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Abstract We describe arbitrary multiplicative differential forms on Lie groupoids
infinitesimally, i.e., in terms of Lie algebroid data. This description is based on the
study of linear differential forms on Lie algebroids and encompasses many known
integration results related to Poisson geometry. We also revisit multiplicative multi-
vector fields and their infinitesimal counterparts, drawing a parallel between the two
theories.
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1 Introduction

This paper is devoted to the study of multiplicative differential forms on Lie groupoids,
with focus on their infinitesimal counterparts. Given a Lie groupoid G over a manifold
M , recall that a k-form ω ∈ �k(G) is called multiplicative if m∗ω = pr∗1ω + pr∗2ω,
where m : G(2) = G ×M G → G is the groupoid multiplication, and pri : G(2) →
G, i = 1, 2, are the natural projections. Our goal is to characterize multiplicative

H. Bursztyn (B)
Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro 22460-320, Brazil
e-mail: henrique@impa.br

A. Cabrera
Department of Mathematics, University of Toronto, 40 St. George Street, Toronto,
ON M5S 2E4, Canada
e-mail: ale.cabrera@gmail.com

Present Address:
A. Cabrera
Departamento de Matematica Aplicada, Instituto de Matematica,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-909, Brazil

123



664 H. Bursztyn, A. Cabrera

forms on G solely in terms of information from its Lie algebroid. We will also discuss
the analogous problem for multiplicative multivector fields.

Multiplicative differential forms and multivector fields on Lie groupoids have been
studied for over 20 years in a variety of contexts. On Lie groups, multiplicative bivector
fields came to notice in the late 1980s when the concept of Poisson Lie group (see e.g.
[20] and references therein) was systematized. Multiplicative 2-forms on Lie grou-
poids appeared around the same time as the symplectic forms on symplectic groupoids
[9,29], originally introduced as part of a quantization scheme for Poisson manifolds.
Poisson Lie groups and symplectic groupoids naturally led to Poisson groupoids [30],
which gave further impetus to the study of multiplicative structures. In particular,
multiplicative vector fields on Lie groupoids turn out to encompass classical lifting
processes of general interest in differential geometry, see [23]. There are further con-
nections between multiplicative 2-forms and bivector fields and the theory of moment
maps, found e.g. in [4,5,18,25,31].

A central issue when considering multiplicative geometrical structures on Lie grou-
poids concerns their infinitesimal description, i.e., their description in terms of Lie-
algebroid data. As usual in Lie theory, relating global and infinitesimal objects involves
suitable differentiation and integration procedures. Important classes of examples
of multiplicative structures and their infinitesimal counterparts include Poisson Lie
groups and Lie bialgebras (see e.g. [20]), symplectic groupoids and Poisson manifolds
(see [7,9]), and, more generally, the correspondence between Poisson groupoids and
Lie bialgebroids [22,24]. Dirac structures [10,28] fit into a similar picture, being the
infinitesimal versions of certain multiplicative 2-forms, see [5]. As observed in [11],
generalized complex structures [16,17] provide another class of geometrical structures
encoding infinitesimal information that can be integrated to multiplicative structures
on Lie groupoids. In establishing these infinitesimal-global correspondences, differ-
ent methods have been employed, some based on the integrability of Lie-algebroid
morphisms, e.g. [3,22,24], others on infinite-dimensional arguments, e.g. [5,7,8,18].
Although identifying the infinitesimal versions of multiplicative forms is key in some
of the aforementioned works, only special cases of this problem have been considered.
In this paper, we treated it in full generality.

From yet another perspective, multiplicative differential forms arise as constitu-
ents of the Bott–Schulman double complex of Lie groupoids [2] (see also [1] and
references therein), which computes the cohomology of their classifying spaces. So
the problem of understanding multiplicative forms infinitesimally may be seen as
part of the problem of finding infinitesimal models for the cohomology of classi-
fying spaces. This broader viewpoint is explored in the recent work [1], leading to
results closely related to ours; a comparison between them is also discussed in this
paper.

Our approach to describe multiplicative forms infinitesimally starts with the study
of linear differential forms on vector bundles A → M . We observe (Theorem 1)
that any linear k-form on A is equivalent to a pair (μ, ν) of vector-bundle maps
μ : A → ∧k−1T ∗M, ν : A → ∧k T ∗M , covering the identity on M . If A car-
ries a Lie algebroid structure, with bracket [·, ·] and anchor ρ, we say that the pair
(μ, ν) is an IM k-form (I M standing for infinitesimally multiplicative) if the following
compatibility conditions are satisfied: for all u, v ∈ �(A),

123



Multiplicative forms at the infinitesimal level 665

1. iρ(u)μ(v) = −iρ(v)μ(u),
2. μ([u, v]) = Lρ(u)μ(v)− iρ(v)dμ(u)− iρ(v)ν(u),
3. ν([u, v]) = Lρ(u)ν(v)− iρ(v)dν(u).

We prove in Theorem 2 that multiplicative k-forms on a source-simply-connected
Lie groupoid G over M are in one-to-one correspondence with IM k-forms on its Lie
algebroid A → M . Concretely, the IM k-form (μ, ν) associated with a multiplicative
k-form ω ∈ �k(G) is defined by

〈μ(u), X1 ∧ · · · ∧ Xk−1〉 = ω(u, X1, . . . , Xk−1),

〈ν(u), X1 ∧ · · · ∧ Xk〉 = dω(u, X1, . . . , Xk),

where Xi ∈ T M, i = 1, . . . , k, and we view M ⊆ G and A ⊆ T G|M .
A special class of IM-forms is obtained as follows. Any closed form φ ∈ �k+1(M)

determines a map ν : A → ∧k T ∗M, ν(u) = −iρ(u)φ, satisfying condition (3) above.
The IM k-forms (μ, ν) with ν of this type are referred to as IM k-forms relative to φ;
they are the infinitesimal versions of multiplicative k-forms satisfying

dω = s∗φ − t∗φ,

where s and t denote the groupoid source and target maps. For k = 2, IM forms
relative to φ include φ-twisted Poisson and Dirac structures [28], and our Theorem 2
recovers their known integrations [5,8]. For arbitrary k, IM forms relative to φ were
studied in [1] in connection with the Weil algebra of a Lie algebroid. These and other
examples are discussed in this paper.

The method we use to integrate IM forms on Lie algebroids to multiplicative forms
on Lie groupoids relies entirely on the known correspondence between Lie-algebroid
and Lie-groupoid morphisms (Lie’s second theorem for Lie algebroids); in particular,
we do not resort to the path spaces of [7,12,27], hence avoiding infinite dimensional
constructions. Although our method is inspired by [3,22,24], it brings a technical
difference in that we represent differential k-forms on a manifold N by functions
⊕k T N → R (as opposed to maps ⊕k−1T N → T ∗N ); this small variation greatly
simplifies computations, so even when restricted to known situations, our general proof
seems more direct than existing ones. The integration of IM forms is carried out in two
steps: first, we show that an IM k-form on a Lie algebroid A → M defines an element
in �k(A) whose associated function ⊕k T A → R is a Lie-algebroid morphism; sec-
ond, upon integration, one obtains a groupoid morphism ⊕k T G → R which defines
a multiplicative k-form.1

In the last part of the paper, we revisit multiplicative multivector fields on Lie grou-
poids, as in [18]. We show how the very same techniques used to study multiplicative
forms apply to the dual situation of multivector fields, leading to an alternative proof

1 Forms on G are commonly viewed as sections G → ∧k T ∗G. The multiplicative ones, for k = 1, are
such that G → T ∗G is a groupoid morphism. However, this viewpoint does not extend to k ≥ 2, as in this
case ∧k T ∗G inherits no canonical groupoid structure in general; in contrast, ⊕k T G is always a groupoid
and multiplicative forms are conveniently described by groupoids morphisms ⊕k T G → R. An analogous
discussion holds for multivector fields.
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666 H. Bursztyn, A. Cabrera

of the universal lifting theorem of [18] (not involving path spaces) and drawing a clear
parallel between the two theories.

As a final remark, we note that the results in this paper admit a natural formulation
in terms of graded geometry. Multiplicative forms and multivector fields on a given
Lie groupoid G may be seen as multiplicative functions on the associated graded Lie
groupoids T [1]G and T ∗[1]G, respectively. On ordinary Lie groupoids, the infinites-
imal counterpart of a multiplicative function is a Lie-algebroid cocycle. The same
holds at the graded level and, from this perspective, our results consist in using the
geometry of T [1]G and T ∗[1]G to obtain concrete descriptions of their Lie-algebroid
cocycles. For example, using the the natural multiplicative vector field on T [1]G (the
de Rham differential on G), one identifies its Lie-algebroid cocycles with IM forms
(see Theorem 1); for an analogous description of the Lie-algebroid cocycles of the
graded groupoid T ∗[1]G (see Theorem 3), ones uses its canonical multiplicative sym-
plectic structure (defined by the Schouten bracket on G). We will not elaborate on the
supergeometric viewpoint in this paper, though it makes our results more intuitive.

The paper is organized as follows. In Sect. 2, we consider linear differential forms
on vector bundles A → M and establish their correspondence with pairs of vector-
bundle maps (μ, ν), where μ : A → ∧k−1T ∗M and ν : A → ∧k T ∗M . In Sect. 3,
we define IM k-forms on Lie algebroids and prove a compatibility result with tangent
Lie algebroid structures (Theorem 1). Section 4 is devoted to Theorem 2, which is the
correspondence between IM forms on Lie algebroids and multiplicative forms on Lie
groupoids; we also discuss several special cases of this result. Section 5 explains the
relationship between Theorem 2 and the Van Est isomorphism of [1]. In Sect. 6, we
revisit the theory of multivector fields from [18].

Notation, conventions and identities

For vector bundles A → M and B → M over the same base M , a vector-bundle
map � : A → B is always assumed to cover the identity map on M , unless stated
otherwise. We denote its transpose, or dual, by � t : B∗ → A∗. We denote the k-fold
direct sum of a vector bundle qA : A → M by ⊕k

M A, or simply ⊕k A if there is no
risk of confusion. We may also use the notation

∏k
qA

A if we want to be explicit about
the projection map qA (this is relevant when dealing with double vector bundles).

For a Lie groupoid G over M , we usually denote its source and target maps by s and t.
The set G(2) ⊂ G × G of composable pairs is defined by the condition s(g) = t(h),
and the multiplication is denoted by m : G(2) → G, m(g, h) = gh. The unit map
ε : M → G is often used to identify M with its image in G. The Lie algebroid of G is
AG = ker(T s)|M , with anchor T t|A : A → M and bracket induced by right-invariant
vector fields. For a Lie algebroid A → M , we denote its anchor by ρA and bracket by
[·, ·]A (or simply ρ and [·, ·], if there is no risk of confusion).

We introduce some notation and collect some identities that will be useful for later
computations. If U1, . . . ,Um are vector fields on a manifold M , we set

I U
m,r := iUm . . . iUr , r ≤ m, (1.1)
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Multiplicative forms at the infinitesimal level 667

where iU is the usual contraction. An inductive application of Cartan’s formula gives

I U
m,1d =

m∑

l=1

(−1)l+1 I U
m,l+1LUl I U

l−1,1 + (−1)mdI U
m,1, (1.2)

where d denotes the de Rham differential and LU is the Lie derivative. Given another
vector field X and recalling the commutator formula i[X,Ul ] = LX iUl − iUl LX , we
obtain

LX I U
m,1 =

m∑

l=1

I U
m,l+1i[X,Ul ] I U

l−1,1 + I U
m,1LX . (1.3)

Given a differential form α, we also have

I U
m,1(d f ∧ α) =

m∑

l=1

(−1)l+1d f (Ul)I
U
m,l+1 I U

l−1,1α + (−1)md f ∧ I U
m,1α. (1.4)

We often use Einstein’s summation convention when there is no risk of confusion.

2 Linear forms on vector bundles

In order to define linear forms, we recall a few facts about tangent and cotangent
bundles of vector bundles.

2.1 Tangent and cotangent bundles of vector bundles

Let qA : A −→ M be a vector bundle, and let T A be the tangent bundle of the
total space A. Besides its natural vector bundle structure over A, with projection map
denoted by pA : T A −→ A, it is also a vector bundle over T M , with respect to the
map T qA : T A −→ T M .

It is useful to consider a coordinate description of these bundles. Let (x j ) be coor-
dinates on M, j = 1, . . . , dim(M), and let {ed} be a basis of local sections of
A, d = 1, . . . , rank(A). The corresponding coordinates on A are denoted by (x j , ud),
and tangent coordinates on T A by (x j , ud , ẋ j , u̇d). In this notation, given x = (x j ),
the coordinates (ud) specify a point in Ax , (ẋ j ) a point in Tx M , whereas (u̇d) deter-
mines a point on a second copy of Ax , tangent to the fibres of A −→ M . Note that
pA(x j , ud , ẋ j , u̇d) = (x j , ud), and T qA(x j , ud , ẋ j , u̇d) = (x j , ẋ j ).

Similarly, consider the cotangent bundle T ∗ A, with local coordinates (x j , ud ,

p j , ξd), where (p j ) determines a point in T ∗
x M , and (ξd) a point in A∗

x , dual to
the direction tangent to the fibres of A −→ M . In this case, besides the natural vector
bundle structure cA : T ∗ A −→ A, cA(x j , ud , p j , ξd) = (x j , ud), T ∗ A is also a
vector bundle over A∗ [23], with respect to the projection map given in coordinates by

123



668 H. Bursztyn, A. Cabrera

r : T ∗ A −→ A∗, r(x j , ud , p j , ξd) = (x j , ξd). (2.1)

The total spaces T A and T ∗ A are examples of double vector bundles, see [21,26].
They fit into the following commutative diagrams:

T A
T qA ��

pA

��

T M

pM

��
A qA

�� M

T ∗ A
r ��

cA

��

A∗

qA∗
��

A qA
�� M

where

pM : T M −→ M, pM (x
j , ẋ j ) = (x j ), qA∗ : A∗ −→ M, qA∗(x j , ξd) = (x j ),

(2.2)

are the natural projections. Recall, see e.g. [21], that the intersection of the kernels of
the top and left arrows on each diagram defines a vector bundle over M , known as
the core. In the case of T A, the core is identified with A −→ M , with coordinates
(x j , u̇d); for T ∗ A, the core is T ∗M , with coordinates (x j , p j ).

2.2 The structure of linear forms on vector bundles

Let A −→ M be a vector bundle, with local coordinates (x j , ud), and let us consider
the k-fold direct sum of T A over A,

⊕k
AT A := T A ×A · · · ×A T A,

locally described by coordinates (x j , ud , ẋ j
1 , . . . , ẋ j

k , u̇d
1 , . . . , u̇d

k ). It is a vector bundle
over A, with projection map

(x j , ud , ẋ j
1 , . . . , ẋ j

k , u̇d
1 , . . . , u̇d

k ) 
→ (x j , ud),

and also a vector bundle over ⊕k T M = T M ×M · · · ×M T M , with projection map

(x j , ud , ẋ j
1 , . . . , ẋ j

k , u̇d
1 , . . . , u̇d

k ) 
→ (x j , ẋ j
1 , . . . , ẋ j

k ).

Given a k-form � ∈ �k(A) on the total space of A −→ M , let us consider the
induced maps

�
 : ⊕k−1
A T A −→ T ∗ A, �
(U1, . . . ,Uk−1) = iUk−1 . . . iU1�, (2.3)

� : ⊕k
AT A −→ R, �(U1, . . . ,Uk) = iUk . . . iU1�, (2.4)
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Multiplicative forms at the infinitesimal level 669

which are alternating and linear in each of their entries.2

Definition 1 A k-form � is called linear if the induced map �
 (2.3) is a morphism
of vector bundles with respect to the vector bundle structures ⊕k−1

A T A −→ ⊕k−1T M
and T ∗ A −→ A∗. The space of linear k-forms on A is denoted by �k

lin(A).

In particular, �
 covers a base map λ : ⊕k−1T M −→ A∗,

⊕k−1
A T A

�
 ��

��

T ∗ A

r

��
⊕k−1T M

λ
�� A∗.

(2.5)

The map λ is skew symmetric on its entries, so it can be viewed as a vector-bundle
map ∧k−1T M −→ A∗. Its transpose is the vector-bundle map

λt : A −→ ∧k−1T ∗M. (2.6)

A simple computation in coordinates shows the following.

Lemma 1 Given a k-form � ∈ �k(A), the following are equivalent:

1. � is linear.
2. In local coordinates (x j , ud) on A, � has the form

� = 1

k!�i1...ik ,d(x)u
ddxi1 ∧ · · · ∧ dxik

+ 1

(k − 1)!λi1...ik−1d(x)dxi1 ∧ · · · ∧ dxik−1 ∧ dud , (2.7)

where λi1...ik−1d = 〈λ(∂xi1 , . . . , ∂xik−1 ), ed〉, and ∂x j = ∂
∂x j .

3. The map � : ⊕k
AT A −→ R defines a vector-bundle map

⊕k
AT A

� ��

��

R

��
⊕k T M �� {∗}.

(2.8)

Given a vector-bundle map μ : A −→ ∧k T ∗M , let us consider the linear k-form
�μ on A given at a point u ∈ A by

(�μ)u := T qA|tuμ(u). (2.9)

2 Notice that, since �
 (resp. �) is multilinear in its entries, it is not a vector-bundle morphism from the
direct sum ⊕k−1T A → A (resp. ⊕k T A → A) to T ∗ A → A∗, unless k = 2 (resp. k = 1).

123



670 H. Bursztyn, A. Cabrera

In local coordinates (xi , ud) on A, �μ is written as

(�μ)u = 1

k!μi1...ik ,d(x)u
ddxi1 ∧ · · · ∧ dxik , (2.10)

where μi1...ik ,d is defined by

μi1...ik ,d =
〈

μ(ed),
∂

∂xi1
∧ · · · ∧ ∂

∂xik

〉

.

Example 1 When k = 1, a direct computation in coordinates shows that the linear
1-form �μ, defined by the vector-bundle map μ : A −→ T ∗M , satisfies

�μ = μ∗θcan, (2.11)

where θcan = pi dxi is the canonical 1-form on T ∗M . (When A = M −→ M is the
vector bundle with zero fibres, (2.11) recovers the well-known “tautological” property
μ∗θcan = μ.)

Lemma 2 A linear k-form� covers the fibrewise zero map in (2.5) if and only if it is
of the form �μ (as in (2.9)) for a vector bundle map μ : A −→ ∧k T ∗M.

Proof We can use Lemma 1, or argue more globally as follows. Consider the projection
r : T ∗ A −→ A∗, as in (2.1). One can directly check that

ker(r)u = (ker(T qA|u))◦ = im(T qA|tu),

where ◦ stands for the annihilator. It follows from (2.9) that r ◦�
μ = 0, which means
that �μ covers the fibrewise zero map in (2.5). Conversely, if � covers the fibrewise
zero map, then r ◦ �
 = 0; so, given U1, . . . ,Uk ∈ Tu A, �
(U1, . . . ,Uk−1) =
T qA|∗uα for some α ∈ T ∗

qA(u)
M . Since � is skew symmetric, we conclude that

�(U1, . . . ,Uk) only depends on T qA|u(U j ), j = 1, . . . , k. Hence, for each u ∈ A,
there exists μ(u) ∈ ∧l T ∗

qA(u)
M such that (�)u = T qA|∗uμ(u). The linear dependence

of μ(u) on u follows from the linear dependence of (�)u on u, see (2.7); the resulting
vector bundle map μ : A −→ ∧k T ∗M is smooth by the local expression (2.10). ��
Proposition 1 There is a one-to-one correspondence between linear k-forms� on A,
covering a map λ : ⊕k−1T M −→ A∗, and pairs (μ, ν), where μ : A −→ ∧k−1T ∗M
and ν : A −→ ∧k T ∗M are vector bundle morphisms. The correspondence is given by

� = d�μ +�ν, (2.12)

where μ = (−1)k−1λt .

Proof Let � be a linear k-form on A, and set μ = (−1)k−1λt . A direct computa-
tion using the local expression (2.10) and Lemma 1 shows that the k-form d�μ is
linear and covers the same map λ, hence the linear k-form � − d�μ covers the fi-
brewise zero map. By Lemma 2, there is a unique ν : A −→ ∧k T ∗M such that
�− d�μ = �ν . ��
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Multiplicative forms at the infinitesimal level 671

A direct consequence of (2.12) is that if � is a linear form, then so is d�.

Example 2 Let � ∈ �2(A) be a linear 2-form with d� = 0. According to the previ-
ous proposition, we can write it as � = d�μ + �ν , and � being closed amounts to
d�ν = 0; this condition immediately implies that ν = 0, so � = d�μ. Using (2.11),
it follows that

� = (
λt)∗

ωcan,

where ωcan = −dθcan = dxi ∧ d pi the canonical symplectic form on T ∗M (see [19,
Sect. 7.3], and also [3, Prop. 4.3]).

2.3 Tangent lifts

We now briefly discuss linear forms obtained via the tangent lift operation [13,32]
(see also [3] and [23]), that assigns to any k-form on a manifold M a linear k-form on
the total space of its tangent bundle pM : T M → M .

Let us consider the operation

τ : �l(M) −→ �l−1(T M), τ (β)|X := (T pM |X )
t (iXβ), (2.13)

where X ∈ T M and l ≥ 1; i.e., for U1, . . . ,Ul−1 ∈ TX (T M),

iUl−1 . . . iU1τ(β)|X = β(X, T pM (U1), . . . , T pM (Ul−1)).

In the notation of Sect. 2.2, τ(β) is a linear (l −1)-form on the vector bundle A = T M
of type �ν , where

ν : T M −→ ∧l−1T ∗M, ν(X) = iXβ.

It directly follows from Example 1 that, if ω ∈ �2(M), then τ(ω) = (ω
)∗θcan ,
where θcan = pi dxi is the canonical 1-form on T ∗M .

The tangent lift operation,

�k(M) −→ �k(T M), α 
→ αT , (2.14)

assigns to α ∈ �k(M) the form αT ∈ �k(T M) defined by the Cartan-like formula

αT = dτ(α)+ τ(dα). (2.15)

It follows directly from (2.15) that αT is linear and that the operation (2.14) is com-
patible with exterior derivatives, in the sense that (dα)T = dαT .

We will also need an equivalent characterization of the tangent lift, see e.g. [13].
Given α ∈ �k(M), consider the associated map

α : ⊕k T M −→ R, (X1, . . . , Xk) 
→ α(X1, . . . , Xk).
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672 H. Bursztyn, A. Cabrera

Let
∏k

T pM
T (T M) denote the fibred product with respect to the vector bundle

T pM : T (T M) −→ T M, T pM (x
j , ẋ j , δx j , δ ẋ j ) = (x j , δx j ),

where (x j , ẋ j , δx j , δ ẋ j ) are the local coordinates on T (T M) induced by the tangent
coordinates (x j , ẋ j ) on T M . We have a natural identification T (⊕k T M) ∼= ∏k

T pM

T (T M), so we can view the differential of the function α in C∞(⊕k T M) as a map

dα :
k∏

T pM

T (T M) −→ R.

Note that the canonical involution

JM : T (T M) −→ T (T M), JM (x
j , ẋ j , δx j , δ ẋ j ) = (x j , δx j , ẋ j , δ ẋ j ),

(2.16)

induces an identification

J (k)M :
k∏

pT M

T (T M) −→
k∏

T pM

T (T M).

One can prove (see e.g. [13]) that, given α ∈ �k(M), its tangent lift αT ∈ �k(T M)
is uniquely determined by the condition

αT = dα ◦ J (k)M :
k∏

pT M

T (T M) −→ R. (2.17)

3 Linear forms on Lie algebroids

3.1 Core and linear sections

Any vector bundle that fits into a double vector bundle admits two distinguished types
of sections, known as linear and core sections; a detailed discussion can be found e.g.
in [15, Sect. 2.3] and [21]. For our purposes, we are mostly interested in the particular
(double) vector bundles ⊕k

AT A (and, later in Sect. 4, also in ⊕k
AT ∗ A), so we restrict

ourselves to these cases.
Each section u of a vector bundle A → M defines a core section û and a lin-

ear section T u of T A → T M as follows. The tangent bundle of A along its zero
section M ↪→ A naturally splits as T A|M = T M ⊕ A, and we can define, for each
X ∈ Tx M, û(X) := X (x) + u(x), where the sum is with respect to the previous
decomposition of T A|M . The linear section T u : T M → T A is obtained by applying
the tangent functor to u : M → A.
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Multiplicative forms at the infinitesimal level 673

Let us consider local coordinates (x j ) on M , a basis of local sections {ed} of A,
and dual basis {ed} of A∗. As in Sect. 2, we denote the corresponding coordinates
on A by (x j , ud), and on A∗ by (x j , ξd), while coordinates on T A are denoted by
(x j , ud , ẋ j , u̇d), and on T ∗ A by (x j , ud , p j , ξd).

The core and linear sections of T A → T M defined by a local section ea of A are
explicitly given by

êa(x
j , ẋ j ) = (x j , 0, ẋ j , δd

a ), T ea(x
j , ẋ j ) = (x j , δd

a , ẋ j , 0), (3.1)

where δd
a is the d-th component of ea , i.e., 1 if d = a or zero otherwise.

More generally, ea locally defines two types of local sections of ⊕k
AT A −→ ⊕k T M

as follows: the first type is given, for each n ∈ {1, . . . , k}, by

êa,n(ẋ1 ⊕ · · · ⊕ ẋk) := 0̂(ẋ1)⊕ · · · ⊕ 0̂(ẋn−1)⊕ êa(ẋn)⊕ 0̂(ẋn+1)⊕ · · · ⊕ 0̂(ẋk),

(3.2)

where ẋl = (x j , ẋ j
l ) belongs to the l-th component of ⊕k T M and 0̂(ẋl) =

(x j , 0, ẋ j
l , 0); the second type is

(T ea)
k(ẋ1 ⊕ · · · ⊕ ẋk) := T ea(ẋ1)⊕ · · · ⊕ T ea(ẋk). (3.3)

The sections êa,n and (T ea)
k are the core and linear sections on ⊕k

AT A, respectively.
A key property is that they generate the module of local sections of ⊕k

AT A −→
⊕k T M . Note also that, under the natural projection ⊕k

AT A −→ A, core sections êa,n

are sent to the zero section of A −→ M , while linear sections (T ea)
k map to the

section ea .

3.2 Tangent Lie algebroids

Suppose that A −→ M carries a Lie algebroid structure (see e.g. [6,21]), with Lie
bracket [·, ·]A on �(A) and anchor map ρA : A −→ T M . Then the vector bundle
T A −→ T M inherits a natural Lie algebroid structure, known as the tangent Lie
algebroid, see e.g. [22]. We will need local expressions for the tangent Lie algebroid
in terms of the coordinates introduced in Sect. 3.1.

The Lie algebroid A −→ M is locally determined by structure functions ρ j
a and

Cc
ab defined by

ρA(ea) = ρ
j
a
∂

∂x j
, [ea, eb]A = Cc

abec. (3.4)
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674 H. Bursztyn, A. Cabrera

The tangent Lie algebroid structure on T A −→ T M is defined in terms of core and
linear sections (3.1) by

[̂ea, êb]T A = 0, [T ea, êb]T A = Cc
abêc, [T ea, T eb]T A = Cc

abT ec + ẋ i ∂Cc
ab

∂xi
êc,

(3.5)

ρT A(T ea) = ρ
j
a
∂

∂x j
+ ẋ i ∂ρ

j
a

∂xi

∂

∂ ẋ j
, ρT A( êa) = ρ

j
a
∂

∂ ẋ j
. (3.6)

In (3.6), we have identified points in T (T M), written in coordinates as (x j , ẋ j ,

δx j , δ ẋ j ), with tangent vectors

δx j ∂

∂x j
+ δ ẋ j ∂

∂ ẋ j

∣
∣
∣
∣
(x j ,ẋ j )

.

We notice that the tangent Lie algebroid induces a Lie algebroid structure on the
direct sum ⊕k

AT A −→ ⊕k T M . This is a general property of VB-algebroids [15,
Sect. 2.1], which we directly verify in this example. A simple consequence of (3.5)
and (3.6) is that if U and V are local sections of T A −→ T M , each of type êa or T ea ,
then

T pM (ρT A(U )) = ρA(pA(U )), pA([U, V ]T A) = [pA(U ), pA(V )]A, (3.7)

where pM : T M −→ M and pA : T A −→ A are the natural projections. It follows
from the first equation in (3.7) that if U1 ⊕· · ·⊕Uk ∈ ⊕k

AT A is of type (3.2) or (3.3),
then

T pM (ρT A(Ul)) = T pM (ρT A(Um)), ∀l,m ∈ {1, . . . , k}.

As a result, (ρT A(U1), . . . , ρT A(Uk)) defines an element in
∏k

T pM
T (T M). Using the

natural identification
∏k

T pM
T (T M) = T (⊕k T M), we obtain a vector bundle map

ρk : ⊕k
AT A −→ T (⊕k T M),

ρk(U1 ⊕ · · · ⊕ Uk) := ρT A(U1)⊕ · · · ⊕ ρT A(Uk). (3.8)

Writing ⊕k T M in local coordinates (x j , ẋ j
1 , . . . , ẋ j

k ), we have the following explicit
formulas:

ρk (̂ea,n) = ρ
j
a
∂

∂ ẋ j
n

, (3.9)

ρk

(
(T ea)

k
)

= ρ
j
a
∂

∂x j
+

k∑

n=1

W j
a,n

∂

∂ ẋ j
n

, (3.10)

where W j
a,n = ẋ i

n
∂ρ

j
a

∂xi ∈ C∞(⊕k T M).
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The second equation in (3.7) implies that if U1 ⊕ · · · ⊕ Uk and V1 ⊕ · · · ⊕ Vk are
local sections of ⊕k

AT A −→ ⊕k T M of type (3.2) or (3.3), then

[U1 ⊕ · · · ⊕ Uk, V1 ⊕ · · · ⊕ Vk]k := [U1, V1]T A ⊕ · · · ⊕ [Uk, Vk]T A (3.11)

is a well-defined local section of ⊕k
AT A −→ ⊕k T M . Explicitly, we have:

[̂ea,n, êb,m]k = 0, (3.12)

[(T ea)
k, êb,m]k = Cd

abêd,m (3.13)

[(T ea)
k, (T eb)

k]k = Cd
ab(T ed)

k +
k∑

n=1

ẋ i
n
∂Cd

ab

∂xi
êd,n . (3.14)

The induced Lie algebroid structure on ⊕k
AT A −→ ⊕k T M is defined by ρk and

the extension of [·, ·]k to all sections via the Leibniz rule.3

3.3 IM-forms

Let � ∈ �k(A) be a linear k-form on a Lie algebroid A −→ M, k ≥ 1. Following
Proposition 1, let μ : A −→ ∧k−1T ∗M and ν : A −→ ∧k T ∗M be the vector-bundle
maps such that � = d�μ +�ν . Let us consider the bundle map

⊕k
AT A

� ��

��

R

��
⊕k T M �� {∗}.

(3.15)

The following is the main result of this section.

Theorem 1 The map (3.15) is a Lie algebroid morphism if and only if the following
holds for all u, v ∈ �(A):

iρ(u)μ(v) = −iρ(v)μ(u) (3.16)

μ([u, v]) = Lρ(u)μ(v)− iρ(v)dμ(u)− iρ(v)ν(u) (3.17)

ν([u, v]) = Lρ(u)ν(v)− iρ(v)dν(u). (3.18)

For a Lie algebroid A → M and vector-bundle maps

μ : A −→ ∧k−1T ∗M, ν : A −→ ∧k T ∗M, k ≥ 1,

3 We adopt the simplified notation ρk , [·, ·]k , instead of ρ⊕k
A T A

and [·, ·]⊕k
A T A

; in particular, ρ1 = ρT A

and [·, ·]1 = [·, ·]T A .
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676 H. Bursztyn, A. Cabrera

we say that the pair (μ, ν) is an IM k-form on A if conditions (3.16), (3.17) and (3.18)
are satisfied. The terminology IM stands for infinitesimally multiplicative, and it will
be clarified in Sect. 4. The space of IM k-forms on A is denoted by �IM(A).

We note that Theorem 1 can be alternatively phrased in terms of the map �
 (2.5),
as this map is a Lie algebroid morphism if and only if so is �.

Remark 1 Given an IM-form (μ, ν), it follows from (3.17), using the skew-symmetry
and Jacobi identity for the Lie algebroid bracket [·, ·] on �(A), that ν automatically
satisfies

iρ(u)ν(v) = −iρ(v)ν(u), (3.19)

iρ(w)(Lρ(v)ν(u)− Lρ(u)ν(v))+ c.p. = 0 (3.20)

for all u, v, w ∈ �(A), where c.p. stands for cyclic permutations in u, v, w.

Example 3 Consider a Lie algebroid A → M and a k-form η ∈ �k(M). Then the
pair (μ, ν) of vector-bundle maps

μ : A → ∧k−1T ∗M, μ(u) = −iρ(u)η, and ν : A → ∧k T ∗M, ν(u) = −iρ(u)dη,

defines an IM k-form on A.

Example 4 Let A → M be a Lie algebroid, and let φ ∈ �k+1(M) be such that
iρ(u)dφ = 0, ∀u ∈ �(A). One directly checks that the vector-bundle map ν : A −→
∧k T ∗M given by

ν(u) := −iρ(u)φ (3.21)

verifies (3.18). The particular IM k-forms (μ, ν) on A for which ν is given as in (3.21)
for a closed form φ ∈ �k+1(M) are called IM k-forms relative to φ. These special
types of IM forms have first appeared in [5] (for k = 2), and more recently in [1] (for
arbitrary k), in the study of multiplicative forms (see Sect. 4).

Remark 2 Let ιC : C ↪→ M be an orbit of the Lie algebroid A → M , i.e., an integral
leaf of the distribution ρ(A) ⊂ T M . If (μ, ν) is an IM k-form on A, then we have
induced forms μC ∈ �k(C) and νC ∈ �k+1(C) defined by

iρ(u)μC = ι∗Cμ(u), iρ(u)νC = ι∗Cν(u).

It follows from (3.16) and (3.19) that the formulas above do define differential forms
on C; moreover, (3.17) implies that dμC = νC . In particular, we see that any IM k-form
on a transitive Lie algebroid is like the one in Example 3.

In order to prove Theorem 1, we need some lemmas. We work in local coordinates
(x j , ud) on A, induced by coordinates (x j ) on M and the choice of a basis of local
sections {ed} of A (see Sect. 3.1).
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Multiplicative forms at the infinitesimal level 677

Lemma 3 Let ẋ = (ẋ1, . . . , ẋk) ∈ ⊕k T M, where ẋl = (x j , ẋ j
l ) belongs to the l-th

copy of T M. Then:

�(̂ea,n(ẋ1, . . . , ẋk)) = (−1)n−1 I ẋ
k,n+1 I ẋ

n−1,1μ(ea), (3.22)

�((T ea)
k(ẋ1, . . . , ẋk)) = I ẋ

k,1(dμ(ea)+ ν(ea)), (3.23)

seen as functions in C∞(⊕k T M) (see (1.1) for notation).

Proof Writing� = d�μ+�ν and recalling the local expressions of�μ and�ν (see
(2.10)), we have

�|(x j ,ud ) = 1

(k − 1)!uddμi1...ik−1,d(x) ∧ dxi1 ∧ · · · ∧ dxik−1

+ 1

(k − 1)!μi1...ik−1,d(x)dud ∧ dxi1 ∧ · · · ∧ dxik−1

+1

k
νi1...ik ,d(x)u

ddxi1 ∧ · · · ∧ dxik . (3.24)

We write points in T A with coordinates
(
x j , ud , ẋ j , u̇d

)
in terms of horizontal tangent

vectors ∂
∂x j and vertical tangent vectors ∂

∂ud as

ẋ j ∂

∂x j
+ u̇d ∂

∂ud

∣
∣
∣
∣
(x j ,ud)

.

In particular, recalling the local sections êa, 0̂ and T ea of T A → T M from Sect. 3.1,
we have

0̂(ẋ) = ẋ j ∂

∂x j

∣
∣
∣
∣
(x j ,0)

, êa(ẋ) = ẋ j ∂

∂x j
+ ∂

∂ua

∣
∣
∣
∣
(x j ,0)

, T ea(ẋ) = ẋ j ∂

∂x j

∣
∣
∣
∣
(x j ,δd

a )
,

where ẋ = (x j , ẋ j ) ∈ T M . Using (3.2) and (3.3), formulas (3.22) and (3.23) follow
from a direct calculation. ��

Let (x j , ẋ j
1 , . . . , ẋ j

k ) be local coordinates on ⊕k T M , and fix n ∈ {1, . . . , k}.
Lemma 4 Let α ∈ �l(⊕k T M) be such that L ∂

∂ ẋ
j
n

α = 0 ∀ j , and consider on ⊕k T M

the local vector fields ẋn = ẋ j
n
∂
∂x j , V v = v j (x) ∂

∂ ẋ j
n

, and V h = v j (x) ∂
∂x j . Then

LV v iẋnα = iV hα.

Proof The proof follows from the identity i[X,Y ] = LX iY − iY LX and the fact that

[vi (x) ∂
∂ ẋ i

n
, ẋ j

n
∂
∂x j ] = v j ∂

∂x j − ẋ j
n
∂vi

∂x j
∂
∂ ẋ i

n
. ��

We now proceed to the proof of the main result.
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Proof of Theorem 1 To show that the map � in (3.15) is a Lie algebroid morphism
(see e.g. [21]), the only condition to be verified is

�([U, V ]k) = Lρk (U )�(V )− Lρk (V )�(U ) (3.25)

for all U, V sections of ⊕k
AT A −→ ⊕k T M . Since sections of type êa,n (core) and

(T eb)
k (linear) locally generate the space of sections of ⊕k

AT A −→ ⊕k T M , it suffices
to verify (3.25) taking U and V to be of these types.

Core–Core Let us consider two core sections êa,n and êb,m . Since [̂ea,n, êb,m]k = 0
(3.12), condition (3.25) in this case becomes

Lρk (̂ea,n)�(̂eb,m)− Lρk (̂eb,m)�(̂ea,n) = 0. (3.26)

Using (3.9) and (3.22), we see that

Lρk (̂ea,n)�(̂eb,m) = (−1)n−1L
ρi

a
∂

∂ ẋ i
n

I ẋ
k,m+1 I ẋ

m−1,1μ(eb).

This condition is trivially satisfied when n = m, so we may assume that n > m (the
case n < m leads to the same). Using Lemma 4, we see that the right-hand side of the
last equation agrees with

(−1)n−1 I ẋ
k,n+1iρ(ea) I

ẋ
n−1,m+1 I ẋ

m−1,1μ(eb)

= (−1)n−1(−1)n−2 I ẋ
k,n+1 I ẋ

n−1,m+1 I ẋ
m−1,1iρ(ea)μ(eb).

Hence we obtain

Lρk (̂ea,n)�(̂eb,m) = −I ẋ
k,n+1 I ẋ

n−1,m+1 I ẋ
m−1,1iρ(ea)μ(eb).

An analogous computation leads to

Lρk (̂eb,m )�(̂ea,n) = I ẋ
k,n+1 I ẋ

n−1,m+1 I ẋ
m−1,1iρ(eb)μ(ea).

It follows that (3.26) is equivalent to

iρ(ea)μ(eb) = −iρ(eb)μ(ea).

Core–Linear We now consider sections êb,m and (T ea)
k , so that (3.25) reads

�([(T ea)
k, êb,m]k) = Lρk ((T ea)k )

�(̂eb,m)− Lρk (̂eb,m)�((T ea)
k). (3.27)

Using the linearity of �, (3.13) and (3.22), we have

�([(T ea)
k, êb,m]k) = �(Cd

abêd,m) = Cd
ab(−1)m−1 I ẋ

k,m+1 I ẋ
m−1,1μ(ed)

= (−1)m−1 I ẋ
k,m+1 I ẋ

m−1,1μ([ea, eb]). (3.28)
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For each fixed n, consider the functions W j
a,n = ∂ρ

j
a

∂xi ẋ i
n defined in (3.10), noticing

the following identity (of local vector fields on ⊕k T M):

W j
a,n

∂

∂x j
= −[ρ(ea), ẋn], (3.29)

where ẋn = ẋ i
n
∂
∂xi . Using (3.29) and Lemma 4, we see that

Lρk((T ea)k)�(̂eb,m) =
(

Lρ(ea) +
k∑

l=1

LW i
a,l

∂

∂ ẋ i
l

)

(−1)m−1 I ẋ
k,m+1 I ẋ

m−1,1μ(eb)

= (−1)m−1

(

Lρ(ea) I
U
k,1μ(eb)−

k∑

l=1

I U
k,l+1i[ρ(ea),Ul ] I U

l−1,1μ(eb)

)

where U = (U1, . . . ,Uk−1) = (ẋ1, . . . , ẋm−1, ẋm+1, . . . , ẋk). It follows from (1.3)
that

Lρk((T ea)k)�(̂eb,m) = (−1)m−1 I ẋ
k,m+1 I ẋ

m−1,1Lρ(ea)μ(eb). (3.30)

Using (3.23) and Lemma 4, we obtain

Lρk (̂eb,m )�((T ea)
k) = L

ρi
a

∂

∂ ẋ i
m

I ẋ
k,1(dμ(ea)+ ν(ea))

= I ẋ
k,m+1iρ(ea) I

ẋ
m−1,1 (dμ(ea)+ ν(ea))

= (−1)m−1 I ẋ
k,m+1 I ẋ

m−1,1iρ(ea) (dμ(ea)+ ν(ea)).

Combining this last equation with (3.28) and (3.30), we see that (3.27) is equivalent to

μ([ea, eb]) = Lρ(ea)μ(eb)− iρ(eb)dμ(ea)− iρ(eb)ν(ea). (3.31)

Linear–Linear We finally consider condition (3.25) for two linear sections:

�([(T ea)
k, (T eb)

k]k) = Lρk ((T ea)k )
�((T eb)

k)− Lρk ((T eb)
k )�((T ea)

k). (3.32)

Using (3.14) and the linearity of �, we have

�([(T ea)
k, (T eb)

k]k) = Cd
ab�((T ed)

k)+
k∑

n=1

dCd
ab(ẋn)�(̂ed,n)

= Cd
ab I ẋ

k,1(dμ(ed)+ ν(ed))+
k∑

n=1

(−1)n−1dCd
ab(ẋn)I

ẋ
k,n+1 I ẋ

n−1,1μ(ed).

(3.33)
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It follows from (1.4) (also using that I ẋ
k,1μ(ed) = 0, since μ(ed) is a (k − 1)-form)

that

I ẋ
k,1Cd

abdμ(ed) = I ẋ
k,1d(Cd

abμ(ed))− I ẋ
k,1(dCd

ab ∧ μ(ed))

= I ẋ
k,1d(Cd

abμ(ed))−
k∑

n=1

(−1)n+1dCd
ab(ẋn)I

ẋ
k,n+1 I ẋ

n−1,1μ(ed).

Comparing with (3.33), we conclude that

�([(T ea)
k, (T eb)

k]k) = I ẋ
k,1(dμ(C

d
abed)+ ν(Cd

abed))

= I ẋ
k,1(dμ([ea, eb])+ ν([ea, eb])). (3.34)

Using Lemma 4, (3.29) and (1.3), we directly obtain

Lρ((T ea)k)�
(
(T eb)

k
)

=
(

Lρ(ea) +
k∑

n=1

LW i
a,n

∂

∂ ẋ i
n

)

I ẋ
k,1 (dμ(eb)+ ν(eb))

= I ẋ
k,1Lρ(ea) (dμ(eb)+ ν(eb)) . (3.35)

Similarly

Lρ((T eb)
k )�

(
(T ea)

k
)

= I ẋ
k,1Lρ(eb) (dμ(ea)+ ν(ea)) . (3.36)

Combining (3.34), (3.35) and (3.36), we see that (3.32) is equivalent to

dμ([ea, eb])+ ν([ea, eb]) = Lρ(ea) (dμ(eb)+ ν(eb))− Lρ(eb) (dμ(ea)+ ν(ea)) .

We may assume that (3.31) holds, in which case one can directly check that the last
equation is equivalent to

ν([ea, eb]) = Lρ(ea)ν(eb)− iρ(eb)dν(ea).

��

4 Infinitesimal description of multiplicative forms

In this section, we relate IM-forms on Lie algebroids with multiplicative forms on
Lie groupoids. Let G be a Lie groupoid over M , with source and target maps denoted
by s, t : G −→ M , respectively, multiplication m : G(2) −→ G, and unit map
ε : M −→ G (that we often use to view M as a submanifold of G). The Lie algebroid
of G is denoted by A(G), or simply A if there is no risk of confusion; see Sect. 1.

A k-form α ∈ �k(G) is called multiplicative if

m∗α = pr∗
1α + pr∗

2α, (4.1)
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where pr1, pr2 : G(2) −→ G are the natural projections. Alternatively, one may define
multiplicative forms in terms of a natural groupoid structure on T G over T M , known as
the tangent groupoid, see e.g. [21]; it has source (resp. target) map T s : T G −→ T M
(resp. T t : T G −→ T M), multiplication T m : (T G)(2) = T G(2) −→ T G, and unit
map T ε : T M −→ T G. This groupoid structure can be naturally extended to the
direct sum ⊕k

GT G, k ≥ 1, making it a Lie groupoid over ⊕k T M , with source (resp.

target) map ⊕k T s (resp. ⊕k T t), multiplication map ⊕k T m, etc.
Let α ∈ �k(G), and let us consider the associated map

α : ⊕k
GT G −→ R, α(U1, . . . ,Uk) = iUk . . . iU1α. (4.2)

The following observation is immediate from (4.1).

Lemma 5 α is multiplicative if and only if α is a groupoid morphism. (Here R is
viewed as an additive group.)

We denote the space of multiplicative k-forms on G by �k
mult(G).

4.1 From multiplicative to IM forms

Let G be a Lie groupoid over M , and consider the tangent lift operation �k(G) →
�k(T G), α 
→ αT , recalled in Sect. 2.3. Using the natural inclusion ιA : A = AG ↪→
T G, we define a map

Lie : �k(G) −→ �k(A), α 
→ Lie(α) = ι∗AαT . (4.3)

Givenα ∈ �k(G), let us consider the associated bundle mapsμ : A −→ ∧k−1T ∗M
and ν : A −→ ∧k T ∗M ,

〈μ(u), X1 ∧ · · · ∧ Xk−1〉 = α(u, X1, . . . , Xk−1), (4.4)

〈ν(u), X1 ∧ · · · ∧ Xk〉 = dα(u, X1, . . . , Xk), (4.5)

for X1, . . . , Xk ∈ T M and u ∈ A (here we use the natural inclusions T M ↪→ T G|M

and A ↪→ T G|M ).

Lemma 6 The k-form Lie(α) ∈ �k(A) is linear and satisfies

Lie(α) = d�μ +�ν.

Proof Let β ∈ �l(G) be any l-form on G, and let us consider the l − 1-form on A
given by ι∗Aτ(β) (see (2.13)), i.e.,

ι∗Aτ(β)|u = (T ιA|u)tτ(β)|ιA(u) = (T ιA|u)t (T pG |ιA(u))t iιA(u)β
= (T (pG ◦ ιA)|u)t iιA(u)β.
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From the commutative diagram

A
ιA ��

qA

��

T G
pG

��
M ε

�� G,

we see that

ι∗Aτ(β)|u = (T qA|u)t (T ε|qA(u))
t iιA(u)β.

It immediately follows (see (2.9)) that

ι∗Aτ(α) = �μ, ι∗Aτ(dα) = �ν.

Using (2.15), we see that

� = ι∗A(dτ(α)+ τ(dα)) = dι∗Aτ(α)+ ι∗Aτ(dα) = d�μ +�ν.

��
Recall that any groupoid morphism ψ : G1 −→ G2 defines a Lie algebroid mor-

phism Lie(ψ) : AG1 −→ AG2 that fits into the diagram

T G1
Tψ �� T G2

AG1 Lie(ψ)
��

ιA1

��

AG2

ιA2

�� (4.6)

When α ∈ �k(G) is multiplicative, we saw in Lemma 5 that α : ⊕k
GT G −→ R is a

groupoid morphism; we consider its infinitesimal counterpart,

Lie(α) : A(⊕k
GT G) −→ R,

where now R is viewed as the trivial Lie algebroid over a point. The natural projection
pG : T G −→ G is a groupoid morphism, and there is a canonical identification of Lie
algebroids4

A(⊕k
GT G) =

k∏

Lie(pG)
A(T G).

4 The Lie algebroid A(T G) → T M is a VB-algebroid [15, Sect. 2.1] with respect to the vector bundle
structure Lie(pG ) : A(T G) → A; the algebroid structure on A(T G) can be extended to

∏k
Lie(pG ) A(T G)

in terms of core and linear sections, just as described in Sect. 3.2.
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Our next goal is to compare the following two maps:

Lie(α) : ⊕k
AT (AG) −→ R and Lie(α) :

k∏

Lie(pG)
A(T G) −→ R.

The involution JG : T (T G) −→ T (T G) (see (2.16)) defines an identification of
Lie algebroids jG : T (AG) −→ A(T G) via the diagram

T (AG) jG ��

T ιAG
��

A(T G)
ιA(T G)

��
T (T G)

JG
�� T (T G)

(4.7)

Note that the property T pG ◦ JG = pT G implies that

Lie(pG) ◦ jG = pA.

As a result, we have a natural identification of Lie algebroids,

j (k)G : ⊕k
AT A =

k∏

pA

T (AG) ∼−→
k∏

Lie(pG)
A(T G), (4.8)

fitting into the diagram

∏k
pA

T (AG)
j (k)G ��

(T ιAG)k
��

∏k
Lie(pG) A(T G)

(ιA(T G))k
��

∏k
pT G T (T G)

J (k)G

�� ∏k
T pG T (T G).

(4.9)

Lemma 7 Let α ∈ �k(G) be multiplicative. Then

Lie(α) ◦ j (k)G = Lie(α). (4.10)

In particular, Lie(α) : ⊕k
AT (AG) −→ R is a Lie algebroid morphism.

Proof By definition, Lie(α) = dα ◦ (ιA(T G))k , and using (4.9) and (2.17) we obtain

Lie(α) ◦ j (k)G = dα ◦ (ιA(T G))k ◦ j (k)G = dα ◦ J (k)G ◦ (T ιAG)k

= αT ◦ (T ιAG)k = ι∗AαT .

��
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Proposition 2 Let α ∈ �k(G) be multiplicative, and let μ and ν be defined as in (4.4)
and (4.5). Then (μ, ν) is an IM k-form on AG.

Proof The result is a direct consequence of Lemmas 6, 7, and Theorem 1. ��

4.2 Integration of IM forms

Let G be a Lie groupoid over M , with Lie algebroid A = AG. Assume that G is source-
simply-connected (i.e., the s-fibres are connected with trivial fundamental group), so
that ⊕k

GT G is also a source-simply-connected groupoid.5 Let� ∈ �k(A) be a k-form

on A for which � : ⊕k
AT A −→ R is a Lie algebroid morphism.

Lemma 8 There is a unique multiplicative k-form α ∈ �k(G) such that Lie(α) =
� (see (4.3)).

Proof Since � is a morphism of Lie algebroids, the identification (4.8) also leads to
a Lie algebroid morphism

� ◦ ( j (k)G )−1 =
k∏

Lie(pG)
A(T G) ∼= A(⊕k T G) −→ R. (4.11)

As ⊕k
GT G is a source-simply-connected groupoid, we can use Lie’s second theorem

(see e.g. [21]) to obtain a unique groupoid morphism

I� : ⊕k
GT G −→ R (4.12)

integrating the morphism (4.11), i.e., such that Lie(I�) = � ◦ ( j (k)G )−1. To check that

I� = α, for α ∈ �k(G), it suffices to verify that the following conditions hold:

I�(U1, . . . ,Ui , . . . ,U j , . . . ,Uk) = −I�(U1, . . . ,U j , . . . ,Ui , . . . ,Uk), (4.13)

I�(U1, . . . ,Ui−1, cUi ,Ui+1, . . . ,Uk) = cI�(U1, . . . ,Uk), (4.14)

I�
(
U1, . . . ,Ui−1,Ui + U ′

i ,Ui+1, . . . ,Uk
) = I�(U1, . . . ,Ui , . . . ,Uk)

+I�(U1, . . . ,U
′
i , . . . ,Uk), (4.15)

for all Ui ,U ′
i ∈ TgG, g ∈ G, c ∈ R, where 1 ≤ i < j ≤ k. As we now show, all

conditions can be verified with the same type arguments (cf. [23]).
To prove that (4.13) holds, one directly checks that the map I (i j)

� : ⊕k
GT G −→ R,

I (i j)
� (U1, . . . ,Ui , . . . ,U j , . . . ,Uk) := −I�(U1, . . . ,U j , . . . ,Ui , . . . ,Uk),

5 Given any X = (X1, . . . , Xk ) ∈ ⊕k Tx M , the projection (pG )k : ⊕k
GT G −→ G makes the source fibre

((T s)k )−1(X) ⊆ T G into an affine bundle over the source fibre s−1(x) ⊆ G.
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is a groupoid morphism, and Lie(I (i j)
� ) : ∏k

Lie(pG) A(T G) −→ R satisfies

Lie(I (i j)
� )(V1, . . . , Vi , . . . , Vj , . . . , Vk) = −Lie(I�)(V1, . . . , Vj , . . . , Vi , . . . , Vk)

= −� ◦
(

j (k)G
)−1

(V1, . . . , Vj , . . . , Vi , . . . , Vk)

= Lie(I�)(V1, . . . , Vi , . . . , Vj , . . . , Vk),

since� is skew-symmetric. So Lie(I (i j)
� ) = Lie(I�), and the uniqueness of integration

in Lie’s second theorem implies that I (i j)
� = I�, which is (4.13).

Similarly, for a fixed c ∈ R, one can directly show that both the left and right-
hand sides of (4.14) define groupoid morphisms ⊕k

GT G −→ R, whose infinitesimal
counterparts agree at the level of Lie algebroids due to the multilinearity of �. Then
(4.14) follows again by the uniqueness part of Lie’s second theorem.

The last condition (4.15) can be treated in a completely analogous way, by first
noticing that both sides of (4.15) define groupoid morphisms ⊕k+1

G T G −→ R, where
now we need an extra copy of T G for U ′

i . Again, these morphisms agree at the infini-
tesimal level due to the multilinearity of �, and hence agree globally.

The fact thatα is multiplicative follows from Lemma 5, and the equality� = Lie(α)
is a consequence of Lemma 7. ��

A direct consequence of Lemmas 7 and 8 is that the map

�k
mult(G) → �k(A), α 
→ Lie(α),

is a bijection onto the subspace of k-forms � ∈ �k(A) such that � : ⊕k
AT A → R

is a morphism of Lie algebroids. By the correspondence in Theorem 1, this bijection
can be alternatively phrased in terms of IM-forms on A:

Theorem 2 Let G be a source-simply-connected Lie groupoid over M with Lie
algebroid A −→ M. For each positive integer k, there is a 1–1 correspondence

�k
mult(G) −→ �k

IM(A), α 
→ (μ, ν), (4.16)

where μ, ν are given by

〈μ(u), X1 ∧ · · · ∧ Xk−1〉 = α(u, X1, . . . , Xk−1), (4.17)

〈ν(u), X1 ∧ · · · ∧ Xk〉 = dα(u, X1, . . . , Xk). (4.18)

Proof The result follows from Lemma 6 and Theorem 1. ��
The following is a simple example of correspondence in Theorem 2.

Example 5 Let us equip A = T ∗M → M with the trivial Lie algebroid structure
(both anchor and bracket are identically zero), so we may identify G = T ∗M (with
groupoid multiplication given by fibrewise addition). Fixingμ = Id : T ∗M → T ∗M ,
then any vector-bundle map ν : T ∗M → ∧2T ∗M defines an IM 2-form (μ, ν).
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When ν = 0, then (μ, ν) corresponds under (4.16) to the canonical symplectic form
ωcan on G = T ∗M ; for an arbitrary ν, the corresponding multiplicative 2-form is
given, at each g = (q j , p j ) ∈ T ∗M , by

ω|g = ωcan|g + c∗
Mν(g)

where cM : T ∗M → M is the natural projection.

Let us list some immediate consequences of Theorem 2, illustrating how the
correspondence (4.16) restricts to subclasses of multiplicative and IM forms:

(a) Let η ∈ �k(M). Following Example 3, we know that (μ, ν), where μ(u) =
−iρ(u)η and ν(u) = −iρ(u)dη, defines an IM k-form. One directly verifies that
the corresponding multiplicative k-form is α = s∗η − t∗η.

(b) Let φ ∈ �k+1(M) be a closed k + 1-form. Then Theorem 2 gives a bijective
correspondence between IM k-forms on A relative to φ (i.e., ν(u) = −iρ(u)φ, see
Example 4) and multiplicative k-forms α satisfying dα = s∗φ − t∗φ. To verify
this fact, just notice that dα is a multiplicative (k + 1)-form corresponding to an
IM (k + 1)-form of the type discussed in item (a). This recovers [5, Thm. 2.5]
when k = 2 (cf. [3]), as well as [1, Thm. 2] when k is an arbitrary positive integer.

(c) Let α ∈ �k
mult(G) be a given closed multiplicative k-form, with associated IM

k-form (μα, να) (note that να = 0, necessarily). It follows from Theorem 2 that
there is a 1–1 correspondence between multiplicative (k−1)-forms θ with dθ = α

and vector-bundle maps μ : A → ∧k−2T ∗M satisfying, for all u, v ∈ �(A),

iρ(u)μ(v) = −iρ(v)μ(u), μ([u, v]) = Lρ(u)μ(v)− iρ(v)dμ(u)− iρ(v)μα(u).

The reason is that (μ,μα) is the IM (k − 1)-form associated with θ (note that
μα satisfies (3.18) as a result of (μα, να) being an IM k-form for α and να being
zero). This correspondence is the content of [1, Thm. 3].

For k = 2, one has further refinements of Theorem 2 based on the general study
of multiplicative 2-forms carried out in [5, Sect. 4], leading to natural generalizations
of twisted Poisson and Dirac structures (in the sense of [28]). On the vector bundle
T M ⊕ T ∗M , consider the pairing 〈(X, α), (Y, β)〉 = β(X) + α(Y ), and the natural
projections prT : T M ⊕ T ∗M → T M and prT ∗ : T M ⊕ T ∗M → T ∗M . As
in Theorem 2, we denote by G the source-simply-connected Lie groupoid with Lie
algebroid A → M .

(d) Given an IM 2-form (μ, ν) on A, we consider the vector-bundle map (ρ, μ) :
A → T M ⊕ T ∗M and its image

L = {(ρ(u), μ(u)) | u ∈ A} ⊂ T M ⊕ T ∗M, (4.19)

which is a subbundle whenever it has constant rank. By (3.16), over each point
of M, L is isotropic with respect to the pairing 〈·, ·〉. It follows from [5, Cor. 4.8]
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that, under the assumption that dim(G) = 2 dim(M), the correspondence (4.16)
restricts to a bijection between multiplicative 2-forms ω such that

ker(T s)x ∩ ker(ω)x ∩ ker(T t)x = {0}, ∀x ∈ M, (4.20)

and IM 2-forms (μ, ν) for which L = L⊥ (i.e., L is lagrangian with respect to
〈·, ·〉; in particular, it is a subbundle with rank(L) = dim(M)) and

(ρ, μ) : A −→ L ⊂ T M ⊕ T ∗M (4.21)

is an isomorphism of vector bundles. Moreover, t : G → M relates ω and L as a
forward Dirac map (see, e.g., [5, Sect. 2.1]). If we define νL : L → ∧2T ∗M by
νL((ρ(u), μ(u))) = ν(u), then the identification (4.21) induces a Lie algebroid
structure on L with anchor prT |L and bracket on �(L) given by

[(X, α), (Y, β)]L := ([X,Y ],LXβ − iY dα − iY νL(X, α)). (4.22)

Conversely, if a lagrangian subbundle L ⊂ T M ⊕ T ∗M is equipped with νL :
L → ∧2T ∗M for which (4.22) is a Lie bracket on �(L), then A = L is a
Lie algebroid with anchor prT |L ; if νL also satisfies (3.18), then (prT ∗ |L , νL)

is an IM 2-form. Then, under the bijection (4.16), (prT ∗ |L , νL) corresponds
to a multiplicative 2-form ω on G satisfying (4.20). Taking νL to be of type
νL(X, α) = −iXφ for a closed 3-form φ ∈ �3(M), we recover the integration
of twisted Dirac structures by twisted presymplectic groupoids of [5, Sect. 2].

(e) When a multiplicative 2-form is nondegenerate, then dim(G) = 2 dim(M) auto-
matically (see, e.g., [5, Lem. 3.3]), and (4.20) trivially holds. Under (4.16),
this situation corresponds to the case where the IM 2-form (μ, ν) is such that
μ : A → T ∗M is an isomorphism; in other words, L is the graph of a bivec-
tor field π on M : L = {(iαπ, α) | α ∈ T ∗M}. Following (d) above, the fact
that �(L) is closed under the bracket (4.22) is expressed by the compatibility
condition

1

2
[π, π ](α, β, γ ) = νL((iαπ, α))(iβπ, iγ π)

for all α, β, γ ∈ �1(M). When νL is of type νL(X, α) = −iXφ for a closed
3-form φ ∈ �3(M), one recovers twisted Poisson structures, and (4.16) gives
their integration to twisted symplectic groupoids (cf. [8]).

Remark 3 (Higher Dirac structures) Just as Dirac structures are special cases of IM
2-forms, the higher Dirac structures of [33] are particular cases of higher-degree IM
k-forms; so Theorem 2 can be used to integrate higher Dirac structures as well (c.f.
[33, Prop. 3.7]).

Remark 4 (Path-space construction) We now relate Theorem 2 to the path-space
approach to integration found in [5,7,8]. For an integrable Lie algebroid A, there
is an explicit model for its integrating source-simply-connected Lie groupoid G(A)
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[12,27]; namely, G(A) is the quotient P A/ ∼, where P A is the subspace of
A-paths in the Banach manifold of all C1 paths from the interval I = [0, 1]
into A with C2 projection to M , and ∼ is the equivalence relation defined by
A-homotopies, see [12]. If � ∈ �k(A) is a k-form on A, we use the evaluation
map ev : P A × I → A, (a(·), t) 
→ a(t) to define a k-form �̃ ∈ �k(P A) by the
formula

�̃ =
∫

I

dt ev∗�. (4.23)

One verifies that, if� ∈ �k(A) is a linear k-form, then the k-form �̃ (4.23) is basic with
respect to the quotient projection q : P A → G(A), i.e., �̃ = q∗α for α ∈ �k(G(A)),
if and only if the induced map �̄ (2.4) is a Lie algebroid morphism (i.e., if � is
an IM k-form). In this case, the multiplicative k-form obtained by integration of the
morphism �̄ to G(A) (see Lemma 8) agrees with α, showing how the correspondence
in Theorem 2 is viewed in the light of the path-space method (generalizing the approach
in [5, Sect. 5]).

5 Relation with the Weil algebra and Van Est isomorphism

This section clarifies how linear and IM-forms on Lie algebroids fit into the Weil
algebra of [1, Sect. 3], and how the infinitesimal description of multiplicative forms
relates to the general Van Est isomorphism of [1, Sect. 4].

Let A be a Lie algebroid over M . We consider the associated Weil algebra W (A)
as in [1, Sect. 3], which is a bi-graded differential algebra. The space of elements
of degree (p, k) is denoted by W p,k(A), and the differential on W (A) is a sum of
differentials dh + dv , where

dh : W p,k(A) −→ W p+1,k(A), dv : W p,k(A) −→ W p,k+1(A).

We will be mostly concerned with W p,k(A) for p = 0, 1, 2.
For p = 0, we have W 0,k(A) = �k(M). An element�W ∈ W 1,k(A) is given by a

pair ((�W )0, (�W )1), where

(�W )0 : �(A) −→ �k(M), (�W )1 ∈ �k−1(M, A∗), (5.1)

subject to the compatibility condition

(�W )0( f u) = f (�W )0(u)− d f ∧ (�W )1(u), (5.2)

for f ∈ C∞(M), u ∈ �(A), and (�W )1 viewed as a C∞(M)-linear map

(�W )1 : �(A) −→ �k−1(M). (5.3)
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An element cW ∈ W 2,k(A) is a triple ((cW )0, (cW )1, (cW )2), where

(cW )0 : �(A)× �(A) −→ �k(M), (cW )1 : �(A) −→ �k−1(M, A∗),
(cW )2 ∈ �k−1

(
M, S2(A∗)

)
, (5.4)

and such that (cW )0 is skewsymmetric and R-bilinear, subject to suitable compatibility
conditions (extending (5.2)) that we will not need explicitly.

We need to recall the expression for dh restricted to W 1,k(A). By definition (see
[1, Sect. 3.1]), for �W = ((�W )0, (�W )1) ∈ W 1,k(A), dh�W ∈ W 2,k(A) is given
by (cf. (5.4))

(dh�W )0(u, v) = −(�W )0([u, v])+ Lρ(u)((�W )0(v))− Lρ(v)((�W )0(u)), (5.5)

(dh�W )1(u)(v) = Lρ(u)((�W )1(v))− (�W )1([u, v])+ iρ(v)((�W )0(u)), (5.6)

(dh�W )2(u) = −iρ(u)((�W )1(u)), (5.7)

for u, v ∈ �(A).
We also need the expression for dv in the following particular situation. Any bundle

map μ : A → ∧k T ∗M (equivalently seen as a C∞(M)-linear map μ : �(A) −→
�k(M)) defines an element μW ∈ W 1,k(A) by

(μW )0 = μ, (μW )1 = 0. (5.8)

In this case, dv(μW ) ∈ W 1,k+1(A) is defined by (see [1, Sec. 3.1])

(dvμW )0(u) = −dμ(u), (dvμW )1 = μ. (5.9)

Proposition 3 Consider the map ψ : �k
lin(A) −→ W 1,k(A), k = 1, 2, . . .,

� = d�μ +�ν 
→ �W := −dvμW + νW .

The following holds:

1. ψ induces a C∞(M)-linear isomorphism �•
lin(A)

∼−→ W 1,•(A).
2. ψ ◦ d = −dv ◦ ψ .
3. ψ restricts to a linear isomorphism �k

IM(A)
∼−→ ker(dh |W 1,k (A)).

Proof It is clear from (5.8) and (5.9) that the map ψ is injective. Let us check that any
�W ∈ W 1,k(A) can be written in the form −dvμW + νW for C∞(M)-linear maps μ :
�(A) −→ �k−1(M), ν : �(A) −→ �k(M). Let us write �W = ((�W )0, (�W )1),
and set μ = −(�W )1. Then (dvμW )1 = −(�W )1, so the element c = dvμW +
�W ∈ W 1,k(A) is such that c1 = 0, which implies that c = νW for a bundle map
ν : A −→ ∧k T ∗M . The C∞(M)-linearity ofψ results from the following properties:
f d�μ = d� f μ − �d f ∧μ and dv( f μ)W = f dvμW − (d f ∧ μ)W . Hence (1) is
proven.
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To prove (2), writing � = d�μ +�ν , we have d� = d�ν . By definition of ψ , it
follows that ψ(d�) = −dvνW . On the other hand, −dv(ψ(�)) = −dv(−dvμW +
νW ) = −dvνW , hence (2) holds.

For (3), we must consider the condition dh�W = 0. Written in terms of its compo-
nents (5.5), (5.6), and (5.7), we obtain three equations involving (�W )0 and (�W )1,
which must be shown to agree with conditions (3.16), (3.17) and (3.18) in Theorem 1.
Using (5.8), (5.9), we see that

(�W )0(u) = dμ(u)+ ν(u), (�W )1(u) = −μ(u) (5.10)

for all u ∈ �(A), and it is clear that (5.7) and (5.6) coincide with conditions (3.16)
and (3.17), respectively.

For the degree-0 condition (5.5), using (5.10) and (3.17), we find

ν([u, v]) = diρ(v)dμ(u)+ diρ(v)ν(u)+ Lρ(u)ν(v)− Lρ(v)dμ(u)− Lρ(v)ν(u).

Using Cartan’s formula LX = iX d + diX , one directly verifies that the last equation
agrees with (3.18). ��

Let G be a source-simply-connected Lie groupoid over M , with Lie algebroid
A −→ M . There is a double complex �k

(G(p)
)

associated to G, known as the
Bott–Shulman complex, see [2]. It is equipped with a differential ∂ : �k

(G(p)
) −→

�k
(G(p+1)

)
, as well as the de Rham differential d : �k

(G(p)
) −→ �k+1

(G(p)
)
. The

Van Est isomorphism constructed in [1] relates the cohomologies of �k
(G(p)

)
and

W p,k(A). We will only need a few results of the theory, for p = 0, 1.
For p = 0, �k

(G(0)) = �k(M) = W 0,k(A), and

∂ : �k(M) −→ �k(G), ∂(η) = t∗η − s∗η.

For p = 1, the differential ∂ : �k(G) −→ �k
(G(2)) is

∂(α) = pr∗
1α − m∗α + pr∗

2α,

and the Van Est map of [1, Sect. 4] restricts to a map

V : �k
mult(G) = ker(∂|�k(G)) −→ ker(dh |W 1,k (A)) ⊂ W 1,k(A), (5.11)

given by

V(α)0(u) = ε∗(diuα + iudα), V(α)1(u) = −ε∗(iuα) (5.12)

where α ∈ �k
mult(G), u ∈ �(A) (we view A as a subbundle of T G|M ) and ε : M → G

is the unit map of G. The map V satisfies

V ◦ d = −dv ◦ V, V(∂(η)) = dhη, (5.13)
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for η ∈ �k(M). The general Van Est isomorphism of [1] implies that the induced map

�k
mult(G)

Im(∂|�k(M))
−→ker

(
dh |W 1,k (A)

)

Im(dh |�k(M))
(5.14)

is a bijection. In this specific situation, a stronger fact holds.

Proposition 4 The map V : �k
mult(G) −→ ker(dh |W 1,k (A)) is a bijection.

The proof of the proposition uses the following observation (cf. [1, Sect. 6]).

Lemma 9 Let σ ∈ W 1,k(A), ω ∈ �k+1
mult(G) be such that dhσ = 0 and V(ω) =

−dvσ . Then there exists a unique β ∈ �k
mult(G) such that

V(β) = σ, dβ = ω.

Proof The key fact to prove the lemma is shown in [1, Lem. 6.3]: for a closed k-form
α ∈ �k

mult(G), V(α) = 0 if and only if α = 0. As an application, we see that ω is
necessarily closed, since V(dω) = dv(dvσ ) = 0.

Since dhσ = 0, the isomorphism (5.14) implies that there exists β̃ ∈ �k
mult(G)

such that V(β̃) = σ + dhη. If β = β̃ − ∂η, then by (5.13) we have

V(β) = V(β̃)− V(∂η) = σ.

To conclude that dβ = ω, note that dβ−ω is multiplicative, closed, and V(dβ−ω) =
−dvσ + dvσ = 0. ��

We can now prove the proposition.

Proof of Proposition 4 Let us fix ξ ∈ W 1,k(A), dhξ = 0. Let σ = −dvξ . Then
dvσ = 0, dhσ = 0, and Lemma 9 implies that there exists a unique β ∈ �k+1

mult(G)
such that

V(β) = σ, dβ = 0. (5.15)

Since V(β) = −dvξ , and, by assumption, dhξ = 0, we can apply Lemma 9 to
conclude that there exists a unique θ ∈ �k

mult(G) such that V(θ) = ξ and dθ = β.
But notice that the condition dθ = β is automatically satisfied if V(θ) = ξ , since
V(dθ) = σ and the conditions in (5.15) determine β uniquely. ��

Composing the bijection (5.11) with the identification�k
IM(A)

∼= ker(dh |W 1,k (A))
of (3) in Proposition 3, we obtain a bijection

�k
mult(G)

∼−→ �k
IM(A).

Using (5.10) and (5.12), we see that this bijection is explicitly given by α 
→ (μ, ν),
where μ, ν are defined as in (4.4), (4.5), hence agreeing with Theorem 2.
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6 The dual picture: multiplicative multivector fields

In this section, we illustrate how the techniques used in the paper to study infinitesimal
versions of multiplicative forms can be equally applied to multiplicative multivector
fields.

We keep the notation introduced in Sect. 2.1. We focus on the cotangent bundle cA :
T ∗ A → A of a vector bundle A → M , described in local coordinates (x j , ud , p j , ξd),
where (x j , ud) are relative to a basis of local sections {ed} of A. The local coordinates
on A∗ relative to the dual basis {ed} are denoted by (x j , ξd); recall from (2.1) that we
have a vector-bundle structure r : T ∗ A → A∗, (x j , ud , p j , ξd) 
→ (x j , ξd). As in
Sect. 2.2, we also consider the k-fold direct sum ⊕k

AT ∗ A, described by local coordi-
nates (x j , ud , p1

j , . . . , pk
j , ξ

1
d , . . . , ξ

k
d ), as a vector bundle over ⊕k A∗, with projection

map (x j , ud , p1
j , . . . , pk

j , ξ
1
d , . . . , ξ

k
d ) 
→ (x j , ξ1

d , . . . , ξ
k
d ).

As in Sect. 3.1, we will need special sections of the bundle ⊕k
AT ∗ A → ⊕k A∗. For

the bundle T ∗ A −→ A∗, we consider local sections

dx̂ i (x j , ξd) = (x j , 0, δi
j , ξd), eL

a (x
j , ξd) = (x j , δd

a , 0, ξd), (6.1)

which are core and linear sections, respectively; these sections generate the module of
local sections of T ∗ A −→ A∗, and the projection T ∗ A −→ A maps core sections to
the zero section of A −→ M and linear sections eL

a to the section ea . More generally,
local sections of ⊕k

AT ∗ A → ⊕k A∗ are generated by sections of types

dx̂ i,n(ξ1 ⊕ · · · ⊕ ξ k) = 0(ξ1)⊕ · · · 0(ξn−1)⊕ dx̂ i (ξn)⊕ 0(ξn+1) · · · ⊕ 0(ξ k),

(6.2)

(eL
a )

k(ξ1 ⊕ · · · ⊕ ξ k) = eL
a (ξ

1)⊕ · · · ⊕ eL
a (ξ

k), (6.3)

where ξ1 ⊕ · · · ⊕ ξ k ∈ ⊕k A∗ and 0 : A∗ → T ∗ A, 0
(
x j , ξd

) = (
x j , 0, 0, ξd

)
, is the

zero section. For each k, we will use these sections to express the natural Lie algebroid
structure on ⊕k

AT ∗ A → ⊕k A∗, similarly to Sect. 3.2.
Using the notation in (3.4), the defining relations for the cotangent Lie algebroid

structure on T ∗ A → A∗ are

[dx̂ i , dx̂ j ]T ∗ A = 0, (6.4)

[eL
a , dx̂ j ]T ∗ A = ∂ρ

j
a

∂xi
dx̂ i , [eL

a , eL
b ]T ∗ A = −∂Cc

ab

∂xi
ξcdx̂ i + Cc

abeL
c , (6.5)

ρT ∗ A(dx̂ i ) = ρi
d
∂

∂ξd
, ρT ∗ A(e

L
a ) = ρ

j
a
∂

∂x j
+ Cc

abξc
∂

∂ξb
. (6.6)

This Lie algebroid structure is extended to direct sums ⊕k
AT ∗ A → ⊕k A∗ in total

analogy to what was done for the tangent Lie algebroid in Sect. 3.2; we adopt the
simplified notation ρk = ρ⊕k

AT ∗ A and [·, ·]k = [·, ·]⊕k
AT ∗ A for the resulting anchor and

bracket.6 Explicitly, the anchor is given by

6 Since tangent Lie algebroids are not used in this section, this notation should not cause any confusion
with the one in Sect. 3.2.
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ρk(dx̂ i,n) = ρi
d
∂

∂ξn
d
, ρk((e

L
a )

k) = ρ
j
a
∂

∂x j
+ Cc

abξ
n
c
∂

∂ξn
b
, (6.7)

whereas for the bracket we have

[dx̂ i,n, dx̂ j,m]k = 0, [(eL
a )

k, dx̂ j,m]k = ∂ρ
j
a

∂xi
dx̂ i,m (6.8)

[(eL
a )

k, (eL
b )

k]k = Cd
ab(e

L
d )

k − ∂Cc
ab

∂xi
ξn

c dx̂ i,n . (6.9)

6.1 Linear multivector fields and derivations

Let π ∈ X k(A) = �(∧k T A) be a k-vector field on the total space of a vector bundle
qA : A → M . Let us consider the function (cf. (2.4))

π : ⊕k
AT ∗ A → R, π(ϒ1, . . . , ϒk) = iϒk . . . iϒ1π.

We say that π ∈ X k(A) is linear if π defines a vector-bundle map

⊕k
AT ∗ A

π ��

��

R

��
⊕k A∗ �� {∗},

(6.10)

similarly to (2.8). One can directly verify that the notion of linear multivector field
agrees with the one considered in [18, Sect. 3.2]. The space of linear k-vector fields
is denoted by X k

lin(A). As in Lemma 1 (cf. (2.7)), π is expressed in local coordinates
(x j , ud) of A as

π = 1

k!π
b1...bk
d (x)ud ∂

∂ub1
∧ · · · ∧ ∂

∂ubk

+ 1

(k − 1)!π
b1...bk−1 j (x)

∂

∂ub1
∧ · · · ∧ ∂

∂ubk−1
∧ ∂

∂x j
. (6.11)

We have the following analog of Proposition 1 for linear multivector fields, proven
in [18, Prop. 3.7]: there is a 1–1 correspondence between elements in X k

lin(M) and
pairs (δ0, δ1), where δ0 : C∞(M) → �(∧k−1 A) and δ1 : �(A) → �(∧k A) are linear
maps satisfying

δ0( f g) = gδ0 f + f δ0g, δ1( f u) = (δ0 f ) ∧ u + f δ1u, (6.12)

for all f, g ∈ C∞(M) and u ∈ �(A). Equivalently, one may view such pairs (δ0, δ1)

as restrictions of linear maps δ : �(∧• A) → �(∧•+k−1 A) satisfying the property

δ(u ∧ v) = (δu) ∧ v + (−1)p(k−1)u ∧ (δv) (6.13)
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for u ∈ �(∧p A) and v ∈ �(∧q A); i.e., δ is a degree-(k − 1) derivation of the exterior
algebra �(∧• A). For this reason, we denote both maps δ0 and δ1 by δ. The explicit
correspondence between π and δ is given by7 (see [18, Sect. 3.2])

π
(
dlξ1 , . . . , dlξ k−1 , dq∗

A f
) = q∗

A

〈
δ f, ξ1 ∧ · · · ∧ ξ k−1

〉
, (6.14)

π
(
dlξ1 , . . . , dlξ k

)
(u) =

k∑

i=1

(−1)i+kπ
(

dlξ1 , . . . , d̂lξ i , . . . , dlξ k , dq∗
A

〈
ξ i , u

〉)

−
〈
δu, ξ1 ∧ · · · ∧ ξ k

〉
, (6.15)

where f ∈ C∞(M), u ∈ �(A), ξ1, . . . , ξ k ∈ �(A∗), and lξ i ∈ C∞(A) is the linear
function lξ i (u) = 〈

ξ i , u
〉
. In coordinates, we have

δxi = 1

(k − 1)!π
b1...bk−1i (x)eb1 ∧ · · · ∧ ebk−1 , δea = − 1

k!π
b1...bk
a (x)eb1 ∧ · · · ∧ ebk ,

(6.16)

where {ed} is a basis of local sections of A.
Let A → M be a Lie algebroid. The Lie bracket [·, ·] on �(A) has a natural

extension (still denoted by [·, ·]) to the exterior algebra �(∧• A),

[·, ·] : �(∧p A)× �(∧q A) → �(∧p+q−1 A),

making it into a Gerstenhaber algebra (see e.g. [6]): for u ∈ �(∧p A), v ∈ �(∧q A),
and w ∈ �(∧r A), we have

[u, v] = −(−1)(p−1)(q−1)[v, u], (6.17)

[u, v ∧ w] = [u, v] ∧ w + (−1)(p−1)qv ∧ [u, w]. (6.18)

The next result is the analog of Theorem 1 for linear multivector fields.

Theorem 3 Let π ∈ X k
lin(A) be a linear k-vector field on a Lie algebroid A, and let

δ : �(∧• A) → �(∧•+k−1 A) be the associated derivation (as in (6.14) and (6.15)).
Then the map π (6.10) is a Lie algebroid morphism if and only if

δ[u, v] = [δu, v] + (−1)(p−1)(k−1)[u, δv], (6.19)

for all u ∈ �(∧p A), v ∈ �(∧q A) (i.e., δ is a (k − 1)-derivation of the Gerstenhaber
bracket).

To draw a clear parallel with Theorem 1, we denote by X k
IM(A) the space of

degree (k − 1) derivations δ : �(∧• A) → �(∧•+k−1 A) of the Gerstenhaber structure
(i.e., (6.13) and (6.19) hold), in analogy with IM k-forms.

7 To see that (6.14) and (6.15) determine the linear k-vector π , note that fibres of T ∗ A → A are generated
by elements of types dlξ and dq∗

A f , and by linearity idq∗
A f2

idq∗
A f1

π = 0.
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Proof We work locally, so the condition that π is a Lie algebroid morphism is

π([ϒ1, ϒ2]k) = Lρk (ϒ1)π(ϒ2)− Lρk (ϒ2)π(ϒ1), (6.20)

where ϒ1, ϒ2 are local sections of ⊕k
AT ∗ A → ⊕k A∗ of types (6.2) or (6.3)

(cf. (3.25)); hence, just as in the proof of Theorem 1, there are 3 cases to be ana-
lyzed. The assertion of Theorem 3 is a direct consequence of the following claims:

(c1) Letϒ1 = dx̂ i,l andϒ2 = dx̂ j,m . If l = m, then (6.20) is automatically satisfied;
if l �= m, then (6.20) is equivalent to

δ[xi , x j ] = [δxi , x j ] + (−1)k−1[xi , δx j ] = 0. (6.21)

(c2) Let ϒ1 = dx̂ i,l and ϒ2 = (eL
b )

k . Then (6.20) is equivalent to

δ[xi , eb] = [δxi , eb] + (−1)k−1[xi , δeb]. (6.22)

(c3) Let ϒ1 = (eL
a )

k and ϒ2 = (eL
b )

k . Then (6.20) is equivalent to

δ[ea, eb] = [δea, eb] + [ea, δeb]. (6.23)

In order to prove claims (c1), (c2) and (c3), we need some general observations.
For any function F : ⊕k A∗ → R which is k-linear over C∞(M) and skew symmetric,
let �F ∈ �(∧k A) be the unique element such that

F(ξ1, . . . , ξ k) =
〈
�F , ξ

1 ∧ · · · ∧ ξ k
〉
.

E.g., for F(ξ1, . . . , ξ k) = Fb1...bk ξ1
b1
. . . ξ k

bk
with Fb1...bk totally antisymmetric in its

indices, we have �F = 1
k! Fb1...bk eb1 ∧ · · · ∧ ebk . We will consider the cases where

F = π(dx̂ j,m) and F = π((eL
a )

k). Using the local expressions (6.2), (6.3) as well as
(6.11) and (6.16), one may directly verify the following identities:

π(dx̂ j,m(ξ1, . . . , ξ k)) = (−1)k−m
〈
δx j , ξ1 ∧ · · · ∧ ξ̂m ∧ · · · ∧ ξ k

〉
, (6.24)

π((eL
a )

k(ξ1, . . . , ξ k)) = −
〈
δea, ξ

1 ∧ · · · ∧ ξ k
〉
, (6.25)

where the notation ξ1 ∧ · · · ∧ ξ̂m ∧ · · · ∧ ξ k means that ξm is omitted.
Let us now consider F(ξ1, . . . , ξ k) = Fb1...bk ξ1

b1
. . . ξ k

bk
and the vector fields

ρk(dx̂ i,l) and ρk((eL
a )

k) on ⊕k A∗, see (6.7). Then a direct computation shows the
following identities:

Lρk (dx̂ i,l )(F(ξ
1, . . . , ξ k)) = (−1)l

〈
[xi ,�F ], ξ1 ∧ · · · ∧ ξ̂ l ∧ · · · ∧ ξ k

〉
, (6.26)

Lρk ((eL
a )

k )(F(ξ
1, . . . , ξ k)) =

〈
[ea,�F ], ξ1 ∧ · · · ∧ · · · ∧ ξ k

〉
. (6.27)
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From (6.24) and (6.26), we directly see, assuming that l < m, that

Lρk (dx̂ i,l )(π(dx̂ j,m)(ξ1, . . . , ξ k))

= (−1)l+k−m
〈
[xi , δx j ], ξ1 ∧ · · · ∧ ξ̂ l ∧ · · · ∧ ξ̂m ∧ · · · , ξ k

〉
,

Lρk (dx̂ j,m)(π(dx̂ i,l)(ξ1, . . . , ξ k))

= (−1)m−1+k−l
〈
[x j , δxi ], ξ1 ∧ · · · ∧ ξ̂ l ∧ · · · ∧ ξ̂m ∧ · · · ∧ ξ k

〉
.

Combining these two equations with (6.17), we conclude that claim (c1) holds.
To prove the other two claims, note first that the derivation property for functions

in (6.12) implies that

δ f = ∂ f

∂x j
δx j , f ∈ C∞(M). (6.28)

As a result, since [eb, xi ] = Lρ(eb)x
i = ρi

b, we have that

δ[xi , eb] = −δ[eb, xi ] = − ∂ρ
i
b

∂x j
δx j . (6.29)

Using the second formula in (6.8) together with (6.24) and (6.29), we obtain

π([dx̂ i,l , (eL
b )

k]k(ξ
1, . . . , ξ k)) = −(−1)k−l

〈
∂ρi

b

∂x j
δx j , ξ1 ∧ · · · ∧ ξ̂ l ∧ · · · ∧ ξ k

〉

= (−1)k−l
〈
δ[xi , eb], ξ1 ∧ · · · ∧ ξ̂ l ∧ · · · ∧ ξ k

〉
.

(6.30)

Combining (6.24) and (6.27), as well as (6.25) and (6.26), we immediately get

Lρk ((eL
b )

k )(π(dx̂ i,l(ξ1, . . . , ξ k))) = (−1)k−l
〈
[eb, δxi ], ξ1 ∧ · · · ∧ ξ̂ l ∧ · · · ∧ ξ k

〉
,

(6.31)

Lρk (dx̂ i,l )(π((e
L
b )

k(ξ1, . . . , ξ k))) = −(−1)l
〈
[xi , δeb], ξ1 ∧ · · · ∧ ξ̂ l ∧ · · · ∧ ξ k

〉
.

(6.32)

Now claim (c2) is a direct consequence of (6.30), (6.31) and (6.32).
Finally, to prove (c3), we observe a few facts. From (6.28), we see that

δ[ea, eb] = δ(Cc
abec) = ∂Cc

ab

∂x j
δx j ∧ ec + Cc

abδec. (6.33)
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The usual formula for the wedge product gives us the identity

∂Cc
ab

∂x j

〈
δx j ∧ ec, ξ

1 ∧ · · · ∧ ξk
〉

=
k∑

n=1

(−1)k−n ∂Cc
ab

∂x j
ξn

c

〈
δx j , ξ1 ∧ · · · ∧ ξ̂n ∧ · · · ∧ ξk

〉
;

using it, we immediately obtain from (6.9), (6.24) and (6.25) that

π([(eL
a )

k, (eL
b )

k]k(ξ
1, . . . , ξ k)) = −

〈
δ[ea, eb], ξ1 ∧ · · · ∧ ξ k

〉
. (6.34)

On the other hand, from (6.25) and (6.27) we have that

Lρk ((eL
a )

k )(π((e
L
b )

k(ξ1, . . . , ξ k))) = −
〈
[ea, δeb], ξ1 ∧ · · · ∧ ξ k

〉
. (6.35)

Using (6.34) and (6.35), we can immediately verify that claim (c3) holds. ��

6.2 Infinitesimal description of multiplicative multivector fields

We now discuss the analogs of the results in Sect. 4 for multiplicative multivector
fields.

Let G be a Lie groupoid over M . Its cotangent bundle T ∗G has a natural Lie groupoid
structure over A∗, known as the cotangent groupoid of G, see [9] and [21] for a full
description. For us, it will suffice to recall that the unit map ε̃ : A∗ → T ∗G|M identifies
A∗ with the annihilator of T M ⊂ T G, and that the source map s̃ : T ∗G → A∗ is
defined by

〈
s̃(αg), u

〉 = 〈
αg, T lg(u − T t(u))

〉
, αg ∈ T ∗

g G, u ∈ As(g), (6.36)

where lg denotes left translation in G. Note that s̃ is a vector-bundle map covering
s : G → M ; using coordinates (zl) on G, it has the form

s̃(zl , αl) = (s(z) j ,Cl
d(z)αl) ∈ A∗|s(z). (6.37)

We will not need the explicit expression for Cl
d(z), just to note that s̃(dt∗ f ) = 0 for

all f ∈ C∞(M) (by (6.36)), which implies that

Cl
d(z)

∂(t∗ f )

∂zl
= 0, ∀ f ∈ C∞(M). (6.38)

Similarly to what happens for the tangent groupoid, the cotangent groupoid structure
extends to direct sums ⊕k

GT ∗G over ⊕k A∗. A multivector field � ∈ X k(G) is called
multiplicative if the associated map

� : ⊕k
GT ∗G → R, �(ζ1, . . . , ζk) = iζk . . . iζ1� (6.39)
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is a groupoid morphism (cf. Lemma 5). We denote the space of multiplicative k-vector
fields on G by X k

mult(G).

Remark 5 We may equivalently consider the map

�
 : ⊕k−1
G T ∗G → T G, �
(ζ1, . . . , ζk−1) = iζk−1 . . . iζ1�, (6.40)

and verify that � is multiplicative if and only if �
 is a groupoid morphism.

Let us recall, see e.g. [23], the identification of Lie algebroids

θG : A(T ∗G) ∼−→ T ∗(AG), (6.41)

which extends to an identification θk
G : A(⊕k

GT ∗G) = ∏
Lie(cG) A(T ∗G) → ⊕k

AT ∗ A

(cG : T ∗G → G is a groupoid morphism). Given � ∈ X k
mult(G), we consider the

infinitesimal map Lie(�) : A(⊕k
GT ∗G) → R (see (4.6)), as well as the composition

Lie(�) ◦ (θk
G)

−1 : ⊕k
AT ∗ A → R. (6.42)

The exact same arguments as in Lemma 8 directly show that there is a unique k-vector
field Lie(�) ∈ X k(A) satisfying

Lie(�) = Lie(�) ◦ (θk
G)

−1; (6.43)

moreover, the map

X k
mult(G) −→ X k(A), � 
→ Lie(�),

is a bijection onto the subspace of k-vector fields π ∈ X k
lin(A) for which π :

⊕k
AT ∗ A → R is a morphism of Lie algebroids. An immediate consequence of

Theorem 3 is

Corollary 1 There is a bijective correspondence

X k
mult(G) −→ X k

IM(A), � 
→ δ, (6.44)

where δ is the derivation associated with π = Lie(�) ∈ X k
lin(A) (via (6.14) and

(6.15)).

This result is parallel to Theorem 2, except that it provides no explicit way of computing
δ directly out of� (analogous to (4.17) and (4.18)). This missing aspect will be clarified
in the next section.
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6.3 The universal lifting theorem revisited

For u ∈ �(∧p A), let us denote by ur the corresponding right-invariant p-vector field
on G. As observed in [18, Sect. 2], given � ∈ X k

mult(G), then [�, ur ] is again right
invariant, which means that there exists δ�u ∈ �(∧p+k−1 A) such that (δ�u)r =
[�, ur ]. One can check that the map δ� : �(∧p A) → �(∧p+k−1 A) is a derivation of
the Gerstenhaber structure, i.e., δ� ∈ X k

IM(M).

Proposition 5 The map X k
mult(G) −→ X k

IM(A), � 
→ δ�, where δ� is defined by

(δ� f )r = [�, t∗ f ], (δ�u)r = [�, ur ], (6.45)

for f ∈ C∞(M) and u ∈ �(A), coincides with the map (6.44); in particular, it is a
bijection.

The fact that the correspondence in Proposition 5 is a bijection is the universal lifting
theorem of [18] (see Theorem 2.34 therein), which we recover here as a consequence
of Corollary 1. We need to collect some observations before getting into the proof of
Proposition 5.

Let us consider the isomorphism

� : T (T ∗G) −→ T ∗(T G), (z j , α j , ż j , α̇ j ) 
→ (z j , ż j , α̇ j , α j ), (6.46)

which is related to the identification θG in (6.41) via

θG = (T ιA)
t ◦� ◦ ιA(T ∗G), (6.47)

where (T ιA)t is the fibrewise dual to the vector-bundle map T ιA : T A → ι∗AT (T G)
(the composition in (6.47) is well defined since � ◦ ιA(T ∗G)(A(T ∗G)) ⊂ ι∗AT ∗(T G);
this can be derived directly from (6.37)). For a k-vector field� ∈ X k(G), its tangent
lift is the k-vector field �T ∈ X k(T G) defined by the condition (cf. (2.17))

�T = d� ◦ (�−1)k, (6.48)

where d� : T (⊕k
GT ∗G) = ∏k

T cG T (T ∗G) → R is the differential of the function �

in C∞(⊕k
GT ∗G) defined by (6.39).

Remark 6 As observed in [13], one may alternatively define the tangent lift �T in
terms of �
 (6.40):

�


T : ⊕k−1

T G T ∗(T G) → T (T G), �


T = (JG)−1 ◦ T�
 ◦ (�−1)(k−1), (6.49)

where JG : T (T G) → T (T G) is the involution (2.16).

When � is multiplicative, it follows from (6.43) that

π = Lie(�) = �T ◦ (� ◦ ιAT ∗G ◦ θ−1
G )k . (6.50)
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We will need this characterization of π in the proof of Proposition 5.
For local computations, it will be convenient to consider adapted local coordinates

(x j , yd) on G around M ⊂ G, (6.51)

where yd are coordinates along the s-fibres. We will also use the induced coordinates
((x j , yd), (ẋ j , ẏd)) on T G, and similarly for T ∗G, T (T ∗G) and T ∗(T G). In these
coordinates, ιA : A → T G|M , ιA(x j , ud) = ((x j , 0), (0, ud)), and T ιA : T A →
ι∗AT (T G) is given by

T ιA

(

ẋ j ∂

∂x j
+ u̇d ∂

∂ud

)∣
∣
∣
∣
u

= ẋ j ∂

∂x j
+ u̇d ∂

∂ ẏd

∣
∣
∣
∣
ιA(u)

, u ∈ A,

whereas for (T ιA)t : ι∗AT ∗(T G) → T ∗ A we have

(T ιA)
t (p j dx j + γadya + p j d ẋ j + γ ad ẏa)|ιA(u) = (p j dx j + γ adua)|u, u ∈ A.

Since the unit map ε̃ : A∗ → T ∗G|M identifies A∗ with the annihilator of T M ⊂ T G,
given ξ ∈ �(A∗), locally written as (x j , ξd), the local 1-form on G given by

ξ̃ (x j , yd) = ξd(x)dyd (6.52)

extends ε̃(ξ(x)) to a neighborhood of M in G. We denote by l̃ξ ∈ C∞(T G) the
linear function determined by ξ̃ . The following lemma is key to compare the map in
Proposition 5 with the map (6.44).

Lemma 10 Let J = � ◦ ιAT ∗G ◦ θ−1
G : T ∗ A → ι∗AT ∗(T G), and let u0 ∈ A. Then,

for any f ∈ C∞(M) and ξ ∈ �(A∗), we have

J (dq∗
A f |u0) = d(t∗ f )∨|ιA(u0), (6.53)

J (dlξ |u0) = (dl̃ξ + dh∨)|ιA(u0), (6.54)

where ∨ means the pull-back of functions on G by pG : T G → G, and h ∈ C∞(G) is
a function that vanishes on M ⊂ G.

Proof The proof follows from some observations, all of which can be checked through
computations in adapted local coordinates (x j , yd) as in (6.51).

The first observation one can directly verify is that

(T ιA)
t (d(t∗ f )∨|ιA(u)) = dq∗

A f |u, u ∈ A. (6.55)

Using the local expression (6.37) for the source map s̃, the property (6.38), and the
definition of �, a direct computation shows that

T s̃(�−1(d(t∗ f )∨|ιA(u))) = 0 ∈ T A∗|qA(u), qA(u) ∈ M ⊂ A∗. (6.56)
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It follows that �−1(d(t∗ f )∨|ιA(u)) is in the image of ιA(T ∗G), hence there is a unique
ϒ ∈ T ∗ A|qA(u) such that

�−1(d(t∗ f )∨|ιA(u)) = ιA(T ∗G)(θ−1
G (ϒ)), i.e., J (ϒ) = d(t∗ f )∨|ιA(u).

Using (6.55) and (6.47). we conclude that ϒ = dq∗
A f |u , which proves (6.53).

With respect to the coordinates ((x j , yd), (ẋ j , ẏd)) on T G, one can write

dl̃ξ |ιA(u) = ∂ξa

∂xi
uadxi + ξad ẏa ∈ T ∗(T G)|ιA(u), (6.57)

from where we conclude that

(T ιA)
t (dl̃ξ |ιA(u)) =

(
∂ξa

∂x j
uadx j + ξadua

)∣
∣
∣
∣
u

= q∗
Adlξ |u ∈ T ∗ A|u . (6.58)

Let us now consider J (q∗
Adlξ ) ∈ ι∗AT ∗(T G). Since �−1(J (q∗

Adlξ )) lies in
T (T ∗G)|A∗ , one can directly verify that J (q∗

Adlξ ) can be written as

p j dx j + γadya + γ ad ẏa,

i.e., its components relative to dẋ j vanish. By (6.47), (T ιA)t (J (q∗
Adlξ )|u) = q∗

Adlξ |u ,

so from the second equality in (6.58) we conclude that p j = ∂ξa
∂x j ua and γ a = ξa , i.e.,

J (q∗
Adlξ |u) =

(
∂ξa

∂x j
uadx j + γ adya + ξad ẏa

)∣
∣
∣
∣
ιA(u)

.

For each given u0 ∈ A, one can find h ∈ C∞(G) vanishing on M ⊂ G and
such that dh∨|ιA(u0) = γ a(ιA(u0))dya , and (6.54) follows by a direct comparison
with (6.57). ��

We will need the following immediate observations about linear functions on vector
bundles.

Lemma 11 Let qB : B → N be a vector bundle, with coordinates (x j , bd) relative to
a basis of local sections {ed}, and consider b = bded ∈ �(B), b∨ = bd ∂

∂bd ∈ X (B),
and β = βded ∈ �(B∗). Let lβ ∈ C∞(B) be the linear function defined by β, and fix
b0 = b(x0) ∈ B, for a given x0 ∈ N. Then Lb∨lβ = q∗

B〈β, b〉 and

lβ(b0) = (Lb∨lβ)(b0). (6.59)

We now prove Proposition 5.

Proof of Proposition 5 Let π = Lie(�), and consider ξ1, . . . , ξ k−1 ∈ �(A∗) and
f ∈ C∞(M). Let us fix u0 ∈ A, x0 = qA(u0) ∈ M . By (6.50) and Lemma 10,
we have
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π(dlξ1 , . . . , dlξk−1, dq∗
A f )|u0 = �T (J dlξ1 , . . . ,J dlξ k−1 ,J dq∗

A f )|ιA(u0)

= �T (dl̃ξ1 + dh∨
1, . . . , dl̃ξ k−1 + dh∨

k−1, d(t∗ f )∨)|ιA(u0), (6.60)

with hi ∈ C∞(G), hi |M = 0, and ξ̃ i as in (6.52). We directly check from the definition
of �T that it is a linear multivector, �T ∈ X k

lin(T G), so (see footnote 7)

id f ∨
1

id f ∨
2
�T = 0, ∀ f1, f2 ∈ C∞(G). (6.61)

Hence the expression in (6.60) agrees with

�T (dl̃ξ1 , . . . , dl̃ξ k−1 , d(t∗ f )∨)|ιA(u0) = [�T , (t∗ f )∨](dl̃ξ1 , . . . , dl̃ξ k−1)|ιA(u0),

(6.62)

where [·, ·] is the Schouten bracket on X •(T G).
Let us consider the vertical lift operation X •(G) → X •(T G), � 
→ �∨: in

coordinates (zl) on G, it sends the vector field Y = Y l ∂
∂zl to Y ∨ = Y l ∂

∂ żl , and this is
extended to a graded algebra homomorphism of multivector fields. From the Schouten
bracket relations for vertical and tangent lifts, see e.g. [14], we obtain

[�T , (t∗ f )∨] = [�, t∗ f ]∨ = ((δ� f )r )∨.

Letting x0 = qA(u0) ∈ M , a direct computation in coordinates (6.51) shows that

((δ� f )r )∨(dl̃ξ1 , . . . , dl̃ξ k−1)|ιA(u0) =
〈
(δ� f )r , ξ̃1 ∧ · · · ∧ ξ̃ k−1

〉∣
∣
∣
ε(x0)

,

=
〈
δ� f, ξ1 ∧ · · · ∧ ξ k−1

〉∣
∣
∣
x0
,

from where it follows that

π(dlξ1 , . . . , dlξk−1, dq∗
A f )|u0 =

〈
δ� f, ξ1 ∧ · · · ∧ ξ k−1

〉∣
∣
∣
x0

= q∗
A

〈
δ� f, ξ1 ∧ · · · ∧ ξ k−1

〉∣
∣
∣
u0
.

Comparing with (6.14), we conclude that δ (see (6.44)) and δ� agree on C∞(M).
It remains to check that they agree on �(A).

We now consider ξ1, . . . , ξ k ∈ �(A∗) and describe π(dlξ1 , . . . , dlξ k )|u0 in terms
of δ�. By (6.50) and (6.54), we have (keeping the notation of Lemma 10)

π(dlξ1 , . . . , dlξ k )|u0 = �T (J dlξ1 , . . . ,J dlξ k )|u0

= �T (dl̃ξ1 + dh∨
1, . . . , dl̃ξ k + dh∨

k )|ιA(u0). (6.63)
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From (6.61), we see that the expression �T (dl̃ξ1 + dh∨
1, . . . , dl̃ξ k + dh∨

k ) can be
re-written as

�T (dl̃ξ1 , . . . , dl̃ξ k )+
k∑

j=1

�T (J dlξ1 , . . . ,J dlξ j−1 , dh∨
j ,J dlξ j+1 , . . . ,J dlξ k ).

(6.64)

We claim that, for all j = 1, . . . , k, we have

�T (J dlξ1 , . . . ,J dlξ j−1 , dh∨
j ,J dlξ j+1 , . . . ,J dlξ k ) = 0. (6.65)

To see that, recall from Remark 6 that �T satisfies �
T ◦ �(k−1) = (JG)−1 ◦ T�
,
and, since �
 : ⊕k−1

G T ∗G → T G is a groupoid morphism (see Remark 5),

T�
 ◦ (ιA(T ∗G))(k−1) ⊆ A(T G).

It follows from (4.7) and the definition of J that �
T ◦ J (k−1) ⊆ T ιA(T A) ⊂
ι∗AT (T G). Relative to the adapted coordinates (x j , yd) in (6.51), elements in
T ιA(T A) ⊂ ι∗AT (T G) are combinations of ∂

∂x j and ∂
∂ ẏd , whereas dh∨

j |ιA(u) is in

the span of dyd . So (6.65) follows, and we conclude that

π(dlξ1 , . . . , dlξ k )|u0 = �T (dl̃ξ1 , . . . , dl̃ξ k )|ιA(u0). (6.66)

To proceed, we observe that �T (dl̃ξ1 , . . . , dl̃ξ k ) defines a linear function on T G,
and, using (6.59) in Lemma 11 (with B = T G), we write

�T (dl̃ξ1 , . . . , dl̃ξ k )|ιA(u0) = L(ur )∨(�T (dl̃ξ1 , . . . , dl̃ξ k ))|ιA(u0), (6.67)

where u ∈ �(A) is such that u(x0) = u0. But

L(ur )∨(�T (dl̃ξ1 , . . . , dl̃ξ k )) = (L(ur )∨�T )(dl̃ξ1, . . . , dl̃ξ k )

+
k∑

j=1

�T (dl̃ξ1 , dl̃ξ j−1 ,L(ur )∨(dl̃ξ j ), dl̃ξ j+1 , . . . , dl̃ξ k )),

and note that

L(ur )∨(dl̃ξ l ) = d(̃ξ l(ur ))∨, L(ur )∨�T = [ur ,�]∨ = −((δ�u)r )∨,

where we used the Schouten-bracket relations for tangent and vertical lifts in the
second equation. One can directly check that

((δ�u)r )∨(dl̃ξ1 , . . . , dl̃ξ k )|ιA(u0) =
〈
(δ�u)r , ξ̃1 ∧ · · · ∧ ξ̃ k

〉∣
∣
∣
ε(x0)

=
〈
δ�u, ξ1 ∧ · · · ∧ ξ k

〉∣
∣
∣
x0
.
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Thus L(ur )∨(�T (dl̃ξ1 , . . . , dl̃ξ k ))|ιA(u0) equals

−
〈
δ�u, ξ1 ∧ · · · ∧ ξ k

〉∣
∣
∣
x0

+
k∑

j=1

�T (dl̃ξ1 , . . . , dl̃ξ j−1 , d(̃ξ j (ur ))∨, dl̃ξ j+1 , . . . , dl̃ξ k )|ιA(u0).

Using local coordinates (x j , yd) as in (6.51), one can check the identity

d(̃ξ j (ur ))∨|ιA(u0) = d
(
t∗

〈
ξ j , u

〉)∨ |ιA(u0) + dh∨
j |ιA(u0),

where h j ∈ C∞(G) vanishes on M ⊂ G. It follows that

�T (dl̃ξ1 , . . . , dl̃ξ j−1 , d(̃ξ j (ur ))∨, dl̃ξ j+1 , . . . , dl̃ξ k )|ιA(u0)

= �T (dl̃ξ1 , . . . , dl̃ξ j−1 , d
(
t∗

〈
ξ j , u

〉)∨
, dl̃ξ j+1 , . . . , dl̃ξ k )|ιA(u0)

+�T (dl̃ξ1 , . . . , dl̃ξ j−1 , dh∨
j , dl̃ξ j+1 , . . . , dl̃ξ k )|ιA(u0). (6.68)

Using the linearity of �T (see footnote 7) and (6.65), we see that

�T (dl̃ξ1 , . . . , dl̃ξ j−1 , dh∨
j , dl̃ξ j+1 , . . . , dl̃ξ k )

= �T

(
J dl̃ξ1 , . . . ,J dl̃ξ j−1 , dh∨

j ,J dl̃ξ j+1 , . . . ,J dl̃ξ k

)
= 0.

A direct comparison with (6.60), (6.62) gives that

�T

(
dl̃ξ1 , . . . , dl̃ξ j−1 , d(t∗

〈
ξ j , u

〉
)∨, dl̃ξ j+1 , . . . , dl̃ξ k

)∣
∣
∣
ιA(u0)

= (−1)k− jπ
(

dlξ1 , . . . , d̂lξ j , . . . , dlξ k , dq∗
A

〈
ξ j , u

〉)∣
∣
∣
u0

Going back to (6.66), we finally conclude that

π(dlξ1 , . . . , dlξ k )|u0 = −
〈
δ�u, ξ1 ∧ · · · ∧ ξ k

〉∣
∣
∣
x0

+
k∑

j=1

(−1)k− jπ
(

dlξ1 , . . . , d̂lξ j , . . . , dlξ k , dq∗
A

〈
ξ j , u

〉)∣
∣
∣
u0
.

Comparing with (6.15), we conclude that δ = δ�. ��
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