
Math. Ann. (2012) 353:1037–1068
DOI 10.1007/s00208-011-0709-5 Mathematische Annalen

Techniques for the study of singularities
with applications to resolution of 2-dimensional schemes

Angélica Benito · Orlando E. Villamayor U.

Received: 27 December 2010 / Revised: 23 May 2011 / Published online: 14 August 2011
© Springer-Verlag 2011

Abstract We give an overview of invariants of algebraic singularities over perfect
fields. We then show how they lead to a synthetic proof of embedded resolution of
singularities of 2-dimensional schemes.
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1 Introduction

This paper includes an exposition of recent progress concerning singularities over
perfect fields, it is also shown how these results lead to the resolution of singularities
of 2-dimensional schemes.

The ultimate motivation of the results reported in this work is the open problem
of resolution of singularities in any dimension. We focus here on resolution in the
sense of Hironaka, which is a step by step procedure: namely, given a reduced scheme
X over a perfect field k, the question is to construct a sequence of blow-ups along
smooth centers, each center included in the Hilbert-Samuel stratum of the successive
strict transforms of X , so as to define a desingularization.
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Sections 2 and 3 include an overview of invariants that have been introduced recently
for singularities over perfect fields in arbitrary dimension, and finally in Sect. 4 we
apply them to give a synthetic proof of resolution of 2-dimensional schemes.

In the case of characteristic zero, given X included in a smooth scheme of dimen-
sion d, say V (d), the existence of smooth hypersurfaces of maximal contact was used
by Hironaka to attach to X inductive invariants in dimension d − 1. This is done in a
way that the problem of resolution, formulated in dimension d, is reformulated as a
problem in dimension d − 1 by restriction to smooth hypersurfaces of maximal con-
tact. A drawback of this approach is that such nice hypersurfaces are not unique, and,
in addition to that, these hypersurfaces are defined only locally whereas the problem
of resolution is global. So a significant difficulty in using this form of induction is that
of patching local information.

This significant difficulty does not show up in Hironaka’s theorem in [31,32], which
is existential, but it does arise in the constructive proofs of Hironaka’s theorem. Namely
in proofs which establish an algorithm that indicate which is the smooth center to be
blown up in Hironaka’s step by step procedure of resolution (see [10,44,45]).

A second drawback in using hypersurfaces of maximal contact for inductive argu-
ments appears when trying to work over fields of positive characteristic. In fact, in
this context these hypersurfaces do not always exist [41]. Further information about
resolution of singularities in characteristic zero and the previous drawback can be
found in [6,11,12,22–24,27,40,49].

Section 2 is an exposition of an approach to resolution, developed in recent years,
which avoids the use of maximal contact. In fact, smooth hypersurfaces of maxi-
mal contact can be replaced by local projections on smooth schemes; and the tradi-
tional notion of restriction to hypersurfaces of maximal contact can be replaced by
a generalized form of the discriminant, defined in terms of elimination theory. When
considering resolution of singularities over fields of characteristic zero this alternative
procedure provides the same information as that obtained by using maximal contact.
But it has an important advantage over the original constructive proofs of resolution
as it trivializes the globalization of local invariants. This clarifies, in particular, the
globalization of local data extracted from the Hilbert Samuel function. All this has led
to a significant conceptual simplification of constructive resolution of singularities in
characteristic zero [13].

A second advantage of this approach is the fact that projections are definable over
perfect fields; a feature which has opened the way to the definition of new inductive
invariants in positive characteristic. This study is addressed in Sect. 3, which is devoted
to the discussion of inductive invariants of singularities over perfect fields, introduced
in [8,9]. These are natural extensions of the inductive invariants used by Hironaka in
characteristic zero.

As was already mentioned, Hironaka uses inductive invariants in dimension d − 1,
in his step by step procedure, to obtain a resolution of singularities by successive
monoidal transformations. These invariants enable him to construct a sequence of
blow-ups over X ⊂ V (d), so as to come to a so called “d − 1-simplification”. This
d−1-simplification is also known as a reduction to the monomial case. He then shows
that it is easy to achieve desingularization once X has been transformed into a scheme
with singularities in the monomial case.
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Resolution of 2-dimensional schemes 1039

The inductive invariants, used by Hironaka (in dimension d − 1) make use of
hypersurfaces of maximal contact, and the argument works exclusively in characteristic
zero. The alternative approach to induction, using projections, has led to the construc-
tion of a sequence of blow-ups over X ⊂ V (d), so as to come to a “d−1-simplification”
now over perfect fields. This parallels the d − 1-simplification in characteristic zero,
or say the reduction to the monomial case, but the outcome obtained is weaker in
positive characteristic. In fact, over fields of positive characteristic the resolution of
singularities which are in the monomial case is not straightforward, as it is in the case
of characteristic zero. Despite this fact, the reduction to the monomial case is expected
to be a simplification of the singularities. The main outcome of Sect. 3 is to show that,
if some additional numerical conditions are fulfilled, singularities which are in the
monomial case can be resolved.

As an application, in Sect. 4, we show how this alternative approach to induction
leads to resolution in the case in which X (⊂ V (d)) is a 2-dimensional embedded
scheme. The task, for future research, would be to show that the said numerical con-
ditions, discussed in Sect. 3, can be attained in higher dimensions.

The reduction to the monomial case in positive characteristic is related with other
forms of simplification that appear in other works. For example, a procedure is intro-
duced in the work of Kawanoue and Matsuki [35,36], which also parallels this reduc-
tion. See also [34,50].

The general and unifying strategy along this paper is the use of higher differential
operators as a tool for the study of singularities over perfect field. Embedded resolution
leads to the study of ideals on smooth schemes, and more generally to Rees algebras of
ideals on smooth schemes. This reformulation of resolution problems appears already
in Hironaka’s work. Rees algebras on smooth schemes can be enriched by the action of
higher order differential operators, and these enriched algebras are called differential
algebras. These are algebras which encode very subtle information of the singularities,
and they are the main tool in this alternative form of induction which avoids the use
of maximal contact.

Differential Rees algebras allow us to reduce the problem of the resolution of
singularities embedded in a smooth d-dimensional scheme, say V (d), to that of hyper-
surfaces of multiplicity pe, where p denotes the characteristic of the underlying field.
More precisely to hypersurfaces defined by equations of the form

f pe (z) = z pe + a1z pe−1 + · · · + ape ∈ OV (d−1)[z].
We may assume, in addition, that a sequence of monomial transformation has been

defined so that the singularities are in the monomial case. Under these assumptions,
a prominent role is played by the constant term ape in the study of invariants in Sect. 3,
whereas the information of the other intermediate coefficients is somehow encoded
by other d − 1-dimensional invariants. The protagonist role of the constant term, that
appears for example in formula (14), seems to resemble a reduction to the study of
equations of the form

f pe (z) = z pe + ape ∈ OV (d−1) [z],
also known as equations in the purely inseparable case.
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These particular features will appear in Sect. 4, were it is shown how the techniques
discussed in the previous sections lead to resolution of two dimensional schemes.

The first proof of resolution in dimension 2, is due to Abhyankar (see [2]). It gives
a non-embedded proof of resolution of surfaces in positive characteristic. A synthetic
and detailed presentation of this proof appears also in [21]. Resolution of arithmetical
surfaces (non-equicharacteristic surfaces) was proved by Lipman [37] making use of
techniques of duality theory.

Hironaka proves embedded resolution of 2-dimensional schemes over algebraically
closed fields in [33]. Moreover, such resolution is attained, as his general proof in char-
acteristic zero, by successive blow-ups along centers included in the Hilbert-Samuel
stratum. More recently, in [17], embedded resolution, in the sense of Hironaka, has
been proved for 2-dimensional schemes in the non-equicharacteristic case, namely for
arithmetical schemes.

So the outcome of Sect. 4, namely that of embedded resolution of two dimensional
schemes, is to be taken simply as an application of the alternative form of induction
discussed here. In this last section, the resolution of surfaces is divided in five sub-
cases: A), B), C), D1), D2). Each case is defined in accordance to the values attained
by the d − 1-dimensional invariants discussed in Sect. 3.

In studying the effect of quadratic transformations within case A) we make use of
an invariant which appears in Hironaka’s proof in [33], expressed there in terms of
Newton polygons, and known as the β-invariant of the singularity. A similar notion
appears also in Abhyankar’s work in [2] (see Abhyankar’s trick in Lemma 4.12). This
invariant is also considered in [15,30].

The task, for future research, would be to apply these techniques to the open prob-
lem of embedded resolution of three dimensional schemes. Abhyankar proves res-
olution in dimension 3, over algebraically closed fields of characteristic p > 5 in
[4]. This is a non-embedded proof, that make use of geometric arguments (see also
[20]). More recently Cossart and Piltant [18,19] prove a theorem of resolution in
dimension 3, which holds in any characteristic. The outcome of their procedure is
very strong, and it is close to that of embedded resolution, as their resolution only
modifies singular points. This last result suggests that embedded resolution of sin-
gularities should hold, at least for 3-dimensional schemes over perfect fields. More
results concerning resolution of singularities in positive characteristic can be found in
[1,3,7,16,25,26,28–30,38,39,42,43,48].

2 Rees algebras, elimination and monoidal transformations

2.1

In problems concerning resolution of singularities it is natural to consider data with
two ingredients. The first ingredient is given by a hypersurface, say X , embedded in
a d-dimensional smooth scheme, say V (d), and the second is a positive integer, say b.

A first motivation for this approach appears already when we fix b as the highest
multiplicity of X . In such case one considers the data (I (X), b), where I (X) ⊂ OV (d)

is the ideal of definition of X . This, in turn, defines a closed set:

{x ∈ V (d) | νx (I (X)) ≥ b},
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Resolution of 2-dimensional schemes 1041

where νx (I (X)) is the order of I (X) at the regular local ring OV (d),x . Namely, the set
of points where X takes the highest multiplicity b (i.e., the set of b-fold points of X ).

If Y is a smooth closed center included in the set of b-fold points, it defines a
“transform” of the data (I (X), b). In this case the transform is given by the strict
transform of the hypersurface, which makes use of the integer coordinate b. In fact,
if V (d)←− V (d)

1 is the blow-up at Y , and if X1 is the strict transform of X , then

I (X)O
V (d)

1
= I (H)b I (X1),

where H ⊂ V (d)
1 denotes the exceptional hypersurface. The new data (I (X1), b) will

be called the “transform” of (I (X), b). If the closed set attached to the new data is
empty, X1 has no b-fold points and we shall say that the transformation defines a reso-
lution of (I (X), b). In this case we have come closer to the embedded desingularization
of the hypersurface.

Hironaka reduces the problem of desingularization to a simultaneous treatment of
data of the form, say (I (X1), b1), . . . , (I (Xs), bs). More precisely, to a simultaneous
resolution of these previous data by means of monoidal transformations.

In this work we encode these previous data in algebraic terms. This will lead
us to a reformulation of resolution in terms of Rees algebras. The Rees algebra
attached to the data (I (X1), b1), . . . , (I (Xs), bs) will be the OV (d)-algebra of the
form OV (d)[I (X1)W b1 , . . . , I (Xs)W bs ], as we explain below.

2.2

A Rees algebra over V (d) is an algebra of the form G = ⊕
n∈N InW n , where I0 =

OV (d) and each In is a coherent sheaf of ideals. Here W denotes a dummy variable
introduced to keep track of the degree, so G ⊂ OV (d)[W ] is an inclusion of graded
algebras. It is always assumed that, locally at any point of V (d),G is a finitely gener-
ated OV (d)-algebra. Namely, that the restriction of G to an affine set U ⊂ V (d) is of
the form

G = OV (d) (U )[ fb1 W b1 , . . . , fbs W bs ](⊂ OV (d)[W ])

for some local generators { fb1, . . . , fbs }, each fbi ∈ OV (d) .
We now set the singular locus of G =⊕

InW n to be the closed set:

Sing(G) := {x ∈ V (d) | νx (In) ≥ n for each n ∈ N}.
It can be checked that for an arbitrary affine set U as before, one have that Sing(G) ∩
U = ∩{x ∈ V (d) | νx (〈 fbi 〉) ≥ bi }.

Fix a monoidal transformation V (d) πC←− V (d)
1 with center C ⊂ Sing(G). For all

n ∈ N, InO
V (d)

1
admits a factorization of the form

InO
V (d)

1
= I (H1)

n · I (1)
n ,
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1042 A. Benito, O. E. Villamayor U.

where H1 = π−1
C (C) denotes the exceptional hypersurface, and I (H1) the ideal defin-

ing H1. This defines a Rees algebra over V (d)
1 , namely G1 = ⊕

n∈N I (1)
n W n , called

the transform of G, denoted by

G G1

V (d) V (d)
1 .

πC�� (1)

A sequence of transformations will be denoted by:

G G1 Gr

V (d) V (d)
1

πC�� . . .
πC1�� V (d)

r

πCr−1�� (2)

and herein we always assume that the exceptional locus of the composite morphism
V (d) ←− V (d)

r , say {H1, . . . , Hr }, is a union of hypersurfaces with only normal
crossings in V (d)

r .
A sequence (2) is a resolution of G if, in addition, Sing(Gr ) = ∅.

2.3 Hironaka’s main invariants

We shall circumvent the precise definition of Hironaka’s notion of invariant (see [9,
2.8], and Sect. 3.5 below). But let us mention that his notion of invariant at a point
x ∈ Sing(G) relates to the local codimension of Sing(G) at x , and also to the codi-
mension of Sing(Gr ) at points lying over x , for sequences as (2).

There are two main invariants, introduced by Hironaka, which play a crucial role
in his theorem of resolution of singularities [31]. Both are characteristic free, and we
shall formulate them within the context of Rees algebras.

(1) Hironaka’s d-dimensional function Fix a Rees algebra G = ⊕n InW n ,
Hironaka’s d-dimensional order function, say

ord : Sing(G) −→ Q>0

is defined by setting

ord(G)(x) = min
n

{νx (In)

n

}
,

where νx (In) denotes the order of In at the regular local ring OV (d),x . Here the invariant
at x ∈ Sing(G), in Hironaka’s sense, is the value ord(G)(x).

(2) Hironaka’s τ -invariant This is a positive integer attached here to every closed
point x ∈ Sing(G). Recall that the tangent space at x is TV (d),x = Spec(grM (OV (d),x )),
where grM (OV (d),x ) is the graded ring of the regular local ring OV (d),x . An homoge-
neous ideal Inx (G) in grM (OV (d),x ) is defined by G = ⊕n InW n at any x ∈ Sing(G) ⊂
V (d). Inx (G) is the ideal spanned by the class of In in Mn/Mn+1, for all n ≥ 1.
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Resolution of 2-dimensional schemes 1043

The tangent cone of G, say CG,x ⊂ TV (d),x , is the homogeneous subscheme defined
by Inx (G) in grM (OV (d),x ).

Here we view the tangent space as a vector space. A subspace, say S ⊂ TV (d),x ,
acts by translation defining, in this way, an additive group scheme over k(x). More
precisely, set trv(u) = u + v with v ∈ S and u ∈ TV (d),x . Define ŁG,x ⊂ CG,x to
be the biggest additive subscheme so that CG,x + ŁG,x = CG,x (the biggest subspace
acting on the tangent cone of G). This is called the subscheme of vertices of CG,x .

Finally, define the τ -invariant at x , say τG,x , as the codimension of ŁG,x in TV (d),x .

2.4 Rees algebras and differential structure

There is a curious compatibility of differential operators on smooth schemes and
Hironaka’s notion of invariants. Let V (d) denotes a smooth scheme over k.

A Rees algebra G =⊕
n InW n over V (d) is said to be a differential Rees algebra

over k if taking restrictions of G over every open affine set, Dr (In) ⊂ In−r , for any
index n and for any k-differential operator Dr of order r < n. When a smooth mor-

phism of k-schemes, say V (d) β−→ V (d ′), is fixed, and the previous property holds for
differential operators which are OV (d′) -linear, or say, β-relative operators, then G is
said to be a β-relative differential Rees algebra, or simply β-differential.

Proposition 1 [46, Theorems 3.2 and 4.1] Every Rees algebra G over V (d) admits an
extension to a new Rees algebra, say G ⊂ Di f f (G), so that Di f f (G) is a differential
Rees algebra. Moreover, this differential algebra has the following properties:

1. Di f f (G) is the smallest differential Rees algebra containing G.
2. Sing(G) = Sing(Di f f (G)).
3. The equality in (2) is preserved by transformations. In particular, any resolution

of G defines a resolution of Di f f (G), and the converse also holds.

The property in (3) says that, for the sake of defining a resolution of G, we may
always assume that it is a differential Rees algebra. This is an important reduction
because, as we shall indicate, differential Rees algebras have very handy properties.
In fact, they turn out to be very useful when defining projections and other structures
introduced by these projections, as we discuss below.

2.5 Transversal projections and elimination

Once we fix a closed point x ∈ V (d) it is very simple to construct, for any positive
integer d ′ ≤ d, a smooth scheme V (d ′) together with a smooth morphism β : V (d) −→
V (d ′) (a projection); at least after restriction of V (d) to an étale neighborhood of x . This
claim follows, essentially, from the fact that (V (d), x) is an étale neighborhood of the
affine space A

(d) at the origin, say (A(d), O) (see [5]). Plenty of smooth morphisms
between affine spaces can be constructed (in fact, plenty of surjective linear maps),
say (A(d), O) −→ (A(d ′), O), for d ′ ≤ d. In fact, the smoothness of V (d) over the
perfect field k ensures that if {x1, . . . , xd} is a regular system of parameters at OV (d),x ,

then (V (d), x) is an étale neighborhood of A
(d)
k = Spec(k[x1, . . . , xd ]) at the origin.
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1044 A. Benito, O. E. Villamayor U.

Furthermore, whenever we fix a subspace S of dimension d−d ′ in TV (d),x , a smooth

scheme V (d ′), together with a smooth morphism, say β : V (d) −→ V (d ′), which can
be constructed so that ker(d(β)x ) = S (here d(β)x : TV (d),x −→ TV (d′),β(x)

is a
surjective linear transformation).

Fix now a differential Rees algebra over V (d) and a closed point x ∈ Sing(G). Set
τG,x = e (the codimension of LG,x (⊂ CG,x ) in the tangent space TV (d),x ).

Fix d ′ so that d ≥ d ′ ≥ d − e. We say that a smooth morphism β : V (d) −→ V (d ′)

is transversal to G at x if

ker(dβ)x ∩ LG,x = O.

Here, ker(dβ)x has dimension = d − d ′ ≤ e and the previous condition says that
both spaces are in general position. Moreover, this is an open condition which holds
at points in an open neighborhood of x (see [13, Remark 8.5]).

Definition 1 A smooth morphism β : V (d) −→ V (d ′) is said to be transversal to G,
if

1. τG,x ≥ d − d ′, and
2. ker(dβ)x ∩ LG,x = O,

at any closed point x ∈ Sing(G).

Notice that if G is a differential Rees algebra, then it is, in particular, a β-differen-
tial Rees algebra for any transversal morphism β. The usefulness of differential Rees
algebras relies on this particular fact, as we shall see in the following proposition.

Proposition 2 Assume that β : V (d) −→ V (d ′) is transversal to G, and that G is
β-differential. Then a Rees algebra, say RG,β , is defined over V (d ′),

G RG,β

V (d)
β �� V (d ′),

(3)

(i.e., RG,β ⊂ OV (d′) [W ]). This RG,β is called the elimination algebra of G defined by
β, and has the following properties:

1. The natural lifting of RG,β to OV (d) , say β∗(RG,β) ⊂ OV (d)[W ], is a subalgebra
of G [47, Theorem 4.13].

2. β(Sing(G)) ⊂ Sing(RG,β), and β|Sing(G) : Sing(G) −→ Sing(RG,β) defines
a set theoretical bijection of Sing(G) with its image. Moreover, corresponding
points of Sing(G)(⊂ V (d)) and Sing(RG,β)(⊂ V (d ′)) have the same residue field
[47, 1.15 and Theorem 4.11], or [13, 7.1].

3. Given a smooth sub-scheme Y ⊂ Sing(G), then β(Y )(⊂ Sing(RG,β)) is iso-
morphic to Y . In particular Y defines a transformation of G and also of RG,β

[13, Theorem 9.1 (i)].
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Resolution of 2-dimensional schemes 1045

4. [13, Theorems 10.1 and 9.1] A smooth center Y ⊂ Sing(G) defines a commutative
diagram

G G1

V (d)

β
��

V (d)
1

πY��

β1��

V (d ′) V (d ′)
1

πβ(Y )��

RG,β (RG,β)1

(4)

where G1 and (RG,β)1 denote the transforms of G and RG,β , respectively. Here β1

is uniquely determined, and defined in the restriction of V (d)
1 to a neighborhood

of Sing(G1). This diagram has the following additional properties:

(4a) V (d)
1

β1−→ V (d ′)
1 is transversal to G1 and G1 is β1-differential. In particular,

we get:

G1 RG1,β1

V (d)
1

β1 �� V (d ′)
1

(4b) (RG,β)1 coincides with RG1,β1 , the elimination algebra of G1 defined by β1.

5. [13, Theorem 10.1] If a different transversal morphism, say β ′ : V (d) −→ Ṽ (d ′),
defining

G RG,β ′

V (d)
β ′ �� Ṽ (d ′),

is considered, then analogous properties to (1), (2), (3) and (4) hold. Moreover,
the order of both elimination algebras coincide at any point x ∈ Sing(G), i.e.,

ord(RG,β)(β(x)) = ord(RG,β ′)(β
′(x)).

This says a function

Ord(d ′)(G) : Sing(G) −→ Q>0

can be defined by setting

Ord(d ′)(G)(x) = ord(RG,β)(β(x)).

2.6

The previous proposition states that given β : V (d) −→ V (d ′) transversal to G, and
assuming that G is a β-differential Rees algebra (e.g., G is an absolute differential
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1046 A. Benito, O. E. Villamayor U.

Rees algebra), then a sequence of transformations defined with the conditions in (2),
say

G G1 Gr

V (d) V (d)
1

πY�� . . .
πY1�� V (d)

r

πYr−1�� (5)

gives rise to a diagram, say

G G1 Gr

V (d)

β

��

V (d)
1

πY��

β1
��

. . .
πY1�� V (d)

r

βr
��

πYr−1��

V (d ′) V (d ′)
1

πβ(Y )�� . . .
πβ1(Y1)�� V (d ′)

r

πβr−1(Yr−1)��

RG,β (RG,β)1 (RG,β)r

(6)

where:

1. For any index i , there is an inclusion (RG,β)i ⊂ Gi .
2. βi (Sing(Gi )) ⊂ Sing((RG,β)i ), and βi |Sing(Gi ) : Sing(Gi ) −→ βi (Sing(Gi )) is an

identification.
3. Every βi is transversal to Gi and Gi is βi -differential.

4. V (d ′)
i V (d ′)

i+1

πβ(Yi )�� denotes the transformation with center βi (Yi ) (isomorphic

to Yi ).
5. (RG,β)i = RGi ,βi where the later denotes the elimination algebra of Gi with

respect to βi .

In the characteristic zero case, the inclusions in (2) are equalities, but in positive
characteristic, in general, only the inclusions are ensured.

Remark 1 Given a Rees algebra G over V (d), the aim is to construct a sequence as (5)
which defines a resolution. For this purpose, we can take G to be a differential Rees
algebras. This additional condition ensures that, whenever we construct a transversal
morphism β : V (d) −→ V (d ′),G will be a β-differential Rees algebra. In fact an
absolute differential Rees algebra is always relative differential.

Recall that, passing from G to Di f f (G) does not affect the singular locus, i.e.,
Sing(G) = Sing(Di f f (G)), and moreover the τ -invariant does not change, i.e., τG,x =
τDi f f (G),x at any closed point x ∈ Sing(G).

The τ -invariant has very subtle implications in resolution problems. For one thing,
τG,x is an upper bound of the local codimension of the closed set Sing(G) ⊂ V (d) at
the point x . Moreover, if equality holds, i.e., τG,x = codimx (Sing(G), then Sing(G)

is smooth in a neighborhood of x , and the resolution can be achieved by blowing-up
at Sing(G). In particular, if τG,x = d, then Sing(G) = {x} (an isolated point) and
the quadratic transformation at x defines a resolution of G. Therefore, the strategy is
to define resolution of Rees algebras on V (d) by decreasing induction on the highest
value of τ .
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Resolution of 2-dimensional schemes 1047

The following theorem is stated under the inductive assumption of existence of
resolution of Rees algebras G′ which fulfills the condition τG′,x ≥ d − d ′ + 1 at any
closed point x ∈ Sing(G′).
Theorem 1 [13, 10.4] Let G be a differential Rees algebra. Assume that τG,x ≥ d−d ′
at any closed point x ∈ Sing(G). There is a sequence of transformations (5), so that
for any local transversal projection, say β : V (d) −→ V (d ′), the induced sequence in
the lower row of (6) is either a resolution, or is such that (RG,β)r is a monomial alge-
bra supported on the exceptional locus. Furthermore, in the latter case the monomial
algebra β∗r ((RG,β)r ) is independent of β.

2.7

In the case of characteristic zero, it is easy to extend the sequence in Theorem 1 to
a resolution. In fact, in such a case, this extension is obtain by blowing-up centers
prescribed by the monomial algebra (RG,β)r . However, this latter simple construc-
tion, that grows from the fact that βi (Sing(Gi )) = Sing((RG,β)i ) in (6), (2), does not
apply in positive characteristic.

In the forthcoming Sect. 3, we study numerical conditions under which a sequence
(5) in the conditions of Theorem 1 does extend to a resolution (Theorem 2). In Sect. 4
we show that these numerical conditions can be easily achieved in low dimension.
This fact enables us to prove resolution of singularities of 2-dimensional schemes
over perfect fields.

3 H-functions, tight monomial algebras and presentations

3.1

Fix a Rees algebra G over a d-dimensional smooth scheme V (d). At any closed point
x ∈ Sing(G), the invariant τG,x was defined as the codimension of the subspace
LG,x ⊂ TV (d),x . The requirement that τG,x ≥ d−d ′ at every closed point x ∈ Sing(G),
ensures that the conditions in Definition 1 holds for a generic smooth morphism
β : V (d) −→ V (d ′).

Under the previous conditions, a so called d ′ − dimensional H − f unction, say

H-ord(d ′)(G) : Sing(G) −→ Q>0,

was defined in [9]. The definition of this function involves a transversal morphism β,
and the induced elimination algebra RG,β , among other things. Further details will
be outlined below (see 3.2). When specializes to the case of characteristic zero, this
function coincides with the inductive function introduced by Hironaka, which turned
out to be extremely useful in resolution theorems.

Set now a sequence of transformations of G, say

G G1 Gr

V (d) V (d)
1

πY�� . . .
πY1�� V (d)

r .
πYr−1�� (7)
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1048 A. Benito, O. E. Villamayor U.

At any step of the sequence, i = 1, . . . , r , functions

H-ord(d ′)
i (Gi ) : Sing(Gi ) −→ Q>0 (8)

are defined.
Moreover, once we fix a transversal projection β : V (d) −→ V (d−1) as above, the

previous sequence gives rise to a diagram of the form

G G1 Gr

V (d)

β

��

V (d)
1

πY��

β1
��

. . .
πY1�� V (d)

r

βr
��

πYr−1��

V (d ′) V (d ′)
1

πβ(Y )�� . . .
πβ1(Y1)�� V (d ′)

r

πβr−1(Yr−1)��

RG,β (RG,β)1 (RG,β)r

(9)

with the five properties of (6). In this setting, given xi ∈ Sing(Gi ) the value
H-ordi (d ′)(Gi )(xi ) can be computed from β, and from the liftings βi (in a explicit
manner). Moreover, the explicit calculation of the function will lead to the inequalities:

H-ord(d ′)
i (Gi )(xi ) ≤ ord((RG,β)i )(βi (xi )).

A particular feature of the H-functions is their unpredictable behavior under blow-
ups. Another aspect is that they are not upper semi-continuous. The interest of the
previous inequalities is that the functions in the right hand side, say ord((RG,β)i ), are
upper semi-continuous (i.e., H-functions are upper bounded by upper semi-continuous
functions).

Before we formulate some further applications of the H-functions in Theorem 2,
let us indicate how they lead to the definition of a monomial algebra attached to an
arbitrary sequence (7).

Definition 2 Fix a differential Rees algebra G, a transversal projection β : V (d) −→
V (d ′), and a sequence of transformations (7). The tight monomial algebra attached to
the sequence (7) is a monomial algebra supported on the exceptional locus, say

Mr W s = O
V (d′)

r
[I (H1)

h1 . . . I (Hr )
hr W s], (10)

where the exponents hi are such that

hi

s
= H-ord(d−1)

i−1 (Gi−1)(ξYi−1)− 1.

Here ξYi−1 denotes the generic point of Yi−1, the center of the blow-up.

The real strength of the tight monomial algebra appears in the statement of the
following theorem.

Theorem 2 [8, Theorem 6.6] Fix a differential Rees algebra G and a transversal
projection β : V (d) −→ V (d ′). Then the following inequalities hold for any sequence
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as (7):

ord(Mr W s)(βr (x)) ≤ H-ord(d ′)
r (Gr )(x) ≤ ord((RG,β)r )(βr (x))

and all x ∈ Sing(Gr ). In other words, the upper semi-continous functions ord(Mr W s)

and ord((RG,β)r ) are lower and upper bounds, respectively, of the function

H-ord(d ′)
r (Gr ).

Moreover, if equality holds in the left-hand side of the previous inequalities, then
the sequence (7) can be extended to a resolution of G.

The second half of the previous theorem indicates that the resolution of the Rees
algebra G can be achieved if some suitable numerical conditions hold.

In Sect. 4 it is shown that such numerical conditions can be attained if G is a Rees
algebra attached to the resolution of a 2-dimensional scheme, leading to a resolution
of 2-dimensional schemes a la Hironaka (by successively blowing-up along smooth
centers included in the highest Hilbert-Samuel stratum).

3.2 Explicit computation of the H-functions

In our previous discussion we have treated some properties of H-functions. Here we
indicate how to compute explicitly H-ord(d ′)(G)(x) at points x ∈ Sing(G). Further
details about this computation can be found in [8,9].

We first address the case d ′ = d − 1. So assume τG,x ≥ 1 for any x ∈ Sing(G). To
pave the way to the definition of the H-function in this context, we define, locally at
a point x ∈ Sing(G) a concept of p-presentation of G, say

pP(β, z, f pe (z)). (11)

These data consist of:

1. a transversal projection β : V (d) −→ V (d−1) (see Definition 1),
2. a global function on V (d), say z, so that {z = 0} defines a section of β (i.e., {dz}

is a basis of the module of β-differentials, say Ω1
β ), and

3. a monic polynomial of order pe, say

f pe (z) = z pe + a1z pe−1 + · · · + ape ∈ OV (d−1) [z],

where each ai is a global function on V (d−1), and p is the characteristic of the
underlying perfect field k.

In [8, Proposition 2.11] it is proved that such data can always be locally defined, when
G is β-differential. This last requirement imposed no serious conditions as we may
assume that G is a differential algebra. Moreover, it is shown that G and the graded
algebra

OV (d) [ f pe (z)W pe
,Δ

j
z ( f pe (z))W pe− j ]1≤ j≤pe−1 � β∗(RG,β) (12)
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have the same integral closure.
The previous Δ

j
z are β-differential operators defined in terms of the Taylor

morphism in the following manner:
Consider the morphism of S-algebras T ay : S[Z ] −→ S[Z , T ], defined by setting

T ay(Z) = Z + T (Taylor expansion). Here

T ay( f (Z)) = f (Z + T ) =
∑

Δr ( f (Z))T r , (13)

and these operators Δr : S[Z ] −→ S[Z ] are defined by this morphism. It is well
known that {Δ0,Δ1, . . . , Δr } is a basis of the free module of S-differential operators
of order r . The same applies here for OV (d−1)[z]: the set {Δ0

z ,Δ
1
z , . . . , Δ

r
z} consists of

differential operators of order r over V (d−1) ×A
1. Moreover, as the smoothness of β

ensures that V (d) is étale over V (d−1) × A
1, the previous set also generates Di f f r

β ,

the β-linear differential operators of order r (for β : V (d) −→ V (d−1)).

Remark 2 Suppose given a p-presentation of G as in (11), together with a diagram
(9) (with d ′ = d − 1). Then, it is proved in [8, 6.2] that there is natural lifting
of pP to p-presentations of Gi , say pPi (βi , zi , f (i)

pe (zi )), for i = 1, . . . , r . Here

βi : V (d)
i −→ V (d−1)

i are the smooth morphisms in (9), and zi = 0 define a βi -trans-
versal section.

3.3

We now give a first step towards the definition of the H-functions in (8). Fix a p-pre-
sentation of G, say P(β, z, f pe (z)), where here f pe (z) = z pe + a1z pe−1 + · · · + ape .
Define the slope of pP at y ∈ V (d−1) as

Sl(pP)(y) = min
{νy(ape )

pe
, ord(RG,β)(y)

}
∈ Q≥0. (14)

We now present a definition that will lead us to the precise value of the H-function in
Theorem 3: A p-presentation is well-adapted to G at y ∈ V (d−1) when

(i) Sl(pP)(y) = ord(RG,β)(y), or

(ii) Sl(pP)(y) = νy(ape )

pe and I ny(ape ) ∈ gr(OV (d−1),y) is not a peth power.

Remark 3 Fix a p-presentation pP(β, z, f pe ) locally at a point x ∈ Sing(G).
One can easily modify z and f pe (z) so as to obtain a new p-presentation, say
pP ′(β, z′, f ′pe (z′)), which is well-adapted at β(x) (see [8, Section 5]).

Theorem 3 Fix a Rees algebra G. The H-function, say

H-ord(d−1)(G) : Sing(G) −→ Q>0,

is defined by

H-ord(d−1)(G)(x) = Sl(pP)(β(x)) (15)
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where pP = pP(β, z, f pe (z)) is any p-presentation of G, which is well-adapted at
β(x). This rational value is independent of any choice as long as pP is well-adapted
at β(x).

Remark 4 The value H-ord(d−1)(G)(x) in (15) is given by the slope of a well adapted
p-presentation pP = pP(β, z, f pe (z)). Note that the value of the slope in (14) relies
only in the constant coefficient of f pe (z), say ape , and the order of the elimination
algebra. This indicates that the contribution of the intermediate coefficients of f pe (z),
say ai (1 ≤ i ≤ pe − 1), is somehow encoded by the constant coefficient ape and the
elimination algebra.

This resembles an expected (but never proved) behavior of resolution problems in
positive characteristic: the reduction to the so called purely inseparable polynomials,
namely those of the form f pe (z) = z pe + ape .

In the previous discussion it is assumed that if pP = pP(β, z, f pe (z)) is a presen-
tation, then G is a relative β-differential algebra. This last condition is automatically
guaranteed as we assume that G is an absolute differential algebra, or a transform of
an absolute differential algebra.

Remark 5 Fix a differential Rees algebra G, a sequence of transformations (5) and
a p-presentation pP of G. Remark 2 enables us to define p-presentations of Gi , say
pPi = pPi (βi , zi , f (i)

pe (zi )). Remark 3 indicates how to make use of pPi to define a
function

H-ord(d−1)
i (Gi ) : Sing(Gi ) −→ Q>0,

for each index i = 0, . . . , r .

3.4

Now we address the definition of the H-functions in (8) for the general case of arbitrary
d ′ (1 ≤ d ′ ≤ d). Set 	 so that τG,x ≥ d − d ′ = 	 at any closed point x ∈ Sing(G). Let
β : V (d) −→ V (d ′) be a transversal projection. The problem, in this general case, is
to define a notion of p-presentations, with similar properties as that in (11) for de case
d ′ = d − 1 (i.e., 	 = 1). The extension to this general case is not straightforward, and
has been treated in [9, Theorem 5.12]. There it is proved that, if τG,x ≥ 	 at each closed
point x ∈ Sing(G), and G is a differential algebra or a transformation of a differential
algebra, then there is a p-presentation, say

pP = pP(β, z1, . . . , z	, f pe1 (z1), . . . , f pe	 (z	)),

for which G has the same integral closure as

OV (d)[ f pei (zi )W pei
,Δ

ji
zi ( f pei (zi ))W pei− ji ]1≤ ji≤pei−1, 1≤i≤	 � β∗(RG,β).

Moreover the p-presentation is defined so that

– {z1 = · · · = z	 = 0} is a section of the smooth morphism β (i.e., {dz1, . . . , dz	}
is a basis of Ω1

β ),
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– fni (zi )W ni ∈ Gr for each index i = 1, . . . , 	, and the polynomials are of the form:

f pe1 (z1) = z pe1

1 + a(1)
1 z pe1−1

1 + · · · + a(1)

pe1 ∈ OV (d−	)[z1],
... (16)

f pe	 (z	) = z pe	

	 + a(	)
1 z pe	−1

	 + · · · + a(	)

pe	 ∈ OV (d−	)][z	],

Let us stress here that all coefficients are in dimension d − 	, i.e., a(i)
ji
∈ OV (d−	) . This

fact enables us to extend the previous results in Sect. 3.2 (the definitions of slope and
of a presentation well-adapted at a point). This will enable us to compute the values
of the H-functions in the general setting. Namely to the extension of Theorem 3.

Firstly fix a p-presentation pP(β, z1, . . ., z	, f pe1 (z1), . . ., f pe	 (z	)), with f pei (zi )

∈ OV (d′)[zi ], as in (14). Let the slope of pP at y ∈ V (d ′) be

Sl(pP)(y) = min
1≤i≤	

⎧
⎨

⎩

νy(a
(i)
pei )

pei
, ord(RG,β)(y)

⎫
⎬

⎭
∈ Q≥0.

Now, we define a pP presentation to be well-adapted to G at y ∈ V (d ′) when

(i) Sl(pP)(y) = ord(RG,β)(y), or

(ii) Sl(pP)(y) = νy(apei )

pei < ord(RG,β)(y) and I ny(apei ) is not a pei th power, for
some i ∈ {1, . . . , 	}.

Also Remark 3 extends to this setting: Once we fix pP locally at a point x ∈
Sing(G), then it can be modified into a new one which is well-adapted at β(x) (see
Sect. 3.3).

Theorem 4 Fix a Rees algebra G and assume that τG,x ≥ d − d ′ = 	 for any
x ∈ Sing(G). The H-function

H-ord(d ′) : Sing(G) −→ Q>0,

is defined by

H-ord(d ′)(G)(x) = Sl(pP)(β(x)) = min
1≤i≤	

⎧
⎨

⎩

νβ(x)(a
(i)
pei )

pei
, ord(RG,β)(β(x))

⎫
⎬

⎭
,

where now pP = pP(β : V (d) −→ V (d ′), z1, . . . , z	, f pe1 , . . . , f pe	 ) is a p-pre-

sentation which is assumed to be well-adapted at β(x). The value H-ord(d ′)(G)(x)

is independent of any choice (i.e., independent of the p-presentation as long it is
well-adapted at β(x)).

Proof See [9, Theorem 5.12 and Definition 5.13]. ��
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3.5

The previous theorem indicates how to compute the values of the H-function along
Sing(G). In fact, given a p-presentation of G, it is not difficult to modify it so that at a
given point x ∈ Sing(G), it is well-adapted at β(x). The theorem says, of course, that
the value H-ord(d ′)(G)(x) is independent of the choice of the p-presentation.

In [9] further properties of these functions are studied, which are related to
Hironaka’s notion of invariant. This notion has a very precise meaning in the context of
resolution of singularities. Roughly speaking, once V (d) is fixed, Hironaka defines an
equivalent relation in the class of Rees algebras over V (d). This relation is defined so
that if G1 and G2 are equivalent, then Sing(G1) = Sing(G2), and given x ∈ Sing(G1),
also τG1,x = τG2,x . In [9] it is proved that H-ord(d ′)(G1)(x) = H-ord(d ′)(G2)(x) for
any point x ∈ Sing(G1). Namely, that the value H-ord(d ′)(G1)(x) is an invariant.

This last fact will ultimately guarantee that the functions H-ord(d ′)(G) will be use-
ful for the problem of resolution of singularities. In fact, resolution of singularities
reduces to resolution of Rees algebras, but only if the latter is defined in a way that
two equivalent Rees algebras undergo the same resolutions.

4 Embedded resolution of 2-dimensional schemes

Here we address the proof of embedded resolution of 2-dimensional schemes.
We show here how our invariants lead to the resolution of a hypersurface embedded in
a 3-dimensional smooth scheme. The extension of the resolution of the hypersurface
case, treated here, to that of arbitrary 2-dimensional schemes is not straightforward.
It is a particular feature of the invariants introduced in the previous sections, studied
in [9], which relies essentially on Sect. 3.4 and Theorem 4.

4.1 Stratification of the exceptional locus

We shall take as starting point a diagram (6), in the setting of Theorem 1, for d = 3.
In which case V (d−1)

r = V (2)
r is a 2-dimensional smooth scheme. Recall that Theorem 1

enables us to assume that the elimination algebra over V (2)
r is monomial. Namely, that

(RG,β)r = I (H1)
α1 . . . I (Hr )

αr W s,

for some integers αi ≥ 0. Assume, in addition, that the tight monomial algebra, defined
in (10), is of the form

Mr W s = I (H1)
h1 . . . I (Hr )

hr W s with 0 ≤ hi < s. (17)

We shall indicate below that the condition 0 ≤ hi < s can be achieved by blowing-up
permissible centers of codimension 2 in the smooth 3-dimensional scheme V (3)

r . In this
case, the tight monomial algebra Mr W s subject to this condition is said to be reduced.

This last assumption guarantees that Sing(Mr W s) ⊂ V (2)
r has no components

of codimension 1, and we claim that neither does βr (Sing(Gr )), which is, therefore,
a finite set of closed points.
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Throughout this section, we will always assume that the tight monomial algebra is
reduced; that is, every quadratic transformation will be followed by a finite sequence of
blow-ups at centers of codimension 2, so as to guarantee that the new tight monomial
algebra is reduced.

Locally at x ∈ Sing(Gr ) one can fix a p-presentation pP(βr , z, f pe (z)) well-
adapted to Gr at βr (x), here, f pe (z) = z pe + a1z pe−1 + · · · + ape ∈ O

V (2)
r
[z].

The p-presentation pP can be chosen so as to have the following two properties
(see [8, Proposition 5.9 and Definition 3.10]):

– (RG,β)r ⊂Mr W s , and
– a j W j ∈Mr W s for any j = 1, . . . , pe.

This already proves the claim: if hi ≥ s for some Hi containing x , then 〈z, I (Hi )〉
defines a smooth component of Sing(Gr ) of codimension 2 in V (3)

r . This monoidal
transformation induced the identity map over V (2)

r . However hi drops to hi − s after
blowing up at such component.

So we will assume here that Sing(Gr ) is a finite set of closed points, and we fix the
notation x = βr (x) along this section.

Recall that

H-ord(d−1)(Gr )(x) = min

{
νx(ape )

pe
, ord((RG,β)r )(x)

}

.

The previous two properties ensures that

ord(Mr W s)(x) ≤ H-ord(d−1)(Gr )(x). (18)

As (RG,β)r is, by assumption, monomial, Proposition 2 (2) ensures that the singular
locus of Gr is entirely included in a union of the exceptional hypersurfaces. We begin
by fixing a suitable stratification of the union of the exceptional hypersurfaces in V (2)

r ,
and then we shall construct a stratification on the successive quadratic transformations
defined over V (2)

r . Here the quadratic transformations are defined canonically, with
centers on the finitely many points of the singular locus. This lead to the following
definition:

Definition 3 An isolated closed point x ∈ Sing(Gr ) is said to be good (or green) if

H-ord(d−1)(Gr )(x) = ord((RG,β)r )(x).

The point x is said to be bad (or purple) if

H-ord(d−1)(Gr )(x) = νx(ape )

pe
< ord((RG,β)r )(x).

The previous definition for a point x ∈ Sing(Gr ) leads to a coloring of singular
points of βr (Sing(Gr )) which is a finite set of points in V (2)

r . We will say that x = βr (x)

is good (bad) if x is good (bad). In the same manner, exceptional hypersurfaces will
be distinguished in terms of the exponents that arise in Mr W s and (RG,β)r :
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Definition 4 We will say that the exceptional hypersurface Hi is good (or green) if
hi = αi and Hi is bad (or purple) if hi < αi .

New quadratic transformations over V (2)
r will be defined, this will introduce new

exceptional hypersurfaces, each of which will be either good or bad.

Remark 6 Note from Definition 2 that the closed point x ∈ βr (Sing(Gr )) is good (bad)
if and only if the exceptional hypersurface introduced by the quadratic transformation
at x is good (bad).

Our stratification will be defined only along the union of bad hypersurfaces. Singu-
larities lying entirely on the good locus are, to some extend, friendly singularities. In
fact, if a closed point x is only included in good hypersurfaces, then ord((RG,β)r )(x) =
ord(Mr W s)(x) and we claim that the transversal parameter z of the p-presentation
pP can be chosen so as to be a hypersurface of maximal contact. To this end, in
[8, Theorem 8.5], using (18) and the two properties of Mr W s mentioned above, it is
proved that

ord((RG,β)r )(x) = ord(Mr W s)(x) �⇒ (RG,β)r =Mr W s

in a neighborhood of x. In such case, as a j W j ∈Mr W s , we conclude that a j W j ∈
(RG,β)r ⊂ Gr for j = 1, . . . , pe. Check now that zW fulfills the integral condition
λpe + (a1W 1)λpe−1 + · · · + (ape − f pe (z))W pe = 0, which guarantees zW ∈ Gr .
This ensures that z = 0 defines a hypersurface of maximal contact.

4.2 Stratification at level r

The image of Sing(Gr ) is a finite set of points. We will first define a stratification only
locally around points of this image. In Sects. 4.3 and 4.4 we shall indicate how to
define the stratification after blowing-up these points, and moreover after applying a
sequence of quadratic transformations.

According to the previous discussion, we only draw attention to those points of
Sing(Gr ) with images in the union of bad lines of V (2)

r . As these points are isolated,
we may assume, after restriction, that the point is unique. The following two situations
can arise:

– There exists a unique hypersurface H1 so that x ∈ H1 (in which case H1 must be
bad).

– x is an intersection point of two hypersurfaces, say H1 and H2 (at least one of them
bad).

The stratification at V (2)
r will be defined as follows: In the first case, we define a

unique stratum, which is an affine line containing x, say A
1 ⊂ P

1 = H1. In the second
case, we stratify H1 ∪ H2 in two strata: one affine line A

1 so that x ∈ A
1 ⊂ H1 and

the affine line H2\{x}.
As we are going to blow-up along the singular locus, further quadratic transforma-

tions will be defined over V (2)
r . This will introduce new exceptional components of
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the form Hj = P
1. We indicate in Sects. 4.3 and 4.4 how to stratify the union of new

components which are bad (Definition 4). Each stratum, will be either

* an affine line A
1, or

* a point.

A zero-dimensional stratum, a point, will be called an infinitesimal stratum. These
zero-dimensional strata will always arise as intersection of two exceptional hypersur-
faces: one good and the other bad. However, the intersection point of a bad and a good
hypersurface is not necessarily a zero-dimensional stratum. These strata will appear
and treated in detail in Sect. 4.3 Case C).

4.3 Stratification and quadratic transformations

Once a stratification is fixed, we blow-up at a singular point, and then a new strati-
fication will be defined. In doing that, we will follow a rule: the strict transform of
an already defined stratum is a stratum. We therefore need to establish a criterion to
stratify points along the exceptional hypersurface, every time we blow up a point.
Case A) In this case we assume that a quadratic transformation is defined at a point x,
which is bad, and is not a zero-dimensional stratum. This situation can occur within
the following sub-cases:

Here, the stratification of the quadratic transformation at x will be defined in a way
that will not give rise to a zero-dimensional stratum.

Along this section we agree that every time we blow-up a point, the horizontal line
will denote the new exceptional component.

Let H1 denote again the strict transform of H1. The new stratification along points
of the exceptional component is defined as follows:
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In this case, a unique 1-dimensional stratum A
1 is introduced after the quadratic

transformation. This new affine stratum is defined as A
1 = P

1 \ {q}, where here
q = H1∩P

1. The stratum H2\x, in the pictures A1) (or in A3)), defines a new stratum
after the quadratic transformation simply by taking its strict transform. Recall that we
require that the strict transform of an already defined stratum to be a stratum.
Case B) Here, we study the case of a quadratic transformation at a good point x which
is only in one bad hypersurface H1, and is not a zero-dimensional stratum. This can
occur in the following sub-cases:

After the quadratic transformation at x, the new exceptional hypersurface is good.
We define the new stratification by taking the strict transform of the previous stratum
defined over H1:

Case C) In this case, the quadratic transformation is defined at a good point x which
is an intersection of two bad lines H1 and H2. The point x is in the stratum defined
by H1, at least locally at this point. In particular, the point is not a zero-dimensional
stratum.

The new (horizontal) exceptional line is good and the stratification is defined by:

– The strict transform of the previous strata.
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– A new zero-dimensional stratum defined as the intersection of H2 and the new
exceptional good line.

Note that in this case, depicted below, we introduce a zero-dimensional stratum Q:

4.4 Quadratic transformations at an infinitesimal statum

Case D1) Here we study a quadratic transformations at a bad point Q, which is in
addition an zero-dimensional stratum:

The new stratification after the quadratic transformation is defined by

(a) The strict transforms of the previous strata.
(b) The stratification of the new exceptional line P

1 as the union of the infinitesimal
stratum Q′ = P

1 ∩ H2 and the 1-dimensional stratum A
1 = P

1 \ {Q′}.
This new stratification is depicted as follows:

Case D2) This is the case in which the center of the quadratic transformation is a good
point Q, which is also an infinitesimal stratum. Namely,
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The new stratification is represented by

So only a new zero-dimensional stratum Q′ is introduced at the bad locus.

4.5 Definition of the local data and local invariants

Once the stratification has been fixed, notions of local data and local invariants
will be introduced at every isolated point x ∈ Sing(Gr ′) (or equivalently, to x ∈
βr ′(Sing(Gr ′)). Here, the local data will assign to each 1-dimensional stratum A

1 =
Spec(k[y]) a polynomial g(y) in k[y], and to each zero-dimensional stratum Q an ele-
ment of O

V (2)

r ′ ,Q. Finally, local invariants will be defined in terms of these local data.

• Local data in case x ∈ A
1 Here we take an isolated point x ∈ βr ′(Sing(Gr ′)) in

a 1-dimensional stratum A
1 (included in the union of the bad hypersurfaces, and in

particular located in a bad hypersurface, say H1). Let pP = pP(βr ′ , z, f pe ) be a
well-adapted p-presentation at x, where

f pe (z) = z pe + a1z pe−1 + · · · + ape ∈ O
V (2)

r ′ ,x[z]. (19)

Fix a regular system of parameters {x, y} at O
V (2)

r ′ ,x, so that {x = 0} defines A
1 locally

at x.

As H1 is a bad hypersurface, it follows that H-ord(2)(Gr ′)(ξH1) =
νξH1

(ape )

pe <

ord((RG,β)r ′)(ξH1), where ξH1 is the generic point of H1. Note that, in particular, pe ·
H-ord(2)(Gr ′)(ξH1) ∈ Z≥0. Let us denote this integer by 	 = pe · H-ord(2)(Gr ′)(ξH1).
There is a factorization of the form

ape = x	(g(y)+ xΩ(x, y)), (20)
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where Ω(x, y) ∈ O
V (2)

r ′ ,x, and the exponent 	 < pe by (17). Note here that H1 is

an exceptional hypersurface introduced by previous quadratic transformation, it can
be checked that local coordinates x and y can be chosen so that g(y) is indeed a
polynomial in k[y].

In this case, the local data at x will be defined as the pair ( 	
pe , g(y)W pe

).

Definition 5 Fix, with the setting as above, a point x ∈ A
1, and the local data(

	
pe , g(y)W pe)

. The order of g at x, say ordx(g), is defined as follows:

– If 	 �= 0, ordx(g) is the usual order of g at OA1,x.
– If 	 = 0, ordx(g) is the smallest power of y, which appears in the Taylor expansion

of g(y) at the point, that is not a peth power.

• Local data in case x = Q is an infinitesimal statum Set local coordinates so that
(RG,β)r ′ = xa ybW s , assuming that H1 = {x = 0} denotes the good hypersurface
through the point. Now, H-ord(2)(Gr ′)(ξH1) = ord((RG,β)r )(ξH1) = a

s . Define the
local data as the pair ( a

s , g(y)W s), where g(y) = yb.

Definition 6 (Local invariants). Fix a point x ∈ βr ′(Sing(Gr ′)) with local data, say
(m

n , g(y)W t ), for a suitable integer t . The local invariant assign to x is defined as:

– If x ∈ A
1, then inv(x) = ordx(g)

pe (in this case t = pe).

– If x = Q, then inv(x) = νx(g)
s (here t = s, and g(y)W t = ybW s).

4.6 Invariants and transformations

We now study the behavior of the previous invariants under quadratic transformations,
taking into account the distinction in the cases presented in Sect. 4.3.
Case A) Local coordinates {x, y} are chosen locally at O

V (2)

r ′ ,x so that locally A
1 =

{x = 0}. In this case, as x is assumed to be bad, and a well-adapted p-presentation
can be chosen so as

H-ord(2)(Gr ′)(x) = νx(ape )

pe
< ord((RG,β)r ′)(x).

In addition, the initial form of ape in Grx(OV (2)

r ′
) is not a peth power.

The objective is to define local invariants after the quadratic transformation at x.
This leads to:

1. The definition of local data and invariants at the strict transform of H1.
2. The definition of local data and invariants at points in the new stratum A

1 (included
in the exceptional component).

(1) Local invariants at the strict transform of A
1 ⊂ H1.

Local factorization at x is ape = x	(g(y) + xΩ(x, y)). At x1, the origin of the
Uy-chart, (with local coordinates x1 = x

y , y1 = y), the factorization is given by

a(1)
pe = x	

1 y	−pe

1 (g(y1)+ x1 y1Ω
′).
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In this case, the new local data, say
(

	1
pe , g1(y1)W pe)

, is defined by setting g1(y1) =
y	−pe

1 · g(y1) and 	1 = 	.
As we assume that the tight monomial algebra Mr ′W s is reduced (see Sect. 4.1),

then 	 < pe, and hence

ordx1(g1) < ordx(g). (21)

(2) Invariants along the new stratum A
1.

Set A
1 = P

1 \ {x1} = Spec(k[Y ]) to be the 1-dimensional stratum defined as in
Case A) in Sect. 4.3. We first assign a polynomial g1(Y ) to A

1.
Locally at x, the 1-dimensional stratum containing x was defined by {x = 0}. The

new stratum along the exceptional hypersurface, the affine line A
1, is the intersection

of the exceptional hypersurface with the open chart Ux1 (with coordinates x1 = x and
y1 = y

x ).
Set Grx(OV (2)

r ′
) = k′[X, Y ] with X = Inx(x) and Y = Inx(y), and set Inx(ape ) =

∑
i+ j=d λi, j X i Y j , the initial form of ape at x, where here d = νx(ape ). Finally, define

g̃(Y ) = Inx(ape )|X=1.
Fix a point in A

1, and after suitable change of coordinates y1 = Y + α, assume
that y1 vanishes at such point. Now set g1(y1) = g̃(Y + α). Then, the local invariant
is ( 	1

pe , g1(y1)), with 	1
pe = H-ord(2)(Gr ′+1)(ξH ′), where ξH ′ is the generic point of

the new exceptional hypersurface, say H ′. The previous change of variables does not
affect the degree of the polynomial g1. Namely deg(g̃(Y )) = deg(g1(y1)).

Lemma 1 (Abhyankar’s trick) Fix a point x ∈ Sing(Gr ′) (or equivalently x ∈
βr ′(Sing(Gr ′))) and assume that the setting is as above. For any point x′ ∈ A

1 ⊂ H ′,

ordx′(g1) ≤ ordx(g). (22)

Proof Consider ape as a formal power serie in the variables x and y, (20) indicates
that it is expressed as a sum of monomials of the form xt yr , with t ≥ 	. Note, in
addition, that a monomial of the form x	yM , where M = ordx(g(y)), appears in such
formal expression.

This leads to the following conclusions:

1. Inx(ape ) =∑
i≥	 λi,d−i X i Y d−i .

2. d ≤ 	+ M = deg(x	yM ).

From where it is inferred that if λi,d−i �= 0, then d − i ≤ M . In particular,∑
i≥	 λi,d−i Y d−i is a polynomial of degree M1 with M1 ≤ ordx(g) = M . We claim

that ordx′(g1) ≤ M1, and this would ensure that the inequality (22). The proof of this
claim will be addressed in 4.7, it will make use of the following Lemma. ��
Lemma 2 Fix a polynomial g(y) ∈ k[y]. Then at any closed point x ∈ A

1
k =

Spec(k[y]):
1. ordx(g) ≤ deg(g), where ordx(g) is the usual order of g at O

A1
k ,x

.
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2. If g(y) �∈ k[y pe ], then pe-ordx(g) ≤ deg(g), where pe-ordx(g) denotes the small-
est power of y, that is not a peth power, which appears in the Taylor expansion of
g(y) at the point.

Proof Let M denote the degree of g(y).

(1) Fix a change of variables y1 = y−α so that y1 vanishes at x, then g(y) = g1(y1)

is also a polynomial of degree M in y1. Hence, ordx(g) ≤ deg(g).
(2) Let M ′ ≤ M be the biggest integer so that M ′ �≡ 0 mod pe and that yM ′

appears in g(y). Consider the Taylor expansion of g(y) as in (13) applied here
for S[Z ] = k[y]. As ΔM ′(g) ∈ k \ {0}, then the term yM ′

1 appears at the Taylor
development at a fixed point x. Here y1 = y−α is defined so as to vanish at x. ��

4.7

We address now the proof of the claim stated in Lemma 1. Fix notation as in this lemma,
where x ∈ Sing(Gr ′) and H ′ is the exceptional hypersurface introduced by blowing-
up x. The stratum A

1 ⊂ H ′ is defined by A
1 = Spec(k[y1]), where y1 = y

x . We con-

sider g1(y1) ∈ k[y1] to be naturally identified with Inx(ape )|x=1 =∑
i≥	 λi,d−i yd−i

1 ,
so g1(y1) is a polynomial of degree M1 ≤ M . Recall now the notion of invariant
attached to a singular point x′ ∈ A

1 in Definition 5.
Set as before d = νx(ape ), locally at x. We distinguish two cases:

(a) If d �≡ 0 mod pe, then the local data at x′ is (	1, g1(y1)) with 	1 �= 0, and hence
ordx′(g1) is the usual order at OA1,x′ . Inequality (22) follows from Lemma 2 (1).

(b) If d ≡ 0 mod pe, then the local data at x′ is (	1, g1(y1)) with 	1 = 0. Here
ordx ′(g1) is provided by pe − ordx′(g1) as in Lemma 2 (2), and the condition
g1(y1) ∈ k[y1] is guaranteed by the fact that Inx(ape ) is not a pe-power.

Lemma 3 If there is a sequence of quadratic transformations at points x0, x1 . . .,
where each xi maps to xi−1 and such that:

1. Case A) occurs at each point xi , and
2. ordxi (gi ) = ordxi−1(gi−1),

then the sequence must be finite.

Proof The existence of an infinite sequence with the previous conditions would con-
tradict the assumption that βr ′(Sing(Gr ′)) has no 1-codimensional component. In fact,
assume that such a sequence does exist. We claim that at the completion at the closed
point x0, there is a smooth curve whose successive strict transforms passes through the
sequence xi . This follows from the assumption that (21) does not occur. This ensures
that there is a smooth curve passing through these points, and a smooth curve with this
property would be a 1-dimensional component of the singular locus. This contradicts
the hypothesis. ��

We assume that βr ′(Sing(Gr ′)) is a finite set of closed points. Every time we fix one
such point, there is a unique procedure of quadratic transformations over it. In fact,
after applying a quadratic transformation, we reduce to the case βr ′+1(Sing(Gr ′+1)) is
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a finite set of closed points by blowing-up the new exceptional component. Lemma 3
ensures that over x0 ∈ βr ′(Sing(Gr ′)) only finitely many singular points x0, x1 . . . can
arise, where each xi maps to xi−1, and with the condition that Case A) is preserved
and equality holds in (22).

Lemma 4 Fix x0 ∈ βr ′(Sing(Gr ′)), there is a uniform bound for the length of all
possible sequences of quadratic transformations over x0 in the setting of Lemma 3.

Proof Fix a point x ∈ βr ′(Sing(Gr ′)) which we may assume to be isolated and within
case A). We claim that after a finite sequence of quadratic transformations over this
point, the invariants drops at any exceptional point xi mapping to x.

To this end we first show that after finitely many blow ups any singular point
mapping to x, for which condition A) holds and equality occurs at (22), must be in
case A2).

To check this claim note first that under the assumption of the equality in (22), case
A2) is stable. Namely, if case A2) holds at a point, and case A) holds at a point after
the quadratic transformation, and equality holds at (22), then this exceptional point
must also be within case A2). On the other hand, assuming that x is in condition A1)
or A3), for which x is contained in the hypersurface H2, Lemma 3 ensures that after
finitely many quadratic transformations, every point within case A) and for which
equality holds, must be in case A2). In fact, otherwise the exceptional hypersurface
H2 would be a component of βr ′(Sing(Gr ′)), in contradiction with our hypothesis.
This last assertion follows using same arguments as before.

The previous finite sequence of quadratic transformations over the point x, con-
structed so as to be in case A2), introduces finitely many new exceptional compo-
nents, say Hn1 , . . . , Hnt . Let the elimination algebra be of the form (RG,β)nt =
I (H1)

α1 . . . I (Hnt )
αnt W s, for some integers αi ≥ 0. We claim now that after at most

α1+· · ·+αnt quadratic transformations, the inequality (22) will be strict at any point
mapping to x which fulfills condition A).

To check this, note first that locally at any point within condition A2), there is
a regular system of parameters {x, y} so that (RG,β)nt = xa W s with a = αi for
some i ∈ {1, . . . , nt }. Finally, note that a quadratic transformation at each point intro-
duces a new hypersurface, that any exceptional singular point is in case A2), and that
(RG,β)nt+1 = xa−s

1 W s . This can occur only finitely many times. The claim follows
now from the inclusion β j (Sing(G j )) ⊂ Sing((RG,β) j ). ��
Case B) In this case, the stratification is defined by the strict transform of the previous
stratum. So attention should be drawn only at the unique point q of the strict transform
of H1.

This parallels the situation of case A) (1) and the invariant strictly drops as in (21).
Case C) If a point x is within case C), then x is an intersection of two bad exceptional
hypersurfaces H1 and H2. Moreover, the point x is good and belongs to a 1-dimensional
stratum A

1 included in H1.
Therefore a quadratic transformation at such point x, introduces a good exceptional

hypersurface P
1. Locally over x the new stratification is defined by:

– The strict transform of the previous strata.
– A zero-dimensional stratum Q = P

1 ∩ H2.
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The invariants at the strict transform of H1 are to be dealt with exactly as in Sect. 4.6
Case A) (1). We therefore restrict attention to the data and invariants to be defined
at Q.

Let us fix locally at x coordinates x, y so that H1 = {x = 0} and H2 = {y = 0}.
Assume that a local presentation is given so that ape is as in (20). Therefore, the local
invariant at x is

(
	
pe , g(y)W pe)

. Set (RG,β)r ′ = xa ybW s . As we assume that the point

x is good, then a+b
s ≤

νx(ape )

pe .

The point Q is the origin at the Ux -chart (with coordinates x1 = x, y1 = y
x ). Con-

sider the quadratic transformation at x. The new exceptional line is good, and hence
the exponents of the tight monomial algebra and the elimination algebra along this
hypersurface coincide. So, after reduction, we may assume that at Q, (RG,β)r ′+1 =
xa+b−sm

1 yb
1 W s, for a suitable integer m ≥ 0 so that hr ′+1 = a + b − sm < s

(here hr ′+1 is also the exponent in the tight monomial algebra of the new exceptional
hypersurface).

Set g1(y1)W s = yb
1 W s . According to Sect. 4.5, case x = Q, the local data we

assign to Q is ( a+b−sm
s , yb

1 W s).

Lemma 5 Assume that the conditions in the previous setting hold. Then b
s =

inv(Q) < inv(x).

Proof Set M = ordx(g) and recall that inv(x) = M
pe . Then

	+ M

pe
≥ νx(ape )

pe
≥ a + b

s
>

	

pe
+ b

s
.

The first inequality follows from the fact that x	yM is a monomial that appears in
the formal expansion of ape . The second inequality is due to the fact that x is a good
point. Finally, the last inequality is a consequence of the fact that H1 is bad and hence
a
s > 	

pe . These inequalities imply that M
pe > b

s . ��
Case D1) In this case, we blow-up a bad point Q, which is an infinitesimal stratum,
and hence Q is the intersection of a bad hypersurface H1 and a good hypersurface H2.
As Q is bad, the quadratic transformation at Q will introduce a exceptional line P

1,
which is bad. It will give rise to two strata: and infinitesimal stratum Q′ and an affine
line A

1 = P
1 \ {Q′}. Fix local coordinates {x, y} at Q so that {x = 0} defines the bad

line H1 and {y = 0} defines the good line H2. Set (RG,β)r ′ = xa ybW s .

Lemma 6 Fix a point x′ ∈ A
1. The invariant strictly drops, i.e.,

inv(x′) < inv(Q).

Proof Locally at Q, the second coordinate of the local data is given by g(x)W s =
xa W s . So the local invariant at Q is inv(Q) = νQ(g)

s = a
s .

As we assume that Q is bad, d
pe := νQ(ape )

pe < ord((RG,β)r ′)(Q) = a+b
s , where

now ape is as in (19). On the other hand, y = 0 defines the good line, so we claim that
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b
s < 1. In fact, good hypersurfaces are, by definition, those for which the correspond-
ing exponents at the elimination algebra, and at the tight monomial algebra, coincide.
Since we assume that the tight monomial algebra is reduced (see Sect. 4.1), b

s < 1.
Let InQ(ape ) = ∑

i+ j=d λi, j X i Y j denote the initial form of ape at Q. Note that
j

pe ≥ b
s . From the previous inequalities, we obtain

a + b

s
>

d

pe
= i + j

pe
≥ i

pe
+ b

s
,

and hence, a
s > i

pe .
At the Uy-chart (with coordinates y1 = y, x1 = x

y ),

a(1)
pe = yd−pe

1 (g1(x1)+ y1Ω
′),

where g1(x1) is obtained by the global polynomial InQ(ape )|Y=1. So the previous
discussion shows that if λi, j �= 0, then a

s > i
pe . This, in turn, suffices to check that

inv(x′) = ordx′ (g1)

pe < a
s = inv(Q). ��

Now, we study the invariant at Q′. Note that local coordinates at Q′ are given by
x1 = x, y1 = y

x . So the elimination algebra is (RG,β)r ′+1 = xa+b−s
1 yb

1 W s and the
strict transform of the good hypersurface H2 is given by {y1 = 0}. Therefore, the
second coordinate of the local data at Q′ is g1(x)W s = xa+b−s

1 W s .

Lemma 7 With the previous setting, inv(Q′) < inv(Q).

Proof Recall that the second coordinate of the local data at Q is given by g(x)W s =
xa W s . By definition inv(Q) = νQ(g)

s = a
s and inv(Q′) = νQ′ (g1)

s = a+b−s
s . Since H2

is a good hypersurface, then b
s < 1, from which the strict inequality is clear. ��

Case D2) This is, as in D1), the case of a quadratic transformation at a point Q
which is an infinitesimal stratum. It is the intersection of a bad hypersurface H1 and
a good hypersurface H2. We assume now, in addition, that Q is a good point. Since
the new exceptional hypersurface is good, there is a unique stratum Q′ which will be
infinitesimal.

Fix local coordinates {x, y} at Q, so that {x = 0} defines the bad line H1 and
{y = 0} defines the good line H2. Set (RG,β)r ′ = xa ybW s . Recall that the second
coordinate of the local data is g(x)W s = xa W s .

Note that x1 = x
y , y1 = y are local coordinates at Q′. The elimination algebra is

(RG,β)r ′+1 = xa
1 ya+b−s

1 W s . The new good exceptional hypersurface is defined by
y1 = 0, so the second coordinate of the local data is g1(x1)W s = xa

1 W s .

Remark 7 If case D2) holds, then

– νQ′(g1) = νQ(g) and hence inv(Q′) = inv(Q).
– On the other hand, a+b−s

s = a
s + ( b

s − 1) < a
s .

We conclude that case D2) cannot occur in a successive manner more than finitely
many times. So, in particular, after finitely many quadratic transformations at infini-
tesimal strata, case D1) holds.
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In the following table we indicate, in a synthetic manner, why resolution is achieved.
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