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Abstract Motivated by the uniqueness problem for monostable semi-wave -fronts,
we propose a revised version of the Diekmann and Kaper theory of a nonlinear convo-
lution equation. Our version of the Diekmann–Kaper theory allows (1) to consider new
types of models which include nonlocal KPP type equations (with either symmetric or
anisotropic dispersal), nonlocal lattice equations and delayed reaction–diffusion equa-
tions; (2) to incorporate the critical case (which corresponds to the slowest wavefronts)
into the consideration; (3) to weaken or to remove various restrictions on kernels and
nonlinearities. The results are compared with those of Schumacher (J Reine Angew
Math 316: 54–70, 1980), Carr and Chmaj (Proc Am Math Soc 132: 2433–2439, 2004),
and other more recent studies.
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1 Introduction

The main goal of this paper is to develop a version of the fundamental Diekmann and
Kaper theory [10–12] (the DK theory for short) of a nonlinear convolution equation
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74 M. Aguerrea et al.

for the scalar integral equation

ϕ(t) =
∫

X

dμ(τ)
∫

R

K (s, τ )g(ϕ(t − s), τ )ds, t ∈ R, (1)

in the case of monostable nonlinearity g. Throughout the paper (X, μ) will denote a
measure space with finite measure μ, K (s, τ ) ≥ 0 will be integrable on R × X with∫
R

K (s, τ )ds > 0, τ ∈ X, while measurable g : R+ × X → R+, g(0, τ ) ≡ 0, will
be continuous in ϕ for every fixed τ ∈ X . When X is just a single point (i.e. #X = 1),
Eq. (1) coincides with the nonlinear convolution equation from [12].

In a biological context, ϕ is the size of an adult population, so we are interested in
non-negative solutions of (1). Following the terminology of [22], we call a bounded
continuous non-constant solution ϕ : R → R+ semi-wavefront if either ϕ(−∞) = 0
or ϕ(+∞) = 0. We will always assume ϕ to satisfy ϕ(−∞) = 0, since the other case
can be easily transformed to this one via the change of variables ζ(t) = ϕ(−t), with
Eq. (1) assuming the form

ζ(t) =
∫

X

dμ(τ)
∫

R

K1(s, τ )g(ζ(t − s), τ )ds, K1(s, τ ) := K (−s, τ ).

We would like to emphasize that the nonlinearity g and semi-wavefronts are generally
non-monotone [19] (nevertheless, typically semi-wavefronts are strictly increasing in
some vicinity of −∞ [1,18,37]). The non-monotonicity of waves complicates their
analysis. For instance, the wave uniqueness is easier to establish within a subclass of
monotone solutions [8,23,39].

Actually the ‘largely open uniqueness question’ [6] is central in our research where
we follow the scheme elaborated in [12]. This means that after assuming the existence
of a semi-wavefront to (1), we study its asymptotic behavior at infinity trying then to
demonstrate the wave uniqueness (modulo translation). Similarly to other authors, we
work mostly with the first positive eigenvalue λl of the linearization of (1) at zero. As
a consequence, our analysis excludes from the consideration so called “pushed” fronts
[13,22,34] associated to the second positive eigenvalue λr . Analogously to [12], the
existence of semi-wavefronts to (1) is not investigated here.

There are various motivations to study the above equation, mainly from the the-
ory of traveling waves for nonlinear models (e.g. reaction–diffusion equations with
delayed response [1,23,36,38,39], equations with non-local dispersal [2,4,7,8,28,33],
lattice systems [6,16,26,30]). Only a few of these models take the simplest form with
#X = 1 of (1). Therefore our first goal is to show that the basic framework of [12]
can be extended to include much broader class of convolution type equations than it
was initially intended. Here is a simple step to create such a general direct extension
of results in [12]. It would be interesting to consider further generalizations of (1)
in order to include more applications (for example, equations with distributed delays
considered in [16,17], see also [25,33,39]). However, we do not pursue this direction
in our current work. After all, ours is not the first attempt to expand the DK theory.
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On uniqueness of semi-wavefronts 75

Schumacher has mentioned, while studying equation

cϕ′(t) = g(ϕ, μc ∗ g(ϕ)),

the impossibility of transforming it into the form to which the DK theory could be
applied [33, p.54]. Instead, Schumacher has developed an approach which is based
on guidelines of the DK theory and, at the same time, which is technically rather
different from that in [12]. In particular, in order to extend the DK uniqueness theo-
rem, Schumacher has used a comparison method for differential inequalities combined
with Nagumo-point argument. In this respect, his work [33] is very close to the recent
contributions [6–8,26].

Similarly to [33], the present studies also follow the mainstream of the DK ideology.
In difference with [33] and trying to apply our results to delayed equations (where
in general the comparison argument does not work), we preserve the original idea of
the DK theory in the proof of uniqueness. Now, from the technical point of view our
approach to Eq. (1) differs from the methods used by Diekmann and Kaper, Schum-
acher and Carr and Chmaj [4] in many key points. Even though the logical sequence
of results here basically is the same as in [12], our proofs are essentially different. In
particular, we do not use the Titchmarsh theory of Fourier integrals [12,16] nor we
use the Ikehara Tauberian theorem [4,8,39] in order to obtain asymptotic expansions
of solutions (a necessary key component of each uniqueness proof). We have found
more convenient for our purpose the use of a suitable L2−variant of the bootstrap
argument (as it was suggested by Mallet-Paret in [31, p. 9–10]).

As a consequence of the DK strategy, we also present a non-existence result and
describe properties of the kernel K which is proved to satisfy exponential convergence
estimates (Mollison’s condition [8]). Here the fulfillment of the Mollison’s condition
means that the characteristic function

χ(z) := 1 −
∫

X

g′(0, τ )dμ(τ)
∫

R

K (s, τ )e−zsds

is well defined for all z from some maximal non-degenerate interval (which can
be open, closed, half-closed, finite or infinite). One of the key results of the theory
says that, under rather mild assumptions on g, K the presence of a semi-wavefront
ϕ, ϕ(−∞) = 0, guarantees the existence of a minimal positive zero λl to χ(z). Let
us also mention here a new type of non-existence theorem proposed not long ago by
Yagisita [41] for a nonlocal analogue of the KPP equation. Yagisita introduced the
concept of a periodic traveling wave solution with average speed c and his version of
the non-existence result (given in terms of these solutions) is stronger than the stan-
dard one. The spreading properties of the nonlocal KPP type equations with ‘fat-tailed’
kernels were recently considered by Garnier [21].

Next, as it is known the DK and Schumacher uniqueness theorems do not apply to
the critical fronts (when χ(λl) = χ ′(λl) = 0).1 As an example, let us consider the

1 Also, the DK result assumes that fronts are monotone and Schumacher considers only what he calls
‘regular solutions’ (i.e. those having an appropriate exponential convergence at −∞).
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nonlocal KPP equation

ut = J ∗ u − u + g(u), x ∈ R, g(0) = g(1) = 0, g > 0 on (0, 1) (2)

proposed in [28]. Here continuous birth function f is supposed to be differentiable at
0, with g(s) = g′(0)s + O(s1+α), s → 0+, for some α > 0, and to satisfy the KPP
condition [28] f ′(s) ≤ f ′(0), s ∈ (0, 1). Measurable kernel J ≥ 0,

∫
Jds = 1 is

allowed to be asymmetric and non compactly supported. This agrees with the initial
idea of Kolmogorov et al. [28] who interpreted J (x)dx as the probability that an indi-
vidual passes a distance between x and x +dx . It is easy to see that the DK theory does
not apply to (2). Under the above mentioned assumptions, Schumacher [33, Example
2] has proved uniqueness of all non-critical wavefronts for (2). Now, the first examples
of nonlocal monostable equations in which the uniqueness problem was completely
solved (what includes the case of critical and non-monotone wavefronts) appeared in
Chen and Guo [6] and Carr and Chmaj [4]. In particular, Carr and Chmaj [4] achieved
an important extension of the DK theory for the special case of Eq. (2). By assuming
several additional conditions in [4] that J must be even, compactly supported and

|g(s)− g(t)| ≤ g′(0)|t − s|, s, t ≥ 0, (3)

they showed that the minimal wavefront ϕ(x + c0t) to (2) satisfying 0 ≤ ϕ(s) ≤
1, s ∈ R, is unique up to translation. Carr and Chmaj’s work has motivated the sec-
ond goal of our research: to get an improvement of the DK theory that includes the
critical semi-wavefronts. Theorem 3 below gives such an extension for general model
(1). In the particular case of Eq. (2) our result (stated as Theorem 5) establishes the
uniqueness of critical wavefronts under the same assumptions on J and f as in [33].
See Sect. 6.1 for more details, further discussion and references.

The necessity of the subtangential Lipschitz condition (3) [4,12,16,36] could be
considered as a weak point of the DK uniqueness theorem, cf. [1,6,8,22,26,33]. For
instance, as it was established recently by Coville et al. [8], neither (3) nor g′(s) ≤
g′(0), s ∈ (0, 1), is necessary to prove the uniqueness of non-stationary monotone
traveling fronts to (2). Instead of that, it was supposed in [8] that generally asymmetric
J ∈ C1(R) is compactly supported with J (a) > 0, J (b) > 0 for some a < 0 < b,
while g ∈ C1(R) has to satisfy g′(0)g′(1) < 0, g(s) ≤ g′(0)s, s ≥ 0, and g ∈ C1,α

near 0. The proof in [8] follows ideas of [7] and is mainly based on the sliding methods
proposed by Berestycki and Nirenberg [3] (see [7,8] for a comprehensive state-of-
art overview about (2) and [5,30] for the further references). The above discussion
explains our third goal in this paper: to weaken various convergence and smoothness
conditions of the DK theory, and especially condition (3). It is worthwhile to note that
a similar task was also considered in [33]. The related improvements can be found
in Theorems 3 and 4. In the latter theorem, we remove condition (3) by assuming
a little more smoothness for g and exploiting the absence of zeros for χ(z) in the
vertical strip λl < 
z < λr (see Lemma 2). Incidentally, Theorems 4 justifies the fol-
lowing principle for monostable equations: “fast positive semi-wavefronts are unique
(modulo translation)”. In the last section, we apply this principle to reaction–diffusion
equations with delayed Mackey–Glass type nonlinearities.
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On uniqueness of semi-wavefronts 77

The main results of this paper are stated as Theorems 3, 4 below. We apply them to
nonlocal integro-differential equations (Sect. 6.1), nonlocal lattice systems (Sect. 6.2),
nonlocal (Sect. 6.3) and local (Sect. 6.4) reaction–diffusion equations with discrete
delays. In Theorem 1, we give a short proof of the necessity of the Mollison’s condition
for the existence of semi-wavefronts. Theorem 2 provides a non-existence result.

2 Mollison’s condition

In this section, we consider somewhat more general equation

ϕ(t) =
∫

X

dμ(τ)
∫

R

K (s, τ )g(ϕ(t − s), t − s, τ )ds, (4)

where measurable g : R × R × X → R+ is continuous in the first two variables for
every fixed τ ∈ X . We suppose additionally that, for some measurable p(τ ) ≥ 0 and
δ > 0, s̄ ≤ 0, it holds

g(v, s, τ ) ≥ p(τ )v, v ∈ (0, δ), s ≤ s̄, τ ∈ X. (5)

First, we present a simple proof of the necessity of the following Mollison’s condition
(cf. [8]) for the existence of the semi-wavefronts:

∫

R

∫

X

K (s, τ )p(τ )dμ(τ)e−szds is finite for some z ∈ R \ {0}. (6)

Theorem 1 Let continuous ϕ : R → [0,+∞) satisfy (4) and suppose that ϕ(−∞) =
0 and ϕ(t) �≡ 0, t ≤ t ′ for each fixed t ′. If (5) holds and

∫

X

∫

R

K (s, τ )p(τ )dsdμ(τ) ∈ (1,∞), (7)

then
∫ 0
−∞ ϕ(s)e−sx̄ ds and

∫
R

∫
X K (s, τ )p(τ )dμ(τ)e−sx̄ ds are convergent for an

appropriate x̄ > 0. Furthermore, supp K ∩ (R+ × X) �= ∅.

Remark 1 Looking for heteroclinic solutions of the simple logistic equation x ′ =
−βx + x(1 +β− x) with β > 0, we obtain an example of (1) where supp K ∩ (R− ×
X) = ∅ under conditions of the above theorem.

Proof Since the support of K generally is unbounded, we will truncate K by choosing
integer N such that

κ :=
∫

X

N∫

−N

K (s, τ )p(τ )dsdμ(τ) > 1, and 0 ≤ ϕ(t) < δ, t < s̄ − N .
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Integrating Eq. (4) between t ′ and t < s̄ − 2N , we find that

t∫

t ′
ϕ(v)dv ≥

∫

X

dμ(τ)

N∫

−N

K (s, τ )

t∫

t ′
g(ϕ(v − s), v − s, τ )dvds

≥
∫

X

p(τ )dμ(τ)

N∫

−N

K (s, τ )

t∫

t ′
ϕ(v − s)dvds

=
∫

X

p(τ )dμ(τ)

N∫

−N

K (s, τ )

⎛
⎜⎝

t ′∫

t ′−s

+
t∫

t ′
+

t−s∫

t

⎞
⎟⎠ϕ(v)dvds,

from which

t∫

t ′
ϕ(v)dv ≤ 2δ

∫
X

∫ N
−N |s|K (s, τ )p(τ )dsdμ(τ)∫

X

∫ N
−N K (s, τ )p(τ )dsdμ(τ)− 1

, t ′ < t < s̄ − 2N .

Hence, the increasing function

ψ(t) =
t∫

−∞
ϕ(s)ds (8)

is well defined for all t ∈ R and

ψ(t) ≥
∫

X

p(τ )dμ(τ)

N∫

−N

K (s, τ )ψ(t − s)ds ≥ κψ(t − N ), t < s̄ − 2N .

Consider h(t) = ψ(t)e−γ t where κ = eγ N , cf. [4]. For all t < s̄ − 2N we have

h(t − N ) = ψ(t − N )e−γ (t−N ) ≤ 1

κ
ψ(t)e−γ t eγ N = h(t)

and γ = N−1 ln κ > 0. Hence supt≤0 h(t) < ∞ and ψ(t) = O(eγ t ), t → −∞.
After taking x̄ ∈ (0, γ ) and integrating by parts, we obtain
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On uniqueness of semi-wavefronts 79

t∫

−∞
ϕ(s)e−x̄sds = ψ(t)e−x̄ t + x̄

t∫

−∞
ψ(s)e−x̄sds

that proves the first statement of the theorem. Finally,

e−x̄ tψ(t) =
∫

X

dμ(τ)
∫

R

e−x̄s K (s, τ )e−x̄(t−s)ψ1(t − s, τ )ds,

where ψ1(u, τ ) := ∫ u
−∞ g(ϕ(s), s, τ )ds ≥ p(τ )

∫ u
−∞ ϕ(s)ds, u ≤ s̄ − N . The latter

yields

s̄−N∫

−∞
e−x̄vψ(v)dv =

∫

X

dμ(τ)
∫

R

e−x̄s K (s, τ )

s̄−N∫

−∞
e−x̄(v−s)ψ1(v − s, τ )dvds

≥
∫

X

p(τ )dμ(τ)

0∫

−∞
e−x̄s K (s, τ )ds

s̄−N∫

−∞
e−x̄vψ(v)dv,

K−(x̄) :=
∫

X

p(τ )dμ(τ)

0∫

−∞
e−x̄s K (s, τ )ds ≤ 1,

(note that ψ(s) > 0, s ∈ R), (9)

so that

K−(0) =
∫

X

p(τ )dμ(τ)

0∫

−∞
K (s, τ )ds ≤ 1 <

∫

X

p(τ )dμ(τ)
∫

R

K (s, τ )ds,

which completes the proof of the theorem.

Remark 2 Suppose that |g(ϕ(s), s, τ )| ≤ C where C does not depend on s, τ . Then

|ϕ(t + h)− ϕ(t)| ≤ C
∫

X

dμ(τ)
∫

R

|K (s + h, τ )− K (s, τ )|ds.

Since the translation is continuous in L1(R) [14, Example 5.4], we find that ϕ(t)
is uniformly continuous on R. It is easy to see that the convergence of the integral∫ 0
−∞ ϕ(s)ds < ∞ combined with the uniform continuity of ϕ gives ϕ(−∞) = 0. In

this way,
∫ 0
−∞ ϕ(s)ds < ∞ implies that

∫ 0
−∞ e−xsϕ(s)ds < ∞ for small positive x .

Remark 3 It is easy to see that the global non-negativity of g is not necessary in the
case of K having bounded support (uniformly in τ ∈ X ).
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Now, let ϕ, K , g, x̄ be as in Theorem 1 and sups∈R ϕ(s) < ∞. Set


(z) =
∫

R

e−zsϕ(s)ds, K(z) =
∫

R

∫

X

K (s, τ )p(τ )dμ(τ)e−szds,

and denote the maximal open vertical strips of convergence for these two integrals
as σφ < 
z < γφ and σK < 
z < γK , respectively. Evidently, σφ, σK ≤ 0 and
γφ, γK ≥ x̄ > 0. Since ϕ, K are both non-negative, by [40, Theorem 5b, p. 58],
γφ, γK , σφ, σK are singular points of 
(z),K(z) (whenever they are finite). A sim-
ple inspection of the proof of Theorem 1 suggests the following

Lemma 1 Assume ϕ, g, K are as in Theorem 1. Then σK ≤ σφ < γφ ≤ γK . Fur-
thermore, K(γφ) is always a finite number.

Proof For all z ∈ (0, γφ), t ≤ 0, we have

ψ(t) =
t∫

−∞
(ϕ(s)e−zs)ezsds ≤ ezt

0∫

−∞
ϕ(s)e−zsds,

so that
∫ 0
−∞ ψ(s)e−z′sds < ∞ for each z′ ∈ (0, γφ) and, due to (9), we get

K−(z) :=
∫

X

p(τ )dμ(τ)

0∫

−∞
e−zs K (s, τ )ds ≤ 1

for all z ∈ (0, γφ). Hence, using the Beppo Levi monotone convergence theorem, we
obtain that K−(γφ) ≤ 1. As a consequence, K(γφ) is finite and γK ≥ γφ .

Corollary 1 Assume that

lim
z→γK −

∫

R

∫

X

K (s, τ )p(τ )dμ(τ)e−szds = +∞.

Then γφ is a finite number and γφ < γK .

3 Abscissas of convergence

In this section, we investigate the abscissas of convergence for the bilateral Laplace
transforms of K and bounded non-negative ϕ satisfying ϕ(−∞) = 0, ϕ(t) �≡ 0, t ≤
t ′, for each fixed t ′, and solving our main Eq. (1). Now we are supposing that the
continuous g(·, τ ) : R+ → R+ is differentiable at 0 with g′(0+, τ ) > 0 for each
fixed τ . Then the non-negative functions

λ+
δ (τ ) := sup

u∈(0,δ)
g(u, τ )

u
, λ−

δ (τ ) := inf
u∈(0,δ)

g(u, τ )

u
, δ > 0, τ ∈ X,
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On uniqueness of semi-wavefronts 81

are well defined, measurable, monotone in δ and pointwise converging:

lim
δ→0+ λ

±
δ (τ ) = g′(0+, τ ).

The characteristic function χ associated with the variational equation along the trivial
steady state of (1) is defined by

χ(z) := 1 −
∫

R

∫

X

K (s, τ )g′(0+, τ )dμ(τ)e−szds.

It is supposed to be negative at z = 0: χ(0) < 0. Since condition (5) is obviously
satisfied with p(τ ) = λ−

δ (τ ) and

lim
δ→0+

∫

R

∫

X

K (s, τ )λ−
δ (τ )dμ(τ)ds =

∫

R

∫

X

K (s, τ )g′(0+, τ )dμ(τ)ds > 1

by the monotone convergence theorem, all results of Sect. 2 hold true for Eq. (1).
Furthermore, we have the following

Theorem 2 Assume χ(0) < 0. Let ϕ : R → [0,+∞) be a semi-wavefront to Eq. (1).
If ϕ(−∞) = 0 and ϕ(t) �≡ 0, t ≤ t ′ for each fixed t ′, then χ(z) has a zero on
(0, γφ] ⊂ (0, γK ] ⊂ R ∪ {+∞}.
Remark 4 (1) If ϕ(+∞) = 0 then a similar statement can be proved. Namely, in such
a case χ(z) has a zero on [σK , 0). (2) It should be noted that Theorem 2 also provides
a non-existence result: if χ(x) < 0 for all x ∈ (0, γK ] then Eq. (1) does not have any
semi-wavefront vanishing at −∞.

Proof For real positive z ∈ (0, γφ) we consider the integrals


(z)=
∫

R

e−zsϕ(s)ds,G(z, τ ) :=
∫

R

e−zs g(ϕ(s), τ )ds,K(z, τ ) :=
∫

R

e−zs K (s, τ )ds.

Since ϕ is non-negative and bounded, and since g′(0+, τ ) > 0 exists, the conver-
gence of G(z, τ ) (for positive z) is equivalent to the convergence of 
(z). Applying
the bilateral Laplace transform to Eq. (1), we obtain that


(z) =
∫

X

K(z, τ )G(z, τ )dμ(τ). (10)

Obviously, K,G,
 are positive at each real point of the convergence.
Let us prove that χ(z) has a zero on (0, γφ]. First, we suppose that 
(γφ) =

limz→γφ−
(z) = ∞. In such a case, we claim that

lim
z→γφ−

G(z, τ )

(z)

= g′(0, τ ).
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Indeed, let Tδ be the rightmost non-positive number such that ϕ(s) ≤ δ for s ≤ Tδ .
Then

λ−
δ

Tδ∫

−∞
e−zsϕ(s)ds ≤

Tδ∫

−∞
e−zs g(ϕ(s), τ )ds ≤ λ+

δ

Tδ∫

−∞
e−zsϕ(s)ds,

+∞∫

Tδ

e−zs(g(ϕ(s), τ )+ ϕ(s))ds ≤ sups∈R(g(ϕ(s), τ )+ ϕ(s))

z
e−γφTδ .

As a consequence, for each positive δ > 0,

λ−
δ ≤ lim inf

z→γφ−
G(z, τ )

(z)

≤ lim sup
z→γφ−

G(z, τ )

(z)

≤ λ+
δ ,

that proves our claim.
Now, by using the Fatou lemma as z → γφ− in

∫

X

K(z, τ )G(z, τ )

(z)

dμ(τ) = 1,

we obtain

1 − χ(γφ) =
∫

X

K(γφ, τ )g′(0, τ )dμ(τ) ≤ 1.

Therefore χ(γφ) ≥ 0, and since χ(0) < 0 we get the required assertion.
Hence, we may suppose that 
(γφ) = limz→γφ−
(z) > 0 is finite. Since ϕ(t) �≡

0, t ≤ t ′ for each fixed t ′, in such a case γφ < ∞. Due to Lemma 1, the value K(γφ)
is also finite. Set

ζ(t) := ϕ(t)e−γ t , K1(s, τ ) := e−γ s K (s, τ ), where γ := γφ.

Then, for t < Tδ − N , we have from (1) that
∫ t
−∞ ζ(v)dv =

t∫

−∞
ϕ(v)e−γ vdv ≥

∫

X

dμ(τ)

N∫

−N

K1(s, τ )

t∫

−∞
g(ϕ(v − s), τ )e−γ (v−s)dvds

≥
∫

X

dμ(τ)

N∫

−N

λ−
δ (τ )K1(s, τ )

t∫

−∞
ζ(v − s)dvds

≥
⎛
⎝
∫

X

dμ(τ)

N∫

−N

λ−
δ (τ )K1(s, τ )ds

⎞
⎠

t−N∫

−∞
ζ(v)dv.
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On uniqueness of semi-wavefronts 83

Suppose now on the contrary that the characteristic equation

χ(z) := 1 −
∫

R

∫

X

K (s, τ )g′(0+, τ )dμ(τ)e−szds = 0

has not real roots on [0, γφ]. Then χ(0) < 0 implies χ(γ ) < 0. As a consequence, in
virtue of the monotone convergence theorem,

lim
δ→0+,N→+∞

∫

X

dμ(τ)

N∫

−N

λ−
δ (τ )K1(s, τ )ds = 1 − χ(γ ) > 1.

Hence, for some appropriate δ, N > 0, increasing function ξ(t) = ∫ t
−∞ ζ(s)ds sat-

isfies ξ(t) ≥ κδξ(t − N ), t < Tδ − N with κδ > 1. Arguing now as in the proof of
Theorem 1 below (8) we conclude that the integral

∫ t
−∞ ζ(s)e−zsds converges for all

small positive z, contradicting to the definition of γφ .

Remark 5 A natural question is whether there exists ϕ satisfying assumptions of The-
orem 2 and such that 
(γφ) is finite. Actually, it is well known that 
(γφ) = ∞
under some additional conditions on K , g. For example, this happens if g(u, τ ) ≤
g′(0, τ )u, u ≥ 0 (other conditions can be found in Corollary 3). Indeed, due to the
above proof, the only case to be examined is whenχ(γ ) ≥ 0 and
(γ ) < ∞, γ := γφ .
We have

ϕ(t)e−γ t ≤
∫

X

dμ(τ)
∫

R

K1(s, τ )g
′(0, τ )ϕ(t − s)e−γ (t−s)ds, t ∈ R, (11)

where both sides of the inequality are continuous2 functions of t . If either (i) χ(γ ) > 0
or (ii) inequality (11) is strict at some point t0, we will integrate (11) over R to get a
contradiction: 
(γ ) ≤ 
(γ )(1 − χ(γ )) (case (i)), 
(γ ) < 
(γ )(1 − χ(γ )) (case
(ii)). In consequence we are left to assume that

ϕ(t)e−γ t =
∫

R

⎡
⎣
∫

X

K1(s, τ )g
′(0, τ )dμ(τ)

⎤
⎦ϕ(t − s)e−γ (t−s)ds, t ∈ R,

and
∫
R

∫
X K1(s, τ )g′(0, τ )dμ(τ)ds = 1. However, after integrating the latter equality

over (t,+∞) and then using Lemma 7 with Remark 7, we get again a contradiction.

It is clear that χ(z) is concave on (σK , γK ), where χ ′′(z) < 0. Since χ(0) is negative,
χ can have at most two real zeros, and they must be of the same sign. We will denote
them (if they exist) by λl ≤ λr . Under assumption of the existence of a semi-wavefront

2 This property becomes obvious if we rewrite (11) without exponential factors.
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ϕ vanishing at −∞, χ has at least one positive root λl . Finally, it is clear that χ is
analytical in the vertical strip 
z ∈ (0, γK ).
Notation At this stage, it is convenient to introduce the following notation:

λr K =
{
λr , if λr exists,
γK , otherwise.

Lemma 2 Equation χ(z) = 0 does not have roots in the open strip � := 
z ∈
(λl , λr K ). Furthermore, the only possible zeros on the boundary � are λl , λr .

Proof Observe that if χ(z0) = 0 for some z0 ∈ �, then χ(
z0) > 0 since χ is
concave, χ(λl) = 0 and 
z0 ∈ (λl ,min{λr , γK }). On the other hand,

1 = |
∫

R

∫

X

K (s, τ )g′(0+, τ )dμ(τ)e−sz0 ds| ≤
∫

R

∫

X

K (s, τ )g′(0+, τ )dμ(τ)e−s
z0 ds

and therefore χ(
z0) ≤ 0, a contradiction. Now, if χ(λl + iω) = 0 for some ω �= 0
then similarly

1 = 1 − χ(λl + iω) = |1 − χ(λl + iω)| ≤ 1 − χ(λl) = 1,

so that

∫

R

∫

X

K (s, τ )g′(0+, τ )dμ(τ)e−sλl (1 − cosωs)ds = 0.

Thus K (s, τ )(1 − cosωs) = 0 for almost all τ ∈ X , so that K (s, τ ) = 0 a.e. on
X × R, a contradiction.

4 A bootstrap argument

The main purpose of this section is to prove several auxiliary statements needed in
the studies of the asymptotic behavior of solutions ϕ(t) at t = −∞. Usually proofs
of the uniqueness are based on the derivation of appropriate asymptotic formulas with
one or two leading terms (at t = −∞ as in [4,12,16,39] or at t = +∞ as in [23]).
Our approach is based on an asymptotic integration routine often used in the theory
of functional differential equations, e.g. see [27], [31, Proposition 7.1] or [20]. Thus
we use neither the Titchmarsh theory of Fourier integrals [35] nor the powerful Ike-
hara Tauberian theorem [4,12]. First we will apply our methods to get an asymptotic
formula for the integral ψ(t) := ∫ t

−∞ ϕ(s)ds. Since ψ ∈ C1(R) is increasing and
positive, this function is somewhat easier to treat than the solution ϕ(t).

Here and everywhere in the sequel, the functions ϕ, K , g, χ satisfy all conditions
of Sect. 3. In particular, χ(0) < 0. We also will use the following hypotheses (SB),
(ECρ):
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(SB) γφ < γK and, for some measurable C(τ ) > 0 and α, σ ∈ (0, 1],

|g′(0, τ )− g(u, τ )

u
| ≤ C(τ )uα, u ∈ (0, σ ),

ζ(x) :=
∫

X×R

C(τ )K (s, τ )e−sx dsdμ < +∞, x ∈ (0, γK ). (12)

(ECρ) For every x ∈ (0, ρ), ρ ≤ γφ, there exists some positive Cx such that

0 ≤ ϕ(t) ≤ Cx ext , t ≤ 0. (13)

There are several situations when (ECρ) can be easily checked:

Lemma 3 Condition (ECρ) is satisfied in either of the following two cases:

(i) ϕ ∈ C1(R) and the integral
∫
R

e−xsϕ′(s)ds converges absolutely for all x ∈
(0, ρ);

(ii) (cf. [12]) ρ < γφ and there exist measurable d1, d2, d1d2 ∈ L1(X), such that

0 ≤ K (s, τ ) ≤ d1(τ )e
ρs, s ∈ R, τ ∈ X,

|g(u, τ )| ≤ d2(τ )u, u ≥ 0. (14)

Proof (i) For each x ∈ (0, ρ) we have that

ϕ(t) =
t∫

−∞
ϕ′(s)ds =

t∫

−∞
exsϕ′(s)e−xsds ≤ ext

∫

R

e−xs |ϕ′(s)|ds =: Cx ext .

(ii) Since ρ < γφ , the integral
∫
R

e−xsϕ(s)ds converges for all x ∈ (0, ρ]. If
x ∈ (0, ρ], t ≤ 0, then

ϕ(t)e−xt ≤ ϕ(t)e−ρt =
∫

X

dμ(τ)
∫

R

K (s, τ )e−ρse−ρ(t−s)g(ϕ(t − s), τ )ds

≤ C :=
∫

X

d1(τ )d2(τ )dμ(τ)
∫

R

e−ρsϕ(s)ds.

The following simple proposition will be used several times in the sequel:

Lemma 4 Assume that h(s)e−sx ∈ L1(R) for all x ∈ [a, b]. Then

H(x, y) :=
∫

R

h(s)e−sx−isyds, y ∈ R,

is uniformly (with respect to y ∈ R) continuous on [a, b].
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Proof Take an arbitrary ε > 0 and let N > 0 be such that

∫

R\[−N ,N ]
|h(s)|e−sx ds < 0.25ε, x ∈ [a, b].

Since et is uniformly continuous on compact sets, there exists δ > 0 such that |x1 −
x2| ≤ δ, s ∈ [−N , N ] implies |e−x1s − e−x2s | < 0.5ε/|h|1. But then

|H(x1, y)− H(x2, y)| ≤ 0.5ε +
N∫

−N

|h(s)||e−x1s − e−x2s |ds < ε, y ∈ R.

Corollary 2 With h as in Lemma 4, we have that limy→∞ H(x, y) = 0 uniformly on
x ∈ [a, b].

Proof Due to Lemma 4, for each ε > 0 there exists a finite sequence a := x0 < x1 <

x2 < · · · < xm =: b possessing the following property: for each x there is x j such
that |H(x j , y) − H(x, y)| < 0.5ε uniformly on y. Now, by the Riemann–Lebesgue
lemma, limy→∞ H(x j , y) = 0 for every j . Therefore, for all j and some M > 0, we
have that |H(x j , y)| < 0.5ε if |y| ≥ M . This implies that

|H(x, y)| ≤ |H(x j , y)− H(x, y)| + |H(x j , y)| < ε, |y| ≥ M, x ∈ [a, b],

and the corollary is proved.

As we know, the propertyϕ(−∞) = 0 implies the exponential decayψ(t) = O(ezt ) at
−∞ for each z ∈ (0, γφ). It is clear also thatψ(t) = O(t) as t → +∞. Hence, for each
fixed z ∈ (0, γφ), we can integrate Eq. (1) twice, to find that�(z) := ∫

R
e−zvψ(v)dv

satisfies

�(z) =
∫

X

dμ(τ)
∫

R

K (s, τ )e−zs
∫

R

e−z(v−s)

v−s∫

−∞
g(ϕ(u), τ )dudvds

=
∫

X

dμ(τ)
∫

R

K (s, τ )e−zs
∫

R

e−zv

v∫

−∞
g(ϕ(u), τ )dudvds

=
⎛
⎝
∫

X

dμ(τ)
∫

R

K (s, τ )g′(0, τ )e−zsds

⎞
⎠
∫

R

e−zvψ(v)dv + R(z), where

R(z) :=
∫

X

dμ(τ)
∫

R

K (s, τ )e−zsds
∫

R

e−zv

v∫

−∞
(g(ϕ(u), τ )− g′(0, τ )ϕ(u))dudv.

123



On uniqueness of semi-wavefronts 87

Therefore χ(z)�(z) = R(z). Set now

G(z, τ ) :=
∫

R

e−zvG(v, τ )dv, G(v, τ ) :=
v∫

−∞
(g(ϕ(u), τ )− g′(0, τ )ϕ(u))du.

Lemma 5 Assume (14), (SB), (EC2ε) for some small 2ε ∈ (0, γK − γφ). Then given
a, b ∈ (0, γφ + αε) there exists ρ > 0 depending on ϕ, a, b such that

|G(z, τ )| ≤ ρ(τ)/|z| := ρ(C(τ )+ d2(τ )+ g′(0, τ ))/|z|,

z ∈ [a, b] ⊂ (0, γφ + αε).

Proof For x := 
z ∈ (0, γφ + αε), v ≤ 0, we have

e−xv|G(v, τ )| ≤ e−xvC(τ )

v∫

−∞
(ϕ(u))1+αdu ≤ e−xvCα

ε C(τ )ψ(v)eαεv,

so that e−x ·|G(·, τ )| ∈ L1(R) ∩ L2(R). After integrating by parts, we obtain

N∫

−N

e−zvG(v, τ )dv = G(−N , τ )ezN − G(N , τ )e−zN

z

+1

z

N∫

−N

e−zu(g(ϕ(u), τ )− g′(0, τ )ϕ(u))du.

This yields

|
∫

R

e−zvG(v, τ )dv| = 1

|z| |
∫

R

e−zu(g(ϕ(u), τ )− g′(0, τ )ϕ(u))du|

≤ 1

|z|

⎛
⎝Cα

ε C(τ )

0∫

−∞
e−(
z−αε)uϕ(u)du + |ϕ|∞(g′(0, τ )+ d2(τ ))

+∞∫

0

e−
zudu

⎞
⎠.

Corollary 3 In addition, assume that
∫
R×X K (s, τ )ρ(τ )e−sx dμds converges for all

x ∈ (0, γK ). Then χ(γφ) = 0 and, for appropriate ε1 > 0, a,m ∈ R, k ∈ {0, 1}, and
continuous r ∈ L2(R), it holds that

ψ(t + m) = (a − t)keγφ t + e(γφ+ε1)t r(t), t ∈ R.

It should be noted that depending on the geometric properties of g, the value of γφ
can be minimal (the case of a pulled semi-wavefront [13,22,34]) or maximal (the
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case of a pushed semi-wavefront, ibid.) positive zero of χ(z). Observe that, due to the
monotonicity of ψ , we can also use here the Ikehara Tauberian theorem [4]. However
it gives a slightly different result.

Proof Set z := x + iy. For a fixed 0 < x < γφ + αε we have

|R(z)| = |
∫

X

G(z, τ )
∫

R

K (s, τ )e−zsdsdμ| ≤ 1

|z|
∫

X

ρ(τ)

∫

R

K (s, τ )e−xsdsdμ,

so that R(z) is regular in the strip 0 < 
z < γφ + αε. Thus we can deduce from
�(z) = R(z)/χ(z) that γφ = γψ (e.g. see [12, Lemma 4.4], the definition of γψ
is similar to that of γφ) must be a positive zero of χ(z) and �(γφ) = ∞. It is clear
that R(x + i ·) is also bounded and square integrable on R (for each fixed x). Take
now γ ′, γ ′′ such that 0 < γ ′ < γφ < γ ′′ < γφ + αε. Then we may shift the path of
integration in the inversion formula for the Laplace transform (e.g. see [31, p. 10]) to
obtain

ψ(t) = 1

2π i

γ ′+i∞∫

γ ′−i∞
ezt�(z)dz = −Resz=γφ

eztR(z)
χ(z)

+ eγ
′′t

2π i

⎧⎨
⎩

+∞∫

−∞
eist a1(s)ds

⎫⎬
⎭ ,

where the first term is different from 0 and a1(s) = R(γ ′′ + is)/χ(γ ′′ + is) is square
integrable on R. Here we recall that, by Corollary 2, limy→∞ χ(x + iy) = 1 uni-
formly on x ∈ [γ ′, γ ′′]. Since χ ′′(z) < 0, x ∈ (0, γK ), for some a,m ∈ R we get
ψ(t + m) = (a − t)keγφ t + eγ

′′t r(t).

Lemma 6 Assume all conditions of Lemma 5 except γφ < γK . If

1 − χ1(x0) :=
∫

R

∫

X

K (s, τ )d2(τ )dμ(τ)e
−sx0 ds ≤ 1,

for some x0 ∈ (0, γK ), then γφ coincides with the minimal positive zero λl of χ(z).

Proof Since d2(τ ) ≥ g′(0, τ ), we obtain that x0 ∈ [λl , λr K ] and λl < γK .
Case I. γφ < γK . Then, by Corollary 3, we have χ(γφ) = 0 so that γφ ∈ {λl , λr }.
Suppose that γφ > λl , this implies x0 ≤ γφ = λr . We have

�(z) =
⎛
⎝
∫

X

dμ(τ)
∫

R

K (s, τ )d2(τ )e
−zsds

⎞
⎠
∫

R

e−zvψ(v)dv + R1(z), where

R1(z) :=
∫

X

dμ(τ)
∫

R

K (s, τ )e−zsds
∫

R

e−zv

v∫

−∞
(g(ϕ(u), τ )− d2(τ )ϕ(u))dudv,
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or, in a shorter form,

χ1(z)�(z) = R1(z). (15)

It is clear that x0 = γφ = λr > λl implies immediately that g′(0, τ ) = d2(τ ) a.e. on X
and that χ1(z) = χ(z), R(z) = R1(z). As we have seen in the proof of Corollary 3,
this guarantees that R1(x0) is a finite number. Of course, R1(x0) is also well defined
if x0 < γφ . Now, it is clear that R1(x0) ≤ 0 because of g(u, τ ) ≤ d2(τ )u, u ≥ 0.
We claim that, in fact, R1(x0) < 0. Indeed, otherwise g(u, τ ) = d2(τ )u, u ≥ 0, for
almost all τ ∈ X that yields d2(τ ) = g′(0, τ ) and R1(z) ≡ 0 leading to a contradic-
tion: �(z) ≡ 0 and ψ(t) ≡ 0.

Now, fromR1(x0) < 0, �(x0) > 0, χ1(x0) ≥ 0, we deduce that�must have a pole
at x0 = γφ < γK . But then χ1(γφ) = χ(γφ) implies χ1(z) ≡ χ(z), R(z) = R1(z).
Hence, λl < λr = x0 < γK and γφ = x0 is a simple pole of �. Therefore we can
proceed as in the proof of Corollary 3 taking 0 < γ ′ < γφ = λr < γ ′′ < γφ + αε to
obtain

ψ(t) = 1

2π i

γ ′+i∞∫

γ ′−i∞
ezt�(z)dz = −Resz=λr

eztR(z)
χ(z)

+ eγ
′′t r1(t)

= Aeγφ t + eγ
′′t r1(t), where A := − R(λr )

χ ′(λr )
< 0, r1 ∈ L2(R),

contradicting to the positivity of ψ .
Case II. γφ = γK . Since x0 < γK = γφ and R1(x0) < 0, we similarly deduce from
(15) that x0 is a singular point of �(z), a contradiction.

5 The uniqueness theorems

To prove our uniqueness results we will need more strong property ofϕ than the merely
convergence of

∫
R

e−zsϕ(s)ds for all 
z ∈ (0, γφ) (even combined, as in Sect. 4, with
(ECε) for some small ε > 0). This property, assumed everywhere in the sequel, is
(ECγφ ). The nonlinearity g is supposed to satisfy the hypothesis (SB).

The following assertion is crucial for extension of the Diekmann–Kaper theory on
the critical case χ(λl) = χ ′(λl) = 0.

Lemma 7 There is no continuous v which satisfies v(−∞) = 1, v(+∞) = 0 and

v(t) ≤
∫

R

N (s)v(t − s)ds,

where measurable N (s) ≥ 0, s ∈ R, is such that

∫

R

N (s)ds = 1,
∫

R

s N (s)ds = 0,
∫

R

|s|N (s)ds < ∞.
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Remark 6 We are deeply indebted to an anonymous referee for suggesting the present
statement and proof of Lemma 7. Comparing with our original result (which can be
found at http://www.arXiv.org), the referee’s version is stronger and has a simpler
proof.

Proof First we observe that, without restricting the generality, we may assume that
v ∈ C1(R) with the finite norm |v|C1 := sups∈R, j=0,1 |v( j)(s)| and v′(±∞) = 0.
Indeed, if we consider

w(t) :=
t+1∫

t

v(s)ds, t ∈ R,

then w ∈ C1(R) has the same properties as v, with |w′(t)| ≤ 2 sups∈R |v(s)| and
w′(±∞) = 0.

Set now

f (t) :=
∫

R

N (s)v(t − s)ds − v(t) =
∫

R

N (s)(v(t − s)− v(t))ds ≥ 0.

Following [2, p.113], we will integrate the above relation over [−a, a] to obtain, after
an application of Fubini’s theorem,

a∫

−a

f (t)dt = −
a∫

−a

⎛
⎝
∫

R

s N (s)

1∫

0

v′(t − θs)dθds

⎞
⎠ dt

=
∫

R

s N (s)

1∫

0

(v(−a − θs)− v(a − θs)) dθds =: g(a).

Applying Lebesgue’s dominated convergence theorem, we find easily that g(a) →∫
R

s N (s)ds = 0 as a → +∞. Therefore
∫
R

f (t)dt = 0 so that non-negative contin-
uous f (t) is identically zero. Then

v(t) =
∫

R

N (s)v(t − s)ds,

which yields

v′(t) =
∫

R

N (s)v′(t − s)ds.

Since v′(±∞) = 0, v(−∞) = 1, v(+∞) = 0, we conclude that v′(t) attains its
absolute minimum value m < 0 at some leftmost point t0 as well as at some rightmost
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point t1 ≥ t0. But then u(t) := (v′(t + t0)+ v′(t + t1))/2 − m > 0 for all t �= 0 and
we get a contradiction as follows:

0 = u(0) =
∫

R

N (s)u(−s)ds > 0.

Remark 7 The above proof shows that both conditions
∫

s N (s)ds = 0 and
∫ |s|N (s)ds

< ∞ of Lemma 7 can be omitted when v(t) = ∫ N (s)v(t − s)ds.

Now we are ready to prove our first uniqueness result:

Theorem 3 Assume (SB) except γφ < γK as well as (ECγφ ) and suppose further that
χ(0) < 0, χ(γK −) �= 0,

|g(u, τ )− g(v, τ )| ≤ g′(0, τ )|u − v|, u, v ≥ 0. (16)

Then Eq. (1) has at most one bounded positive solution ϕ, ϕ(−∞) = 0. Furthermore,
γφ coincides with the minimal positive zero λl of χ(z) and such a solution (if exists)
has the following representation:

ϕ(t + m) = (a − t)keλl t + e(λl+δ)t r(t), wi th continuous r ∈ L2(R),

for some appropriate a,m ∈ R, δ > 0. Here k = 0 [respectively, k = 1] if λl is a
simple [respectively, double] root of χ(z) = 0.

Remark 8 By Lemma 6, χ(γK −) �= 0 yields γφ = λl < γK . We assume this stronger
assumption instead of γφ < γK since it is more easy to use. In the section of applica-
tions, the condition χ(γK −) �= 0 is slightly modified in order to take into account the
dependence of χ, γK on the wave velocity c. Recall that we need γφ < γK to apply
the bootstrap argument.

Proof Step I: Asymptotic behavior at −∞. It is clear that Eq. (1) can be written as
the linear inhomogeneous equation

ϕ(t) =
∫

X

dμ
∫

R

K (s, τ )g′(0, τ )ϕ(t − s)ds + D(t), t ∈ R, (17)

where all integrals are converging and

D(t) :=
∫

X

dμ
∫

R

K (s, τ )(g(ϕ(t − s), τ )− g′(0, τ )ϕ(t − s))ds ≤ 0, t ∈ R.

Take C(τ ), σ, ζ(x) as in (SB). Observe that without restricting the generality, we can
assume in (SB) that (1 + α)γφ < γK . Since Eq. (1) is translation invariant, we can
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suppose that ϕ(t) < σ for t ≤ 0. Applying the bilateral Laplace transform to (17), we
obtain that

χ(z)
(z) =
∫

R

e−ztD(t)dt =: D(z).

We claim that, due to conditions (SB) and (ECγφ ), function D is regular in the strip
�α = {z : 
z ∈ (0, (1 + α)γφ)}. Indeed, we have

D(x + iy) =
∫

R

e−iyt [e−xtD(t)]dt.

Given x := 
z ∈ (0, (1 + α)γφ), we choose x ′ sufficiently close from the left to γφ
to satisfy −x + (1 + α)x ′ > 0. Then

|e−xtD(t)| ≤ e−xt

⎡
⎣
∫

X

C(τ )dμ

+∞∫

t

K (s, τ )C1+α
x ′ e(1+α)x ′(t−s)ds+

+2|ϕ|∞
∫

X

g′(0, τ )dμ
t∫

−∞
K (s, τ )ds

⎤
⎦

≤ e−xt

⎡
⎣e(1+α)x ′t C1+α

x ′ ζ((1 + α)x ′)

+2|ϕ|∞
∫

X

g′(0, τ )dμ
t∫

−∞
K (s, τ )ds

⎤
⎦

=: e−xt

⎡
⎣e(1+α)x ′t A1 + 2|ϕ|∞

∫

X

g′(0, τ )dμ

×
t∫

−∞
K (s, τ )e−(1+α)x ′se(1+α)x ′sds

⎤
⎦

≤ e(−x+(1+α)x ′)t [A1 + 2|ϕ|∞(1 − χ((1 + α)x ′))
]

=: A2e(−x+(1+α)x ′)t , t ∈ R.

Since clearly D(t) is bounded on R, the above calculation shows that e−xt D(t) belongs
to Lk(R), for each k ∈ [1,∞] once x ∈ (0, (1 + α)γφ). As a consequence, for each
such x the function dx (y) := D(x + i · y) is bounded and square integrable on R.

By our assumptions,χ(z) is also regular in the domain�α , while
(z) = D(z)/χ(z)
is regular in 
z ∈ (0, γφ) and meromorphic in �α . In virtue of Lemma 2, we can
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suppose that 
(z) has a unique singular point γφ in �α which is either simple or
double pole.

Now, for some x ′′ ∈ (0, γφ), using the inversion theorem for the Fourier transform,
we obtain that for an appropriate sequence of integers N j → +∞

ϕ(t) = 1

2π i
lim

j→+∞

x ′′+i N j∫

x ′′−i N j

ezt D(z)
χ(z)

dz

almost everywhere on R, e.g. see [31, p. 9–10]. Next, if x ∈ (γφ, (1 + α)γφ) then

x ′′+i N∫

x ′′−i N

ezt D(z)dz

χ(z)
=
⎛
⎜⎝

x+i N∫

x−i N

+
x−i N∫

x ′′−i N

−
x+i N∫

x ′′+i N

⎞
⎟⎠ ezt D(z)dz

χ(z)
− 2π iResz=γφ

ezt D(z)
χ(z)

.

Since, by Corollary 2,

lim
j→+∞ max

z∈[x ′′±i N j ,x±i N j ]
(|D(z)| + |1 − χ(z)|) = 0, (18)

we conclude that, for each fixed t ∈ R

lim
j→+∞

x±i N j∫

x ′′±i N j

ezt D(z)
χ(z)

dz = 0.

Observe also that due to Lemma 2 and Corollary 2 [cf. (18)], the function χ(z) does
not have zero other than λl = γφ in a small strip centered at 
z = λl . Therefore

ϕ(t) = −Resz=γφ
ezt D(z)
χ(z)

+ ext

2π

∫

R

eiyt dx (y)

χ(x + iy)
dy.

It should be noted here that D(γφ) < 0 since otherwiseD(t) ≡ 0 implyingχ(z)
(z) =
D(z) ≡ 0 so that 
(z) ≡ 0, a contradiction. Since

Resz=γφ
ezt D(z)
χ(z)

= eγφ t D(γφ)
χ ′(γφ)

, if λl < λr K ,

Resz=γφ
ezt D(z)
χ(z)

= 2eγφ t

χ ′′(γφ)

(
tD(γφ)+ D′(γφ)− D(γφ)

χ ′′′(γφ)
3χ ′′(γφ)

)
, if λl = λr ,

we get the desired representation.

123



94 M. Aguerrea et al.

Step II: Uniqueness. By the contrary, suppose that ϕ1 and ϕ2 are different solutions
of (1) in the sense that ϕ1(t) �∈ {ϕ2(t + s), s ∈ R}. Due to Step I we may suppose that
ϕ1, ϕ2 have the same main parts of their asymptotic representations:

ϕ j (t) = (a j − t)keγφ t + e(γφ+δ)t r j (t), r j ∈ L2(R).

Therefore ω(t) := ϕ2(t) − ϕ1(t) = e(γφ+δ)t r(t), t ∈ R, r ∈ L2(R), in the case of
λl < λr K and ω(t) = (a2 − a1)eγφ t + e(γφ+δ)t r(t), t ∈ R, r ∈ L2(R), in the case of
λl = λr . Set

w(t) :=
t∫

t−1

|ω(s)|ds,

it is clear that w ∈ C1(R) is bounded and has bounded derivative on R, in fact,
0 < |w′|∞, |w|∞ ≤ max{|ϕ1|∞, |ϕ2|∞}. Furthermore, if λl < λr K then

w(t) =
t∫

t−1

|e(γφ+δ)sr(s)|ds ≤ e(γφ+δ)t
t∫

t−1

|r(s)|ds ≤ e(γφ+δ)t

√√√√√
t∫

t−1

r2(s)ds,

so that w(t) = e(γφ+δ)t o(1) at t = −∞. Now, if λl = λr , we know that

ω(t) = aeγφ t + e(γφ+δ)t r(t),

where we can suppose that a ≥ 0. Therefore

−e(γφ+δ)t |r(t)| ≤ |ω(t)| − aeγφ t ≤ e(γφ+δ)t |r(t)|,

so that, in view of the above estimation of w(t), we get

|ω(t)| = aeγφ t + e(γφ+δ)t r1(t), with |r1(t)| ≤ |r(t)|,

w(t) =
t∫

t−1

|ω(s)|ds = a(1 − e−γφ )
γφ

eγφ t + e(γφ+δ)t o(1), t → −∞.

We have the following:

ω(t) =
∫

X

dμ(τ)
∫

R

K (s, τ )(g(ϕ2(t − s), τ )− g(ϕ1(t − s), τ ))ds,

|ω(t)| ≤
∫

X

g′(0, τ )dμ(τ)
∫

R

K (s, τ )|ω(t − s)|ds,
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t∫

t−1

|ω(u)|du ≤
∫

X

g′(0, τ )dμ(τ)
∫

R

K (s, τ )

t∫

t−1

|ω(u − s)|duds,

and, finally,

w(t) ≤
∫

X

g′(0, τ )dμ(τ)
∫

R

K (s, τ )w(t − s)ds. (19)

After multiplying the both sides of (19) by e−γφ t and setting v(t) := w(t)e−γφ t , we
find that

v(t) ≤
∫

R

N (s)v(t − s)ds,

where N (s) :=
∫

X

g′(0, τ )K (s, τ )e−γφsdμ(τ) satisfies
∫

R

N (s)ds = 1.

Case I. (noncritical) If λl < λr K , then v(±∞) = 0. Since v(t) ≥ 0, there exists
a finite tm such that v(tm) = M := maxs∈R v(s). If M = 0 then v(t) ≡ 0, and
the uniqueness follows. If M > 0 set t1 := min v−1(M) ≤ max v−1(M) =: t2 and
consider v1(t) := (v(t + t1)+ v(t + t2))/2. We have v1(t) < M, t ∈ R \ {0}, so that

M = v1(0) <
∫

R

N (s)ds M = M,

a contradiction.
Case II. (critical) Now, if λl = λr , we have that v(−∞) = a(1−e−γφ )/γφ , v(+∞) =
0. Furthermore,

∫
R

s N (s)ds = 0 because of χ(γφ) = χ ′(γφ) = 0. Since the assump-
tion a = 0 was already considered in Case I, we will suppose that a > 0. In fact, after
normalizing if necessary, we can assume that v(−∞) = 1. Finally, since γφ < γK ,
there exists δ > 0 such that

∫

R

N (s)exsds = 1 − χ(γφ − x) < ∞ for all |x | < δ.

Therefore
∫
R

|s|N (s)ds < ∞ and an application of Lemma 7 yields v(t) ≡ 0. This
contradiction completes the proof of Theorem 3.

Let us consider now the situation when the subtangential Lipschitz condition of Theo-
rem 3 is not satisfied. In such a case, we prove the uniqueness under somewhat stronger
hypotheses (SB*), (EC*):
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(SB*) Either one of the following conditions holds

|g(u, τ )− g(v, τ )− g′(0, τ )(u − v)|≤C(τ )|u − v|(uα + vα), u, v∈(0, σ ),
|g′(u, τ )− g′(0, τ )| ≤ C(τ )uα, u ∈ (0, σ ),

for some α, σ ∈ (0, 1] and measurable C(τ ) > 0 satisfying (12). Furthermore,
there exist ε̂ ∈ (0, γφ) and measurable d1(τ ) such that

0 ≤ K (s, τ ) ≤ d1(τ )e
ε̂s, s ∈ R.

(EC*) Either one of the following two assumptions is satisfied:
(i) Each solution of (1) is C1-smooth and if ϕ1, ϕ2 ∈ C1(R) satisfy (1)

and the integral
∫
R

e−zs(ϕ2(s)− ϕ1(s))ds converges absolutely then
the integral

∫
R

e−zs(ϕ′
2(s)− ϕ′

1(s))ds also converges absolutely.
(ii) There exists δ0 > 0 such that, for each x ∈ (λr K − δ0, λr K ), it holds

0 ≤ K (s, τ ) ≤ d2x (τ )e
xs, s ∈ R,

for some μ−measurable d2x (τ ).

Theorem 4 Assume (SB*), (EC*) and suppose that

|g(u, τ )− g(v, τ )| ≤ λ(τ)|u − v|, u, v ≥ 0, τ ∈ X, (20)

for some measurable λ(τ) different from g′(0, τ ) and that the function

χ1(z) = 1 −
∫

R

∫

X

K (s, τ )λ(τ )dμ(τ)e−szds

is well defined on [0, λr K ). If, in addition, λd j ∈ L1(X), j = 1, 2, χ(0) < 0 and
χ1(m) ≥ 0 for some m ∈ (0, λr K ), then Eq. (1) has at most one bounded positive
solution ϕ, ϕ(−∞) = 0. Furthermore, γφ coincides with the minimal simple positive
zero λl of χ(z) and, for appropriate t0 ∈ R, δ > 0,

ϕ(t + t0) = eλl t + e(λl+δ)t r(t), wi th continuous r ∈ L2(R).

Proof Using Lemma 6 and the above conditions, we find that λl = γφ < m < λr K ≤
γK . Hence, due to Lemma 3, the assumptions of the theorem guarantee the fulfillment
of the hypotheses (SB) and (ECγφ ). Therefore all arguments of Step I in the proof
of Theorem 3 can be repeated (with a unique change in the estimation of e−xtD(t)
where g′(0, τ ), χ is replaced with λ(τ), χ1). Thus each pair ϕ1, ϕ2 of solutions of
(1) can be supposed to have the same main parts of their asymptotic representations:
ϕ j (t) = eλl t + e(λl+δ)t r j (t), r j ∈ L2(R). The further proof is divided in three steps.
Step I. Again, we consider bounded function ω(t) := ϕ2(t) − ϕ1(t) = e(λl+δ)t r(t),
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t ∈ R, r ∈ L2(R). If 
z ∈ (0, λl + δ), then
∫
R

e−zsω(s)ds converges absolutely and
from condition (EC*)(i) we have

|ω(t)| = |
t∫

−∞
ω′(s)ds| = |

t∫

−∞
exsω′(s)e−xsds| ≤ ext

∫

R

e−xs |ω′(s)|ds =: Cx ext ,

for all x ∈ (0, λl + δ) and t ∈ R. Similarly, we obtain from (SB*), (EC*)(ii) that

|ω(t)| = |
∫

X

dμ
∫

R

K (s, τ )
(

g(ϕ1(t − s), τ )− g(ϕ2(t − s), τ )
)

ds|

≤ ext
∫

X

λ(τ)dμ
∫

R

K (s, τ )e−xse−x(t−s)|ω(t − s)|ds

≤ ext
∫

X

λ(τ)(d1(τ )+ d2,λl+δ(τ ))dμ
∫

R

e−xs |ω(s)|ds, x ∈ (ε̂, λl + δ), t ∈R.

In each of these two cases, for every x ∈ (ε̂, λl +δ) there exists an appropriate Cx > 0
such that |ω(t)| ≤ Cx ext , t ∈ R. Set

� = sup{x ≥ λl | ∃Cx : |ω(t)| ≤ Cx ext , t ∈ R},

we claim that � ≥ λr K . Indeed, on the contrary, suppose that � < λr K and let
x0 ∈ (ε̂, �), α > 0, γ0 ∈ (ε̂, λl) be such that x∗ = x0 +αγ0 ∈ (�, λr K ). We have that

ω(t) =
∫

X

dμ
∫

R

K (s, τ )g′(0, τ )ω(t − s)ds + E(t), t ∈ R, (21)

with bounded

E(t) :=
∫

X

dμ
∫

R

K (s, τ )
(

g(ϕ1(t − s), τ )− g(ϕ2(t − s), τ )− g′(0, τ )ω(t − s)
)

ds.

Now, independently on assumptions chosen in (SB*), we have

|g(ϕ1(s), τ )− g(ϕ2(s), τ )− g′(0, τ )ω(s)| ≤ C(τ )|ω(s)|(|ϕ1(s)| + |ϕ2(s)|)α

≤ k2C(τ )min{Cx0 e(x0+αγ0)s, (|ϕ1|∞ + |ϕ2|∞)1+α} ≤ k3C(τ )ex∗s, s ∈ R,
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where ki depend on x0, γ0 and |ϕ j |∞ only. Hence,

|E(t)| ≤ 4ex∗t max{|ϕ1|∞, |ϕ2|∞}
∫

X

λ(τ)dμ

t∫

−∞
K (s, τ )e−x∗sds

+kex∗t
∫

X

C(τ )dμ

+∞∫

t

K (s, τ )e−x∗sds

≤ ex∗t
(

4 max{|ϕ1|∞, |ϕ2|∞}(1 − χ1(x∗))+ kζ(x∗)
)

=: Aex∗t , t ∈ R.

Therefore e−xtE(t) belongs to Lk(R), for each k ∈ [1,∞] once x ∈ (0, x∗). Using
Lemma 2, we can repeat now the arguments of Step I of Theorem 3 (below the esti-
mation of |e−xtD(t)|) to conclude that ω(t) = extrx (t) t ∈ R, rx ∈ L2(R), for
each x ∈ (λl , x∗). This implies the absolute convergence of

∫
R

e−xsω(s)ds for every
x ∈ (λl , x∗). But as we have seen at the beginning of Step I, this yields |ω(s)| ≤
Bx exs, s ∈ R, x ∈ (λl , x∗) for appropriate Bx . Therefore � ≥ x∗ > �, a contradic-
tion. In this way, we have proved that

|ω(s)| ≤ Bx exs, s ∈ R, x ∈ (ε̂,min{λr , γK }). (22)

Step II.Suppose that χ1(m) > 0 for some m ∈ (0, λr K ), it is clear that m > λl and

κ :=
∫

R

∫

X

K (s, τ )λ(τ )dμ(τ)e−smds < 1.

We now define ω̄(t) := |ω(t)|e−mt ≥ 0, t ∈ R. By (22), we obtain that ω̄(±∞) = 0
and ω̄(tm) = maxs∈R ω̄(s) ≥ 0 for some tm ∈ R. Since

ω(t) =
∫

X

dμ(τ)
∫

R

K (s, τ )(g(ϕ2(t − s), τ )− g(ϕ1(t − s), τ ))ds,

we have

ω̄(tm) = |ω(tm)|e−mtm ≤
∫

X

λ(τ)dμ(τ)
∫

R

K (s, τ )e−ms |ω(tm − s)|e−m(tm−s)ds

≤ ω̄(tm)
∫

X

λ(τ)dμ(τ)
∫

R

K (s, τ )e−msds = ω̄(tm)κ.

Hence, ω̄(τ ) = 0 and the uniqueness follows.
Step III. Suppose now that χ1(m) = maxs∈(0,λr K ) χ1(s) = 0. Then additionally

χ ′
1(m) = 0. Since λ(τ) is different from g′(0, τ ), we have also that λl < m. Fur-

thermore, ω̄(t) := |ω(t)|e−mt ≥ 0, t ∈ R has the same properties as in Step II:
ω̄(±∞) = 0, ω̄(tm) = maxs∈R ω̄(s) ≥ 0 for some tm ∈ R and
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ω̄(t) ≤
∫

R

⎛
⎝
∫

X

K (s, τ )λ(τ )e−msdμ(τ)

⎞
⎠ ω̄(t − s)ds.

Since the assumption ω̄(tm) = 0 immediately implies the uniqueness, we may assume
that 0 ≤ ω̄(t) ≤ 1 = ω̄(tm) = 1, t ∈ R, for some finite rightmost tm . Then

1 ≤
∫

R

Nλ(s)ω̄(tm − s)ds ≤
∫

R

Nλ(s)ds = 1,

where Nλ(s) := ∫X K (s, τ )λ(τ )e−msdμ(τ). This implies that Nλ(s)ω̄(tm − s) =
Nλ(s) a.e. and ω̄(tm − s) = 1 for all s such that Nλ(s) > 0. Now, since

∫
R

Nλ(s)ds =
1,
∫
R

s Nλ(s)ds = 0, there is a subset of R− of positive measure where Nλ(s) > 0.
This means that tm does not possess the property to be the rightmost point where
ω̄(tm) = 1, a contradiction. In consequence, ω̄(t) ≡ 0 that proves the uniqueness.

Remark 9 It is enlightening to compare Theorem 4 and Theorem 2 in [33] where some-
what similar ideas were exploited. Indeed, from pure analytical estimations, without
the use of asymptotic representations of solutions and without using the properties
of χ indicated in Lemma 2, Schumacher deduced that � ≥ λr K (under assumptions
made in [33]). In any case, monotonicity restrictions on the convolution term in [33]
do not allow to consider various interesting models (cf. Sects. 6.3–6.4 below).

6 Applications

In this section, Theorems 3 and 4 are applied to several models which can be written as
(1). This allows to improve or complement the uniqueness results in [1,4,8,12,16,36].
Everywhere in this section we assume that locally Lipschitzian g : R+ → R+, g(0) =
0, is differentiable at 0 with g′(0) > 0.

6.1 A nonlocal integro-differential equation [4,8,9,21,28,33]

Consider the equation

ut = J ∗ u − u + g(u), (23)

where J ≥ 0,
∫
R

Jds > 0. Let γ # denote an extended positive real number such that∫
R

J (s)e−zsds is convergent for z ∈ [0, γ #) and is divergent when z > γ #. As it can
be easily deduced from Theorem 1, the existence of such γ # is automatically assured
by the existence of positive semi-wavefronts u(t, x) = φ(x + ct), φ(−∞) = 0 to
(23). Traveling wave profile φ solves

cφ′ = J ∗ φ − φ + g(φ). (24)
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In order to replace condition (3) with less restrictive

g′(s) ≤ g′(0) a.e. on R+, (25)

we use the following trick. Set gβ(s) = g(s)+ βs for some positive β. We claim that
β can be chosen in such a way that gβ satisfies the Lipshitz condition with a constant
g′
β(0) = β+ g′(0). First observe that our proof of uniqueness compares two different

solutions φ1, φ2. Since they are uniformly bounded by some positive M > 0, we can
restrict our attention to a finite interval [0,M] where g is globally Lipschitzian. But
then there exists β > 0 such that g′(0) ≥ g′(s) ≥ −2β− g′(0) almost everywhere on
[0,M]. In consequence, we get the necessary estimation

−g′(0)− β ≤ g′
β(s) = β + g′(s) ≤ β + g′(0) a.e. on [0,M].

Hence, instead of (24) we will consider

cφ′ = J ∗ φ − (1 + β)φ + gβ(φ). (26)

Let us suppose that c > 0 (the case c < 0 is similar). Since φ is non-negative and
bounded, it should satisfy

φ(t) = 1

c

t∫

−∞
e−(t−s)(1+β)/c(J ∗ φ(s)+ gβ(φ(s))

)
ds

= k ∗ (J ∗ φ)(t)+ k ∗ gβ(φ)(t) = (k ∗ J ) ∗ φ(t)+ k ∗ gβ(φ)(t), (27)

where k(s) = c−1e−s(1+β)/c, s ≥ 0 and k = 0 if s < 0. Thus, Eq. (27) can be written
as (4), with X = {τ1, τ2} and

K (s, τ ) =
{

k ∗ J (s), τ = τ1,

k(s), τ = τ2,
g(s, τ ) =

{
s, τ = τ1,

gβ(s), τ = τ2.

Finally, independently on the sign of c, we find that

χ(z, c) = 1 −
∫

R

K (s, τ1)e
−zsds − (g′(0)+ β)

∫

R

K (s, τ2)e
−zsds

= 1 − 1

1 + β + cz

∫

R

J (s)e−zsds − g′(0)+ β

1 + β + cz
=: χ̃(z, c)

1 + β + cz
.

Let c∗ be the minimal value of c for which

χ̃(z, c) := 1 − g′(0)+ cz −
∫

R

J (s)e−szds
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has at least one positive zero. It is easy to see that

c∗ = inf
z>0

1

z

⎧⎨
⎩−1 + g′(0)+

∫

R

J (s)e−szds

⎫⎬
⎭

can be positive, negative (in these cases inf can be replaced with min) or zero. By
Theorem 2, c ≥ c∗ for each admissible wave speed c. The next result is a direct
consequence of Theorem 3.

Theorem 5 Suppose (25) together with 1 − ∫
R

J (s)ds < g′(0) and

|g(u)− g′(0)u| ≤ Cu1+α, u ∈ (0, σ ) for some α, σ ∈ (0, 1], (28)

Then Eq. (24) has at most one bounded positive solution ϕ, ϕ(−∞) = 0, for each
c �= 0 (if χ̃(γ #−, c∗) �= 0) or for each c �= 0, c∗ (if χ̃(γ #−, c∗) = 0).

Proof Suppose that c > 0 (the case c < 0 is similar). We only have to check the
assumptions (ECγφ ), (SB) except γφ(c) < γK (c), χ(0, c) < 0 and χ(γK −, c) �= 0 of
Theorem 3.
Step I. It is clear that g(·, τ ) satisfies (16), where g′(0, τ1) = 1, g′(0, τ2) = g′(0)+β.
Moreover, we have |g(u, τ )− g′(0, τ )u| ≤ C(τ )u1+α, u ∈ (0, σ ), where C(τ ) = 0
if τ = τ1 and C(τ ) = C if τ = τ2.
Step II. For each z > − 1+β

c we have
∫
R

k(s)e−zsds = 1
1+β+cz < +∞ so that

γK (c) = γ # because of
∫
R

k ∗ J (s)e−zsds = ∫
R

J (s)e−zsds/(1 + β + cz). (Observe
here that γK (c) = min{γ #,−(1 + β)/c} if c < 0. However, if γK (c) = −(1 + β)/c
then χ(γK (c), c) = ∞ so that γφ(c) < γK (c) due to Corollary 1).
Step III. If ϕ solves (24), then ϕ ∈ C1(R) and for each 0 < z < γφ we obtain

c
∫

R

e−zs |ϕ′(s)|ds ≤
∫

R

e−zs J ∗ ϕ(s)ds +
∫

R

e−zsϕ(s)ds +
∫

R

e−zs g(ϕ(s))ds

≤
⎛
⎝
∫

R

e−zs J (s)ds + 1 + g′(0)

⎞
⎠
∫

R

e−zsϕ(s)ds < +∞.

Thus, by Lemma 3, condition (ECγφ ) is satisfied.
Step IV. We have χ(0, c) = (1−∫

R
J (s)ds −g′(0))/(1+β) < 0. Now, if γ # < +∞,

then χ̃ (γ #−, c∗) �= 0 implies that χ(γ #−, c∗) �= 0 and γφ(c∗) = λl(c∗) < γ #.
Since χ(z, c) is strictly increasing in c for each fixed z > 0, function λl(c) is strictly
decreasing. Hence γφ(c) = λl(c) < γ # for each c ≥ c∗. Similar considerations shows
that γφ(c) < γ # for each c > c∗ if χ(γ #−, c∗) = 0. Finally, in the case γ # = +∞
we have that χ(+∞, c) ∈ {1,−∞} �� 0, so that χ(γK −, c) �= 0 holds automatically.

Remark 10 Our approach allows to remove several restrictions on J and g assumed in
the Carr and Chmaj uniqueness result [4, Theorem 2.1]. In the cited work g is supposed
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to satisfy (3) and J to be an even compactly supported function with
∫
R

Jds = 1.
These properties were essential in the proof of Theorem 2.1 in [4] even though (3) was
not mentioned explicitly there. Similarly, conditions J ∈ C1(R), J (a) > 0, J (b) > 0
for some a < 0 < b, and of J compactly supported were used by Coville et al.
It was assumed in [8] that g′(0)g′(1) < 0 together with g(u)/u ≤ g′(0), u > 0,
instead of more restrictive g′(u) ≤ g′(0), u > 0. See also [8] for non-uniqueness
of stationary traveling fronts (c = 0). Next, Schumacher [33], using a comparison
method for differential inequalities combined with a Nagumo-point argument, estab-
lished uniqueness of regular and non-critical semi-wavefronts to Eq. (23) for general
J and g satisfying (25). The trick allowing to weaken the Lipschitz restriction (3)
is due to Thieme and Zhao [36] (as far as we know). Usually it was applied under
reversed inequality f ′(s) ≥ f ′(0) to the second (damping) term of equation, e.g. see
also [17] and Sect. 6.3 for further generalizations. Here we show that this trick shows
to be useful also in the case of birth functions. We would like to note that Theorem 5
remains true if we introduce a small delay h > 0 in the term g(ϕ(t − h)). Indeed, in
such a case it suffices to replace k(s) with a positive fundamental solution v(s) of the
scalar delayed equation cv′(s) = −v(s)− βv(s − h).

6.2 Nonlocal lattice equations [6,16,26,30,42]

Now we consider semi-wavefronts w j (t) = u( j + ct), u(−∞) = 0, of the nonlocal
lattice equation

dw j (t)

dt
= D

1∑
k=−1

[w j+k(t)− w j (t)] − dw j (t)+
∑
k∈Z

β( j − k)g(wk(t − r)), j ∈ Z,

where β(k) ≥ 0,
∑

k∈Z β(k) = 1. Let γ # be an extended positive real number such
that
∑

k∈Z β(k)e
−zk converges when z ∈ [0, γ #) and is divergent when z > γ #. By

Cauchy-Hadamard formula, γ # = − lim supk→+∞ k−1 ln β(−k), where by conven-
tion ln(0) = −∞. The wave profile u satisfies

cu′(x) = D[u(x + 1)+ u(x − 1)− 2u(x)] − du(x)

+
∑
k∈Z

β(k)g(u(x − k − cr)). (29)

Again we take c > 0 for simplicity. Since u is bounded, we find that

u(t) = 1

c

t∫

−∞
e− 2D+d

c (t−s)

[
Du(s + 1)+ Du(s − 1)+

∑
k∈Z

β(k)g(u(s − k − cr))

]
ds

= D(H−1 + H1) ∗ u(t)+
∑
k∈Z

β(k)Hk+cr ∗ g(u)(t), (30)
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where

Hτ (t) =
{

1
c e− 2D+d

c (t−τ), t ≥ τ,

0, t < τ.

Thus (30) can be written as (1), with X = {τ1, τ2} and

K (s, τ ) =
{

D(H−1(s)+ H1(s)), τ = τ1,∑
k∈Z β(k)Hk+cr (s), τ = τ2,

g(s, τ ) =
{

s, τ = τ1,

g(s), τ = τ2.

Next, χ(z, c) = 1 − ∫
R

K (s, τ1)e−szds − g′(0)
∫
R

K (s, τ2)e−szds =

1 − 2D cosh(z)

2D + d + cz
− g′(0)e−crz

2D + d + cz

∑
k∈Z

β(k)e−kz =: χ̃ (z, c)

2D + d + cz
.

Let c∗ be the minimal value of c for which

χ̃ (z, c) := d + 2D + cz − D(ez + e−z)− g′(0)e−crz
∑
k∈Z

β(k)e−kz

has at least one positive zero. It is easily seen that c∗ is well defined and is finite. By
Theorem 2, c ≥ c∗ for each admissible wave speed c.

We are ready to apply our uniqueness results to (29).

Theorem 6 Suppose that g satisfies (3), (28) and g′(0) > d. Then Eq. (29) has at most
one bounded positive solution u, u(−∞) = 0, for each c �= 0 (if χ̃ (γ #−, c∗) �= 0)
or for each c �= 0, c∗ (if χ̃ (γ #−, c∗) = 0).

Proof Step I. Obviously, g(·, τ ) verifies (3) with g′(0, τ1) = 1 and g′(0, τ2) = g′(0).
Moreover, we have |g(u, τ )− g′(0, τ )u| ≤ C(τ )u1+α, u ∈ (0, σ ), where C(τ1) = 0
and C(τ2) = C .
Step II. If 0 < z < γ#, we get

∫

R×X

K (s, τ )e−zsdsdμ =
∫

R

D(H−1(s)+ H1(s))e
−zsds

+
∫

R

∑
k∈Z

β(k)Hk+cr (s)e
−zsds = 2D cosh(z)

2D + d + cz
+ e−crz

2D + d + cz

∑
k∈Z

β(k)e−kz .

Therefore γK = γ# (if c > 0) and γK = min{γ#,−(2D + d)/c} (if c < 0).
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Step III. If u solves (29) with c > 0, then for each 0 < z < γφ we obtain

c
∫

R

|u′(s)|e−zsds ≤ D
∫

R

(u(s + 1)+ u(s − 1)+ 2u(s))e−zsds

+d
∫

R

u(s)e−zsds + g′(0)
∑
k∈Z

β(k)
∫

R

u(s − k − cr)e−zsds

=
(

2D(cosh(z)+ 1)+ d + g′(0)e−zcr
∑
k∈Z

β(k)e−zk

)∫

R

u(s)e−zsds < +∞.

Thus, by Lemma 3, condition (ECγφ ) is satisfied.
Step IV . We have χ(0) = (d − g′(0))/(2D + d) < 0. The proof of γφ(c) < γ # is the
same as in Step IV of the previous section and is omitted.

Remark 11 Our approach allows to improve the uniqueness results of [16, Theorem
3.1], where additional conditions β(k) = β(−k) and χ(γK −) = −∞ are assumed.
Moreover, [16, Theorem 3.1] does not establish the uniqueness of the minimal wave.
Similarly to Sect. 6.1, condition (3) in Theorem 6 can be replaced with more weak
(25) if the nonlinear term is local and non-delayed. See [26], where a local and non-
delayed variant of (29) was considered. Similarly to [7,8] and under the same con-
ditions on g as in [8], Guo and Wu prove their uniqueness result [26, Theorem 2]
by means of the comparison argument. To establish the uniqueness in the degenerate
case (g′(0)− d)(g′(1)− d) = 0 (cf. Remark 10), about which is the main concern of
[5], Chen et al. developed new interesting tools (magnification, compression, blow-up
techniques, modified sliding method). Finally, we mention Ma and Zou uniqueness
result from [30], where a local version of (29) is investigated. The Lipschitz condition
(3) is not required in [30], it is supposed instead that g′(s) ≥ 0, g(s)/s ≤ g′(0), s > 0.

6.3 Nonlocal reaction–diffusion equation [15,17,24,32,36,38]

Here, we consider positive semi-wavefronts u(t, x) = φ(x + ct), φ(−∞) = 0, for
non-local delayed reaction–diffusion equations

ut (t, x) = uxx (t, x)− f (u(t, x))+
∫

R

k(w)g(u(t − h, x − w))dw, h > 0, (31)

where f ∈ C1(R+,R+), f (0) = 0, is strictly increasing and k ≥ 0,
∫
R

kds = 1, can
be asymmetric (see [38] for further details concerning wave solutions in the presence
of asymmetric non-local interaction). Let γ # > 0 denote an extended positive real
number such that

∫
R

k(s)e−zsds converges when z ∈ [0, γ #) and diverges if z > γ #.
It is clear that profile φ must satisfy
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y′′(t)− cy′(t)− f (y(t))+
∫

R

k(s)g (y(t − ch − s)) ds = 0, t ∈ R. (32)

Equation (32) can be written as

y′′(t)− cy′(t)− βy(t)+ fβ(y(t))+
∫

R

kh(w)g(y(t − w))dw = 0, t ∈ R,

where kh(w) = k(w − ch) and fβ(s) = βs − f (s) for some β > 0.
Again, without restricting the generality, we may suppose that fβ is a Lipschitzian

function with Lip fβ = β − infs≥0 f ′(s). Indeed, our proof of uniqueness compares
two solutions φ1, φ2. Since they are uniformly bounded by some positive M > 0,
we can restrict our attention to a finite interval [0,M]. Let β > f ′(0) be such that
fβ(s) = βs − f (s) ≥ 0 for all s ∈ [0,M] and maxs∈[0,M] f ′(s) ≤ 2β− infs≥0 f ′(s).
But then

∣∣∣∣ fβ(s2)− fβ(s1)

s2 − s1

∣∣∣∣ ≤
(
β − inf

s≥0
f ′(s)
)
, s1, s2 ∈ [0,M].

Next, it is easy to see that the wave profile φ solves the equation

φ(t) = 1

σ(c)

⎛
⎝

t∫

−∞
eν(t−s)(Gφ)(s)ds +

+∞∫

t

eμ(t−s)(Gφ)(s)ds

⎞
⎠ ,

where σ(c) = √c2 + 4β, ν < 0 < μ are the roots of z2 − cz −β = 0 and (Gφ)(t) :=∫

R

kh(s)g(φ(t − s))ds + fβ(φ(t)). Equivalently,

φ(t) = (K ∗ kh) ∗ g(φ)(t)+ K ∗ fβ(φ)(t),

where

K(s) = σ−1(c)

{
eνs, s ≥ 0,
eμs, s < 0.

We can invoke now Theorems 3, 4 where X = {τ1, τ2} and

K (s, τ ) =
{
(K ∗ kh)(s), τ = τ1,

K, τ = τ2,
g(s, τ ) =

{
g(s), τ = τ1,

fβ(s), τ = τ2.

Observe that g(·, τ ) meets (20) with λ(τ1) = g′(0), λ(τ2) = β − infs≥0 f ′(s). If
f ′(0) ≤ f ′(v) for all v ≥ 0, as in [36], then β − infs≥0 f ′(s) = β − f ′(0) = f ′

β(0).
We have also that
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χ1(z, c) = 1 − g′(0)
∫

R

K (s, τ1)e
−szds − (β − inf

s≥0
f ′(s))

∫

R

K (s, τ2)e
−szds

= 1 − β − infs≥0 f ′(s)
β + cz − z2 − g′(0)e−zch

β + cz − z2

∫

R

k(s)e−zsds =: χ̃1(z)

β + cz − z2 .

We see that γK = min{μ, γ #} so that γφ < μ. Let c� be the minimal value of c for
which

χ̃1(z, c) := cz − z2 + inf
s≥0

f ′(s)− g′(0)e−zch
∫

R

k(s)e−zsds

has at least one positive zero. This value is finite, well defined and does not depend on
β. We will write c∗ instead of c� in the special case when f ′(0) ≤ f ′(v) for all v ≥ 0.
In such a case, we have f ′(0) = infs≥0 f ′(s) and therefore χ1 = χ . By Theorem 2,
c ≥ c∗ for each admissible wave speed c.

Theorem 7 Suppose g satisfies (3), f ∈ C1(R+,R+) is strictly increasing, and
g, f ∈ C1,α in some neighborhood of 0, and g(0) = f (0) = 0, g′(0) > f ′(0). Then
Eq. (31) has at most one positive semi-wavefront u(t, x) = φ(x + ct), φ(−∞) = 0,
for each c ≥ c� (if χ̃ (γ #−, c�) �= 0) or for each c > c� (if χ̃(γ #−, c�) = 0).

Proof Observe that βχ(0) ≤ f ′(0)−g′(0) < 0, and χ1(γ
#−, c�) �= 0 if χ̃1(γ

#−, c�)
�= 0. First let c ≥ c� > c∗, then χ1(x, c) < χ(x, c) so that χ1(m, c) = 0 for some
m ∈ (0, λr K ]. It is clear that m = λr K if and only if m = γ #. Since χ1(z, c) is strictly
increasing in c for each fixed positive z, this implies that c = c� and χ1(γ

#−, c�) = 0.
Consequently, m ∈ (0, λr K ) for each c ≥ c� (if χ̃ (γ #−, c�) �= 0) or for each c > c�
(if χ̃(γ #−, c�) = 0).

Next, if c� = c∗ then χ1 = χ and the inequality χ(γ #−, c∗) �= 0 guarantees that
λl(c∗) = γφ(c∗) < γ # for c = c∗. If c > c∗ then we have again λl(c) = γφ(c) <
λl(c∗) < γ # because λl(c) is monotone decreasing in c.
Step I. Since | f ′

β(0)u − fβ(u)| = | f ′(0)u − f (u)|, for an appropriate C, σ , it holds

|g(u, τ )− g′(0, τ )u| ≤ C(τ )u1+α, u ∈ (0, σ ).
Step II. We claim that for each x ∈ (0, γK ) and some d j (x) it holds

0 ≤ K (s, τ j ) ≤ d j (x)e
xs, s ∈ R.

Indeed, if j = 2, we can even take x = μ, d2 = 1/σ(c). Next, we have

K (t, τ1) = 1

σ(c)

⎡
⎣

+∞∫

t−ch

eμ(t−ch−v)k(v)dv +
t−ch∫

−∞
eν(t−ch−v)k(v)dv

⎤
⎦

≤ e−xch

σ(c)

⎡
⎣
∫

R

e−xvk(v)dv

⎤
⎦ ext .
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Since λr K ≤ γK = min{γ #, μ}, the exponential estimations of K in (SB*), (EC*)(ii)
are verified. This observation completes the proof of the theorem.

Remark 12 Theorem 7 improves [36, Theorem 4.3], where the uniqueness was estab-
lished under assumption that either f (s) = f ′(0)s or g(s) = g′(0)s and K is the
Gaussian kernel. The latter restrictions were also removed by Fang and Zhao whose
recent work [17] contains important improvements over the previous results. In any
case, [17, Theorems 4.1, 4.2] and [36, Theorem 4.3] do not consider the uniqueness
of the minimal waves. See also [29,38] and references therein about the existence of
semi-wavefronts in (31) and its limit form (33) studied below.

6.4 Uniqueness of fast traveling fronts in delayed equations

Here we study positive semi-wavefronts u(t, x) = φ(x + ct), φ(−∞) = 0, to

ut (t, x) = uxx (t, x)− u(t, x)+ g(u(t − h, x)), x ∈ R, (33)

where g is a Lipschitzian function such that |g′|L∞ > g′(0). Profile φ solves the delay
differential equation

φ′′(t)− cφ′(t)− φ(t)+ g(φ(t − hc)) = 0, t ∈ R. (34)

Similarly to Sect. 6.3 (where we take now β = 0), we find that φ satisfies

φ(t) = K ∗ g(φ)(t), K(s) = 1

σ(c)

{
eν(s−ch), s ≥ ch,
eμ(s−ch), s < ch,

which is exactly the form considered in the DK theory (formally, we set X = {τ },
K (s, τ ) = K and g(s, τ ) = g(s)). Nevertheless, since L > g′(0), the Diekmann–
Kaper uniqueness theorem does not apply to (34).

In order to use Theorem 4, we first note that

χ1(z, c) = 1 − L
∫

R

K(s)e−szds = 1 − Le−zhc

1 + cz − z2 .

is well defined on (ν, μ). Thus, γK = μ and since limx→μ−
∫
R

K(s)e−sx ds = +∞
we obtain that γφ < γK . The exponential estimations of K in (SB*), (EC*)(ii) are
also obviously verified.

Finally, let c� be the minimal value of c for which the equation z2−cz−1+Le−chz =
0 has at least one positive root. This value is well defined and positive. It is easy to
see that, for each c > c� there exists m > 0 close to λl from the right and such that
χ1(m) > 0. Hence, we get the following

Theorem 8 Suppose that |g(s) − g(t)| ≤ L|t − s|, s, t ≥ 0, and that g ∈ C1,α in
some neighborhood of 0 with g′(0+) > 1. Then, for every c > c� Eq. (34) has at most
one bounded positive solution φ vanishing at −∞.
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Theorem 8 gives an alternative proof of the uniqueness result in [1, Theorem 1.1]
where it was additionally assumed that g ∈ C1(R+,R+) and that g′′(0+) is finite.
Moreover, we give here an easily calculable lower bound c� for the ‘uniqueness’
speeds. Observe that if L = g′(0), then c� coincides with the minimal speed of prop-
agation c∗. Now, the situation when L > g′(0), h > 0, is clearly more complicated:
in particular, the existence of the minimal speed c∗ with the usual properties is not
yet proved in such a case (at least, as far as we know). In any event, all the available
evidence supports the following affirmation: ‘positive semi-wavefronts of (33) are
unique (up to translation) for each admissible wave speed c’.
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