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Abstract We provide a criterion for the existence of right approximations in
cocomplete additive categories; it is a straightforward generalisation of a result due to
El Bashir. This criterion is used to construct adjoint functors in homotopy categories.
Applications include the study of (pure) derived categories. For instance, it is shown
that the pure derived category of any module category is compactly generated.

1 Introduction

This note is motivated by recent work of Neeman and Murfet where derived categories
of flat modules are studied in various settings [32,33,29]. One of the essential ingre-
dients of their work is the construction of approximations and adjoints for categories
of complexes. It turns out that Bican and El Bashir’s proof of the flat cover conjecture
[7,12] leads to a systematic approach yielding such approximations and adjoints. It is
our aim in the present work to explain this new approach and some of its consequences.

Let us mention a few applications in this introduction because they are easily stated.
Given any additive category A, we denote by K(A) the category of cochain complexes
in A with morphisms the cochain maps up to homotopy. For a fixed Quillen exact
structure on A, we denote by D(A) the corresponding derived category.

The first result is an analogue of the flat cover conjecture for complexes of quasi-
coherent sheaves on a scheme; it has been established in the affine case by Neeman
[33] and Enochs et al. [8], and for noetherian schemes by Murfet [29].

This research was partially supported by DFG Schwerpunktprogramm 1388.

H. Krause (B)
Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany
e-mail: hkrause@math.uni-bielefeld.de

123



766 H. Krause

Theorem 1 Let (X,OX) be a scheme. Denote by Qcoh X the category of quasi-coher-
ent OX-modules and by Flat X the full subcategory formed by all quasi-coherent
OX-modules that are flat. Then the inclusion functor K(Flat X)→ K(Qcoh X) admits
a right adjoint. ��

This result is a consequence of the more general Theorem 5 which is formulated
in the setting of locally presentable categories in the sense of Gabriel and Ulmer [16].
Roughly speaking, any cocomplete category with a sufficiently nice set of genera-
tors is locally presentable. In particular, Grothendieck abelian categories and module
categories are locally presentable.

Most of the present work is done for locally presentable categories, including the
following result which establishes the ‘existence’ of the derived category of an exact
category that is locally presentable. This means that the Verdier construction of the
derived category does not cause any set-theoretical problems.

Theorem 2 Let A be an exact category that is locally presentable, and suppose that
exact sequences are closed under filtered colimits. Then the canonical functor K(A)→
D(A) admits a fully faithful right adjoint. In particular, the category D(A) has small
Hom-sets. ��

Let us consider as an example of particular interest for any ring A the pure exact
structure on its module category Mod A; it is the smallest exact structure on Mod A
such that exact sequences are closed under filtered colimits. This yields the pure derived
category Dpur(Mod A), studied for example by Christensen and Hovey [10]. Note that
it contains the usual derived category D(Mod A) as a full triangulated subcategory.
The triangulated category D(Mod A) is well-known to be compactly generated, and
the inclusion proj A → Mod A of the category of all finitely generated projective
modules induces an equivalence Kb(proj A)

∼−→ D(Mod A)c onto the full subcategory
formed by all compact objects. We have the following analogue for the pure derived
category.

Theorem 3 Let A be a ring. The pure derived category Dpur(Mod A) is a compactly
generated triangulated category and the inclusion mod A→ Mod A of the category of
all finitely presented modules induces an equivalence Kb(mod A)

∼−→ Dpur(Mod A)c

onto the full subcategory formed by all compact objects. Moreover, the canonical
functor Dpur(Mod A)→ D(Mod A) admits left and right adjoints that are fully faith-
ful. ��

It seems appropriate to comment on the level of generality in this work. Most of
our results are stated for locally presentable categories, even though the arguments
work as well with little extra effort for the more general class of accessible categories
[27,1]. Also, no attempt has been made to formulate results in terms of Quillen model
structures. So we tried to keep the exposition as elementary as possible, concentrating
on basic ideas. The interested and educated reader will have no problems to make the
appropriate generalisations.

This paper is organised as follows. Section 2 is devoted to studying the existence
of right approximations, generalising work of El Bashir. These results are applied in
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Approximations and adjoints in homotopy categories 767

Sect. 3 where right adjoints of functors between homotopy categories are constructed.
In particular, derived categories of exact categories are studied. The special case of
a pure derived category is discussed in Sect. 4. The final Sect. 5 collects results on
left approximations and left adjoints. We end this note by stating a conjecture on
fp-injective modules which is an analogue of results of Neeman on flat modules.

2 Right approximations

Let A be an additive category and B a full additive subcategory. In this section we
present conditions such that every object Y in A admits a right B-approximation, that
is, a morphism f : X → Y with X in B such that every morphism X ′ → Y with X ′
in B factors through f . Right approximations in additive categories were introduced
by Auslander and Smalø [4], and independently by Enochs, using the term ‘precover’
[13].

The following theorem is our main result in this section; it is a straightforward gen-
eralisation of a result due to El Bashir [12, Theorem 3.2]. In fact, one finds a plethora
of criteria for the existence of right approximations in the literature, generalising the
existence of flat covers in module categories [7]. To the best of our knowldege, all
these criteria can be derived from the following theorem.

Theorem 4 Let A be an additive category that is locally presentable and let B be a
full additive subcategory that is closed under filtered colimits. Suppose there exists
a regular cardinal α such that B is closed under α-pure subobjects or under α-pure
quotients. Then each object in A admits a right B-approximation. ��

Recall that an additive category is locally presentable if it is cocomplete and admits
a generating set of objects that are α-presentable for some regular cardinal α [16,1].
An object X is α − presentable if the representable functor Hom(X,−) preserves
α-filtered colimits. For example, Grothendieck abelian categories and module catego-
ries are locally presentable. Further examples include categories of cochain complexes;
this will be relevant for our applications.

We need to make the following definition.1

Definition 1 Let α be a regular cardinal. A morphism X → Y in an arbitrary category
is called

(1) α-puremonomor phism, if it is an α-filtered colimit of split monomorphisms,
(2) α-pureepimor phism, if it is an α-filtered colimit of split epimorphisms, and
(3) α-terminal if for every factorisation X → X ′ → Y the morphism X → X ′ is

invertible if it is an α-pure epimorphism.

Note that colimits of morphisms in a category A are taken in the category of mor-
phisms Mor A. The objects of Mor A are the morphisms in A and the morphisms are

1 The subsequent definition of α-pure mono/epimorphisms deviates from the standard one in terms of
α-presentable objects. The new definition seems to be more practical and coincides with the standard one
for α � 0, provided the category is locally presentable.
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768 H. Krause

the obvious commuting squares. The term ‘filtered’ without prefix is used to mean
‘ℵ0-filtered’. Given objects X, Y , one calls X an α-puresubobject of Y if there exists
an α-pure monomorphism X → Y . Similarly, Y is an α-purequotient of X if there
exists an α-pure epimorphism X → Y .

We refer to [2] for basic facts about pure morphisms. For instance, suppose that
A is a locally β-presentable category and let α ≥ β be a regular cardinal. Then a
morphism X → Y is an α-pure epimorphism if and only if it induces a surjective map
HomA(C, X)→ HomA(C, Y ) for every α-presentable object C in A. Thus the usual
notion of purity in a module category is obtained by specialising α = ℵ0.

The crucial input for proving the theorem is the following result due to El Bashir,
which he establishes more generally for any Grothendieck abelian category.

Proposition 1 [12, Theorem 2.1] Let A be a module category (over a ring with several
objects). Given an object Y in A and a regular cardinal α, the isomorphism classes
of α-terminal morphisms X → Y in A form a set.

Proof Let C be an additive category and A = Mod C the category of C-modules, that
is, additive functors Cop → Ab into the category of abelian groups. Given a C-mod-
ule X , we define its cardinality to be |X | = ∑

C∈C0
card X (C), where C0 denotes a

representative set of objects in C.
It follows from [7, Theorem 5] that for each cardinal λ, there exists a cardinal κ

such that for any morphism f : X → Y in A with |X | ≥ κ and |Y | ≤ λ, there exists
an α-pure submodule 0 �= U ⊆ X with f |U = 0; see also [39]. Let X ′ = X/U . Then
f admits a factorisation X

u−→ X ′ v−→ Y with u an α-pure epimorphism that is not
invertible. Thus any α-terminal morphism X → Y with |Y | ≤ λ satisfies |X | < κ .

Corollary 1 Let A be an additive category that is locally β-presentable for some regu-
lar cardinal β. Given an object Y in A and a regular cardinal α ≥ β, the isomorphism
classes of α-terminal morphisms X → Y in A form a set.

Proof Let C be the full subcategory formed by all β-presentable objects in A and
denote by Mod C the category of C-modules. The functor F : A→ Mod C taking an
object X to HomA(−, X)|C is fully faithful and preserves α-filtered colimits for every
regular cardinal α ≥ β [16, §7]. Thus F preserves α-pure epimorphisms. Note that
the image of F is closed under α-pure quotients [2, Proposition 13]. It follows that F
preserves α-terminal morphisms. Now apply Proposition 1.

Proof of Theorem 4 We follow El Bashir [12]. Suppose that the category A is locally
β-presentable. We may assume that α ≥ β. Fix an object Y in A and a representative
set of α-terminal morphisms Xi → Y (i ∈ I ) with Xi in B. We claim that the induced
morphism

∐
i∈I Xi → Y is a right B-approximation. To see this, choose a morphism

f : X → Y with X in B. Consider the pairs (u, v) of morphisms X
u−→ X ′ v−→ Y with

X ′ in B such that f = vu and u is an epimorphism. These pairs are partially ordered if
one defines (u1, v1) ≤ (u2, v2) provided that u2 factors through u1. An upper bound
of a chain of pairs (ui , vi ) is obtained by taking its colimit (ū, v̄) with ū = colimi ui

and v̄ = colimi vi . Note that any colimit of epimorphisms is again an epimorphism.
In addition, one uses that B is closed under filtered colimits. In a locally presentable
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category, the epimorphisms starting in a fixed object form, up to isomorphism, a set
[16, Satz 7.14]. Thus we can choose a maximal pair (ū, v̄), using Zorn’s lemma. The
maximality implies that v̄ is an α-terminal morphism, since B is closed under α-pure
quotients. Thus f factors through an α-terminal morphism Xi → Y and therefore
through

∐
i∈I Xi → Y . It remains to observe that B is closed under α-pure quotients

if it is closed under α-pure subobjects; this follows from the subsequent Proposition 2.

The following proposition collects some facts which help to apply Theorem 4.

Proposition 2 Let A be a locally presentable category. For a full subcategory B that
is closed under filtered colimits, the following conditions are equivalent:

(1) There exists a set S of objects in B such that every object of B is a filtered colimit
of objects in S.

(2) The category B is accessible [27,1].
(3) There exists a regular cardinal α such that B is closed under α-pure subobjects.

Moreover, these conditions imply that there exists a regular cardinal α such that B is
closed under α-pure quotients.

Proof (1)⇒ (2): Fix a regular cardinal α such that A is locally α-presentable and each
object in S is α-presentable. Denote by B0 the smallest full subcategory that contains
S and is closed under filtered colimits over diagrams having cardinality less than α.
Observe that the objects in B0 are α-presentable. It is not difficult to check that each
filtered colimit of objects in B0 can be rewritten as an α-filtered colimit of objects in
B0. Thus every object in B is an α-filtered colimit of objects in B0. This means that B
is α-accessible.

(2) ⇒ (1): Suppose that B is α-accessible for some regular cardinal α. Let S be
a representative set of α-presentable objects. It follows that each object in B is an
α-filtered colimit of objects in S. In particular, each object in B is a filtered colimit of
objects in S.

(2)⇔ (3): See [1, Corollary 2.36].
The last statement follows from [2, Proposition 13].

In [14], Enochs and Estrada have shown that quasi-coherent sheaves admit flat cov-
ers (by viewing sheaves as representations of appropriate quivers). This is a simple
consequence of Theorem 4.

Example 1 Let (X,OX) be a scheme and denote by Qcoh X the category of quasi-
coherent OX-modules. This is a Grothendieck abelian category and therefore locally
presentable. Recall that a quasi-coherent OX-module M is flat if the functor M⊗OX

−
is exact, and let Flat X denote the full subcategory consisting of all flat modules in
Qcoh X. It is easily checked that Flat X is closed under filtered colimits and ℵ0-pure
subobjects. Thus every quasi-coherent OX-module admits a right Flat X-approxima-
tion. A standard argument [13, §7] shows that one can choose the right approximation
to be minimal.
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3 Right adjoints

In this section we construct right adjoints of functors between homotopy categories,
applying the criterion for the existence of right approximations from the previous
section.

Let A be an additive category. We denote by C(A) the category of cochain com-
plexes, that is, sequences of morphisms (dn : Xn → Xn+1)n∈Z in A such that
dndn−1 = 0 for all n ∈ Z. The morphisms in this category are the usual cochain
maps. The homotopy category K(A) is the category of cochain complexes with mor-
phisms the cochain maps up to homotopy.

Lemma 1 Let A be a locally α-presentable additive category for some regular car-
dinal α. Then the category C(A) is locally α-presentable. Moreover, all limits and
colimits in C(A) are computed degreewise.

Proof We denote by AZ the category consisting of all sequences of morphisms
(dn : Xn → Xn+1)n∈Z in A. Thus AZ equals the category of functors Z → A,
where Z is viewed as category with exactly one morphism i → j if and only if i ≤ j .
It follows that AZ is locally α-presentable [1, Corollary 1.54]. Note that all (co)lim-
its in AZ are computed degreewise and that the subcategory C(A) is closed under
(co)limits. Thus C(A) is locally α-presentable by [1, Corollary 2.48].

Our tool for constructing right adjoints is the following proposition which is due to
Neeman.

Proposition 3 [33, Proposition 1.4] Let T be a triangulated category and S a full
triangulated subcategory. Suppose that S and T have split idempotents. Then the
following are equivalent:

(1) The inclusion S → T admits a right adjoint.
(2) Every object in T admits a right S-approximation. ��

Note that any triangulated category has split idempotents provided the category
admits countable coproducts [31, Proposition 1.6.8].

The next theorem is the analogue of Theorem 4 for homotopy categories.

Theorem 5 Let A be a locally presentable additive category and B a full additive
subcategory. Suppose that B is closed under filtered colimits and in addition closed
under α-pure subobjects or under α-pure quotients for some regular cardinal α. Then
the inclusion K(B)→ K(A) admits a right adjoint.

Proof We view C(B) as a full subcategory of C(A). Colimits in C(A) are computed
degreewise and this implies that C(B) is closed under filtered colimits and α-pure
subobjects or α-pure quotients, respectively. Thus every object in C(A) admits a right
C(B)-approximation by Theorem 4, and it follows that every object in K(A) admits
a right K(B)-approximation. Thus we can apply Proposition 3 and conclude that the
inclusion K(B)→ K(A) admits a right adjoint.
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The following result is an application; it has been established in the affine case by
Neeman [33] and Enochs et al. [8], and for noetherian schemes by Murfet [29]. Their
proofs are different from the one given here.

Corollary 2 For any scheme X, the inclusion K(Flat X) → K(Qcoh X) admits a
right adjoint. ��

Let A be an exact category [35]. Thus A is an additive category, together with a
distinguished class of sequences X

u−→ Y
v−→ Z of morphisms which are called exact

and satisfy a number of axioms. Note that the morphisms u andv in each exact sequence
as above form a kernel-cokernel pair, that is, u is a kernel of v and v is a cokernel of u.
A morphism in A which arises as the kernel in some exact sequence is called admissible
monomorphism; a morphism arising as a cokernel is called admissible epimorphism.

A full subcategory B of A is extension closed if every exact sequence in A belongs
to B provided its endterms belongs to B. Any full and extension closed subcategory
of A is exact with respect to the class of sequences which are exact in A.

An object P in A is projective if each admissible epimorphism Y → Z induces a
surjective map HomA(P, Y )→ HomA(P, Z), and the full subcategory of A formed
by these objects is denote by Proj A. Analogously, the subcategory Inj A of injective
objects is defined.

A cochain complex X = (Xn, dn) in A is called acyclic if for each n ∈ Z there

is an exact sequence Zn un−→ Xn vn−→ Zn+1 in A such that dn = un+1vn . The full
subcategory consisting of all acyclic complexes in C(A) is denoted by Cac(A). The
acyclic complexes form a full triangulated subcategory of K(A) which we denote by
Kac(A). Following [22,30], the derived category of A is by definition the Verdier
quotient

D(A) = K(A)/Kac(A).

It is a well-known fact that the derived category of any Grothendieck abelian cat-
egory has small Hom-sets [3,5,15]. On the other hand, there are simple examples of
abelian categories where this property fails [9]. The following result establishes small
Hom-sets for the derived category of an exact category that is locally presentable.

Theorem 6 Let A be an exact category that is locally presentable, and suppose that
exact sequences are closed under filtered colimits. Then the canonical functor K(A)→
D(A) admits a fully faithful right adjoint. In particular, the category D(A) has small
Hom-sets.

The proof of this theorem is based on the following lemma.

Lemma 2 Let A be an exact category that is locally α-presentable for some regular
cardinal α. Suppose that exact sequences are closed under α-filtered colimits. Then
the following holds.

(1) Let X ′ f ′−→ Y ′ be an α-pure subobject of X
f−→ Y in Mor A. Then Ker f ′ → X is

an α-pure subobject of Ker f → X, and Y → Coker f ′ is an α-pure subobject
of Y → Coker f .
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(2) The isomorphisms in A are closed under α-pure subobjects in Mor A.
(3) The admissible monomorphisms in A are closed under α-pure subobjects in

Mor A.
(4) Cac(A) is closed under α-pure subobjects in C(A).

Proof (1) This follows from the fact that kernels and cokernels are preserved by
taking α-filtered colimits [16, Korollar 7.12].

(2) Let f be an α-pure subobject of an isomorphism. It follows from (1) that f is
an epimorphism. On the other hand, there is a morphism g such that the com-
posite g f is an α-pure monomorphism. Thus g f is a regular monomorphism
[1, Proposition 2.31] and therefore extremal. It follows that f is an isomorphism.

(3) Consider an admissible monomorphism X → Y and an α-pure subobject X ′ →
Y ′. Thus there is a commuting square

X ′ ��

��

Y ′

��
X �� Y

such that the vertical morphisms are α-pure monomorphisms. Any split mono-
morphism is admissible (property a) of an exact category in [35, §2]), and there-
fore every α-pure monomorphism is admissible, since exact sequences are closed
under α-filtered colimits. It follows that the composite X ′ → Y ′ → Y is an
admissible monomorphism (property b) in [35, §2]). Thus X ′ → Y ′ is an admis-
sible monomorphism (property c) in [35, §2]).

(4) First observe that a complex X = (Xn, dn) is acyclic if and only if for each
n ∈ Z the morphism Coker dn−2 → Ker dn is invertible and the monomorphism
Ker dn → Xn is admissible.
Now fix an α-pure monomorphism X → X̄ in C(A) such that X̄ is acy-
clic. It follows from (1) that Coker dn−2 → Ker dn is an α-pure subobject of
Coker d̄n−2 → Ker d̄n in Mor A, and that Ker dn → Xn is an α-pure subobject
of Ker d̄n → X̄n . Isomorphisms and admissible monomorphisms in A are closed
under α-pure subobjects by (2) and (3). We conclude that X is acyclic.

Proof of Theorem 6 Consider the full subcategory Cac(A) of acyclic complexes in
C(A). The assumption on the exact structure implies that Cac(A) is closed under
filtered colimits, and Lemma 2 implies that Cac(A) is closed under α-pure subob-
jects for some regular cardinal α. Thus every object in C(A) admits a right Cac(A)-
approximation by Theorem 4. Applying Proposition 3, it follows that the inclusion
Kac(A)→ K(A) admits a right adjoint. A standard argument [31, Proposition 9.1.18]
then shows that the quotient functor K(A)→ D(A) admits a right adjoint. Note that
this right adjoint is fully faithful [17, Proposition I.1.3]. Therefore D(A) has small
Hom-sets.

The following corollary is a straightforward generalisation of Theorem 6; its proof
requires only minor modifications.
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Corollary 3 Let A be an exact category that is locally presentable, and suppose that
exact sequences are closed under filtered colimits. Let B be a full additive subcategory
of A that is extension closed, closed under filtered colimits, and closed under α-pure
subobjects or under α-pure quotients for some regular cardinal α. Then the canonical
functor K(B)→ D(B) admits a fully faithful right adjoint.

Proof We follow the proof of Theorem 6 and assume first that B is closed under α-pure
subobjects.

As before, one shows that Cac(B) is closed under filtered colimits and α-pure
subobjects, viewed as a subcategory of C(A). Some extra care is needed for the fact
that admissible monomorphisms in B are closed under α-pure subobjects in Mor A.
Note that a morphism in B is an admissible monomorphism if and only if it is an
admissible monomorphism in A and its cokernel belongs to B. Thus we consider an

admissible monomorphism X
f−→ Y in B and an α-pure subobject X ′ f ′−→ Y ′. Then

f ′ is an admissible monomorphism in A by Lemma 2, and it belongs to B since B is
closed under α-pure subobjects. Moreover, Coker f ′ is an α-pure subobject of Coker f
and belongs therefore to B. It follows that f ′ is an admissible monomorphism in B.

The rest of the proof goes as before. Thus every object in C(B) admits a right
Cac(B)-approximation, and it follows that the inclusion Kac(B) → K(B) admits a
right adjoint.

The case that B is closed under α-pure quotients is similar and therefore left to the
reader.

Remark 1 It seems to be an interesting project to establish in the context of Theorem 6
a Quillen model structure on the category C(A) such that cofibrations are the degree-
wise admissible monomorphisms and weak equivalences are the quasi-isomorphisms.
This would extend the work of Beke [5]. A strategy for this programme has been
pointed out by Maltsiniotis [28].

The following example has been studied by Neeman [32,33] and Murfet [29].

Example 2 Let X = (X,OX) be a scheme. The quasi-coherent OX-modules that are
flat form an extension closed subcategory of Qcoh X. Thus Corollary 3 can be applied.
It follows that the canonical functor K(Flat X)→ D(Flat X) admits a right adjoint.

Let Inj X denote the full subcategory consisting of all injective modules in Qcoh X.
If X is noetherian and separated, then tensoring with a dualising complex induces an
equivalence D(Flat X)

∼−→ D(Inj X); this is an ‘infinite completion’ of Grothendieck
duality.

4 The pure derived category

In this section we investigate the derived category of an additive category with respect
to its pure exact structure. It seems natural to focus on this exact structure because
it is the smallest one such that exact sequences are closed under filtered colimits.
An example of particular interest is the pure derived category of a module category.

Locally finitely presented categories in the sense of Crawley-Boevey form a conve-
nient setting for studying purity [11]. Thus we fix an additive category A that is locally
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finitely presented. This means A admits filtered colimits and every object in A can
be written as a filtered colimit of some fixed set of finitely presented objects. Recall
that an object X is finitely presented if the functor HomA(X,−) preserves filtered
colimits. Denote by fp A the full subcategory formed by all finitely presented objects.
We consider the pure exact structure, that is, a sequence X → Y → Z of morphisms
in A is pure exact if the induced sequence 0 → HomA(C, X) → HomA(C, Y ) →
HomA(C, Z)→ 0 is exact for each finitely presented object C . The projective objects
with respect to this exact structure are called pure projective; they are precisely the
direct summands of coproducts of finitely presented objects. The derived category
with respect to this exact structure is by definition the pure derived category.

The next result combines Corollary 3 with recent work of Neeman [32].

Theorem 7 Let A be a locally finitely presented additive category, endowed with the
pure exact structure. Then there exists the following recollement.

Kac(A) inc �� K(A) can ����
��

D(A)��
��

Moreover, the composite K(Proj A)
inc−→ K(A)

can−→ D(A) is an equivalence.

Proof We need to show that the functors Kac(A)→ K(A) and K(A)→ D(A) admit
left and right adjoints.

Set C = fp A and consider the category Mod C of C-modules, that is, additive func-
tors Cop → Ab. The functor A → Mod C taking an object X to HomA(−, X)|C is
fully faithful and preserves filtered colimits; it identifies A with the full subcatego-
ry Flat C of flat C-modules [11, §1.4]. It follows from Corollary 3 that the functors
Kac(A)→ K(A) and K(A)→ D(A) admit right adjoints.

The other half of the recollement has been established in [32]. In fact, we can
identify the category Proj C of projective C-modules with Proj A. It follows from [32,
Proposition 8.1] that the inclusion K(Proj A)→ K(A) admits a right adjoint. More-
over, K(Proj A)⊥ = Kac(A) by [32, Theorem 8.6], that is, an object Y in K(A) is
acyclic if and only if HomK(A)(X, Y ) = 0 for all X in K(Proj A). Using standard
arguments [31, §9], it follows that the inclusion Kac(A)→ K(A) admits a left adjoint

and that the composite K(Proj A)
inc−→ K(A)

can−→ D(A) is an equivalence.

Let us reformulate this result in the form which is due to Neeman.

Corollary 4 [33, §0] Let A be a ring with several objects. Then there exists the fol-
lowing recollement.

Kac(Flat A) inc �� K(Flat A) ����
��

K(Proj A)��
inc��

Moreover, the composite K(Proj A)
inc−→ K(Flat A)

can−→ D(Flat A) is an equivalence.
��

It is a remarkable fact that we have an equivalence K(Proj A)
∼−→ D(Flat A),

even though it may happen that flat A-modules have infinite projective dimension.
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Thus it would be interesting to have necessary and sufficient conditions for an exact

category A having enough projective objects, such that the composite K(Proj A)
inc−→

K(A)
can−→ D(A) is an equivalence.

Let A be a ring. We denote by mod A the category of finitely presented A-modules
and let proj A = Proj A ∩ mod A. Suppose that Aop is coherent, that is, the category
mod Aop is abelian. Then we have the following description of the compact objects of
K(Proj A) which is due to Jørgensen and Neeman [20,32].

Given any triangulated category T , we denote by T c the full subcategory formed
by all compact objects.

Proposition 4 [32, Proposition 7.14] Let A be a ring with several objects and sup-
pose that Aop is coherent. Then the triangulated category K(Proj A) is compactly
generated and the composite

Db(mod Aop)op ∼−→ K−,b(proj Aop)op HomAop (−,A)−−−−−−−−→ K(Proj A)c

is an equivalence. ��
Let A be a locally finitely presented additive category. In [11], Crawley-Boevey

showed that A admits set-indexed products iff fp A admits pseudo-cokernels iff the

category

〈

fp A is abelian, where Č = (mod Cop)op for any additive category C.

Theorem 8 Let A be a locally finitely presented additive category, endowed with the
pure exact structure. Suppose that A admits set-indexed products. Then the derived
category D(A) is a compactly generated triangulated category and the inclusion
fp A→ A induces an equivalence

Db(

〈

fp A)
∼−→ D(A)c

Proof View C = fp A as a ring with several objects and identify the category Proj C
of projective C-modules with Proj A; see the proof of Theorem 7. Now combine the
equivalence K(Proj A)

∼−→ D(A) from Theorem 7 with the description of the compact
objects of K(Proj C) given in Proposition 4.

Remark 2 Let A be a locally finitely presented additive category that is cocomplete.
Then the category C = fp A admits cokernels, and it follows that each object in Č has
injective dimension at most two. Thus the inclusion C → Č induces an equivalence
Kb(C)

∼−→ Db(Č), and therefore the inclusion fp A → A induces an equivalence
Kb(fp A)

∼−→ D(A)c.

Let us exhibit the pure derived category of a module category more closely; see
also [10,38]. Fix a ring A. The category A = Mod A of A-modules is locally finitely

presented and fp A = mod A. Note that

〈

mod A equals the free abelian category
Ab(A) over A, where the ring A is viewed as a category with a single object [18].
To be precise, the functor A→ Ab(A) taking A to HomA(A,−) has the property that
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any additive functor A → C to an abelian category extends uniquely, up to a unique
isomorphism, to an exact functor Ab(A)→ C.

We denote by Dpur(Mod A) the pure derived category of Mod A, that is, the derived
category with respect to the pure exact structure on Mod A. The usual derived cate-
gory with respect to all exact sequences in Mod A is denoted by D(Mod A). Recall
that D(Mod A) is a compactly generated triangulated category with an equivalence
Kb(proj A)

∼−→ D(Mod A)c [21]. We have the following analogue for the pure derived
category.

Corollary 5 Let A be a ring. The pure derived category Dpur(Mod A) is a com-
pactly generated triangulated category and the inclusions mod A → Mod A and
mod A→ Ab(A) induce equivalences

Db(Ab(A))
∼←− Kb(mod A)

∼−→ Dpur(Mod A)c.

The canonical functor Dpur(Mod A)→ D(Mod A) admits left and right adjoints that
are fully faithful. The left adjoint preserves compactness and its restriction to compact
objects identifies with the inclusion Kb(proj A)→ Kb(mod A).

Proof Let us write A = Mod A. The fact that Dpur(A) is compactly generated and
the description of the compact objects follow from Theorem 8 and Remark 2. The
canonical functor

F : Dpur(A) = K(A)/Kpac(A) −→ K(A)/Kac(A) = D(A)

preserves set-indexed (co)products and admits therefore a left adjoint and a right
adjoint, by Brown representability. These adjoints are fully faithful since F is a quo-
tient functor [17, Proposition I.1.3]. The left adjoint preserves compactness since F
preserves set-indexed coproducts. Using Theorem 7, we may identify in K(A)

Dpur(A) = ⊥Kpac(A) and D(A) = ⊥Kac(A).

With this identification, the left adjoint of F embeds Kb(proj A) into Kb(mod A).

Remark 3 The derived categories D(Mod A) and Dpur(Mod A) are two extremes.
More precisely, the exact structures on Mod A are partially ordered by inclusion. The
natural exact structure given by all kernel-cokernel pairs is the unique maximal one,
while the pure exact structure is the smallest exact structure such that exact sequences
are closed under filtered colimits.

Given any ring A, we view the category mod A as a ring with several objects and
denote it by Â.

Corollary 6 Let A be a ring. The fully faithful functor Mod A→ Mod Â sending X
to HomA(−, X)| Â induces an equivalence Dpur(Mod A)

∼−→ D(Mod Â).
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Proof The functor Mod A→ Mod Â sends pure exact sequences to exact sequences
and induces therefore an exact functor F : Dpur(Mod A)→ D(Mod Â). The descrip-
tion of the compact objects in Corollary 5 implies that F restricts to an equivalence
between the subcategories of compact objects; thus F is an equivalence by a standard
devisage argument.

It seems interesting to find out when two rings A and B have equivalent pure derived
categories. In view of Corollary 6, this reduces to the question when Â and B̂ have
equivalent derived categories; thus tilting theory applies [37,22].

Example 3 Fix a field k and consider the path algebras A = kΓ and B = kΔ of the
following quivers.

◦
����� ◦

�����

Γ : ◦ �� ◦ Δ : ◦ ◦��

◦
����� ◦

�����

Note that both algebras are of finite representation type. Thus Â and B̂ are each Morita
equivalent to their associated Auslander algebra; see [6] for unexplained terminology.

It follows from work of Ladkani [26] that Â and B̂ are both derived equivalent to
the incidence algebra k P of the poset P = D4 × A3. Thus we have equivalences

Dpur(Mod A)
∼−→ D(Mod k P)

∼←− Dpur(Mod B)

even though the categories Mod A and Mod B are not equivalent.

5 Left approximations and left adjoints

In this section we discuss briefly the existence of left approximations and left adjoints.
In fact, most results are parallel to those previously obtained for right approxima-
tions and right adjoints. Given any category A and a full subcategory B, a morphism
f : X → Y in A is called left B-approximation of X if Y belongs to B and every
morphism X → Y ′ with Y ′ in B factors through f .

The following is the principal existence result for left approximations; it is the ana-
logue of Theorem 4. The result is well-known for subcategories of a module category
that are closed under ℵ0-pure submodules [23,36].

Proposition 5 Let A be a locally presentable category and B be a full subcategory.
Suppose that B is closed under set-indexed products and α-pure subobjects for some
regular cardinal α. Then each object in A admits a left B-approximation.

Proof Fix an object X in A. We may assume that A is locally α-presentable and that X
is β-presentable for some regular cardinal β ≥ α. In [1, Theorem 2.33] it is shown that
each morphism X → Y factors through an α-pure monomorphism Y ′ → Y such that
Y ′ is β-presentable. Choose a representative set of morphisms fi : X → Yi (i ∈ I )
with Yi in B and β-presentable. Then it follows from the assumption on B that the
induced morphism X →∏

i∈I Yi is a left B-approximation.

The next lemma will be used in some of the following applications.
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Lemma 3 Let A be a locally presentable abelian category and Z an object in A. Then
there exists a regular cardinal α such that the class of objects that are annihilated by
Ext1

A(Z ,−) is closed under α-pure subobjects.

Proof Choose a regular cardinal β such that A is locally β-presentable and Z is
β-presentable. Then there exists a regular cardinal α ≥ β such that the kernel of each
morphism Y → Z from a β-presentable object Y is α-presentable.

Let X → X̄ be an α-pure monomorphism such that Ext1
A(Z , X̄) = 0 and fix an

exact sequence η : 0 → X → Y → Z → 0 in A. The choice of α implies that the
sequence η fits into a commutative diagram of the following form

0 �� X ′ ��

��

Y ′ ��

��

Z �� 0

0 �� X �� Y �� Z �� 0

such that the upper row is exact and consists of α-presentable objects. The composite
X ′ → X → X̄ factors through X ′ → Y ′, since Ext1

A(Z , X̄) = 0. It follows that
X ′ → X factors through X ′ → Y ′, since X → X̄ is an α-pure monomorphism. Thus
the sequence η splits, and we conclude that Ext1

A(Z , X) = 0.

The following example is our first application of Proposition 5.

Example 4 Let A be a locally presentable abelian category and C a set of objects.
Then the full subcategory

C′ = {X ∈ A | Ext1
A(Z , X) = 0 for all Z ∈ C}

is closed under set-indexed products and α-pure subobjects for some regular cardinal
α, by Lemma 3. It follows from Proposition 5 that each object in A admits a left
C′-approximation.

As before, we extend the existence of approximations to homotopy categories.

Corollary 7 Let A be a locally presentable additive category and B a full additive
subcategory. Suppose that B is closed under set-indexed products and α-pure subob-
jects for some regular cardinal α. Then the inclusion K(B) → K(A) admits a left
adjoint.

Proof We view C(B) as a full subcategory of C(A). (Co)limits in C(A) are com-
puted degreewise and this implies that C(B) is closed under set-indexed products and
α-pure subobjects. Thus every object in C(A) admits a left C(B)-approximation by
Proposition 5. Applying the dual statement of Proposition 3, it follows that the inclu-
sion K(B)→ K(A) admits a left adjoint.

Example 5 Let A be a Grothendieck abelian category. Then the full subcategory Inj A
consisting of all injective objects is closed under α-pure subobject for some regular
cardinal α. This follows from Lemma 3 and a variant of Baer’s criterion, because there
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is a set of objects C such that an object X in A is injective if and only if Ext1
A(Z , X) = 0

for all Z in C. It follows from Corollary 7 that the inclusion K(Inj A)→ K(A) admits
a left adjoint.

The following result about derived categories is the analogue of Corollary 3; the
proof is almost the same and therefore left to the reader.

Corollary 8 Let A be an exact category that is locally presentable and let α be a
regular cardinal. Suppose that exact sequences are closed under set-indexed prod-
ucts and α-filtered colimits. Let B be a full subcategory of A that is closed under
extensions, set-indexed products, and α-pure subobjects. Then the canonical functor
K(B) → D(B) admits a fully faithful left adjoint. In particular, the category D(B)

has small Hom-sets. ��
Example 6 Let A be a locally α-presentable additive category. Consider the α-pure
exact structure, that is, a sequence X → Y → Z of morphisms in A is α-pure exact if
the induced sequence 0→ HomA(C, X)→ HomA(C, Y )→ HomA(C, Z)→ 0 is
exact for each α-presentable object C . The α-pure exact sequences are closed under
set-indexed products and α-filtered colimits. In fact, a sequence is α-pure exact if and
only if it is an α-filtered colimit of split exact sequences. It follows from Corollary 8
that the canonical functor K(A)→ D(A) admits a left adjoint.

Example 7 Let A be a ring. Consider the category Fpinj A of all fp-injective A-mod-
ules, that is, A-modules X such that Ext1

A(−, X) vanishes on all finitely presented
A-modules. Note that fp-injective modules are precisely the pure submodules of injec-
tive modules, whereas flat modules are the pure quotients of projective modules. The
fp-injective A-modules form an extension closed subcategory of Mod A that is closed
under set-indexed products and pure submodules. It follows from Corollary 8 that the
canonical functor K(Fpinj A)→ D(Fpinj A) admits a left adjoint.

Using fp-injective modules, a result from [19] takes the following form. It seems
appropriate to mention this because it stimulated our interest in adjoint functors
between homotopy categories.

Given any pair A, B of noetherian rings that admit a dualising complex D, there
are equivalences

K(Proj A)
∼ �� D(Flat A)

−⊗A D �� D(Fpinj B)
HomB (D,−)

�� K(Inj B)
∼�� .

Let us conclude this note with the following conjecture; it is an analogue of results on
flat modules in [32].

Conjecture 1 Given any ring A, the composite

K(Inj A)
inc−→ K(Fpinj A)

can−→ D(Fpinj A)
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is an equivalence. If A is coherent, then D(Fpinj A) is compactly generated and the
composite

D(Fpinj A)→ Dpur(Mod A)→ D(Mod A)

induces an equivalence D(Fpinj A)c ∼−→ Db(mod A).

This conjecture should be formulated more generally as follows. LetC be a skeletally
small abelian category and let A = Ex(Cop, Ab) denote the category of exact functors
Cop → Ab. Categories of this form are ubiquitous [24,34]. Note that A is the category
of fp-injective objects of the locally coherent Grothendieck category Lex(Cop, Ab)

of left exact functors Cop → Ab. The category A admits set-indexed products and
filtered colimits. Moreover, A admits a canonical exact structure with enough injective
objects. To be precise, a sequence X → Y → Z of morphisms in A is exact if the
induced sequence 0→ ZC → Y C → XC → 0 of abelian groups is exact for all C
in C.

The general form of the above conjecture then says that the canonical functor
K(Inj A) → D(A) is an equivalence and that D(A) is compactly generated with an
equivalence D(A)c ∼−→ Db(C). This conjecture specialises to Conjecture 1 by taking
for C the free abelian category Ab(A) over a ring A; it has been proved in [25] provided
that each object in C is noetherian; see Theorem 8 for another special case.

Note added in proof After acceptance of this paper, Jan Šťovíček informed the author
about his manuscript entitled On the derived category of fp-injective modules contain-
ing a proof of Conjecture 1. More precisely, he proves the following: For any ring
A the category D(Fpinj A) is compactly generated. If A is coherent, then there are
equivalences D(Fpinj A)c ∼−→ Db(mod A) and K(Inj A)

∼−→ D(Fpinj A).
Another recent paper entitled On exact categories and applications to triangulated

adjoints and model structures by Manuel Saorín and Jan Šťovíček [arXiv:1005.3248v2]
provides an alternative approach (different from the one presented here) towards the
existence of approximations and adjoints for categories of complexes.

Acknowledgments I would like to thank Jan Šťovíček and my student Alexander Schmeding for stimu-
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