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Abstract We prove that the norm of the Euler class E for flat vector bundles is
2−n (in even dimension n, since it vanishes in odd dimension). This shows that
the Sullivan–Smillie bound considered by Gromov and Ivanov–Turaev is sharp.
In the course of the proof, we construct a new cocycle representing E and taking
only the two values ±2−n . Furthermore, we establish the uniqueness of a canonical
bounded Euler class.
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1 Introduction

Let G be a topological group and β ∈ H•(G,R) a cohomology class. While H•
denotes the general (“continuous”) cohomology of topological groups (see e.g. [27]),
we shall mostly be interested in the case where G is a Lie group and β corresponds to
a characteristic class.
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524 M. Bucher, N. Monod

The norm ‖β‖ is by definition the infimum of the sup-norms of all cocycles rep-
resenting β in the classical bar-resolution; thus

‖β‖ = inf
f ∈β ‖ f ‖∞ ∈ R≥0 ∪ {+∞}

(which does not depend on any particular variant of the bar-resolution: homogeneous,
inhomogeneous, measurable, smooth, etc. [19, Sect. 7]).

This norm was introduced by Gromov [15] and has important applications since it
gives a priori-bounds for characteristic numbers; for instance, this explains Milnor–
Wood inequalities and in that sense refers back to Milnor [18], compare also [2,3,12,
15,28]. Further motivations to study this norm come from the Hirzebruch–Thurston–
Gromov proportionality principles [15,16,26] and from the relation to the minimal
volume of manifolds via the simplicial volume [15].

However, the norm of only very few cohomology classes is known to this day: the
Kähler class of Hermitian symmetric spaces in degree two [10,11], the Euler class of
GL+

2 (R) × GL+
2 (R) in degree four [9], and the volume form of hyperbolic n-space

(in top-degree n) [15,26], though the latter norm is only explicit in low dimension.
In this article, we obtain the norm of the Euler class of flat vector bundles, which was
known only for n = 2:

Theorem A Let E be the Euler class in Hn(GL+
n (R),R), with n even.

Then ‖E‖ = 2−n.

More precisely, the (real) Euler class of flat bundles is usually considered as an
element in Hn

(
GL+

n (R)
δ,R

)
, where GL+

n (R)
δ is the structure group endowed with

the discrete topology (so that H• reduces to ordinary Eilenberg–MacLane cohomol-
ogy). There is a unique “continuous” class E ∈ Hn(GL+

n (R),R) mapping to that
“discrete” class and it has the same norm (as follows e.g. from the existence of
cocompact lattices, by transfer [15, pp. 30–31]).

Based on a simplicial cocycle by Sullivan and Smillie [24,25], Ivanov and Turaev
[17] obtained the upper bound of ‖E‖ ≤ 2−n by exhibiting a cocycle with precisely
this sup-norm. By definition, any cocycle provides an upper bound. It is much more
difficult to obtain lower bounds because there is no known general method to control
the bounded coboundaries by which equivalent cocycles may differ, except in degree
two, where the double ergodicity of Poisson boundaries leads to resolutions without
any 2-coboundaries [5,6].

We decompose the lower bound problem into two parts:

(i) The norm ‖β‖ is equivalently defined as the infimum over all pre-images βb in
bounded cohomology H•

b of the corresponding semi-norm ‖βb‖. Can one find
an optimal representative βb?

(ii) Compute the semi-norm ‖βb‖.

Concerning point (i), there can in general be an infinite-dimensional space of pre-
images βb for β. Even for the case at hand, it is not known whether E admits a
unique pre-image, and indeed the space Hn

b(GL+
n (R),R) has not yet been determined

(bounded cohomology remains largely elusive). We shall circumvent this difficulty by
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using that the Euler class of an oriented vector bundle is antisymmetric in the sense
that an orientation-reversal changes its sign. Here is the corresponding re-phrasing for
the class E in group cohomology:

Since inner automorphisms act trivially on cohomology, the canonical action of
GLn(R) upon H• (GL+

n (R),R
)

factors through the order-two quotient group
GLn(R)/GL+

n (R) (recalling that n is even). Accordingly, we have a canonical decom-
position of H• (GL+

n (R),R
)

into eigenspaces for the eigenvalues 1,−1. Any class
in those eigenspaces will be called symmetric, respectively antisymmetric; thus E
is an example of the latter. The same discussion applies to the bounded cohomology
H•

b

(
GL+

n (R),R
)
. Now we address (i) using also a result from [21]:

Theorem B Let n be even. The space of antisymmetric classes in Hn
b

(
GL+

n (R),R
)

is one-dimensional. In particular, there exists a unique antisymmetric class Eb in
Hn

b

(
GL+

n (R),R
)

whose image in Hn
(
GL+

n (R),R
)

is the Euler class E . Moreover,
‖Eb‖ = ‖E‖.

(This solves Problem D in [20].)

Definition We call Eb the bounded Euler class of GL+
n (R). Since the inclusion

SLn(R) → GL+
n (R) and quotient GL+

n (R) → PSLn(R) both induce isometric iso-
morphisms in bounded cohomology (same argument as the proof of [19, 8.5.5]), we
use the same notation Eb and refer to the bounded Euler class of SLn(R) and PSLn(R).

Despite its uniqueness with respect to GL+
n (R), the existence of a canonical

bounded class should allow for a finer analysis than the usual class E . Indeed, the
pull-back of E to another group, for instance through a holonomy representation, can
admit many more bounded representatives. This type of phenomenon is illustrated in
[4,14].

We now turn to point (ii), which is the most substantial part of this article: to com-
pute ‖Eb‖. General considerations show that Eb is given by a unique L∞-cocycle on
the projective space. However, although the norm of this unique cocycle is patently
2−n , this will not a priori give any lower bound on the semi-norm of Eb. Indeed, the
isomorphisms given by homotopic resolutions have no reason to be isometric. In fact,
to our knowledge, the only general method that guarantees isometries is the use of
averaging techniques over amenable groups or actions.

Therefore, we pull back the cocycle to the Grassmannian of complete flags, which
is an amenable space and hence computes the right semi-norm. Of course, this comes
at the cost of losing the uniqueness of the cocycle since this space is much larger
than the projective space and thus supports many coboundaries. We shall neverthe-
less exhibit a special locus of complete flags where every coboundary must vanish
(Sect. 5). Yet this locus is small; it is a null-set. At this point, we encounter an inter-
esting surprise: The unique L∞-cocycle that we pulled back cannot be represented
by an actual cocycle on the projective space when n ≥ 4; there is an obstruction on
another null-set (Proposition 3.2). Let us emphasize at this occasion that the concept
of “L∞-cocycle” provided by amenability considerations refers to function classes,
and hence the cocycle equation is only required to hold almost everywhere.

Nonetheless, on the space of flags, or better of oriented flags, we can remove the
obstruction on the blown-up singular locus by a careful iterative deformation. We thus
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construct an explicit cocycle on oriented flags which, generically, depends only on the
projective point (flagstaff) and thus still represents the a.e. defined cocycle (Sect. 4).
As desired, this new cocycle is particularly neat even on singular loci:

Theorem C Let n be even. The Euler class E of GL+
n (R) can be represented by an

invariant Borel cocycle on
(
GL+

n (R)
)n+1

taking only the two values ±2−n.
(This cocycle is an explicit, algebraically defined invariant on the space of complete

oriented flags in Rn.)

The existence of some measurable cocycle taking only a finite number of values
and representing E was expected from [7,8]. Indeed, the corresponding statement was
established for the discrete group GL+

n (R)
δ and more generally for any primary char-

acteristic class of flat G-bundles, whenever G is an algebraic subgroup of GLn(R).
The proof given there shows in fact that, as a topological group, G must admit some
measurable cocycle taking only finitely many values and representing those charac-
teristic classes.

Finally, we note that our new cocycle is a singular extension of the simplicial
cocycles constructed by Sullivan and Smillie [24,25]. More precisely, for any flat
bundle over a simplicial complex K , the classifying map |K | → BGL+

n (R)
δ can be

chosen so that the pull-back of our cocycle is precisely Smillie’s simplicial cocycle
when restricted to the simplices of K . It presents the advantage of being immediate
to evaluate, in contrast to the Ivanov–Turaev cocycle [17] which is obtained by tak-
ing averages of Sullivan–Smillie cocycles. Moreover, as it is defined on all singular
simplices simultaneously, and not only the simplices of a given triangulation (or of
one particular representative of the fundamental cycle) like the simplicial cocycles
of Sullivan–Smillie, it might be more useful for actually computing Euler numbers of
flat bundles over manifolds whose triangulations are often very complicated, if known
at all.

Theorem B is proved in Sect. 7. It is then used (in combination with the previous
sections) to prove Theorem A in Sect. 8. As a by-product of those arguments, we
obtain Theorem C.

2 General notation

Throughout the paper, n is an even integer.
We agree that a basis of a finite-dimensional vector space is an ordered tuple

(v1, . . . , vk). It thus endows the space with an orientation. If the vectors v1, . . . , vk

are merely linearly independent, we denote by 〈v1, . . . , vk〉 the oriented space that
they span. When confusion is unlikely, we use the same notation for an oriented space
and its underlying vector space. There is a natural direct sum V ⊕ W of oriented
spaces V,W ; the orientation can depend on the order of summands. By default, Rk is
endowed with its canonical basis (e1, . . . , ek) and with the corresponding orientation.
We write e0 = e1 + . . .+ ek .

If V denotes the vector space Rk endowed with some orientation, let Or(V ) ∈
{−1, 1} be the sign of this orientation relatively to the canonical orientation. Fur-
ther, if (v1, . . . , vk) is a basis of Rk , we write Or(v1, . . . , vk) for Or(〈v1, . . . , vk〉) and
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The norm of the Euler class 527

extend Or to a function on all k-tuples of elements in Rk by setting Or(v1, . . . , vk) = 0
if (v1, . . . , vk) is not a basis.

We write ε(x) ∈ {−1, 1} for the sign of x ∈ R∗ and extend it to a homomor-
phism on GLn(R) as the sign of the determinant; GL+

n (R) is its kernel. Notice
that ε descends to PGLn(R) since n is even. We denote by Rε the GLn(R)-module
(or PGLn(R)-module) R endowed with multiplication by ε.

Given any (k + 1)-tuple (x0, . . . , xk), the k-tuple obtained by dropping xi is writ-
ten (x0, . . . , x̂i , . . . , xk). Cocycles and coboundaries in various function spaces will
be with respect to the differential d = ∑k

i=0(−1)i di , where di is the evaluation on
(x0, . . . , x̂i , . . . , xk).

The projective space of dimension n−1 is denoted by P(Rn); we often use the same
notation for both elements in Rn and their image in P(Rn). We endow Rn with the
natural GLn(R)-action and P(Rn) with the corresponding GLn(R)- and PGLn(R)-
actions.

We refer to [6,19] for background on the bounded cohomology of locally compact
groups and to [7,8,15] for the relation to characteristic classes.

3 The almost-cocycle on the projective space

The bounded cohomology of GLn(R) with coefficients in Rε can be represented by
L∞-cocycles on the projective space for reasons that we shall explain in Sect. 7.
Therefore, we begin with a few elementary observations on equivariant functions on
the projective space.

Proposition 3.1 There is, up to scaling, a unique non-zero GLn(R)-equivariant map

(
P
(
Rn))q −→ Rε

for q = n + 1; there is none for q ≤ n.

With the right scaling, the unique map above will be seen to yield an L∞-cocycle
representing the Euler class. Interestingly, this a.e. function class cannot be represented
by an actual cocycle:

Proposition 3.2 The coboundary of a non-zero GLn(R)-equivariant map

(
P
(
Rn))n+1 −→ Rε

does not vanish everywhere on (P(Rn))n+2 unless n = 2.

The proof of the above propositions is an occasion to introduce a concept that will
be used throughout:

Definition 3.3 Let k ≥ n. A k-tuple in Rn or in P(Rn) is hereditarily spanning if
every subcollection of n elements spans Rn .

Being the complement of finitely many subspaces of positive codimension, the set
of hereditarily spanning tuples is open, dense and conull.

123



528 M. Bucher, N. Monod

Example 3.4 The (n + 1)-tuple (x, e1, . . . , en) is hereditarily spanning if and only if
all coordinates of x are non-zero. The (n + 2)-tuple (e0, e1, . . . , en, x) is hereditarily
spanning if and only if all coordinates of x are non-zero and distinct.

Proof of Proposition 3.1 The action of PGLn(R) on hereditarily spanning (n + 1)-
tuples in P(Rn) is free and transitive (as is apparent by e.g. considering Example 3.4).
This implies existence, choosing the value zero on all other (n + 1)-tuples. Next, we
claim that in fact any GLn(R)-equivariant map f must vanish on tuples (x0, . . . , xn)

that are not hereditarily spanning; this entails uniqueness.
To prove the claim, we can assume by symmetry that x1, . . . , xn are contained in

a subspace V ⊆ Rn of dimension n − 1. By GLn(R)-equivariance, we can further
assume that x0 is either perpendicular to V or contained in it. Let now g be the orthogo-
nal reflection along V ; then ε(g) = −1 and g fixes the projective points x0, x1, . . . , xn .
Therefore f vanishes at that tuple, as claimed. The argument given for this claim also
settles the case q ≤ n. ��
Remark 3.5 Had we allowed n to be odd, there would be no non-zero GLn(R)-equi-
variant map (P(Rn))q → Rε for any q whatsoever since then the centre of GLn(R),
which acts trivially on P(Rn), contains elements with negative determinant (and this
is the underlying reason for the vanishing of the Euler class). Consider GL+

n (R)-
invariant maps instead; one then finds that GL+

n (R) has only one orbit of hereditarily
spanning (n + 1)-tuples whereas it has two when n is even.

Proof of Proposition 3.2 Let f be a map as in the statement; for simpler nota-
tion, we consider f as defined on (Rn)n+1. Let us evaluate d f at the (n + 2)-tuple
(e0, e1, . . . , en, e1+e2). We examine all sub-(n+1)-tuples occurring in the evaluation
of d f :

First, f vanishes on (e1, . . . , en, e1 + e2) since it is not hereditarily spanning as
soon as n > 2 (Example 3.4). Next, one checks that (e0, . . . , êi , . . . , en, e1 + e2) is
not hereditarily spanning whenever 1 ≤ i ≤ n (distinguishing cases as 1 ≤ i ≤ 2
or i > 2), hence f vanishes there as well. However, f is non-zero on (e0, e1, . . . en)

since it belongs to the hereditarily spanning orbit; this establishes the claim. ��
The existence and uniqueness proof indicates of course exactly what the equivariant

map is; nevertheless, we wish to record an explicit formula. Define first the function

PA : (Rn)n+1 −→ {−1, 0, 1}, PA(v0, . . . , vn) =
n∏

i=0

Or(v0, . . . , v̂i , . . . , vn).

Since n is even and Or(v0, . . . , v̂i , . . . , λv j , . . . , vn) = ε(λ)Or(v0, . . . , v̂i , . . . , vn)

for all λ ∈ R∗ and j �= i , we deduce:

Lemma 3.6 PA descends to an alternating GLn(R)-equivariant map

PA : (P (Rn))n+1 −→ {−1, 0, 1} ⊆ Rε

(denoted by the same symbol). ��
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The norm of the Euler class 529

One can check explicitly that this map is an a.e. cocycle; more precisely:

Proposition 3.7 Let v0, . . . , vn+1 ∈ Rn be hereditarily spanning. Then

d PA(v0, . . . , vn+1) = 0.

Explicit Proof Using transitivity properties, it suffices to consider (n + 2)-tuples vi of
the form (e0, e1, . . . , en, x). The coordinates of x are non-zero and distinct; moreover,
we can assume that they are arranged in increasing order by applying monomial matri-
ces. This might permute e1, . . . , en but we can rearrange the latter since PA is alternat-
ing. Let thus k ∈ {0, . . . , n} be such that x1 < x2 < . . . < xk < 0 < xk+1 < . . . < xn .
One now checks

Or(e1, . . . , ê j , . . . , en, x) = (−1) j · ε(x j ) =
{
(−1) j+1 if 1 ≤ j ≤ k,
(−1) j if k < j ≤ n,

Or(e0, . . . , êi , . . . , ê j , . . . , en, x) = (−1)i+ j+1 1 ≤ i < j ≤ n,

Or(e0, e1, . . . , ê j , . . . , en) = (−1) j+1 1 ≤ j ≤ n.

We can thus compute

PA(e1, . . . , en, x) = (−1)n/2(−1)k,

PA(e0, e1, . . . , êi , . . . , en, x) = (−1)i ε(xi )

×
⎛

⎝
i−1∏

j=1

(−1)i+ j+1

⎞

⎠

⎛

⎝
n∏

j=i+1

(−1)i+ j+1

⎞

⎠ (−1)i+1

= (−1)n/2 ε(xi ), (here 1 ≤ i ≤ n)

PA(e0, e1, . . . , en) =
n∏

j=1

(−1) j+1 = (−1)n/2.

The cocycle relation becomes

d PA(e0, e1, . . . , en, x) =∑n
i=0(−1)i PA(e0, . . . , êi , . . . , en, x)− PA(e0, . . . , en)

= (−1)n/2
[
(−1)k −∑k

i=1(−1)i +∑n
i=k+1(−1)i − 1

]

which vanishes indeed; we used throughout that n is even. ��
Alternate proof of Proposition 3.7 The proposition can also be derived without any
computation if one uses the (independent) fact that there has to be some L∞-cocycle,
as follows from the boundedness of the Euler class in light of arguments given in the
proof of Theorem 7.1. More precisely, writing G = GLn(R), the latter theorem (see
also [21]) shows that the bounded cohomology H•

b(G,Rε) is realized by the complex

0 −→ L∞ (P
(
Rn) ,Rε

)G −→ L∞ (P
(
Rn)2 ,Rε

)G −→ · · · .

123



530 M. Bucher, N. Monod

Furthermore, we know from [17] that the Euler class can be represented by a bounded
cocycle, and hence Hn

b(G,Rε) �= 0. Combined, this implies that there exists at least

one G-equivariant cocycle in L∞
(

P (Rn)n+1 ,Rε
)G

. Moreover, since G acts transi-

tively on hereditarily spanning (n +1)-tuples, we see that L∞ (P (Rn) ,Rε)G = R, so
that any G-equivariant cochain in L∞ (P (Rn) ,Rε)G has to be a cocycle (and almost
everywhere a multiple of PA). In particular, d PA vanishes almost everywhere.

The sets Hk of hereditarily spanning k-tuples are open dense in (Rn)k for k ≥ n
and preserved under omitting variables as long as at least n variables are left, that is
as long as k ≥ n + 1. Therefore, since Or is locally constant on Hn , we deduce that
PA and d PA are locally constant on Hn+1 and Hn+2. Since d PA vanishes almost
everywhere, it now follows that it vanishes everywhere on Hn+2. ��

Yet another viewpoint will emerge in Sect. 8.

4 A cocycle on the flag space

We have seen that PA cannot be promoted to be a true cocycle on the projective
space (Proposition 3.2). We shall remedy this situation by blowing up the singular
(non-hereditarily-spanning) locus and working with complete oriented flags. By an
iterative deformation construction, this leads to a cocycle Aor in Theorem 4.3 below.
An added benefit is that our modified cocycle Aor will take only the values ±1. We
then deflate this cocycle to the usual flag space, still keeping the same values as PA
on the hereditarily spanning tuples.

Denote by F(Rn) the set of complete flags F in Rn ,

F : F0 = {0} ⊂ F1 ⊂ . . . ⊂ Fn−1 ⊂ Fn = Rn,

where each Fi is an i-dimensional subspace of Rn . The set For (Rn) of complete
oriented flags consists of complete flags F where each Fi is furthermore endowed
with an orientation. Equivalently, each Fi is given together with the choice of an open
half space

(
Fi
)+

bounded by Fi−1. The positive orientation on Fi will then be deter-
mined by any basis (v1, . . . , vi−1, x), where (v1, . . . , vi−1) is a positively oriented
basis of Fi−1 and x ∈ (Fi

)+
. Note that For (Rn) is a 2n-cover of F (Rn).

Let k ∈ {0, 1, . . . , n − 1}, let W be a k-dimensional oriented subspace of Rn and
let F ∈ For (Rn) be a complete oriented flag. Define a (k + 1)-dimensional oriented
subspace [W, F] of Rn as follows: Let d be the unique integer 1 ≤ d ≤ k + 1 with

Fd−1 ⊂ W and Fd � W.

Define [W, F] to be the subspace of Rn generated by W and Fd , endowed with the
orientation given by (w1, . . . , wk, x), where (w1, . . . , wk) is a positively oriented
basis of W and x ∈ (Fd

)+
.

Given complete oriented flags F1, . . . , Fk ∈ For (Rn), we define a k-dimensional
oriented vector space [F1, . . . , Fk] inductively as follows: For k = 1, let [F1] = F1

1 .
For k > 1, let [F1, . . . , Fk] = [[F1, . . . , Fk−1], Fk].
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Remark 4.1 If the lines F1
i are linearly independent, then simply [F1, . . . , Fk] =

〈F1
1 , . . . , F1

k 〉. At the other extreme, if all Fi are the same oriented flag F ∈ For (Rn),
then [F, . . . , F] = Fk .

We are now ready to introduce our two-valued cocylce. We define

Aor : (For (Rn))n+1 −→ {−1, 1}, Aor(F0, . . . , Fn) =
n∏

i=0

Or([F0, . . . , F̂i , . . . , Fn]).

Lemma 4.2 Aor is GLn(R)-equivariant.

Proof This follows from [gF1, . . . , gFn] = g[F1, . . . , Fn] and Or(g[F1, . . . , Fn]) =
ε(g) · Or([F1, . . . , Fn]) for g ∈ GLn(R). ��

We shall prove that Aor is indeed a cocycle:

Theorem 4.3 d Aor(F0, . . . , Fn+1) = 0 for any F0, . . . , Fn+1 ∈ For (Rn).

The idea of the proof, which will be completed after the somewhat technical
Proposition 4.5 below, is as follows: If the flagstaffs of the flags F0, ..., Fn+1 are
hereditarily spanning, then d Aor(F0, . . . , Fn+1) is equal to d PA evaluated on the flag-
staffs, and hence vanishes in view of the cocycle relation proved in Proposition 3.7.
If the flagstaffs are not hereditarily spanning, then Proposition 4.5 will allow us to
perturb the flags slightly to obtain hereditarily spanning flagstaffs (more precisely, we
only keep track of the perturbation of the flagstaff, and not of the whole flag) without
changing the value of any of the summand in d Aor(F0, . . . , Fn+1). We begin with a
simple lemma.

Lemma 4.4 Let V1, . . . , Vq be (n − 1)-dimensional oriented subspaces of Rn, where
q ∈ N is arbitrary. For any F ∈ For (Rn) there exists x ∈ Rn \⋃q

i=1 Vi such that

Or (Vi ⊕ 〈x〉) = Or([Vi , F]),

for every 1 ≤ i ≤ q.

Proof Let x1, . . . , xn ∈ Rn be a sequence of points xd ∈ (Fd)+ with the following
property: For every 1 ≤ i ≤ q, the intersection of Vi with the affine segment [xd−1, xd ]
is either empty, equal to {xd−1} or to the whole segment. Let us prove by induction that
such a sequence exists: For d = 1, take any x1 ∈ (F1)+. Suppose that x1, . . . , xd−1
have been constructed. Let U be a convex neighbourhood of xd−1 such that, for every
1 ≤ i ≤ q, if Vi ∩U �= ∅, then xd−1 ∈ Vi . Any xd ∈ U ∩(Fd)+ will work, noting that
U ∩ (Fd)+ �= ∅ since xd−1 ∈ (Fd−1)+ ⊆ (Fd)+, or more precisely, xd−1 belongs to
the boundary of the half space (Fd)+.

To prove the lemma, it suffices to take x = xn . Indeed, for every 1 ≤ i ≤ q, let di

be such that Fdi −1 ⊂ Vi and Fdi � Vi . Then, by definition, for any y ∈ (Fdi
)+

, and
in particular for xdi ∈ (Fdi )+

Or([Vi , F]) = Or(Vi ⊕ 〈y〉) = Or(Vi ⊕ 〈xdi 〉).
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As xdi /∈ Vi , the points xdi , xdi +1, . . . , xn do by construction all lie on the same
half space with respect to Vi , so that

Or(Vi ⊕ 〈xdi 〉) = Or(Vi ⊕ 〈xdi +1〉) = . . . = Or(Vi ⊕ 〈xn〉),

which finishes the proof of the lemma. ��

Observe that x could be any point in the same connected component of Rn\⋃i Vi

as xn . This is the unique connected component C such that the intersection C ∩ (Fd)+
is non-empty for every 1 ≤ d ≤ n.

Proposition 4.5 Let F0, . . . , Fn+1 ∈ For(Rn) be complete oriented flags. There exist
x0, . . . , xn+1 ∈ Rn such that

Or([F0, . . . , F̂i , . . . , F̂j , . . . , Fn+1]) = Or(x0, . . . , x̂i , . . . , x̂ j , . . . , xn+1)

for every 0 ≤ i < j ≤ n + 1.

Proof We will prove the following claim by downwards induction on k, starting with
k = n and going down to k = −1. The latter case proves the proposition.

Claim There exist xk+1, . . . , xn+1 such that Or([F0, . . . , F̂i , . . . , F̂j , . . . , Fn+1])
equals

Or([F0, . . . , F̂i , . . . , F̂j , . . . , Fk] ⊕ 〈xk+1, . . . , xn+1〉) for 0 ≤ i < j ≤ k,

Or([F0, . . . , F̂i , . . . , Fk] ⊕ 〈xk+1, . . . , x̂ j , . . . , xn+1〉) for 0 ≤ i ≤ k < j ≤ n + 1,

Or([F0, . . . , Fk] ⊕ 〈xk+1, . . . , x̂i , . . . , x̂ j , . . . , xn+1〉) for k + 1 ≤ i < j ≤ n + 1.

Proof of the claim. For the case k = n, we apply Lemma 4.4 to the family of oriented
(n − 1)-dimensional subspaces

[F0, . . . , F̂i , . . . , F̂j , . . . , Fn] (i < j ≤ n)

together with the oriented flag Fn+1 to find xn+1 ∈ Rn such that

Or([F0, . . . , F̂i , . . . , F̂j , . . . , Fn] ⊕ 〈xn+1〉)
= Or([F0, . . . , F̂i , . . . , F̂j , . . . , Fn, Fn+1]).

Next, we suppose inductively that the claim is true for k and establish it for k − 1.
The inductive assumption implies in particular that none of xk+1, . . . , xn+1 belongs to
the subspace [F0, . . . , F̂i , . . . , F̂j , . . . , Fk] in case i < j ≤ k, and a similar statement
for the subspaces [F0, . . . , F̂i , . . . , Fk] and [F0, . . . , Fk] in the two other cases.

123



The norm of the Euler class 533

Let Vi j denote the oriented (n − 1)-dimensional subspaces

[F0, . . . , F̂i , . . . , F̂j , . . . , Fk−1] ⊕ 〈xk+1, . . . , xn+1〉, for 0 ≤ i < j ≤ k − 1,

[F0, . . . , F̂i , . . . , Fk−1] ⊕ 〈xk+1, . . . , x̂ j , . . . , xn+1〉,
for 0 ≤ i ≤ k − 1, k + 1 ≤ j ≤ n + 1,

[F0, . . . , Fk−1] ⊕ 〈xk+1, . . . , x̂i , . . . , x̂ j , . . . , xn+1〉, for k + 1 ≤ i < j ≤ n + 1.

Apply Lemma 4.4 to the subspaces Vi j and the oriented flag Fk to find xk such that

Or(Vi j ⊕ 〈xk〉) = Or(
[
Vi j , Fk

]
).

We now have, for 0 ≤ i < j ≤ k − 1,

Or([F0, . . . , F̂i , . . . , F̂j , . . . , Fk−1] ⊕ 〈xk, xk+1, . . . , xn+1〉)
= (−1)n+1−k Or(Vi j ⊕ 〈xk〉) = (−1)n+1−k Or(

[
Vi j , Fk

]
)

= (−1)n+1−k Or([[F0, . . . , F̂i , . . . , F̂j , . . . , Fk−1] ⊕ 〈xk+1, . . . , xn+1〉, Fk])
= Or([F0, . . . , F̂i , . . . , F̂j , . . . , Fk−1, Fk] ⊕ 〈xk+1, . . . , xn+1〉)
= Or([F0, . . . , F̂i , . . . , F̂j , . . . , Fn+1]),

where the last equality is our induction hypothesis. For the penultimate equality, in
order to permute 〈xk+1, . . . , xn+1〉 with Fk , we have used that xk+1, . . . , xn+1 do
not belong to the subspaces [F0, . . . , F̂i , . . . , F̂j , . . . , Fk]; in particular, the relevant
d-component Fd

k of Fk involved in the definition of [. . . , Fk] on both sides of that
equality remains the same.

The two cases with j ≥ k are proved almost identically (a difference is the sign of
the factor (−1)n+1−k). We have thus proved the claim and the proposition. ��
Proof of Theorem 4.3 Let F0, . . . , Fn+1 be oriented flags in Rn . By Proposition 4.5
there exists x0, . . . , xn+1 such that

Or([F0, . . . , F̂i , . . . , F̂j , . . . , Fn+1]) = Or(x0, . . . , x̂i , . . . , x̂ j , . . . , xn+1)

for every 0 ≤ i < j ≤ n + 1. In particular, x0, . . . , xn+1 is hereditarily spanning and
furthermore

Aor(F0, . . . , F̂i , . . . , Fn+1) = PA(x0, . . . , x̂i , . . . , xn+1)

for every 0 ≤ i ≤ n + 1. The theorem now follows from the validity of the
cocycle relation d PA = 0 for hereditarily spanning (n + 1)-tuples proved in
Proposition 3.7. ��

Finally, we define the map

A : (F (Rn))n+1 −→ [−1, 1], A(F0, . . . , Fn) = 2−n(n+1)
∑

Aor(F ′
0, . . . , F ′

n)

where the sum ranges over all oriented flags F ′
i having Fi as underlying flag.
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Corollary 4.6 The map A is a cocycle (d A = 0 everywhere) and is GLn(R)-equi-
variant. Moreover, A(F0, . . . , Fn) = PA

(
F1

0 , . . . , F1
n

)
as soon as

(
F1

0 , . . . , F1
n

)
is

hereditarily spanning.

In other words, denoting by h : F (Rn) → P (Rn) the flagstaff projection h(F) =
F1, we have A = h∗ PA on all (n + 1)-tuples with hereditarily spanning image in
P (Rn)n+1.

Proof of Corollary 4.6 If f is any function on (For (Rn))p+1 , p ≥ 0, we define the
deflation defl( f ) on (F (Rn))p+1 by the average

defl( f )(F0, . . . , Fp) = 2−n(p+1)
∑

f (F ′
0, . . . , F ′

p)

overall oriented representatives F ′
i of the flags Fi . Thus, A = defl(Aor). The def-

inition ensures d ◦ defl = defl ◦ d and moreover defl commutes with the diag-
onal PGLn(R)-actions. Therefore, the main statement is a direct consequence of
Theorem 4.3. As for the additional claim, it follows from the definition of Aor,
Remark 4.1 and Lemma 3.6. ��

5 Vanishing of coboundaries

Given a basis (w1, . . . , wn) of Rn , define F(w1, . . . , wn) ∈ F (Rn) to be the complete
flag

{0} ⊂ 〈w1〉 ⊂ 〈w1, w2〉 ⊂ . . . ⊂ 〈w1, . . . , wi 〉 ⊂ . . . ⊂ 〈w1, . . . , wn〉 = Rn .

Lemma 5.1 Let F0, . . . , Fn ∈ F(Rn) be the complete flags

F0 = F(e0, e1, . . . , en−1),

F1 = F(e1, e2, . . . , en),

Fi = F(ei , ei+1, . . . , en, e0, . . . , ei−2), for 2 ≤ i ≤ n.

If a cochain b : (F (Rn))n → Rε is PGLn(Z)-equivariant, then

db(F0, . . . , Fn) = 0.

Proof We shall show that for each 0 ≤ i ≤ n, there exists gi ∈ GLn(Z) with
det(gi ) = −1 such that gi Fj = Fj for every j �= i . The lemma follows since

b(F0, . . . , F̂i , . . . , Fn) = −b(gi F0, . . . , ĝi Fi , . . . , gi Fn) = −b(F0, . . . , F̂i , . . . , Fn)

by equivariance. Taking indices modulo n + 1, the matrix gi is defined so that it fixes
ei+1, . . . , ei−2, sends ei−1 to −ei−1 and maps ei to a linear combination ei ± 2ei−1
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of ei−1 and ei . These properties guarantee that gi fixes the flags Fj for j �= i and has
determinant −1. Explicitly, writing gi in the basis (e1, . . . , en), we can choose

(
Idn−1 0

0 −1

)
,

⎛

⎜
⎜⎜
⎝

−1
−2 1
...

. . .

−2 1

⎞

⎟
⎟⎟
⎠
,

⎛

⎜
⎜
⎝

Idi−2
−1 2
0 1

Idn−i

⎞

⎟
⎟
⎠

for respectively i = 0, i = 1 and 2 ≤ i ≤ n. ��

6 Functoriality and the semi-norm

In this section, we compare two ways to define a bounded cohomology class using
the cocycle A. To keep track of the distinction, we use q to denote the usually implicit
map associating an a.e. function class to a function. The first way is to consider the
cocycle q A in the resolution

0 −→ Rε −→ L∞ (F
(
Rn) ,Rε

) −→ L∞ (F
(
Rn)2 ,Rε

)
−→ · · ·

The cohomology of the (non-augmented) complex of invariants of this resolution is
canonically isometrically isomorphic to H•

b(GLn(R),Rε) thanks to the amenability of
the action on F (Rn), see e.g. [6, Thm. 2]. (We recall that H•

b(GLn(R),Rε) is endowed
with a canonical infimal semi-norm [19, 7.3.1].) Let [q A]b be the corresponding
element of Hn

b(GLn(R),Rε).
The actual value of the semi-norm of [q A]b is not obvious since we have no good

understanding of coboundaries up to null-sets in the above resolution. Therefore, we
use a second approach, considering A as a cocycle on the set F(Rn) so that we can
use Section 5. Comparing the two approaches, we shall obtain:

Theorem 6.1 The semi-norm of [q A]b in Hn
b(GLn(R),Rε) is ‖[q A]b‖ = 1.

Remark 6.2 We shall deduce the proof from a more general discussion because it
might be useful for the study of characteristic classes of other Lie groups. In the spe-
cial case of GLn(R), a minor simplification would be available because the stabiliser
of a complete flag is amenable as abstract group, whilst in general minimal parabo-
lics are only amenable as topological groups. This accounts for our explicit use of a
lattice �, whilst for GLn(R) one could instead work over the discrete group GLn(R)δ

and only use the existence of a lattice to control indirectly the semi-norm in bounded
cohomology for GLn(R)δ .

Let G be a locally compact second countable group, � < G a lattice and V a
coefficient G-module (i.e. V is the dual of a separable continuous isometric Banach
�-module; below, V = Rε). Let P < G be a closed amenable subgroup and endow
G/P with its unique G-quasi-invariant measure class (see e.g. [23, Sect. 23.8]). Denote
by L∞

w∗(G/P, V ) the coefficient G-module of essentially bounded weak-* measur-
able function classes. Recall that a function f : G/P → V is weak-* measurable if
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〈 f (·), u〉 is measurable for any predual vector u, and that G acts simultaneously on
the range V and the domain G/P . Denote by L ∞

w∗(G/P, V ) the Banach G-module
of bounded weak-* measurable functions. (Beware that many authors use the nota-
tion L ∞ for essentially bounded functions and use the corresponding semi-norm. Of
course the two conventions lead to the same quotient L∞ but the distinction is needed
here.) We use

q : L ∞
w∗ −� L∞

w∗, i : L ∞
w∗ ↪−→ �∞.

Let now ω be a cocycle in L ∞
w∗
(
(G/P)n+1, V

)G
. On the one hand, qω determines

an element [qω]b of Hn
b(G, V ) whose canonical semi-norm is realized as the infimal

L∞-norm of all cohomologous elements in L∞
w∗
(
(G/P)n+1, V

)G
; this is a special

case of [6, 2.3.2] or [19, 7.5.3]. On the other hand, we claim that iω determines an
element [iω�]b of Hn

b(�, V ) whose canonical semi-norm is realized as the infimal

�∞-norm of all cohomologous elements in �∞
(
(G/P)n+1, V

)�
. Indeed, the averag-

ing argument of the above references is stated for locally compact second countable
groups with an amenable action on a standard measure space; however, in the case of
a discrete group, it can be repeated verbatim for any amenable action on any set, since
all measurability issues disappear. Therefore, we only need to verify that the �-action
on G/P viewed as a set is amenable, which amounts to the amenability of all isotropy
groups � ∩ g Pg−1 where g ranges over G (this is a degenerate form of Theorem 5.1
in [1]). The latter group being closed in g Pg−1, it is amenable as topological group;
being discrete, it is amenable.

Lemma 6.3 The image of [qω]b under the restriction map Hn
b(G, V ) → Hn

b(�, V )
coincides with [iω�]b.

Proof The restriction can be realized by the inclusion map

L ∞
w∗((G/P)n+1, V )G ↪−→ L ∞

w∗((G/P)n+1, V )�,

see [19, 8.4.2]. Now the lemma follows from the functoriality statements [19, 7.2.4,
7.2.5] applied to the �-resolution L ∞

w∗((G/P)n+1, V ) in comparison to the two
relatively �-injective resolutions L∞

w∗
(
(G/P)n+1, V

)
and �∞

(
(G/P)n+1, V

)
. These

functoriality statements require the existence of a contracting homotopy on the com-
plex L ∞

w∗
(
(G/P)n+1, V

)
, which is provided by evaluation of the first variable on any

given point. ��

Proof of Theorem 6.1 We apply the above discussion to G = PGLn(R), � =
PGLn(Z) and V = Rε ; we let P be the stabiliser of a complete flag (i.e. a mini-
mal parabolic) so that G/P ∼= F (Rn). Now A is measurable and is a G-equivariant
cocycle by Corollary 4.6; in particular Lemma 6.3 holds for ω = A. Since the restric-
tion to any lattice preserves the semi-norm [19, 8.6.2], we conclude

‖[q A]b‖ = ‖[i A�]b‖ = inf
∥∥i A + db

∥∥
�∞ ,
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where b ranges over all bounded PGLn(Z)-equivariant maps b : (F(Rn))n → Rε . By
Lemma 5.1, the coboundary db vanishes on a specific hereditarily spanning (n + 1)-
tuple and A has value ±1 on those tuples by Corollary 4.6. Thus ‖[q A]b‖ = 1. Now
that we established this in the bounded cohomology of PGLn(R), the proposition fol-
lows since the quotient map GLn(R) → PGLn(R) induces an isometric isomorphism
in bounded cohomology [19, 8.5.2]. ��

7 The bounded Euler class

We have worked throughout with the module Rε over the group GLn(R), whilst the
Introduction dealt more classically with the trivial module R over GL+

n (R). Our goal in
this section is to reconcile the viewpoints by deducing Theorem B from the following.

Theorem 7.1 Hq
b (GLn(R),Rε) is one-dimensional for q = n and vanishes for q < n.

Proof that Theorem 7.1 implies Theorem B Let G be a locally compact group with
an index-two closed subgroup G+ < G. On the one hand, we have a decomposition
of the cohomology H•

(b)(G
+,R) (bounded or not) as the sum of the symmetric and

antisymmetric subspaces as described in the Introduction. On the other hand, there
are induction isomorphisms identifying H•

(b)

(
G+,R

)
with the cohomology of G with

values in the module of maps G/G+ → R, which itself is simply R ⊕ Rε as a G-
module (where ε is the unique non-trivial character of G that is trivial on G+). The
two decompositions coincide, and moreover the restriction map

H•
b(G,Rε) −→ H•

b

(
G+,R

)G/G+

is an isometric isomorphism onto the subspace of antisymmetric classes, see [19,
8.8.5]. It follows that the corresponding restriction map in usual cohomology also
preserves the norm. Therefore, Theorem 7.1 implies that the composed map

Hn
b(GLn(R),Rε) −→ Hn(GLn(R),Rε) −→ Hn(GL+

n (R),R)

is an isometric isomorphism onto the subspace of those antisymmetric classes that are
in the image of bounded cohomology. Thus Theorem B follows since E is antisym-
metric and is in the image of bounded cohomology [15,17]. (An examination of the
classical cohomology of GL+

n (R) shows that in fact E generates the antisymmetric
cohomology in degree n, but we shall not need this.) ��

To prove Theorem 7.1, we will appeal to [21]; for other Lie groups, one would try
to use [22].

Proof of Theorem 7.1 We introduce temporarily the following notation. Let G be
GLn(R), let Q < G be the stabiliser of the projective point corresponding to e1 in
P(Rn) and N � Q be the normal subgroup isomorphic to Rn−1 � {±1} given by all
matrices of the form

(±1 v2 . . . vn

0 Idn−1

)
(vi ∈ R)
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We identify G/Q with P(Rn). According to Theorem 5 in [21], H•
b(G,Rε) vanishes

in degrees ≤ n − 1 and is realized in all degrees by the complex

0 −→ L∞(P(Rn),Rε)G −→ L∞(P(Rn)2,Rε)G −→ · · ·

provided three conditions (MI), (MII) and (A) are satisfied (the statement in loc. cit.
does not provide isometric isomorphisms).

Condition (MI) states that the stabiliser in N of a.e. point in P (Rn)n−2 has no non-
zero invariant vector in Rε — which in the case of Rε just means that this stabiliser
should contain an element of negative determinant. The stabiliser in N of any projective
point given by a vector x �= e1 is determined by the equation

∑n
i=2 xivi = (1−±1)x1.

Therefore, choosing −1 to ensure negative determinant, we see that a generic (n −2)-
tuple of points in P (Rn) is stabilised whenever (v2, . . . , vn) is in the intersection of
(n − 2) affine hyperplanes in Rn−1, whose linear parts are generic. Thus there is a
whole affine line of matrices with negative determinant in this stabiliser. This verifies
the condition.

Condition (MII) requires that the stabiliser in G of a.e. point in P (Rn)n has no
non-zero invariant vector in Rε . This is so since for any basis of Rn the stabiliser of
the corresponding projective points is conjugated to the diagonal subgroup.

Condition (A) demands that the G-action on P (Rn)n be amenable in Zimmer’s
sense; this follows from the amenability of the generic stabiliser (which we just iden-
tified as a commutative group) in view of the criterion given in [1, Theorem A] and of
the fact that the action has locally closed orbits. ��

8 Relation to the simplicial cocycles of Sullivan and Smillie

Let us summarize what we established so far. The space Hn
b(GLn(R),Rε) is one-

dimensional and thus generated by a class Eb which maps isometrically to E in
Hn
(
GL+

n (R),R
)

(Sect. 7). On the other hand, Hn
b(GLn(R),Rε) contains the element

[q A]b = [q Aor]b which has norm one (Sect. 6).
Therefore, it remains only to determine the proportionality constant between Eb and

[q Aor]b; both Theorems A and C then follow. We shall do so by describing explicitly
in Proposition 8.4 how Aor relates to the simplicial cocycles constructed by Sullivan
[25] and Smillie [24] for the Euler class of a flat GL+

n (R)-bundle over a simplicial
complex. At the end of the section, we explain the relation with the Ivanov–Turaev
cocycle [17].

We start by recalling the constructions of Sullivan and Smillie. Let ξ be a flat
GL+

n (R)-bundle over the geometric realization |K | of a finite simplicial complex K .
Let V be the corresponding oriented n-vector bundle over |K |. Since the bundle V is
trivial if and only if there exists n linearly independent sections, it is natural to start by
finding one non-vanishing section. It is always possible to define such a section s on
the (n − 1)-skeleton of K because πi (Rn\{0}) is trivial for 0 ≤ i ≤ n − 2. However,
this section may not be extensible to the n-skeleton of K . Thus, one defines a simpli-
cial n-cochain on K by assigning to every oriented n-simplex k of K the integer in
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Z ∼= πn−1
(
Sn−1

)
defined as the degree of the map

Sn−1 � ∂k
s−−→ Rn\{0} � Sn−1,

where we chose an orientation-preserving trivialization V |k ∼= |k| × Rn . Since the
vector bundle V is oriented, this construction is well defined; it yields a cocycle
representing the Euler class in Hn

simpl(K ,Z).
Sullivan [25] observed that when the bundle ξ is flat, the section s can be chosen

to be affine on each (n − 1)-simplex of K . Thus, the map Sn−1 → Sn−1 can wrap at
most once around the origin, so that the resulting cocycle E simpl

Sullivan(s) takes values in
{−1, 0, 1}.

Smillie later improved Sullivan’s bounds as follows [24]: The locally affine section
only depends on its values on the vertices x1, . . . , xr of K . Choosing non-vanishing
vectors vi in the fiber over xi hence defines a section s = s(v1, . . . , vr ), which in the
generic case will be a non-vanishing section on the (n − 1)-skeleton. One can then
form the average

E simpl
Smillie(s) = 2−r

∑

σi =±1

E simpl
Sullivan(s(σ1v1, . . . , σrvr ))

over all sign choices. This improves Sullivan’s bound by a factor 2n because the value
at any given simplex only depends on the n + 1 signs of the corresponding vertices,
and exactly two of these sign combinations contribute non-trivially.

The cocycles of Sullivan and Smillie also admit the following alternative descrip-
tion. Define a map ESullivan : (Rn)n+1 → Rε as follows: ESullivan(v0, . . . , vn) van-
ishes if 0 is not contained in the interior of the convex hull of v0, . . . , vn ; in particular
ESullivan vanishes on non hereditarily spanning vectors. If 0 does belong to the interior
of the convex hull of v0, . . . , vn , then set

ESullivan(v0, . . . , vn) = (−1)i Or(v0, . . . , v̂i , . . . , vn),

where i is arbitrary in {0, . . . , n}; since 0 belongs to the interior of the convex hull,
this definition is independent of i . Clearly, ESullivan is GLn(R)-equivariant and alter-
nating. Observe that the evaluation of Sullivan’s simplicial cocycle E simpl

Sullivan(s) on an
n-simplex with vertices xi0 , . . . , xin can be rewritten as

E simpl
Sullivan(s)(〈xi0 , . . . , xin 〉) = ESullivan(ψs(xi0), . . . , ψs(xin )),

where ψ : V |〈xi0 ,...,xin 〉 ∼= 〈xi0 , . . . , xin 〉 × Rn → Rn is any (orientation preserving)
trivialization over 〈xi0 , . . . , xin 〉 followed by the canonical projection.

The fact that E simpl
Sullivan(s) is a cocycle for s generic—well known from obstruction

theory—can easily be proved directly under the above identification:
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Proposition 8.1 Let v0, . . . , vn+1 ∈ Rn be hereditarily spanning. Then

d ESullivan(v0, . . . , vn+1) = 0.

Proof We can assume that there is some i with ESullivan(v0, . . . , v̂i , . . . , vn+1) �= 0.
Since ESullivan is alternating, so is d ESullivan and we can without loss of generality
suppose that ESullivan(v1, . . . , vn+1) �= 0. Define cones Ci in Rn by

Ci =

⎧
⎪⎪⎨

⎪⎪⎩
−

n+1∑

j=1
j �=i

t jv j : t j > 0

⎫
⎪⎪⎬

⎪⎪⎭
. (1 ≤ i ≤ n + 1)

Since ESullivan(v1, . . . , vn+1) �= 0, the cones Ci are open, disjoint, and their closures
cover Rn . Indeed, the affine simplex with vertices −v1, . . . ,−vn+1 (also) contains 0
and Ci is the open cone defined by the face with vertices −v1 . . . , −̂vi , . . . ,−vn+1.

It now remains to see where the point v0 ∈ Rn belongs to. We first show that v0
does not belong to the boundary of any of the Ci ’s. Indeed, if this were the case, then v0
would be a linear combination of strictly less than n of the vectors v1, . . . , vn+1, which
would contradict the assumption that the vectors are hereditarily spanning. Thus, there
exists a unique j ∈ {1, . . . , n + 1} such that v0 ∈ C j . Observe that

v0 ∈ Ci ⇐⇒ ESullivan(v0, v1, . . . , v̂i , . . . , vn+1) �= 0,

so that the cocycle relation simplifies to

d ESullivan(v0, . . . , vn+1)

= ESullivan(v1, . . . , vn+1)+ (−1) j ESullivan(v0, . . . , v̂ j , . . . , vn+1)

= (−1) j−1 Or(v1, . . . , v̂ j , . . . , vn+1)+ (−1) j Or(v1, . . . , v̂ j , . . . , vn+1) = 0.
��

Smillie’s improvement [24] on the Milnor–Sullivan bounds suggests to consider
the average of ESullivan over all possible sign changes. It is straightforward to check
that the resulting map descends to the projective space and retains the other desirable
properties:

Lemma 8.2 The map ESmillie : (P (Rn))n+1 → Rε defined by

ESmillie(v0, . . . , vn) = 2−(n+1)
∑

σi =±1

ESullivan(σ0v0, . . . , σnvn)

is GLn(R)-equivariant and its coboundary vanishes on hereditarily spanning (n +2)-
tuples. ��

It is also easy to check that for vi = ei the only non-zero summands are
ESullivan(−e0, e1, . . . , en) = 1 and ESullivan(e0,−e1, . . . ,−en) = 1. Therefore,
recalling that PA(e0, e1, . . . , en) = (−1)n/2, Lemma 8.2 and Proposition 3.1 imply:
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Corollary 8.3 We have

PA(v0, . . . , vn) = (−1)n/2 2n ESmillie(v0, . . . , vn)

for all vi ∈ Rn. ��
(Nota bene: Lemma 8.2 and Corollary 8.3 give a third proof of Proposition 3.7.)

At this point it is apparent that we are ready to exhibit a proportionality relation
between the class [q PA] in ordinary (continuous) cohomology defined by the L∞-
cocycle q PA = q A = q Aor and the Euler class of flat bundles:

Proposition 8.4 Let V be a flat oriented n-vector bundle over a finite simplicial com-
plex K induced by a representation π1(|K |) → GL+

n (R). Then the resulting map

Hn(GL+
n (R),R) −→ Hn

simpl(K ,R)

sends (−1)n/22−n[q PA] to the (real) Euler class E(V ) of the bundle V .

Furthermore, we will explain in the proof how this map can be realized on cochains
to yield E simpl

Smillie(s) for an appropriate locally affine section s. At the singular level,
this means that for any generic affine section, we can find a classifying map |K | →
BGL+

n (R)
δ for the flat bundle V over |K | such that Aor maps to (−1)n/22n E simpl

Smillie
by pull-back.

Corollary 8.5 The cocycle q PA represents (−1)n/22n times the bounded Euler class
Eb in Hn

b(GLn(R),Rε). Therefore, [q PA] = (−1)n/22nE in Hn(GL+
n (R),R).

Proof Since Hn(GLn(R),Rε) is one-dimensional, it suffices in view of Proposi-
tion 8.4 to find one flat bundle over some n-dimensional finite simplicial complex
with non-trivial Euler class. For this, take a product of n/2 copies of such a 2-dimen-
sional flat bundle over a surface of genus g. Such 2-dimensional flat bundles were
exhibited by Milnor [18]. ��

Proof of Theorem C Since q PA =q A =q Aor, Theorem C follows from Theorem 4.3
and Corollary 8.5. ��
Proof of Theorem A We apply successively Theorem B, Corollary 8.5 and
Theorem 6.1:

‖E‖ = ‖Eb‖ = 2−n‖[q PA]‖b = 2−n‖[q A]‖b = 2−n .

��
Proof of Proposition 8.4 It is convenient to use a.e. cocycles since it allows to define
the class [q PA] = [q Aor] with the much simpler function PA. However, in order
to implement explicit cochains maps, we shall need a true cocycle (this reflects the
fact that the map in the statement factors through GL+

n (R)
δ). Therefore, we realize

H•(GL+
n (R),R) using the resolution Bor

(
GL+

n (R)
•+1
)

by Borel maps, see [27]. The
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cocycles A and Aor thus represent classes [A], [Aor] which coincide with [q PA] in
Hn(GL+

n (R),R) (this follows e.g. since the inclusion of continuous cochains into
a.e. cochains factors through Bor and induces isomorphisms; as it turns out, we will
evaluate Aor at generic points only anyway).

Next, we describe on the cochain level how a representation � : π1(|K |) →
GL+

n (R) induces a map �∗ : H•(GL+
n (R),R) → H•

simpl(K ,R); this amounts to
an explicit implementation of the classifying map. Given a vertex x of K , let Ux be a
neighbourhood of the closure of the star at x , small enough so that Ux is contractible.
Recall that the star at x is the union of all the open simplices having x as a vertex, so
that Ux contains all the closures of these simplices. Let

ϕx : V |Ux −→ Ux × Rn

be any trivialization of the flat bundle V over Ux and, for x, y ∈ K 0, denote by
gxy : Ux ∩ Uy → GL+

n (R) the corresponding transition functions given by

ϕxϕ
−1
y (z, v) = (z, gxy(z)v),

for z ∈ Ux ∩ Uy and v ∈ Rn . Then �∗ is induced at the cochain level by the map

�∗
ϕ : Bor

(
GL+

n (R)
•+1
)GL+

n (R) −→ C•
simpl(K )

that sends a GL+
n (R)-invariant cochain D to the simplicial cochain whose value on a

simplex with vertices x0, . . . , xq is

�∗
ϕ(D)(〈x0, . . . , xq〉) = D(gi0, . . . , giq),

where gi j ∈ GL+
n (R) is the value of the transition function gxi x j on the connected

component of Uxi ∩ Ux j containing 〈x0, . . . , xq〉. In view of the cocycle relations of
the transition functions and the fact that D is GL+

n (R)-invariant, the definition does
not depend on i .

Returning to Smillie’s cocycle, choose s(x) ∈ V |{x} for every vertex x so that the
resulting locally affine section is nowhere vanishing on the (n − 1)-skeleton. Pick
0 �= v ∈ Rn and choose trivializations

ϕx : V |Ux −→ Ux × Rn

such that

ϕx (s(x)) = (x, v).

Such trivializations are obtainable by composing, over every Ux , any given trivializa-
tion with an appropriate transformation of GL+

n (R). Smillie’s cocycle is given by

E simpl
Smillie(s)(〈x0, . . . , xq〉) = ESmillie(ψs(x0), . . . , ψs(xn)), (*)
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where ψ : V |〈x0,...,xq 〉 → 〈x0, . . . , xq〉 × Rn → Rn is given by any trivialization of
V |〈x0,...,xq 〉, in particular by the restriction of ϕx0 to 〈x0, . . . , xq〉, so that (∗) can be
rewritten as

ESmillie(v, g01v, . . . , g0nv)

which in turn is by definition equal to

�∗
ϕ

(
(−1)n/22−n Aor

)
(〈x0, . . . , xq〉).

This finishes the proof of the proposition. ��
Finally, we comment on the relation with the cocycle constructed by Ivanov–

Turaev in [17]. Expressed in the homogeneous bar resolution, the Ivanov–Turaev
cocycle becomes the following map:

I T (g0, . . . , gn) =
∫

Bn+1

ESullivan(g0v0, . . . , gnvn) dv0 . . . dvn, (gi ∈ GLn(R))

where B is the unit ball in Rn with normalised measure. In fact they considered
GL+

n (R) but this is equivalent since these classes are antisymmetric.

Proposition 8.6 The class [I T ]b ∈ Hn
b(GLn(R),Rε) defined by I T coincides with

(−1)n/2 2−n[q PA]b.

Proof The above integral representation of I T can be rewritten as

I T (g0, . . . , gn) =
∫

P(Rn)n+1

ESmillie(g0v0, . . . , gnvn) dv0 . . . dvn,

where now dvi is the normalised measure on the projective space. By Corollary 8.3,

(−1)n/2 2n I T (g0, . . . , gn) =
∫

P(Rn)n+1

PA(g0v0, . . . , gnvn) dv0 . . . dvn .

The latter integral is the Poisson transform of PA, or more precisely of the pull-back
of PA to F (Rn)n+1, since F (Rn) is a Poisson boundary for GLn(R) (see [13]). It is a
general property of Poisson transforms that this class coincides with [q A]b in bounded
cohomology, see [19, 7.5.8]. ��

Ivanov–Turaev proved [I T ] = E in [17]. Their proof is based on an analogue of
Proposition 8.4 for the cocycle I T , see Theorem 2 (finite case) in [17]. In light of
Proposition 8.6, the two approaches are essentially equivalent. Therefore, we could
have avoided the explicit proof of Proposition 8.4 and Corollary 8.5 by first estab-
lishing Proposition 8.6 and then quoting [17]. Conversely, Corollary 8.5 yields an
alternative proof that the Ivanov–Turaev cocycle represents the Euler class.
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