresponding Laplacian� and the gradient ∇ on leaves. Several
results below for � can be deduced from Candel–Conlon [8] and Garnett [21] but
results on �̃ are new. Observe that in our context � is not symmetric in L2(m).

A measure m on X is called g-harmonic (or simply harmonic when there is no
confusion) if

∫
�udm = 0 for u ∈ D0(X).

We will consider the operator � in L2(m) and the above identity holds for u in the
domain Dom(�) of � that we will define later. We have the following elementary
result.

Proposition 5.1 Let � be the volume form associated with g. Then there is a one
to one correspondence between harmonic (resp. positive harmonic) measures m and
harmonic (resp. positive harmonic) current T such that m = T ∧�.

Proof It is clear that T ∧� is a harmonic (positive) measure if T is a harmonic (positive)
0-current. Consider now a decomposition of m in a flow box as in Proposition 2.1

m =
∫

madμ(a)
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with ma a measure on B×{a}. Since m is harmonic, we deduce that ma is harmonic in
the flow box for μ-almost every a. So, by Weyl’s lemma, there is a harmonic function
ha such that ma = ha�. We have m = T ∧� where T is locally given by

T =
∫

ha[B × {a}]dμ(a),

where [B×{a}] is the current of integration on the plaque B×{a}. When m is positive,
it is easy to see that ha is positive for μ-almost every a. The result follows. ��

Consider a harmonic probability measure m on X . Write m = T ∧� as in Propo-
sition 5.1. In a flow box U � B × T, by Proposition 2.1, the current T can be written
as

T =
∫

ha[B × {a}]dμ(a),

where ha is a positive harmonic function on B and μ is a positive measure on the
transversal T. We can restrict μ in order to assume that ha �= 0 for μ-almost every a.
Under this condition, Proposition 2.2 says that up to a multiplicative function, μ and
ha are uniquely determined by T .

In what follows, the differential operators ∇,� and �̃ are considered in L2(m).
We introduce the Hilbert space H1(m) as the completion of D0(X) with respect to
the norm

‖u‖2
H1 :=

∫
|u|2dm +

∫
|∇u|2dm.

Recall that the gradient ∇ is defined by

〈∇u, ξ 〉g = du(ξ)

for all tangent vector ξ along a leaf and for u ∈ D0(X). We consider ∇ as an operator
in L2(m) and H1(m) its domain.

Define in a flow box U � B × T as above the Laplace type operator

−�̃u = −�u − 〈h−1
a ∇ha,∇u〉g = −�u − Fu,

where F is a vector field. The uniqueness of ha and μ implies that F does not depend
on the choice of the flow box. Therefore, Fu and �̃u are defined globally m-almost
everywhere when u ∈ D0(X).

We recall some classical results of functional analysis that we will use later. The
reader will find an exposition in Brezis [5]. A linear operator A on a Hilbert space
L is called monotone if 〈Au, u〉 ≥ 0 for all u in the domain Dom(A) of A. Such an
operator is maximal monotone if moreover for any f ∈ L there is a u ∈ Dom(A) such
that u + Au = f . In this case, the domain of A is always dense in L and the graph of
A is closed.
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A family S(t) : L → L , t ∈ R+, is a semi-group of contractions if S(t + t ′) =
S(t) ◦ S(t ′) and if ‖S(t)‖ ≤ 1 for all t, t ′ ≥ 0. We will apply the following theorem
to our Laplacian operators and for L := L2(m). It says that any maximal monotone
operator is the infinitesimal generator of a semi-group of contractions.

Theorem 5.2 (Hille–Yosida) Let A be a maximal monotone operator on a Hilbert
space L. Then there is a semi-group of contractions S(t) : L → L , t ∈ R+, such
that for u0 ∈ Dom(A), u(t, ·) := S(t)u0 is the unique C 1 function from R+ to L with
values in Dom(A) which satisfies

∂u(t, ·)
∂t

+ Au(t, ·) = 0 and u(0, ·) = u0.

When A is self-adjoint and u0 ∈ L, the function u(t, ·) is still continuous on R+ and
is C 1 on R

∗+ with values in Dom(A) and we have the estimate

∥
∥∥
∂u

∂t

∥
∥∥ ≤ 1

t
‖u0‖ for t > 0.

In order to check that our operators are maximal monotone, we will apply the
following result to H := H1(m).

Theorem 5.3 (Lax–Milgram) Let e(u, v) be a continuous bilinear form on a Hilbert
space H. Assume that e(u, u) ≥ ‖u‖2

H for u ∈ H. Then for every f in the dual H∗ of
H there is a unique u ∈ H such that e(u, v) = 〈 f, v〉 for v ∈ H.

Define for u, v ∈ D0(X)

q(u, v) := −
∫
(�u)vdm, e(u, v) := q(u, v)+

∫
uvdm

and

q̃(u, v) := −
∫
(�̃u)vdm = q(u, v)−

∫
(Fu)vdm,

ẽ(u, v) := q̃(u, v)+
∫

uvdm.

Note that these identities still hold for v ∈ L2(m) and u in the domain of � and of �̃
that we will define later.

Lemma 5.4 We have for u, v ∈ D0(X)

q̃(u, v) =
∫

〈∇u,∇v〉gdm and
∫
(�̃u)vdm =

∫
u(�̃v)dm.

In particular, q̃(u, v) and ẽ(u, v) are symmetric in u, v and

∫
�̃udm =

∫
�udm =

∫
Fudm = 0 for u ∈ D0(X).
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Proof Using a partition of unity, we can assume that u and v have compact support
in a flow box as above. It is then enough to consider the case where T is supported
by a plaque B × {a} and given by a harmonic function ha . The first identity in the
lemma can be deduced from classical identities in Riemannian geometry, see e.g. [10].
Indeed, we have

〈∇u,∇v〉g + v�u = div(v∇u)

and the first identity is equivalent to

∫

B

div(v∇u)ha� = −
∫

B

(Fu)vha�

which is easily obtained by integration by parts.
It follows from the first identity in the lemma that q̃ and ẽ are symmetric. The

second assertion in the lemma is a consequence. We then deduce the last identities in
the lemma using that �̃1 = 0 and that m is harmonic. Note that the lemma still holds
for u, v in the domain of � and �̃ that we will define later. ��
Lemma 5.5 The bilinear forms q, q̃, e and ẽ extend continuously to H1(m)× H1(m).
Moreover, we have q(u, u) = q̃(u, u) and e(u, u) = ẽ(u, u) for u ∈ H1(m).

Proof The first identity in Lemma 5.4 implies that q̃ and ẽ extend continuously to
H1(m) and the identity is still valid for the extension of q̃ . In order to prove the same
property for q and e, it is enough to show that q − q̃ is bounded on H1(m)× H1(m).

We use the description of �̃ in a flow box U as above. By Harnack’s inequality,
h−1

a ∇ha are locally bounded uniformly on a. Since X is compact, we deduce that the
vector field F has bounded coefficients. Therefore, by Cauchy–Schwarz’s inequality

|q(u, v)− q̃(u, v)| =
∣∣∣∣

∫
(Fu)vdm

∣∣∣∣ ≤ C

(∫
|∇u|2dm

)1/2 (∫
v2dm

)1/2

.

So, q − q̃ is bounded and hence q, e extend continuously on H1(m)× H1(m).
We prove now the identities in the lemma. We can assume that u is in D0(X) since

this space is dense in H1(m). We have

�(u2) = div(∇u2) = div(2u∇u) = 2u�u + 2|∇u|2.

Since m is harmonic, the integral of �(u2) vanishes. It follows that

−
∫

u�udm =
∫

|∇u|2dm.

We deduce from the definition of q, e and the first identity in Lemma 5.4 that q(u, u) =
q̃(u, u) and e(u, u) = ẽ(u, u). This completes the proof. ��
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Define the domain Dom(�) of� (resp. Dom(�̃) of �̃) as the space of u ∈ H1(m)
such that q(u, ·) (resp. q̃(u, ·)) extends to a linear continuous form on L2(m). Since
� − �̃ is given by a vector field with bounded coefficients, we have Dom(�) =
Dom(�̃). In a flow box, we can show using Federer’s version of Lusin’s theorem [15,
Th. 2.3.5] that a function u in L2(m) belongs to H1(m) if the gradient ∇u, defined
as a vector field with distribution coefficients on generic plaques, is in L2(m). An
analogous property holds for � and �̃. In fact, Dom(�) is the completion of D0(X)

for the norm
√

‖u‖2
L2(m)

+ ‖�u‖2
L2(m)

. It is clear that if u ∈ Dom(�) then �u in the

sense of distributions with respect to D0(X) as test functions, is in L2. This allows us
to extend Lemma 5.4 to u, v in Dom(�). The converse is true but we don’t use it. We
have the following proposition.

Proposition 5.6 Let (X,L ) be a compact real lamination of dimension n endowed
with a continuously smooth Riemannian metric g on the leaves. Let m be a harmonic
probability measure on X. Then the associated operators −� and −�̃ are maximal
monotone on L2(m). In particular, they are infinitesimal generators of semi-groups of
contractions on L2(m) and their graphs are closed.

Proof The last assertion is the consequence of the first one, Theorem 5.2 and the prop-
erties of maximal monotone operators. So, we only have to prove the first assertion.
We deduce from Lemmas 5.4 and 5.5 that for u ∈ D0(X)

〈−�u, u〉 = 〈−�̃u, u〉 =
∫

〈∇u,∇u〉gdm = ‖∇u‖2
L2 ≥ 0.

By continuity, we can extend the inequalities to u in Dom(−�) = Dom(−�̃). So,
−� and −�̃ are monotone. We also obtain for u ∈ H1(m) that

e(u, u) = ẽ(u, u) ≥ ‖u‖2
H1 .

By Theorem 5.3, for any f ∈ L2(m), there is u ∈ H1(m) such that

e(u, v) = 〈 f, v〉L2(m) for v ∈ H1(m).

So, u is in Dom(�) and the last equation is equivalent to u −�u = f . Hence, −� is
maximal monotone. The case of −�̃ is treated in the same way. Note that since −�̃
is symmetric and maximal monotone, it is self-adjoint but −� is not symmetric. ��

We have the following theorem.

Theorem 5.7 Under the hypothesis of Proposition 5.6, let S(t), t ∈ R+, denote the
semi-group of contractions associated with the operator −� or −�̃ which is given by
the Hille–Yosida theorem. Then the measure m is S(t)-invariant and S(t) is a positive
contraction in L p(m) for all 1 ≤ p ≤ ∞.

Proof We prove that m is invariant, that is

〈m, S(t)u0〉 = 〈m, u0〉 for u0 ∈ D0(X).
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We will see later that this identity holds also for u0 ∈ L1(m) because S(t) is a con-
traction in L1(m) and D0(X) is dense in L1(m). Define u := S(t)u0 and

η(t) := 〈m, S(t)u0〉 = 〈m, u(t, ·)〉.

We deduce from Theorem 5.2 that η is of class C 1 on R+ and that

η′(t) = 〈m, S′(t)u0〉 = 〈m, Au(t, ·)〉

where A is the operator −� or −�̃. By Lemma 5.4, the last integral vanishes. So, η
is constant and hence m is invariant.

In order to prove the positivity of S(t), it is enough to show the following maximum
principle: if u0 is a function in D0(X) such that u0 ≤ K for some constant K , then
u(t, x) ≤ K . To show the maximum principle we use a trick due to Stampacchia [5].
Fix a smooth bounded function G : R → R+ with bounded first derivative such that
G(t) = 0 for t ≤ 0 and G ′(t) > 0 for t > 0. Put

H(s) :=
s∫

0

G(t)dt.

Consider the non-negative function ξ : R+ → R+ given by

ξ(t) :=
∫

H(u(t, ·)− K )dm.

By Theorem 5.2, ξ is of class C 1. We want to show that it is identically zero. Define
v(t, x) := u(t, x) − K . We have Av(t, x) = Au(t, x). Using in particular that G is
bounded, we obtain

ξ ′(t) =
∫

G(u(t, ·)− K )
∂u(t, ·)
∂t

dm

= −
∫

G(u(t, ·)− K )Au(t, ·)dm

= −
∫

G(v(t, ·))Av(t, ·)dm.

When A = −�̃, by Lemma 5.4, the last integral is equal to

−
∫

〈∇G(v),∇v〉gdm = −
∫

G ′(v)|∇v|2dm ≤ 0.

Thus, ξ ′(t) ≤ 0. We deduce that ξ = 0 and hence u(x, t) ≤ K .
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When A = −�, since F = �̃−� is a vector field with bounded coefficients, the
considered integral is equal to

−
∫

G ′(v)|∇v|2dm +
∫

G(v)Fvdm = −
∫

G ′(v)|∇v|2dm +
∫

F H(v)dm.

By Lemma 5.4, the last integral vanishes. So, we also obtain that ξ ′(t) ≤ 0. This
completes the proof of the maximum principle which implies the positivity of S(t).

The positivity of S(t) together with the invariance of m imply that

‖S(t)u0‖L1(m) ≤ ‖u0‖L1(m) for u0 ∈ D0(X).

It follows that S(t) extends continuously to a positive contraction in L1(m) since
D0(X) is dense in L1(m). The uniqueness of the solution in Theorem 5.2 implies that
S(t)1 = 1. This together with the positivity of S(t) imply that S(t) is a contraction
in L∞(m). Finally, the classical theory of interpolation between the Banach spaces
L1(m) and L∞(m) implies that S(t) is a contraction in L p(m) for all 1 ≤ p ≤ ∞,
see Triebel [36]. ��

We have the following proposition which can be applied to functions whose deriv-
atives of orders 1 and 2 are in L2(m).

Proposition 5.8 Let (X,L ), g and m be as in Proposition 5.6. Then every function
u0 in Dom(�) (which is equal to Dom(�̃)) such that �u0 ≥ 0 (resp. �̃u0 ≥ 0) is
constant on the leaf La for m-almost every a. Moreover, if m is an extremal positive
harmonic measure, then u0 is constant m-almost everywhere.

Proof We know that

∫
�u0dm =

∫
�̃u0dm = 0.

So, the hypothesis implies that �u0 = 0 (resp. �̃u0 = 0). By Lemmas 5.4 and 5.5,
we deduce that

∫
|∇u0|2dm = −

∫
(�̃u0)u0dm = −

∫
(�u0)u0dm = 0.

It follows that ∇u0 = 0 almost everywhere with respect to m. Thus, u0 is constant
on La for m-almost every a. When m is extremal, this property implies that u0 is
constant m-almost everywhere, since every measurable set of leaves has zero or full
m measure. ��

We deduce from the above results the following ergodic theorem.
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Corollary 5.9 Under the hypothesis of Theorem 5.7, for all u0 ∈ L p(m), 1 ≤ p < ∞,
the average

1

R

R∫

0

S(t)u0dt

converges pointwise m-almost everywhere and also in L p(m) to an S(t)-invariant
function u∗

0 when R goes to infinity. Moreover, u∗
0 is constant on the leaf La for m-

almost every a. If m is an extremal harmonic measure, then u∗
0 is constant m-almost

everywhere.

Proof The first assertion is a consequence of the ergodic theorem as in Dunford–
Schwartz [14, Th. VIII.7.5]. We get a function u∗

0 which is S(t)-invariant. For the rest
of the proposition, since S(t) is a contraction in L p(m), it is enough to consider the
case where u0 is in D0(X).

By Proposition 5.8, we only have to check that u∗
0 is in the domain of A and Au∗

0 = 0.
Define

u R := 1

R

R∫

0

S(t)u0dt.

This function belongs to Dom(A). Since u R converges to u∗
0 in L2(m) and the graph

of A is closed in L2(m) × L2(m), it is enough to show that Au R → 0 in L2(m).
We have

Au R = 1

R

R∫

0

Au(t, ·)dt = − 1

R

R∫

0

∂

∂t
u(t, ·)dt = 1

R
u0 − 1

R
u(R, ·).

Since S(t) is a contraction in L2(m), the last expression tends to 0 in L2(m). The
result follows. ��

We will need the following lemma.

Lemma 5.10 Let m̂ = θm be a harmonic measure, not necessarily positive, where θ
is a function in L2(m). Let m̂ = m̂+ − m̂− be the minimal decomposition of m̂ as the
difference of two positive measures. Then m̂± are harmonic.

Proof Let S(t) be the semi-group of contractions in L1(m) associated with −� as
above. Define the action of S(t) on measures by

〈S(t)m̂, u0〉 := 〈m̂, S(t)u0〉 for u0 ∈ L2(m).

Consider a function u0 ∈ D0(X) and define η(t) := 〈S(t)m̂, u0〉. By Theorem 5.2,
this is a C 1 function on R+. We have since m̂ is harmonic and θ is in L2(m)

η′(t) = 〈m̂, S′(t)u0〉 = 〈m̂,−�(S(t)u0)〉 = 0.
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To see the last equality, we can use a partition of unity and the local description of m̂
on a flow box. So, η is constant. It follows that S(t)m̂ = m̂. Since S(t) is a positive
contraction, we deduce that S(t)m̂± = m̂±. So, the functions η±(t) := 〈m̂±, S(t)u0〉
are constant. As above, we have

〈m̂±,�u0〉 = −〈m̂±, S′(0)u0〉 = (η±)′(0) = 0.

Hence, m̂± are harmonic. ��
We also obtain the following result, see Candel–Conlon [8].

Corollary 5.11 Under the hypothesis of Proposition 5.6, the family H of harmonic
probability measures on X is a non-empty compact simplex and for any m ∈ H there
is a unique probability measure ν on the set of extremal elements in H such that
m = ∫

m′dν(m′). Moreover, two different extremal harmonic probability measures
are mutually singular.

Proof Elements in H are defined as probability measures m such that 〈m,�u〉 = 0
for u ∈ D0(X). It is clear that H is convex and compact. The fact that H is non-
empty is well-known and is a consequence of the Hahn–Banach theorem, see Garnett
[21]. Indeed, by maximum principle for subharmonic functions, the distance in D0

0 (X)
between 1 and the space {�ϕ, ϕ ∈ D0(X)} is equal to 1. Therefore, Hahn–Banach’s
theorem implies the existence of a linear form m on D0

0 (X) of norm ≤ 1 vanishing
on {�ϕ, ϕ ∈ D0(X)} such that m(1) = 1. The form defines a harmonic measure of
mass ≤ 1 which is necessarily a probability measure because m(1) = 1.

By Choquet’s representation theorem [11], we can decompose m into extremal
measures as in the corollary. We show that the decomposition is unique. Define m :=
m1 + m2 and θi a function in L1(m), 0 ≤ θi ≤ 1, such that mi = θi m. Define also
m1 ∨ m2 := max{θ1, θ2}m and m1 ∧ m2 := min{θ1, θ2}m. As in Proposition 4.4, it is
enough to show that these measures belong to the cone generated by H . By Lemma
5.10, since m1 −m2 is harmonic, m′ := max{θ1 − θ2, 0}m is harmonic. It follows that
m1 ∨ m2 = m′ + m2 and m1 ∧ m2 = m1 − m′ are harmonic. This completes the proof
of the first assertion as a consequence of the Choquet–Meyer theorem [11, p. 163].

Consider now two different extremal elements m,m′ in H . We show that they are
mutually singular. Consider the decomposition of m and m′ in a flow box U � B × T

as above

m =
∫

ha[B × {a}] ∧�dμ(a) and m′ =
∫

h′
a[B × {a}] ∧�dμ′(a).

We can restrict μ,μ′ in order to assume that ha �= 0 for μ-almost every a and h′
a �= 0

for μ′-almost every a. Write μ′ = ϕμ + μ′′ where ϕ is a positive function in L1(μ)

and μ,μ′′ are mutually singular. Choose a measurable set A on the transversal T such
thatμ′′(T\A) = 0 andμ(A) = 0. Let� denote the union of the leaves which intersect
A. Then, m has no mass on �. If μ′′ is non-zero, then m′ has positive mass on �.
Since m′ is extremal, it has no mass outside�. We deduce that m and m′ are mutually
singular.
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Assume now thatμ′′ = 0. Multiplying ha by ϕ(a) allows us to assume thatμ = μ′.
Therefore, there is a non-negative function θ ∈ L1(m) such that m′ = θm. We can
find a number c > 0 such that {θ ≥ c} and {θ ≤ c} have positive m-measure. Define
m+

c := max{θ − c, 0}m and m−
c := max{c − θ, 0}m. By Lemma 5.10 applied to

m + m′,m′ − cm instead of m,m′ and a bounded function instead of θ , the measures
m±

c are harmonic. So, we can choose a set�′ which is a union of leaves such that m+
c

has no mass outside �′ and θ > c on �′. The choice of c implies that m has positive
mass outside�′. Since m is extremal, we deduce that m has no mass on�′. It follows
that m+

c = 0 and then θ ≤ c almost everywhere. Using m−
c , we prove in the same way

that θ ≥ c almost everywhere. Finally1, we have m′ = cm and since m,m′ have the
same mass, we get m = m′. This is a contradiction and completes the proof. ��

The following result gives a version of the mixing property in our context. The
classical case is due to Kaimanovich [26] who uses in particular the smoothness of
the Brownian motion, see also Candel [7] who relies on a version of the zero-two law
due to Ornstein and Sucheston [32].

Theorem 5.12 Under the hypothesis of Theorem 5.7, assume moreover that m is ex-
tremal. If S(t) is associated to −�̃, then S(t)u0 converge to 〈m, u0〉 in L p(m) when
t → ∞ for u0 ∈ L p(m) with 1 ≤ p < ∞. In particular, S(t) is mixing, i.e.

lim
t→∞〈S(t)u0, v0〉 = 〈m, u0〉〈m, v0〉 for u0, v0 ∈ L2(m).

Proof Since S(t) is a contraction in L p(m) for 1 ≤ p ≤ ∞, it is enough to show
the above convergence for u0 in a dense subspace of L p(m). If u0 is bounded, we
have, ‖S(t)u0‖∞ ≤ ‖u0‖∞. Therefore, we only have to show the above convergence
in L1(m). Since S(t) preserves constant functions, we can assume without loss of
generality that 〈m, u0〉 = 0. We can also assume that u0 ∈ H1(m) and we will show
that S(t)u0 → 0 in H1(m).

Define u := S(t)u0. Using Cauchy–Schwarz’s inequality, Lemma 5.5 and the last
assertion in Theorem 5.2, we obtain that

‖∇u‖2
L2(m) ≤ ‖�̃u‖L2(m)‖u‖L2(m) � 1

t
‖u0‖2

L2(m).

It follows that S(t) is bounded in H1(m) uniformly on t . So, we can consider a limit
value u∞ of S(t)u0, t → ∞, in the weak sense in H1(m). We have

‖∇u∞‖L2(m) ≤ lim sup
t→∞

‖∇u‖L2(m) = 0.

Using the description of m and u∞ in flow boxes, we deduce that u∞ is con-
stant on almost every leaf with respect to m. Since m is extremal, u∞ is constant
m-almost everywhere. Finally, since S(t) preserves m, we have 〈m, S(t)u0〉 = 0 and

1 We didn’t find a simpler argument. The fact that q(u, v) is not symmetric is a difficulty.
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then 〈m, u∞〉 = 0. It follows that u∞ = 0. We deduce that S(t)u0 → 0 weakly in
H1(m).

Now, recall that −�̃ is self-adjoint on L2(m). Hence, S(t) is also self-adjoint since
it is obtained as the limit of

(
I − tn−1�̃)n where I is the identity operator. Therefore,

we have

‖S(t)u0‖2
L2 = 〈S2t u0, u0〉L2(m) → 0.

It follows that S(t)u0 → 0 in H1(m). Note that using E.M. Stein’s theorem in [34]
on self-adjoint contractions of L p, we can prove that S(t)u0 → 〈m, u0〉 m-almost
everywhere for u0 ∈ L1(m). ��
Proposition 5.13 Let m = ∫

m′dν(m′) be as in Corollary 5.11. Then, the closures
of �(D0(X)) and of �̃(D0(X)) in L p(m), 1 ≤ p ≤ 2, are the space of functions
u0 ∈ L p(m) such that

∫
u0dm′ = 0 for ν-almost every m′. In particular, if m is an

extremal harmonic probability measure, then this space is the hyperplane of L p(m)
defined by the equation

∫
u0dm = 0.

Proof We only consider the case of �; the case of �̃ can be treated similarly. It is
clear that �(D0(X)) is a subset of the space of u0 ∈ L p(m) such that

∫
u0dm′ = 0

for ν-almost every m′ and the last space is closed in L p(m). Consider a function
θ ∈ Lq(m), with 1/p + 1/q = 1, which is orthogonal to �(D0(X)). So, θm is a
harmonic measure. Since p ≤ 2, we have θ ∈ L2(m). We have to show that θ is
constant with respect to ν-almost every m′.

Consider the disintegration of m along the fibers of θ . There is a probability mea-
sure ν′ on R and probability measures mc on {θ = c} such that m = ∫

mcdν′(c). By
Lemma 5.10, for any c ∈ R, the measure max{θ, c}m is harmonic. Therefore, mc is
harmonic for ν′-almost every c. If νc is the probability measure associated with mc as
in Corollary 5.11, we deduce from the uniqueness in this lemma that

ν =
∫
νcdν′(c).

Now, since θ is constant mc-almost everywhere, it is constant with respect to νc-almost
every m′. We deduce from the above identity that θ is constant for ν-almost every m′.
This completes the proof. ��
Remark 5.14 We will see in the next section an analogous development for the heat
equation on Riemann surface laminations with isolated singularities. It is known that a
compact Riemann surface lamination with a tame set of singularities always admits a
harmonic probability measure [1]. For Riemannian laminations it would be interesting
to find natural hypothesis on singularities which guarantees the existence of such a
measure.

6 Case of singular Riemann surface laminations

We will consider in this section the heat equation for positive harmonic currents asso-
ciated with a compact Riemann surface lamination possibly with singularities. The
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main example we have in mind is the case of a current supported on the set of hyper-
bolic leaves which are endowed with the Poincaré metric. Since in general, Poincaré
metric does not depend continuously on the leaves, it is important that we can relax the
strong regularity of the metric which is a necessary condition in the classical setting,
see [7,21].

Consider a more general situation. Let T be a positive ∂∂-closed current of bidi-
mension (1, 1) with compact support in a complex manifold M of dimension k. For
simplicity, fix a Hermitian form ω on M . So, T ∧ω is a positive measure. We assume
that T is regular in the sense of [1], that is, there exists a (1, 0)-form τ defined almost
everywhere with respect to T ∧ ω such that

∂T = τ ∧ T and
∫

iτ ∧ τ ∧ T < ∞.

In this context, the Hörmander L2-estimates are proved in [1] for the ∂-equation
induced on T . Fix also a positive (1, 1)-form β which is defined almost everywhere
with respect to T ∧ ω such that T ∧ β is of finite mass. We assume that β is strictly
T -positive in the sense that T ∧ω is absolutely continuous with respect to T ∧β. This
condition2 does not depend on the choice of ω and allows us to define the operators
∇∂
β,∇∂

β and ∇β on u ∈ D0(M) by

(∇∂
βu)T ∧ β := i∂u ∧ τ ∧ T = i∂(u∂T ),

(∇∂
βu)T ∧ β := −i∂u ∧ τ ∧ T = −i∂(u∂T )

and

∇β := ∇∂
β + ∇∂

β .

Define also the operators �β and �̃β on u ∈ D0(M) by

(�βu)T ∧ β := i∂∂u ∧ T and �̃β := �β + 1

2
∇β.

Let mβ denote the measure T ∧β. We introduce the Hilbert space H1
β (T ) ⊂ L2(mβ)

associated with T and β as the completion of D0(M) with respect to the norm3

‖u‖2
H1
β

:=
∫

|u|2T ∧ β + i
∫
∂u ∧ ∂u ∧ T .

Observe that operators ∇∂
β,∇∂

β and ∇β are defined on H1
β (T ) with values in L1(mβ).

2 The form β plays the role of a “Hermitian metric” on the current T that can be seen as a “generalized
submanifold” of M .
3 The second integral does not depend on β. This is an important difference in comparison with the anal-
ogous notion in the real setting.
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Define also for u, v ∈ D0(M) (for simplicity, we only consider real-valued func-
tions)

q(u, v) := −
∫
(�βu)vT ∧ β, e(u, v) := q(u, v)+

∫
uvT ∧ β

and

q̃(u, v) := −
∫
(�̃βu)vT ∧ β, ẽ(u, v) := q̃(u, v)+

∫
uvT ∧ β.

We will define later the domain of � and �̃ which allows us to extend these iden-
tities to more general u and v. The following lemma also holds for u, v in the domain
of � and �̃.

Lemma 6.1 We have for u, v ∈ D0(M)

q̃(u, v) = Re
∫

i∂u ∧ ∂v ∧ T and
∫
(�̃βu)vT ∧ β =

∫
u(�̃βv)T ∧ β.

In particular, q̃(u, v) and ẽ(u, v) are symmetric in u, v and

∫
(�̃βu)T ∧ β =

∫
(�βu)T ∧ β =

∫
(∇βu)T ∧ β = 0 for u ∈ D0(X).

Proof Note that i∂∂u is a real form. Since T is ∂∂-closed, the integral of i∂∂u2 ∧ T
vanishes. We deduce using Stoke’s formula that

q̃(u, v) = −
∫
(�βu + 1

2
∇βu)vT ∧ β

= −
∫

i∂∂u ∧ vT − Re
∫

i∂u ∧ τ ∧ vT

= −Re
∫

i∂∂u ∧ vT − Re
∫

i∂u ∧ τ ∧ vT

= Re
∫

i∂u ∧ [
∂(vT )− v∂T

] = Re
∫

i∂u ∧ ∂v ∧ T .

This gives the first identity in the lemma.
We also have since T is ∂∂-closed

∫
(∇βu)T ∧ β = 2Re

∫
i∂u ∧ ∂T = 2Re

∫
−iu∂∂T = 0.

The other assertions in the lemma are obtained as in Lemma 5.4. ��
We say that T is β-regular if iτ ∧ τ ∧ T ≤ β ∧ T . We will see that this hypothesis

is satisfied for foliations with linearizable singularities and for β := ωP . We have the
following lemma.
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Lemma 6.2 The bilinear forms q̃ and ẽ extend continuously to H1
β (T ) × H1

β (T ).
Assume that T is β-regular. Then the same property holds for q and e. Moreover, we
have q(u, u) = q̃(u, u) and e(u, u) = ẽ(u, u) for u ∈ H1

β (T ).

Proof The first assertion is deduced from Lemma 6.1. Assume that T is β-regular.
Using Cauchy–Schwarz’s inequality, we have for u, v ∈ D0(M)

|q(u, v)− q̃(u, v)|2 ≤
∣∣∣∣

∫
∂u ∧ vτ ∧ T

∣∣∣∣

2

≤
(∫

i∂u ∧ ∂u ∧ T

)(∫
iv2τ ∧ τ ∧ T

)

≤
(∫

i∂u ∧ ∂u ∧ T

)(∫
v2β ∧ T

)

which implies the second assertion. We also have for u ∈ D0(M)

q(u, u)− q̃(u, u) = Re
∫
(∇∂

βu)uT ∧ β = Re
∫

i∂u ∧ uτ ∧ T

= 1

2
Re

∫
i∂u2 ∧ ∂T = −1

2
Re

∫
iu2∂∂T = 0.

This allows us to obtain the rest of the lemma. ��
Define the domain Dom(�̃β) of �̃β (resp. Dom(�β) of �β when T is β-regu-

lar) as the space of u ∈ H1
β (T ) such that q̃(u, ·) (resp. q(u, ·)) extends to a linear

continuous form on L2(mβ). When T is β-regular, we have seen in the proof of
Lemma 6.2 that q(u, v) − q̃(u, v) is continuous on H1

β (T ) × L2(mβ). Therefore,

Dom(�β) = Dom(�̃β). We have the following proposition.

Proposition 6.3 Let T be a positive ∂∂-closed current of bidimension (1, 1) on a
complex manifold M and β a strictly T -positive form as above. Then the associated
operator −�̃β (resp. −�β when T is β-regular) is maximal monotone on L2(mβ)

where mβ := T ∧ β. In particular, it is the infinitesimal generator of semi-groups of
contractions on L2(mβ) and its graph is closed.

Proof By Lemmas 6.1 and 6.2, we have for u ∈ H1
β (T )

ẽ(u, u) ≥ ‖u‖2
H1
β

and e(u, u) ≥ ‖u‖2
H1
β

.

We only have to follow the same lines as in the proof of Proposition 5.6. ��
We have the following theorem.

Theorem 6.4 Under the hypothesis of Proposition 6.3, let S(t), t ∈ R+, denote the
semi-group of contractions associated with the operator −�̃ (resp. −� when T is
β-regular) which is given by the Hille–Yosida theorem. Then the measure mβ := T ∧β
is S(t)-invariant and S(t) is a positive contraction in L p(mβ) for all 1 ≤ p ≤ ∞.
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Proof The proof is almost the same as in Theorem 5.7. We only give here some
computations which are slightly different. We have with mostly the same notation

ξ(t) :=
∫

H(u(t, ·)− K )T ∧ β

and

ξ ′(t) = −
∫

G(v(t, ·))Av(t, ·)T ∧ β

with A = −�̃ or A = −�. In the first case, by Lemma 6.1, the last integral is equal
to

−Re
∫

i∂G(v) ∧ ∂v ∧ T = −Re
∫

iG ′(v)∂v ∧ ∂v ∧ T

= −
∫

iG ′(v)∂v ∧ ∂v ∧ T ≤ 0.

When A = −�β , there is an extra term which is equal to

−1

2

∫
G(v)∇βvT ∧ β = −Re

∫
iG(v)∂v ∧ ∂T

= −Re
∫

i∂H(v) ∧ ∂T = Re
∫

i H(v)∂∂T = 0.

We can now follow closely the proof of Theorem 5.7. ��
As in the real case, we deduce from the above results the following ergodic theorem.

Corollary 6.5 Under the hypothesis of Theorem 6.4, for all u0 ∈ L p(mβ), 1 ≤ p <
∞, the average

1

R

R∫

0

S(t)u0dt

converges pointwise mβ -almost everywhere and also in L p(mβ) to an S(t)-invariant
function u∗

0 when R goes to infinity.

Consider now a compact Riemann surface lamination (X,L , E)with isolated sin-
gularities in M and T a positive harmonic current on the lamination. We have seen in
Proposition 4.1 that T is also a positive ∂∂-closed current of bidimension (1, 1) on M .
By Proposition 2.3 and Lemma 3.1, we can decompose T into the sum of a positive
harmonic current on the union of the parabolic leaves and another on the union of the
hyperbolic leaves. We want to study the second part of T . From now on, assume for
simplicity that T has no mass on the union of the parabolic leaves.

123



364 T.-C. Dinh et al.

With the local decomposition of T , we have ∂T = τ ∧ T with τ = h−1
a ∂ha when

ha �= 0 and τ = 0 otherwise. On almost every leave, when τ �= 0, iτ ∧ τ defines a
metric with curvature −1. It follows that iτ ∧ τ is bounded by the Poincaré metric ωP

on the leaves, see [19] for details. Therefore, all the above results can be applied for
T with β := ωP if T ∧ ωP is a measure of finite mass, in particular, for laminations
with linearizable singularities, e.g. generic foliations in P

k , see Proposition 4.2 (they
can be also applied to iτ ∧ τ and �̃ when τ �= 0). In what follows, we will use the
index P instead of β, e.g.�P instead of�β . Note that T ∧ωP is a harmonic measure
on X with respect to the Poincaré metric on the leaves. We have the following result.

Proposition 6.6 Let (X,L , E) be a compact Riemann surface lamination in a com-
plex manifold M with isolated singularities and ωP the Poincaré metric on the leaves.
Let T be a positive harmonic current on the lamination without mass on the set of
parabolic leaves. Assume that m P := T ∧ωP is a measure of finite mass. Then every
function u0 in Dom(�P ) such that�P u0 ≥ 0 (resp. �̃P u0 ≥ 0) is constant on the leaf
La for m P -almost every a. If moreover T is an extremal positive harmonic current,
then u0 is constant m P -almost everywhere.

Proof We have seen in the above discussion that T is ωP -regular. So, using Lemmas
6.1 and 6.2 we have the identities

∫
�P u0T ∧ ωP =

∫
�̃P u0T ∧ ωP = 0

and
∫

i∂u0 ∧ ∂u0 ∧ T = −
∫
(�̃P u0)u0T ∧ ωP = −

∫
(�P u0)u0T ∧ ωP = 0.

So, we can repeat the proof of Proposition 5.8. ��
Note that since the Poincaré metric is not bounded in general, we don’t have a

priori a one to one correspondence between harmonic currents and harmonic mea-
sures. However, we have the following lemma that can be easily obtained using local
description of currents.

Lemma 6.7 Let T be a positive harmonic current with finite Poincaré mass. If m is
a positive harmonic measure such that m ≤ m P := T ∧ ωP , then there is a positive
harmonic current S ≤ T such that m = S ∧ ωP . In particular, if T is extremal, then
m P is an extremal positive harmonic measure.

This allows us to prove the following result as in Corollary 5.9.

Corollary 6.8 Under the hypothesis of Proposition 6.6 and with the notation of
Corollary 6.5, u∗

0 is constant on the leaf La for m P -almost every a. Moreover, if T is
an extremal positive harmonic current, then u∗

0 is constant m P -almost everywhere.

The following result gives us the mixing for the operator −�̃P . We can also obtain
a pointwise convergence using E.M. Stein’s theorem.
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Theorem 6.9 Under the hypothesis of Proposition 6.6, if S(t) is associated with −�̃P

and if T is extremal, S(t)u0 → 〈m P , u0〉 in L p(m) when t → ∞ for every u0 ∈
L p(m P ) with 1 ≤ p < ∞.

Proof We follow closely the proof of Theorem 5.12 using similar notation. In this
case, we use flow boxes away from the singularities of the lamination. We only need
to observe that

2i
∫
∂u ∧ ∂u ∧ T = ‖∇u‖2

L2(T ∧ωP )

where ∇ is the gradient along the leaves with respect to the metric ωP . ��
As in the real case, we have the following result.

Proposition 6.10 Let T = ∫
T ′dν(T ′) be as in Propositions 6.6 and 4.4. Then, the

closures of �P (D0(X)) and of �̃P (D0(X)) in L p(m P ), 1 ≤ p ≤ 2, are the space
of functions u0 ∈ L p(m P) such that

∫
u0T ′ ∧ ωP = 0 for ν-almost every T ′. In

particular, if T is an extremal positive harmonic current of finite Poincaré mass, then
this space is the hyperplane of L p(m P ) defined by the equation

∫
u0T ∧ ωP = 0.

Proof The proof follows the lines as in Proposition 5.13. With the analogous notation,
we obtain that θm restricted to {c ≤ θ ≤ c′} is harmonic for all c, c′. By Lemma 6.7,
this measure is associated to a harmonic current. This allows us to disintegrate T along
the fibers of θ and to conclude using Proposition 4.4. ��
Remark 6.11 For all the above results, when the lamination has no singular points,
the hypothesis that it is embedded in a complex manifold is unnecessary. In gen-
eral, it is enough to assume that locally near singular points, the lamination can be
holomorphically embedded in a complex manifold on which T is a ddc-closed current.

7 Birkhoff’s type theorem for laminations

In this section, we will give an analogue of Birkhoff’s ergodic theorem in the context
of a compact lamination (X,L , E)with isolated singularities on a complex manifold
M . In the case where the set of singularities is empty, the property that the lamination
is embedded in a complex manifold is unnecessary, see e.g. Remark 7.2 below. Many
examples of abstract compact laminations are constructed in [8] and [22]. Suspension
of a group action gives already a large class of laminations without singularities.

Let T be a positive harmonic current on (X,L , E). We have seen that T is also
a positive ∂∂-closed current of bidimension (1, 1) on M . We assume that T has no
mass on the union of parabolic leaves and that m P := T ∧ωP is a probability measure
where ωP denotes the Poincaré metric on the leaves. So, m P is a harmonic measure
on X with respect to ωP .

For any point a ∈ X\E such that the corresponding leaf La is hyperbolic, consider
a universal covering map φa : D → La such that φa(0) = a. This map is uniquely
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defined by a up to a rotation on D. Denote by rD the disc of center 0 and of radius r
with 0 < r < 1. In the Poincaré metric, this is also the disc of center 0 and of radius

R := log
1 + r

1 − r
·

So, we will also denote by DR this disc. For all 0 < R < ∞, consider

ma,R := 1

MR
(φa)∗

(
log+ r

|ζ |ωP

)
.

where log+ := max{log, 0}, ωP denotes also the Poincaré metric on D and

MR :=
∫

log+ r

|ζ |ωP =
∫

log+ r

|ζ |
2

(1 − |ζ |2)2 idζ ∧ dζ .

So, ma,R is a probability measure which depends on a, R but does not depend on the
choice of φa . Here is the main theorem in this section.

Theorem 7.1 Let (X,L , E) be a compact lamination with isolated singularities in a
complex manifold M and ωP the Poincaré metric on the leaves. Let T be an extremal
positive harmonic current of Poincaré mass 1 on (X,L , E)without mass on the union
of parabolic leaves. Then for almost every point a ∈ X with respect to the measure
m P := T ∧ ωP , the measure ma,R defined above converges to m P when R → ∞.

Remark 7.2 Let (X,L ) be a compact lamination by Riemann surfaces without sin-
gularities. Let T be a positive harmonic current directed by the lamination which is
extremal, with full mass on hyperbolic leaves and with Poincaré mass 1. Then, the
conclusions of Theorem 7.1 are still valid. The proof is essentially the same but we
need Proposition 5.13 instead of Proposition 6.10.

For every 0 < R < ∞, we introduce the operator BR by

BRu(a) := 1

MR

∫

|ζ |<1

log+ r

|ζ | (φa)
∗(uωP ) = 〈ma,R, u〉.

Note that for u ∈ L1(m P ), the function BRu is defined m P -almost everywhere. So,
the convergence in Theorem 7.1 is equivalent to the convergence BRu(a) → 〈m P , u〉
for u continuous and for m P -almost every a.

Proposition 7.3 Under the hypothesis of Theorem 7.1, for every u ∈ L1(m P ), we
have

∫
(BRu)T ∧ ωP =

∫
uT ∧ ωP .

In particular, BR is positive and of norm 1 in L p(m P ) for all 1 ≤ p ≤ ∞.

123



Heat equation and ergodic theorems for Riemann surface laminations 367

Proof Fix an R > 0. The positivity of BR is clear. Since BR preserves constant func-
tions, its norm in L p(m P ) is at least equal to 1. It is also clear that BR is an operator
of norm 1 on L∞(m P ). If BR is of norm 1 on L1(m P ), by interpolation [36], its norm
on L p(m P ) is also equal to 1. So, the second assertion is a consequence of the first
one. Define another operator B ′

R by

B ′
Ru(a) := 1

M ′
R

∫

DR

(φa)
∗(uωP ) where M ′

R :=
∫

DR

(φa)
∗(ωP ).

Note that M ′
R is the Poincaré area of DR which is also the Poincaré area of φa(DR)

counted with multiplicity. The operator BR can be obtained as an average of B ′
t on

t ≤ R. So, it is enough to prove the first assertion of the proposition for B ′
R instead

of BR .
We can assume that u is positive and using a partition of unity, we can also assume

that u has support in a compact set of a flow box U � B×T as in Sect. 3. Let T1 be the
set of a ∈ T such that La is hyperbolic. We will use the decomposition of T and the
notation as in Proposition 2.3. By hypothesis, we can assume that the measure μ has
total mass on T1. Now, we apply Corollary 3.3 to μ instead of ν and 4λR instead of R
for a fixed constant λ large enough. Let �n(R) denote the union of La,R for a ∈ Sn .
Define by induction the function un as follows: u1 is the restriction of u to�1(R) and
un is the restriction of u − u1 − · · · − un−1 to �n(R). We have u = ∑

un . So, it is
enough to prove the proposition for each un . For simplicity, assume that u = un .

We use now the properties of Sn given in Corollary 3.3. The set �n(4λR) is a
smooth lamination and the restriction Tn of T to �n(4λR) is a positive harmonic
current. Observe that BRun vanishes outside �n(λR) and does not depend on the
restriction of T to X\�n(2λR). Since there is a natural projection from �n to the
transversal Sn , the extremal positive harmonic currents on �n are supported by a leaf
and defined by a harmonic function. Therefore, we can reduce the problem to the case
where T = h[La,4λR] with a ∈ Sn and h is positive harmonic on La,4λR .

Define û := u◦φa, ĥ := h◦φa and B̂ ′
Ru := (B ′

Ru)◦φa . The function ĥ is harmonic
on D4λR . Choose a measurable set A ⊂ D2λR such that φa defines a bijection between
A and La,2λR . Denote also by ωP the Poincaré metric on D and dist the associated
distance. We first observe that

B̂ ′
Ru(0) := 1

M ′
R

∫

dist(ζ,0)<R

û(ζ )ωP (ζ ).

If η is a point in D and τ : D → D is an automorphism such that τ(0) = η, then φa ◦ τ
is also a covering map of La but it sends 0 to φa(η). We apply the above formula to
this covering map. Since τ preserves ωP and dist, we obtain

B̂ ′
Ru(η) := 1

M ′
R

∫

dist(ζ,η)<R

û(ζ )ωP (ζ ).
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Hence, we have to show the following identity

∫

A

⎡

⎢
⎣

1

M ′
R

∫

dist(ζ,η)<R

û(ζ )ωP (ζ )

⎤

⎥
⎦ ĥ(η)ωP (η) =

∫

A

û(ζ )̂h(ζ )ωP (ζ ).

Let W denote the set of points (ζ, η) ∈ D
2 such that η ∈ A and dist(ζ, η) < R. Let

W ′ denote the symmetric of W with respect to the diagonal, i.e. the set of (ζ, η) such
that ζ ∈ A and dist(ζ, η) < R. Since ĥ is harmonic, we have

ĥ(ζ ) = 1

M ′
R

∫

dist(ζ,η)<R

ĥ(η)ωP (η).

Therefore, our problem is to show that the integrals of� := û(ζ )̂h(η)ωP (ζ )∧ωP (η)

on W and W ′ are equal.
Consider the map φ := (φa, φa) from D

2 to L2
a . The fundamental group � :=

π1(La) can be identified with a group of automorphisms of D. Since, �2 acts on D
2

and preserves the form �, our problem is equivalent to showing that each fiber of φ
has the same number of points in W and in W ′. We only have to consider the fibers of
points in La,2λR × La,2λR since B ′

Run is supported on La,λR . Fix a point (ζ, η) ∈ A2

and consider the fiber F of φ(ζ, η). By definition of A, the numbers of points in F ∩W
and F ∩ W ′ are respectively equal to

#
{
γ ∈ �, dist(γ · ζ, η) < R

}
and #

{
γ ∈ �, dist(ζ, γ · η) < R

}
.

Since � preserves the Poincaré metric, the first set is equal to

{γ ∈ �, dist(ζ, γ−1 · η) < R
}
.

It is now clear that the two numbers are equal. This completes the proof. ��
We have the following ergodic theorem.

Theorem 7.4 Under the hypothesis of Theorem 7.1, if u is a function in L p(m P), with
1 ≤ p < ∞, then BRu converge in L p(m P ) towards a constant function u∗ when
R → ∞.

Proof We show that it is enough to consider the case where p = 1. By Proposition 7.3,
it is enough to consider u in a dense subset of L p(m P ), e.g. L∞(m P). For u bounded,
we have ‖BRu‖∞ ≤ ‖u‖∞. Therefore, if BRu → u∗ in L1(m P ) we have BRu → u∗
in L p(m P ), 1 ≤ p < ∞.

Now, assume that p = 1. Since BR preserves constant functions, by Proposition
6.10 applied to p = 1, it is enough to consider u = �Pv with v ∈ D0(M). We have
to show that BRu converges to 0. Note that since v is in D0(M), the function �Pv is
defined at every point outside the parabolic leaves by the formula (�Pv)ωP := i∂∂v
on the leaves.
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Define

Ta,R := 1

MR
(φa)∗

(
log+ r

|ζ |
)
.

We have ma,R = Ta,R ∧ ωP and

BRu(a) = BR(�Pv)(a) = 〈Ta,R, (�Pv)ωP 〉 = 〈Ta,R, i∂∂v〉 = 〈i∂∂Ta,R, v〉.

Since MR → ∞, it is easy to see that the mass of ∂∂Ta,R tends to 0 uniformly on a.
So, the last integral tends to 0 uniformly on a. The result follows.

Let p(x, y, t) be the heat kernel on the disc D with respect to the Poincaré metric
ωP on D. This is a positive function on D

2 × R
∗+ smooth when (x, y) is outside the

diagonal of D
2. It satisfies

∫

D

p(x, y, t)ωP (y) = 1 and
1

2π
log

1

|y| =
∞∫

0

p(0, y, t)dt.

The function p(0, ·, t) is radial, see e.g. Chavel [10, p. 246]. Define the operator St by

St u(a) :=
∫

D

p(0, ·, t)(u ◦ φa)ωP .

Observe that the family St with t > 0 is a semi-group of operators, i.e. St+t ′u = St◦St ′u
for u ∈ D0(M).

Lemma 7.5 The operator St extends continuously to an operator of norm 1 on
L p(m P ) for 1 ≤ p ≤ ∞. Moreover, there is a constant c > 0 such that for all
ε > 0 and u ∈ L1(m P ), we have

m P
{

S̃u > ε
} ≤ cε−1‖u‖L1(m P )

,

where the operator S̃ is defined by

S̃u(a) := lim sup
R→∞

∣∣
∣∣∣∣

1

R

R∫

0

St u(a)dt

∣∣
∣∣∣∣
.

Proof It is clear that St is positive and preserves constant functions. Its norm on
L∞(m P ) is equal to 1. Since p(0, ·, t) is a radial function, as in Proposition 7.3, St

is an average of B ′
R . We then obtain in the same way the first assertion of the lemma.

The second one is a direct consequence of Lemma VIII.7.11 in Dunford–Schwartz
[14]. This lemma says that if St is a semi-group acting on L1(m) for some probability
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measure m such that ‖St‖L1 ≤ 1, ‖St‖L∞ ≤ 1 and t �→ St u is measurable with
respect to the Lebesgue measure on t , then

m
{

S̃u > ε
} ≤ cε−1‖u‖L1

where S̃ is defined as above. ��
Consider also the operator B̃ given by

B̃u(a) := lim sup
R→∞

|BRu(a)|.

We have the following lemma.

Lemma 7.6 There is a constant c > 0 such that for all ε > 0 and u ∈ L1(m P) we
have

m P
{

B̃u > ε
} ≤ cε−1‖u‖L1(m P )

.

Proof Since we can write u = u+−u− with ‖u‖L1(m P )
= ‖u+‖L1(m P )

+‖u−‖L1(m P )
,

it is enough to consider u positive with ‖u‖L1(m P )
≤ 1. Write u = ∑

i≥0 ui with ui

positive and bounded such that ‖ui‖L1(m P )
≤ 4−i . We will show that S̃ui = B̃ui .

This, together with Lemma 7.5 applied to ui and to 2−i−1ε gives the result.
So, in what follows, assume that 0 ≤ u ≤ 1. We show that S̃u = B̃u. This assertion

will be an immediate consequence of the following estimate

∣∣∣
∣∣∣∣∣

BRu(a)− 2π

MR

MR
2π∫

0

St u(a)dt

∣∣∣
∣∣∣∣∣

≤ cR−1/2
√

log R

for m P -almost every a and c a constant independent of u. Observe that the integrals
in the left hand side of the last inequality can be computed on D in term of û := u ◦φa

and of the Poincaré metric ωP on D. So, in order to simplify the notation, we will
work on D. We have to show that

∣∣∣∣∣
∣∣∣

BRû(0)− 2π

MR

MR
2π∫

0

St û(0)dt

∣∣∣∣∣
∣∣∣

≤ cR−1/2
√

log R

where

BRû(0) := 1

MR

∫

DR

log
r

|ζ | ûωP and St û(0) :=
∫

D

p(0, ·, t )̂uωP .
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A direct computation shows that |MR − 2πR| is bounded by a constant and the
area of DR is of order eR for R large. Define

DRû(0) := 1

MR

∫

DR

log
1

|ζ | ûωP = 2π

MR

∫

DR

⎡

⎣
∞∫

0

p(0, ζ, t)dt

⎤

⎦ ûωP .

We have

|BRû(0)− DRû(0)| ≤ 1

MR
log r

∫

DR

ωP � 1

MR
(1 − r)eR � 1

R
·

Therefore, we can replace BRû(0) with DRû(0). We have

∣∣∣∣∣
∣∣∣

2π

MR

MR
2π∫

0

St û(0)dt − DRû(0)

∣∣∣∣∣
∣∣∣

=

∣∣∣∣∣
∣∣∣

2π

MR

MR
2π∫

0

⎡

⎣
∫

D

p(0, ζ, t )̂uωP

⎤

⎦ dt − 2π

MR

∞∫

0

⎡

⎢
⎣

∫

DR

p(0, ζ, t )̂uωP

⎤

⎥
⎦ dt

∣∣∣∣∣
∣∣∣

≤ 2π

MR

∫

DR

⎡

⎢⎢
⎣

∞∫

MR
2π

p(0, ζ, t)dt

⎤

⎥⎥
⎦ωP + 2π

MR

∫

D\DR

⎡

⎢⎢
⎣

MR
2π∫

0

p(0, ζ, t)dt

⎤

⎥⎥
⎦ωP .

The two last integrals are equal since using properties of the heat kernel p(x, y, t)
summarized above, we have

2π

MR

∫

D

⎡

⎢⎢
⎣

MR
2π∫

0

p(0, ζ, t)dt

⎤

⎥⎥
⎦ωP = 1 = 2π

MR

∫

DR

⎡

⎣
∞∫

t=0

p(0, ζ, t)dt

⎤

⎦ωP .

Therefore, it remains to check that

2π

MR

∫

DR

⎡

⎢⎢
⎣

∞∫

MR
2π

p(0, ζ, t)dt

⎤

⎥⎥
⎦ωP � R−1/2

√
log R.

To prove this, split the integral over DR into two integrals over DR\DR′ and over
DR′ where R′ := R − R1/2√2 log R. Using the properties of the heat kernel and some
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direct computation, e.g. log |ζ | � |ζ | − 1, we can bound the first part by

2π

MR

∫

DR\DR′

log
1

|ζ |ωP � R − R′

MR
� R − R′

R
� R−1/2

√
log R.

For the second part, we claim that

∞∫

MR
2π

p(0, ζ, t)dt ≤ c
R1/2

√
log R

log
1

|ζ | for ζ ∈ DR′

where c > 0 is a constant independent of R and ζ . Taking this for granted, since the
Poincaré area of DR is of order eR , using the definition of MR , we get

1

MR

∫

DR

log
1

|ζ |ωP = 1 − 1

MR
log r

∫

DR

ωP � 1 + 1

R
(1 − r)eR � 1.

Therefore, our second integral to estimate is bounded by a constant times

1√
log R

R−1/2 1

MR

∫

DR

log
1

|ζ |ωP � R−1/2 1√
log R

� R−1/2
√

log R.

Now, it remains to prove the above claim.
Denote by ρ the Poincaré distance between 0 and ζ . It is given by the formula

ρ := log
1 + |ζ |
1 − |ζ | ·

Recall a formula in Chavel [10, p. 246]

p(0, ζ, t) =
√

2e−t/4

(2π t)3/2

∞∫

ρ

se− s2
4t√

cosh s − cosh ρ
ds.

So, we have
√

cosh s − cosh ρ � es/2 when s ≥ ρ + 1 and
√

cosh s − cosh ρ �
es/2√s − ρ for ρ < s ≤ ρ + 1. Since |MR − 2πR| is bounded by a constant, the
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integral in the claim is bounded up to some constants by

∞∫

R

⎡

⎣
√

2e−t/4

(2π t)3/2

∞∫

ρ

se− s2
4t√

cosh s − cosh ρ
ds

⎤

⎦ dt

�
∞∫

R

⎡

⎣
√

2e−t/4

(2π t)3/2

∞∫

ρ

se− s2
4t

es/2 ds

⎤

⎦ dt +
∞∫

R

⎡

⎣
√

2e−t/4

(2π t)3/2

ρ+1∫

ρ

se− s2
4t

es/2√s − ρ
ds

⎤

⎦ dt

�
∞∫

R

1√
t

⎡

⎣
∞∫

ρ

s

2
√

t
e
−
(

s
2
√

t
+

√
t

2

)2

d
( s

2
√

t

)
⎤

⎦ dt +
∞∫

R

⎡

⎣
√

2e−t/4

(2π t)3/2
(ρ + 1)e− ρ2

4t

eρ/2

⎤

⎦ dt

�
∞∫

R

1√
t
e
−
(

ρ

2
√

t
+

√
t

2

)2

dt � e−ρ
∞∫

R

1√
t
e
−
(

ρ

2
√

t
−

√
t

2

)2

dt.

We used here that ρ ≤ R ≤ t . Observe that the function (t, ρ) �→
√

t
2 − ρ

2
√

t
is

increasing in t and decreasing in ρ. Therefore,

√
t

2
− ρ

2
√

t
≥ R − R′

2
√

R
�

√
log R

for ρ ≤ R′ ≤ R and t ≥ R. We can bound the last expression in the above sequence
of inequalities by a constant times

e−ρ 1√
log R

∞∫

R

e
−
[
ρ

2
√

t
−

√
t

2

]2 [√
t

2
− ρ

2
√

t

]
d

[√
t

2
− ρ

2
√

t

]
≤ e−ρ

√
log R

e− (R−R′)2
4R .

Finally, we obtain the claim using that R′ := R − R1/2√2 log R and

e−ρ = 1 − |ζ |
1 + |ζ | � log

1

|ζ |
for ζ ∈ DR′ . This completes the proof. ��
Proof of Theorem 7.1. Let u be a function in L1(m P ). It is enough to show that
BRu(a) → 〈m P , u〉 for m P -almost every a. Since this is true when u is constant, we
can assume without loss of generality that 〈m P , u〉 = 0. Fix a constant ε > 0 and define
Eε(u) := {

B̃u ≥ ε
}
. To prove the theorem it suffices to show that m P (Eε(u)) = 0.

By Proposition 6.10, �P (D0(M)) is dense in the hyperplane of functions with
mean 0 in L1(m P ). Consequently, for every δ > 0 we can choose a smooth function
v such that ‖�Pv − u‖L1(m P )

< δ. We have

Eε(u) ⊂ Eε/2(u −�Pv) ∪ Eε/2(�Pv).
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Therefore,

m P
(
Eε(u)

) ≤ m P
(
Eε/2(u −�Pv)

) + m P
(
Eε/2(�Pv)

)
.

We have

BR(�Pv)(a) = 〈Ta,R, i∂∂v〉 = 〈i∂∂Ta,R, v〉.

The last integral tends to 0 uniformly on a since the mass of ∂∂Ta,R satisfies this
property. Hence, m P

(
Eε/2(�Pv)

) = 0.
On the other hand, by Lemma 7.6, we have

m P
(
Eε/2(u −�Pv)

) = m P
(
B̃(u −�Pv) > ε/2

)

≤ 2cε−1‖u −�Pv‖L1(m P )
≤ 2cε−1δ.

Since δ is arbitrary, we deduce from the last estimate that m P
(
Eε(u)

) = 0. This
completes the proof of the theorem. ��
Remark 7.7 When T is not extremal, for a function u in L p(m P), 1 ≤ p < ∞, we still
have the convergence of BRu pointwise m P -almost everywhere and also in L p(m P )

to a function which is constant on the leaves but not necessarily constant globally.
This property can be deduced from Theorems 7.1 and 7.4 using the decomposition of
T into extremal currents and that BR has norm 1 in L p(m P).

If φa : D → La is a universal covering map over a hyperbolic leaf La with
φa(0) = a, define

T ′
a,R := (φa)∗

(
log+ r

|ζ |
)
.

We have the following result which can be applied to foliations in P
k with linearizable

isolated singularities.

Theorem 7.8 Under the hypothesis of Theorem 7.1, we have the convergence

‖T ′
a,R‖−1T ′

a,R → ‖T ‖−1T

for almost every point a ∈ M with respect to T ∧ ω.

Proof Let α be a smooth (1, 1)-form on M . We have to show that

‖T ′
a,R‖−1〈T ′

a,R, α〉 → ‖T ‖−1〈T, α〉

for almost every a with respect to T ∧ ω or equivalently with respect to m P since T
has no mass on the set of parabolic leaves. This property applied to a dense countable
family of α gives the result. The restriction of α to the lamination can be written as
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α = ϕωP where ϕ is in L1(m P) because α∧ T is a finite measure. Now, we have seen
in the proof of Theorem 7.1 that 〈ma,R, ϕ〉 converges to 〈m P , ϕ〉 = 〈T, α〉. It follows
that

M−1
R 〈T ′

a,R, α〉 → 〈T, α〉.

It remains to show that

M−1
R ‖T ′

a,R‖ → ‖T ‖.

But this is a consequence of the above convergence applied to ω instead of α. ��
Remark 7.9 We have seen that ‖T ′

a,R‖ � MR for almost every a with respect to T ∧ω.
The estimate implies that

∫

rD

|φ′
a(z)|2 log

r

|z| idz ∧ dz � log
1

1 − r

which gives a quantitative information on the behavior of φa near the singularities.
When the lamination admits no positive closed invariant current, it was shown in
[17, Th. 5.3] that the left hand side integral tends to infinity for every a. We finally
get Theorem 1.1 announced in the introduction. It is a consequence of Theorem 7.1,
Proposition 4.2 and of the present remark.

Remark 7.10 We have seen in the proof of Theorem 7.8 that for m P -almost every a
the area (counted with multiplicity) of φa(DR) with respect to the Poincaré metric is
equivalent to the one with respect to the metric ω. As a consequence, in Theorems
7.1 and 7.8, we can replace log+ r

|ξ | with the restriction of log 1
|ξ | to DR because the

integral of (log r)ωP over DR is bounded. This will give us ergodic theorems with a
little bit more geometric flavor since log 1

|ξ | is independent of R.
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