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Abstract We study BMO spaces associated with semigroup of operators on
noncommutative function spaces (i.e. von Neumann algebras) and apply the results
to boundedness of Fourier multipliers on non-abelian discrete groups. We prove an
interpolation theorem for BMO spaces and prove the boundedness of a class of Fourier
multipliers on noncommutative L p spaces for all 1 < p < ∞, with optimal constants
in p.
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0 Introduction

The theory of semigroups provides a good framework of studying classical questions
from harmonic analysis in a more abstract setting. Our research is particularly moti-
vated by E. Steins’ results on Fourier multipliers on L p spaces and Littlewood-Paley
theory for the Laplace-Beltrami operators on compact groups. Our aim is to study
BMO spaces which are intrinsically defined by a (some kind of heat-) semigroup
and prove fundamental interpolation results. In particular, we want to give a positive
answer to the following
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692 M. Junge, T. Mei

Problem 0.1 Let (Tt ) be a standard semigroup of selfadjoint positive operators on
an (abstract) functions space L∞(�). Let A be its infinitesimal generator. Is there a
B M O space such that

(a) B M O serves as an endpoint of interpolation, i.e. [B M O, L1(�)] 1
p

= L p(�);

(b) The imaginary powers Ais, s ∈ R extend to bounded operators from L∞(�) to
B M O.

(c) The estimates in (b) are universal. In particular, the constants involved are dimen-
sion free for all the classical heat semigroups on � = R

n.

We should expect much more singular integral operators for abstract semigroups
instead of the imaginary powers mentioned in (b). However, it seems that even in the
commutative theory such a B M O space has not yet been identified. An advantage
of such a theory is that it provides a natural framework for good, or even optimal
dimension free estimates, for Fourier multipliers. Our results apply not only in the
commutative, but also in the noncommutative setting (i.e. replacing L∞(�) by a
von Neumann algebra).

Indeed, BMO spaces, once they can be appropriately defined, provide a very effi-
cient tool in proving results on Fourier-multipliers. BMO spaces associated with semi-
groups on commutative functions spaces have been studied in [44,48] and very recently
in [6,7]. Here ‘commutative function space’ means that the semigroups of operators
under investigation are defined on some L∞(�). Note that L∞(�) is the prototype
of a commutative von Neumann algebra. Even in this commutative setting a general
theory of BMO spaces defined intrinsically by the semigroup is far from established.

On the other hand, BMO spaces have been extended to noncommutative function
spaces (i.e. von Neumann algebras) in various cases. Let us refer to the seminal work
on martingales in [13,21,30,37] and [36], and to [26,32] and [3] for work on operator-
or matrix-valued functions. In [27] a first approach towards a H1 − B M O duality
associated with semigroups of operators on von Neumann algebras has been obtained,
whereas a duality theory for Averson’s subdiagonal algebras is studied in [31].

As in the commutative case, BMO boundedness and interpolation usually gives
optimal or at least very good estimates for singular integral operators on L p. The
use of BMO spaces also turns out to be crucial when reducing results on group
von Neumann algebras to the semicommutative setting, see [15]. Let us describe one
of our main results. Let N be a von Neumann algebra with a normal trace τ satisfying
τ(1) = 1, i.e. (N , τ ) is a noncommuative probability space. Let (Tt ) be semigroup of
completely positive maps on N such that τ(Tt (x)) = τ(x) and Tt (1) = 1. Then we
define the B M Oc column norm by

‖x‖B M Oc(T ) = sup
t

‖Tt |x − Tt x |2‖1/2

and ‖x‖B M O(T ) = max{‖x‖B M Oc(T ), ‖x∗‖B M Oc(T )}. The norm ‖x‖B M Or (T ) =
‖x∗‖B M Oc(T ) is called the row B M O norm and the need of both such norms is well-
known from martingale theory.
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BMO spaces associated with semigroups of operators 693

Theorem 0.2 Assume that Tt is a standard semigroup of completely positive maps on
N and (Tt ) admits a Markov dilation. Then

[B M O(T ), L1(N )] 1
p

= L p(N )

for 1 < p < ∞.

We investigate other possible intrinsic choices for B M O-norms and compare them.
These results are applied to BMO-boundedness of Fourier multipliers on non-abelian
discrete groups. We obtain their corresponding L p-boundedness with optimal con-
stants. Basic examples of Fourier multipliers in this article are noncommutative ana-
logues of E. Stein’s imaginary power (−�)iγ (see Theorem 3.7 in Example 3.5) and
noncommutative analogues of P. A. Meyer’s generalized Riesz transforms (see The-
orem 4.8). A further application of our results gives optimal constants in Junge/Xu’s
noncommutative maximal ergodic inequality (see [22]). Many of our results are new
even in the commutative setting. In particular, our constants of the L p bounds of Stein’s
universal Fourier multipliers are better than those obtained by Stein [40] and Cowling
[5] (see Remark 5.6).

1 Preliminaries and notation

1.1 Noncommutative L p spaces

Let N be a von Neumann algebra equipped with a normal semifinite faithful trace τ .
Let S+ be the set of all positive f ∈ N such that τ(supp( f )) < ∞, where supp(x)
denotes the support of f , i.e. the least projection e ∈ N such that e f = f . Let SN
be the linear span of S+. Note that SN is an involutive strongly dense ideal of N . For
0 < p < ∞ define

‖ f ‖p = (
τ
(| f |p))1/p

, x ∈ SN ,

where | f | = ( f ∗ f )1/2, the modulus of x . One can check that ‖ · ‖p is a norm or
p-norm on SN according to p ≥ 1 or p < 1. The corresponding completion is the
noncommutative L p-space associated with (N , τ ) and is denoted by L p(N ). By con-
vention, we set L∞(N ) = N equipped with the operator norm ‖ · ‖. The elements of
L p(N ) can be also described as measurable operators with respect to (N , τ ). We refer
to [38] for more information and for more historical references on noncommutative
L p-spaces. In the sequel, unless explicitly stated otherwise, N will denote a semifinite
von Neumann algebra and τ a normal semifinite faithful trace on N . We will simplify
L p(N ) as L p and the corresponding norms as ‖ · ‖p.

We say an operator T on N is completely contractive if T ⊗ In is contractive on
N ⊗ Mn for each n. Here, Mn is the algebra of n by n matrices and In is the identity
operator on Mn . We say an operator T on M is completely positive if T ⊗ In is positive
on N ⊗ Mn for each n. We will need the following Kadison–Schwarz inequality for
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694 M. Junge, T. Mei

unital completely positive contraction T on L p(N ),

|T ( f )|2 ≤ T
(
| f |2

)
, ∀ f ∈ L p(N ). (1.1)

1.2 Standard noncommutative semigroups

Throughout this article we will assume that (Tt ) is a semigroup of completely posi-
tive maps on a semifinite von Neumann algebra N satisfying the following standard
assumptions

(i) Every Tt is a normal completely positive maps on N such that Tt (1) = 1;
(ii) Every Tt is selfadjoint with respect to the trace τ , i.e. τ(Tt ( f )g) = τ( f Tt (g));

(iii) The family (Tt ) is strongly continuous, i.e. limt→0 Tt f = f with respect to the
strong topology in N for any f ∈ N .

Let us note that (i) and (ii) imply that τ(Tt x) = τ(x) for all x , so Tt ’s are faith-
ful and are contractive on L1(N ). By interpolation, Tt ’s extend to contractions on
L p(N ), 1 ≤ p < ∞ and satisfy limt→0 Tt x = x in L p(N ) for all x ∈ L p(N ). (see
[22] for details). Some of these conditions can be weakened, but this is beyond the
scope of this article.

Let us recall that such a semigroup admits an infinitesimal (negative) generator A
given as A f = limt→0 t−1( f − Tt ( f )) defined on dom(A) = ∪1≤p≤∞ dom p(A),
where

dom p(A) =
{

f ∈ L p(N ); lim
t→0

t−1(Tt ( f )− f ) converges in L p(N )

}
.

It is easy to see that 1
s

∫ s
0 Tt ( f )dt ∈ dom p(A) for any s > 0, f ∈ L p(N ), so dom p(A)

is dense in L p(N ). Denote by Ap the restriction of A on dom p(A). Under our assump-
tions (i)–(iii), A2 is a positive (unbounded) operator. ApTt = Tt Ap = − ∂Tt

∂t extend
to a (same) bounded operator on L p(N ) for all t > 0, 1 ≤ p ≤ ∞. Therefore,
Ts( f ) ∈ dom p(A) for any f ∈ L p(N ), 1 ≤ p ≤ ∞.

For a standard semigroup Ts (generated by A), we may consider the subordinated

Poisson semigroupP = (Pt )t≥0 defined by Pt = exp(−t A
1
2 ). (Pt ) is again a semi-

group of operators satisfying (i)-(iii) above. Note that Pt satisfies (∂2
t − A)Pt = 0.

By functional calculus and an elementary identity, each Pt can be written as (see e.g.
[42]),

Pt = 1

2
√
π

∞∫

0

te− t2
4u u− 3

2 Tudu. (1.2)

The integral on the right hand side of the identity converges with respect to the oper-
ator norm on L p(N ) for 1 ≤ p ≤ ∞. Let us define the gradient form � associated
with Tt ,

2�( f, g) = (
A
(

f ∗) g
)+ f ∗(A(g))− A

(
f ∗g

)
,
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BMO spaces associated with semigroups of operators 695

for f, g with f ∗, g, f ∗g ∈ dom(A). For convenience, we assume that there exists a∗-
algebra A which is weak∗ dense in N such that Ts(A) ⊂ A ⊂ dom(A). This assump-
tion is to guarantee that �(Ts f, Ts g) make senses for f, g ∈ A, which is not easy to
verify in general, although the other form Tt�(Ts f, Ts g) is what we need essentially
in this article and can be read as Tt ((ATs f ∗)Ts g)+Tt (Ts f ∗(ATs g))− ATt (Ts f ∗Ts g)
for any f, g ∈ L p(N ), 1 ≤ p ≤ ∞, s, t > 0. The semigroup (Tt ) generated by A is
said to satisfy the �2 ≥ 0 if

�(Tv f, Tv f ) ≤ Tv�( f, f )

for all v > 0, f ∈ A. It is easy to see�2 ≥ 0 also implies�(Pv f, Pv f ) ≤ Pv�( f, f )
for any v > 0. Denote by the gradient form associated with (Pt )t by �

A
1
2

.

We will need the following Lemma proved in [14,19]. We add a short proof for the
convenience of the reader.

Lemma 1.1 (i) For any f ∈ L p(N ), 1 ≤ p ≤ ∞, s > 0, we have

Ts | f |2 − |Ts f |2 = 2

s∫

0

Ts−t�(Tt f, Tt f )dt.

(ii) For any f ∈ A, we have

�
A

1
2
( f, f ) =

∞∫

0

Pv�(Pv f, Pv f )dv +
∞∫

0

Pv|P ′
v f |2dv

For any f ∈ L p(N ), s, t > 0, we have

Pt�
A

1
2
(Ps f, Ps f ) =

∞∫

0

Pt+v�(Ps+v f, Ps+v f )dv +
∞∫

0

Pt+v|P ′
s+v f |2dv.

Here and in the rest of the article, f ′
t means d ft

dt .

Proof (i): For s fixed, let

Ft = Ts−t (|Tt f |2).

Then

∂Ts−t
(|Tt f |2)
∂t

= ∂Ts−t

∂t

(
|Tt f |2

)
+ Ts−t

[(
∂Tt

∂t
f ∗
)

f

]

+ Ts−t

[
f

(
∂Tt

∂t
f ∗
)]

= −Ts−t� (Tt f, Tt f )
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696 M. Junge, T. Mei

Therefore

Ts | f |2 − |Ts f |2 = −Fs + F0 =
s∫

0

Ts−t�(Tt f, Tt f )dt.

(ii): Let

Ft = ∂Pt

∂t
(|Pt f |2)− Pt

(
∂Pt f ∗

∂t
Pt f

)
− Pt

(
Pt f ∗ ∂Pt f

∂t

)
.

Then

∂Ft

∂t
= ∂2 Pt

∂t2

(
|Pt f |2

)

−Pt

(
∂2 Pt f ∗

∂t2 Pt f

)
− Pt

(
Pt f ∗ ∂2 Pt f

∂t2

)
− 2Pt

(∣∣∣∣
∂Pt f

∂t

∣∣∣∣

2
)

= −APt (|Pt f |2)− Pt
[(−APt f ∗) Pt f

]

−Pt
[
Pt f ∗ (−APt f )

]− 2Pt

(∣∣∣∣
∂Pt f

∂t

∣∣∣∣

2
)

= −Pt� (Pt f, Pt f )− 2Pt

(∣∣P ′
t f
∣∣2
)
.

Note that F0 = �
A

1
2
( f, f ) and Ft → 0 in N as t → ∞ because of Proposition

1.1. We get

�
A

1
2
( f, f ) =

∞∫

0

−∂Ft

∂t
dt =

∞∫

0

Pt� (Pt f, Pt f ) dt + 2

∞∫

0

Pt

(∣∣P ′
t f
∣∣2
)

dt.

��
We will use the following inequality from [27].

Proposition 1.2 Let f ∈ N be positive and 0 < t < s. Then

Ps f ≤ s

t
Pt f.

Proof We use (1.2) and e− s2
4u ≤ e− t2

4u for all u. This yields the assertion

Ps f

s
= 1

2
√
π

∞∫

0

e− s2
4u u− 3

2 Tu( f )du ≤ 1

2
√
π

∞∫

0

e− t2
4u u− 3

2 Tu( f )du = Pt f

t
.

��
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BMO spaces associated with semigroups of operators 697

2 BMO norms associated with semigroups of operators

In this part we study several natural BMO-norms associated with a semigroup Tt of
completely positive maps. The situation is particularly nice for subordinated semi-
groups so that the original semigroup satisfies the �2 ≥ 0.

Given a standard semigroup of operators Tt on N and f ∈ N ∪ L2(N ), we define

‖ f ‖bmoc(T ) = sup
t

‖Tt | f |2 − |Tt f |2‖ 1
2 , (2.1)

‖ f ‖B M Oc(T ) = sup
t

‖Tt | f − Tt f |2‖ 1
2 . (2.2)

Here and in what follows ‖ f ‖ always denote the operator norm of f . The notations
‖ ·‖bmoc(P), ‖ ·‖B M Oc(P) are used when T is replaced by the subordinated semigroup
(Pt ) above. The definitions steam from Garsia’s norm for the Poisson semigroup on
the circle (see [23]). The B M Oc(T )-norm has been studied in [27], motivated by the
expression

‖ f ‖B M O1 = sup
z

Pz(| f − f (z)|).

This definition appeared in the commutative case in particular in [7,44,48]. Using the
‖ ‖B M O1 -norm, it is easy to show that the conjugation operator is bounded from L∞
to BMO1. Here f (z) gives the value of the harmonic extension in the interior of the
circle (see [8]). In some sense f − Pt f is similar to f − f (z), despite the fact that the
Poisson integral Pt f still is a function, while f (z) is considered as a constant function
in f − f (z).

Proposition 2.1 Let (Tt ) be a standard semigroup of operators. Then bmoc(T ) and
B M Oc(T ) are semi-norms on N .

Proof Fix t > 0. Let L(N ⊗Tt N ) be the Hilbert C∗-module over N with N -valued
inner product

〈a ⊗ b, c ⊗ d〉 = b∗Tt (a
∗c)d.

This Hilbert C∗-module is well-known from the GNS-construction for Tt , see [25].
Since Tt is unital, we have a ∗-homomorphism π : N → L(N ⊗Tt N ) such that

Tt ( f ) = e11π( f )e11.

We then get

Tt
(

f ∗ f
)− Tt

(
f ∗) Tt ( f ) = e11π( f )∗π( f )e11 − e11π( f )∗e11e11π( f )e11

= e11π( f )∗(1 − e11)π( f )e11.
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698 M. Junge, T. Mei

Therefore,

∥∥∥Tt | f |2 − |Tt f |2
∥∥∥

1
2 =

∥∥∥(1 − e11)
1
2 π( f )e11

∥∥∥
L(N⊗Tt N )

,

∥∥∥Tt | f − Tt f |2
∥∥∥

1
2 = ‖π ( f − e11π( f )e11) e11‖L(N⊗Tt N ).

This shows that ‖ · ‖bmoc(T ) and ‖ · ‖B M Oc(T ) are semi-norms. ��
Remark 2.2 An alternative proof for bmoc(T ) being a semi-norm can be derived from
the identity of Lemma 1.1 (i). Using the GNS construction for the positive form Tt−s�

we can find linear maps uts : N → C(N ) such that

Tt | f |2 − |Tt f |2 =
t∫

0

|uts( f )|2ds.

This provides an embedding in Lc
2([0, t])⊗min C(N ).

Proposition 2.3 Let (Tt ) be a standard semigroup and f ∈ N ∪ L2(N ). Then the
following conditions are equivalent:

(i) ‖ f ‖bmoc(T ) = 0.
(ii) ‖ f ‖B M Oc(T ) = 0.

(iii) f ∈ ker(A∞) ∪ ker(A2) = { f ∈ dom∞(A) ∪ dom2(A), A f = 0}.
Proof Note that (ii) and (iii) both equals to Tt f = f for any t since Tt is faithful. Hence
(ii) is equivalent to (iii). Assume (iii), then τ(Tt | f |2−|Tt f |2) = 0 since Tt f = f for all
t and Tt is trace preserving. Note Tt | f |2 −|Tt f |2 ≥ 0 by (1.1), so Tt | f |2 −|Tt f |2 = 0
for any t > 0. We get (i). Assume (i), we have τ(Tt | f |2 − |Tt f |2) = 0, so τ(| f |2 −
|Tt f |2) = 0 for any t > 0. So τ(| f − Tt f |2) = τ(| f |2 − 2|Tt f |2 + |T2t f |2) = 0 for
any t > 0. So f = Tt f for any t > 0. This implies (iii). ��
Proposition 2.4 Let (Tt ) be a standard semigroup and f ∈ N ∪ L2(N ). Then

(i) ‖Ts f ‖bmoc(T ) ≤ ‖ f ‖bmoc(T ) for all s > 0;
(ii) ‖ f ‖B M Oc(T ) ≤ 2 ‖ f ‖bmoc(T ) + supt ‖Tt f − T2t f ‖.

(iii) If in addition �2 ≥ 0, then

‖ f ‖B M Oc(T ) � ‖ f ‖bmoc(T ) + sup
t

‖Tt f − T2t f ‖.

Proof Let us start with (i) and the pointwise estimate

0 ≤ Tt |Ts f |2 − |Tt+s f |2 ≤ Tt+s | f |2 − |Tt+s f |2.

By definition of the bmoc(T ) seminorm this implies

‖Ts f ‖bmoc(T ) = sup
t

‖Tt |Ts f |2 − |Tt+s f |2‖ 1
2 ≤ sup

t
‖Tt+s | f |2 − |Tt+s f |2‖ 1

2

≤ ‖ f ‖bmoc(T ).
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BMO spaces associated with semigroups of operators 699

For the proof of (ii), we fix t > 0 and use the triangle inequality (see Lemma 4.3):

∥∥∥Tt | f − Tt f |2
∥∥∥

1
2 ≤

∥∥∥Tt | f − Tt f |2 − |Tt ( f − Tt f )|2
∥∥∥

1
2 +

∥∥∥ |Tt ( f − Tt f )|2
∥∥∥

1
2

≤ ‖ f − Tt f ‖bmoc(T ) +
∥∥∥|Tt ( f − Tt f )|2

∥∥∥
1
2

≤ ‖ f ‖bmoc(T ) + ‖Tt f ‖bmoc(T ) + ‖Tt ( f − Tt f )‖

We apply (i) and obtain

‖Tt | f − Tt f |2‖ 1
2 ≤ 2‖ f ‖bmoc(T ) + ‖Tt ( f − Tt f )‖.

Taking supremum over t yields the assertion. To prove (iii), we apply Lemma 1.1 (i)
and the triangle inequality,

(
Tt | f |2 − |Tt f |2

) 1
2 =

⎛

⎝
t∫

0

Tt−s� (Ts f, Ts f ) ds

⎞

⎠

1
2

≤
⎛

⎝
t∫

0

Tt−s�(Ts( f − Tt f ), Ts( f − Tt f ))ds

⎞

⎠

1
2

+
⎛

⎝
t∫

0

Tt−s�(Ts+t f, Ts+t f )ds

⎞

⎠

1
2

(Lemma 1.1 (i)) =
(

Tt | f − Tt f |2 − |Tt f − T2t f |2
) 1

2

+
⎛

⎝
t∫

0

Tt−s�(Ts+t f, Ts+t f )ds

⎞

⎠

1
2

(�2 ≥ 0) ≤
(

Tt | f − Tt f |2
) 1

2 +
⎛

⎝
t∫

0

T2t−2s�(T2s f, T2s f )ds

⎞

⎠

1
2

(v = 2s) ≤
(

Tt | f − Tt f |2
) 1

2 +
⎛

⎝1

2

2t∫

0

T2t−v�(Tv f, Tv f )dv

⎞

⎠

1
2

(Lemma 1.1 (i)) =
(

Tt | f − Tt f |2
) 1

2 + 1√
2

(
T2t | f |2 − |T2t f |2

) 1
2
.

Taking the norm and the supremum over t on both sides, we get

‖ f ‖bmoc(T ) ≤ (
√

2 + 2)‖ f ‖B M Oc(T ).
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700 M. Junge, T. Mei

By Choi’s inequality (see [4]) we find

|Tt f − T2t f |2 ≤ Tt | f − Tt f |2.

Together with (ii), we obtain (iii). ��

We now consider BMO-norms associated with the subordinated semigroup (Pt )t .

Proposition 2.5 Let (Tt ) be a standard semigroup and (Pt ) be the associated Poisson
semigroup. Let f ∈ N ∪ L2(N ). Then

(i) Pb| f |2 − |Pb f |2 = 2
∫∞

0

∫ v
max{0,v−b} Pb−v+2t �̂(Pv f, Pv f )dtdv;

(ii) supb

∥∥∫∞
0 Pb+s |P ′

s f |2 min(s, b)ds
∥∥ ≤ 4 ‖ f ‖2

bmoc(P);

(iii) If in addition �2 ≥ 0, then

1

4

∞∫

0

Pb+s�̂(Ps f, Ps f )min(s, b)ds ≤ Pb| f |2 − |Pb f |2

≤ 180

∞∫

0

Pb
3 +s�̂(Ps f, Ps f ) min

(
b

3
, s

)
ds.

Here �̂( fs, fs) = �( fs, fs)+ | f ′
s |2.

Proof For the proof of (i) we apply Lemma 1.1 (i) to Pt and get

Pb| f |2 − |Pb f |2 = 2

b∫

0

Pb−s�
A

1
2
(Ps f, Ps f )ds.

Using the formula for�
A

1
2
(Ps f, Ps f ) from Lemma 1.1 (ii), we obtain with the change

of variable (v = s + t) that

Pb| f |2 − |Pb f |2 = 2

b∫

0

∞∫

0

Pb−s+t �̂ (Ps+t f, Ps+t f ) dtds

= 2

∞∫

0

b+t∫

t

Pb−v+2t �̂ (Pv f, Pv f ) dvdt

= 2

∞∫

0

v∫

max{0,v−b}
Pb−v+2t �̂ (Pv f, Pv f ) dtdv. (2.3)
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BMO spaces associated with semigroups of operators 701

This is (i). Note �2 ≥ 0 implies �̂2 ≥ 0. We apply monotonicity, Proposition 1.2
and split the integral, and get

2

∞∫

0

v∫

max{0,v−b}
Pb−v+2u�̂(Pv f, Pv f )dudv

≥ 2

∞∫

0

v∫

max{0,v−b}
Pb+2u�̂(P2v f, P2v f )dudv

≥ 2

∞∫

0

⎛

⎜
⎝

v∫

max{0,v−b}

b + 2u

b + 2v
du

⎞

⎟
⎠ Pb+2v�̂(P2v f, P2v f )dv

=
∞∫

0

2bv + 4v2 − 2b max{0, v − b} − 4 max{0, v − b}2

2(b + 2v)
Pb+2v�̂(P2v f, P2v f )dv

≥
b∫

0

Pb+2v�̂(P2v f, P2v f )vdv +
∞∫

b

4bv

2(b + 2v)
Pb+2v�̂(P2v f, P2v f )dv

≥ 1

2

b∫

0

Pb+2v�̂(P2v f, P2v f )2vdv + 1

2
b

∞∫

b

Pb+2v�̂(P2v f, P2v f )dv

≥ 1

2

∞∫

0

Pb+2v�̂(P2v f, P2v f )min(2v, b)dv.

Without �2 ≥ 0 we only obtain

Pb| f |2 − |Pb f |2 ≥ 1

2

∞∫

0

Pb+2v|P ′
2v f |2 min(2v, b)dv

= 1

4

∞∫

0

Pb+v
∣∣P ′
v f
∣∣2 min(v, b)dv.

This is (ii) and the first inequality of (iii). To complete the proof of (iii) we start with
(2.3) and �2 ≥ 0:

Pb| f |2 − |Pb f |2 = 2

∞∫

0

v∫

max{0,v−b}
Pb−v+2u�̂(Pv f, Pv f )dudv
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≤ 2

∞∫

0

v∫

max{0,v−b}
Pb− v

3 +2u�̂(Pv
3

f, Pv
3

f )dudv

= 2

b∫

0

v∫

0

Pb−v+2u�̂(Pv f, Pv f )dudv

+ 2

∞∫

b

v∫

v−b

Pb−v+2u�̂(Pv f, Pv f )dudv

= I + I I.

For v ≥ b we have

b + v

3
≤ b − v

3
+ 2u ≤ 5

3
(b + v).

Thus monotonicity implies

I I ≤ 2

∞∫

0

v∫

v−b

Pb− v
3 +2u�̂

(
Pv

3
f, Pv

3
f
)

dudv ≤ 10b

∞∫

b

Pb+v
3
�̂
(

Pv
3

f, Pv
3

f
)

dv

= 90

∞∫

b
3

Pb
3 +s�̂ (Ps f, Ps f )min

(
s,

b

3

)
ds.

In the range v ≤ b and 0 ≤ u ≤ v we also have

b + v

3
≤ b + 2u − v

3
≤ 5

3
(b + v).

Again by monotonicity and with s = v
3 we obtain

I ≤ 10

b∫

0

Pb+v
3
�̂
(

Pv
3

f, Pv
3

f
)
vdv = 90

b
3∫

0

Pb
3 +s�̂(Ps f, Ps f ) sds.

This yields

Pb| f |2 − |Pb f |2 ≤ 180

∞∫

0

Pb
3 +s�̂ (Ps f, Ps f ) min

(
b

3
, s

)
ds.

��
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In view of the classical Carleson-measure-characterization of BMO, we define, for
f ∈ N ∪ L2(N ),

‖ f ‖B M Oc(∂) =
∥
∥∥∥∥∥

sup
t

Pt

t∫

0

|P ′
s f |2sds

∥
∥∥∥∥∥

1
2

, (2.4)

‖ f ‖B M Oc(�) = sup
t

∥∥∥∥∥
∥

Pt

t∫

0

�(Ps f, Ps f )sds

∥∥∥∥∥
∥

1
2

, (2.5)

‖ f ‖B M Oc(�̂)
= sup

t

∥∥
∥∥∥∥

Pt

t∫

0

�̂(Ps f, Ps f )sds

∥∥
∥∥∥∥

1
2

. (2.6)

Theorem 2.6 Let (Tt ) be a standard semigroup. Then

‖ f ‖B M Oc(∂) ≤ c‖ f ‖B M Oc(P) ≤ c‖ f ‖B M Oc(T ) (2.7)

Proof To prove the first inequality, recall that Theorem 3.2 of [27] states that

sup
t

∥∥∥∥
∥∥

Pt

t∫

0

∣∣∣
∣
∂Ps

∂s
( f − Ps f )

∣∣∣
∣

2

sds

∥∥∥∥
∥∥

1
2

≤ ‖ f ‖B M Oc(P).

Then

∥∥
∥∥∥∥

Pt

t∫

0

∣
∣∣∣
∂Ps

∂s
f

∣
∣∣∣

2

sds

∥∥
∥∥∥∥

1
2

≤
∥∥
∥∥∥∥

Pt

t∫

0

∣
∣∣∣
∂Ps

∂s
( f − Ps f )

∣
∣∣∣

2

sds

∥∥
∥∥∥∥

1
2

+
∥∥∥∥∥
∥

Pt

t∫

0

∣∣∣∣
∂Ps

∂s
Ps f

∣∣∣∣

2

sds

∥∥∥∥∥
∥

1
2

≤ ‖ f ‖B M Oc(P) +

∥∥∥∥∥
∥∥

Pt

t
2∫

0

∣∣∣
∣
∂Ps

∂s
Ps f

∣∣∣
∣

2

sds

+ Pt

t∫

t
2

∣∣∣∣
∂Ps

∂s
Ps f

∣∣∣∣

2

sds

∥∥∥∥∥∥
∥

1
2
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(v = 2s) ≤ ‖ f ‖B M Oc(P) +

∥∥∥∥∥∥
∥

1

4
Pt

t
2∫

0

∣∣∣∣
∂Pv
∂v

f

∣∣∣∣

2

vdv

+Pt

t∫

t
2

Pt
2

∣∣∣∣
∂Ps

∂s
Ps− t

2
f

∣∣∣∣

2

sds

∥
∥∥∥∥∥∥

1
2

(
u = 2s − t

2

)
≤ ‖ f ‖B M Oc(P) +

∥
∥∥∥∥∥∥

1

4
Pt

t
2∫

0

|P ′
v f |2vdv

+ 1

2
P3t

2

3t
2∫

t
2

|P ′
u f |2udu

∥∥∥∥
∥∥∥

1
2

≤ ‖ f ‖B M Oc(P) +
√

3

2
sup

t

∥∥
∥∥∥∥

Pt

t∫

0

|P ′
s f |2sds

∥∥
∥∥∥∥

1
2

.

Taking supremum on both sides, we have,

‖ f ‖B M O(∂) = sup
t

∥∥
∥∥∥∥

Pt

t∫

0

∣
∣∣∣
∂Ps

∂s
f

∣
∣∣∣

2

sds

∥∥
∥∥∥∥

1
2

≤ 1

1 −
√

3
2

‖ f ‖B M Oc(P).

To prove the second inequality, we apply (1.2) and (1.1),

Ps | f − Ps f |2 =
∞∫

0

φs(u)Tu

∣∣∣∣∣
∣

f −
∞∫

0

φs(v)Tv f dv

∣∣∣∣∣
∣

2

du

=
∞∫

0

φs(u)Tu

∣∣∣∣∣
∣

∞∫

0

φs(v)( f − Tv f )dv

∣∣∣∣∣
∣

2

du

≤
∞∫

0

∞∫

0

φs(u)φs(v)Tu | f − Tv f |2 dvdu

with φs(v) = se
−s2
4v v

−3
2 . For v ≤ u, we have

‖Tu | f − Tv f |2‖ = ‖Tu−vTv| f − Tv f |2‖ ≤ ‖ f ‖2
B M Oc(T ).
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BMO spaces associated with semigroups of operators 705

For v > u, let k be the biggest integer smaller than log
v
u
2 , we have

‖Tu | f − Tv f |2‖ 1
2 ≤ ‖Tu | f − Tu f |2‖ 1

2 + ‖Tu |Tu f − T2u f |2‖ 1
2

+ ‖Tu |T2u f − T4u f |2‖ 1
2 + · · · + ‖Tu |T2k u f − Tv f |2‖ 1

2

≤ c
(

ln
v

u
+ 1

)
‖ f ‖B M Oc(T ).

Therefore, we find that

‖Ps | f − Ps f |2‖ 1
2 ≤

⎛

⎝
∞∫

0

∞∫

u

ln
v

u
φs(u)φs(v)dvdu

+
∞∫

0

∞∫

0

φs(u)φs(v)dvdu

⎞

⎠ ‖ f ‖B M Oc(T )

≤ c‖ f ‖B M Oc(T ).

Taking supremum over t yields the second inequality. ��

Lemma 2.7 Let (Tt ) be a standard semigroup. Then

‖ f ‖B M Oc(∂) � sup
t

∥∥∥∥
∥∥

∞∫

0

Ps+t |P ′
s f |2 min(s, t)ds

∥∥∥∥
∥∥

1
2

. (2.8)

If in addition �2 ≥ 0,

‖ f ‖B M Oc(�) �
∥
∥∥∥∥∥

sup
t

∞∫

0

Ps+t�(Ps f, Ps f )min(s, t)ds

∥
∥∥∥∥∥

1
2

. (2.9)

‖ f ‖B M Oc(�̂)
�
∥∥
∥∥∥∥

sup
t

∞∫

0

Ps+t �̂(Ps f, Ps f )min(s, t)ds

∥∥
∥∥∥∥
. (2.10)

Proof Let ∂t = ∂
∂t and �∂2

t
( f, f ) =

∣
∣∣ ∂ ft
∂t

∣
∣∣
2

the gradient forms associated with Tt =
et∂2

t which satisfies �2
∂2

t
≥ 0. Then (2.8) follows from (2.9). Moreover, (2.10) follows

from �̂( ft , ft ) = �( ft , ft )+| f ′
t |2. To prove (2.9), we apply the condition �2 ≥ 0 and

find

123



706 M. Junge, T. Mei

∥∥∥
∥∥∥

t∫

0

Pt� (Pv f, Pv f ) vdv

∥∥∥
∥∥∥

≤
∥∥∥
∥∥∥

t∫

0

Pv
2 +t�

(
Pv

2
f, Pv

2
f
)
vdv

∥∥∥
∥∥∥

= 4

∥∥∥
∥∥∥∥

t
2∫

0

Ps+t� (Ps f, Ps f ) sds

∥∥∥
∥∥∥∥

≤ 4

∥∥
∥∥∥∥

∞∫

0

Ps+t� (Ps f, Ps f )min(s, t)ds

∥∥
∥∥∥∥
.

For the reversed relation, we use a dyadic decomposition. Indeed, according to
Proposition 1.2, we have

2nt Ps+t

s + t
� (Ps f, Ps f ) ≤ P2n t�(Ps f, Ps f )

for s ≥ 2nt. This implies

1

2

∞∫

0

Ps+t�(Ps f, Ps f )min(s, t)ds

≤
∞∫

0

Ps+t�(Ps f, Ps f )
st

s + t
ds

=
2t∫

0

Pt�(Ps f, Ps f )
st

s + t
ds +

∞∑

n=1

1

2n

2n+1t∫

2n t

2nt Ps+t

s + t
�(Ps f, Ps f )sds

≤
2t∫

0

Pt�(Ps f, Ps f )sds +
∞∑

n=1

1

2n

2n+1t∫

2n t

P2n t�(Ps f, Ps f )sds

≤
2t∫

0

Pt�(Ps f, Ps f )sds +
∞∑

n=1

1

2n

2n+1t∫

0

P2n t�(Ps f, Ps f )sds.

However, we can replace 2t by t using �2 ≥ 0 and Lemma 1.2:

2t∫

0

Pt�(Ps f, Ps f )sds ≤
2t∫

0

Pt+ s
2
�(Ps

2
f, Ps

2
f )sds

= 4

t∫

0

Pt+v�(Pv f, Pv f )vdv
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≤ 8

t∫

0

Pt�(Pv f, Pv f )vdv.

Applying this argument for every 2n+1t , we deduce the assertion. ��

Lemma 2.8 Let a > 1. Then

sup
t

‖Pt f − Pat f ‖ ≤ √
2
(

1 + log 3
2

a
)

‖ f ‖B M Oc(∂).

Proof For t fixed, we have the

|P3t f − P2t f |2 ≤ P3t
2

(∣∣∣P3t
2

f − Pt
2

f
∣∣∣
2
)

= P3t
2

⎛

⎜⎜
⎝

∣
∣∣∣∣∣∣

3t
2∫

t
2

P ′
s f ds

∣
∣∣∣∣∣∣

2⎞

⎟⎟
⎠

≤ P3t
2

⎛

⎜
⎝t

3t
2∫

t
2

|P ′
s f |2ds

⎞

⎟
⎠ ≤ 2P3t

2

⎛

⎜
⎝

3t
2∫

t
2

|P ′
s f |2sds

⎞

⎟
⎠

≤ 2P3t
2

⎛

⎜
⎝

3t
2∫

0

|P ′
s f |2sds

⎞

⎟
⎠.

This implies in particular that

sup
t

‖Pt f − P3t
2

f ‖ ≤ √
2‖ f ‖B M Oc(∂).

For 1 < a ≤ 3
2 , choose b ≥ 0 such that a−b

1−b = 3
2 . Then we obtain

∥∥∥ |Pt f − Pat f |2
∥∥∥ ≤

∥∥∥∥Pbt

∣∣∣P(1−b)t ( f )− P3
2 (1−b)t ( f )

∣∣∣
2
∥∥∥∥

≤
∥∥
∥∥

∣
∣∣P(1−b)t ( f )− P3

2 (1−b)t ( f )
∣
∣∣
2
∥∥
∥∥ ≤ 2 ‖ f ‖2

B M Oc(∂).

(2.11)

We deduce

‖Pt ( f )− Pat ( f )‖ ≤ √
2 ‖ f ‖B M Oc(∂) (2.12)
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for any 1 < a ≤ 3
2 . Consider now a > 3

2 . Let n be the integer part of log 3
2

a. We may
use a telescopic sum

Pt f − Pat f =
(

Pt f − P3t
2

f
)

+
(

P3t
2

f − P3
2

3t
2

f

)
+ · · ·

(

P( 3
2

)nt f − Pat f

)

.

We apply (2.12) for every summand. Then the triangle inequality implies the asser-
tion. ��
Theorem 2.9 Let (Tt ) be a standard semigroup satisfying �2 ≥ 0. Then ‖ ‖B M Oc(P),
‖ ‖bmoc(P) and ‖ ‖B M Oc(�̂)

are all equivalent on N ∪ L2(N ).

Proof According to Proposition 2.5 we know that

sup
t

∥
∥∥∥∥∥

∞∫

0

Ps+t �̂(Ps f, Ps f )min(s, t)ds

∥
∥∥∥∥∥

1
2

∼180 ‖ f ‖bmoc(P).

Then Lemma 2.7 implies that ‖ ‖bmoc(P) and ‖ ‖B M Oc(�̂)
are equivalent. Prop-

osition 2.4 (iii) provides the upper estimate of ‖ ‖bmoc(P) against ‖ ‖B M Oc(P).
Conversely, we deduce from Proposition 2.4 (ii), Lemma 2.8, Lemma 2.7 and Prop-
osition 2.5 (i) that

‖ f ‖B M Oc(P) ≤ 2‖ f ‖bmoc(P) + sup
t

‖Pt f − P2t f ‖

≤ 2‖ f ‖bmoc(P) + √
2(1 + log 3

2
2)‖ f ‖B M Oc(�̂)

≤ 2‖ f ‖bmoc(P) + 2
√

2 2
√

6 ‖ f ‖bmoc(P) = (2 + 8
√

3)‖ f ‖bmoc(P).

Thus all the norms are equivalent on N ∪ L2(N ). ��

3 Bounded Fourier multipliers on BMO

In this section we prove the B M O boundedness for certain singular integrals obtained
as a function of the generator for arbitrary semigroups. The ideas for the proof can be
traced back to E. Stein’s universal L p-bounded for Fourier multipliers.

Lemma 3.1 Let � be the gradient form associated with a standard semigroup St

satisfying �2 ≥ 0. Then

�

⎛

⎝
∫

�

ft dμ(t),
∫

�

ft dμ(t)

⎞

⎠ ≤
∫

�

|dμ(t)|
∫

�

�( ft , ft )|dμ(t)|, (3.1)

for N -valued function f on a measure space {�,μ} such that �( ft , ft ) is weakly
measurable. In particular, Let Pt be a Poisson semigroup subordinated to a standard
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BMO spaces associated with semigroups of operators 709

semigroup Tt . Then,

�(v∂Pv f, v∂Pv f ) ≤ cPv
2
�( f, f ),

Proof Let us recall the standard module construction for �. We consider A ⊗� N
with inner product

〈
∑

j

a j ⊗ b j ,
∑

k

ãk ⊗ b̃k

〉

=
∑

j,k

b∗
j�(a j , ãk)b̃k .

It is easy to see that 〈z, z〉 ≥ 0. Indeed, by inequality (1.1), we see Ss(|St−s f |2) is
increasing with respect to s for any s < t . On the other hand, taking the derivative in
s, we find

∂Ss(|St−s f |2)
∂s

= Ss�(St−s f, St−s f ).

This implies �( f, f ) ≥ 0 for any f . Taking matrices we find similarly 〈z, z〉 ≥ 0.
Therefore A⊗�N is a (non-complete) Hilbert C∗-module over N , and as such isomor-
phic to Hc ⊗min N for some Hilbert space H ([25]). Let w : A⊗� N → Hc ⊗min N
be the isomorphism. Then we can define u( f ) = w( f ⊗ 1) and deduce

u( f )∗u(g) = 〈 f ⊗ 1, g ⊗ 1〉 = �( f, g).

With the help of this map it is easy to conclude using the convexity of | · |2

�

⎛

⎝
∫

�

ft dμ(t),
∫

�

ft dμ(t)

⎞

⎠ =
∣∣∣∣
∣∣

∫

�

u( ft )dμ(t)

∣∣∣∣
∣∣

2

≤
∫

�

|dμ(t)|
∫

�

|u( ft )|2|dμ(t)|

=
∫

�

|dμ(t)|
∫

�

�( ft , ft )|dμ(t)|.

The convergence of the integral here is in the weak sense, (i.e. considering the real-
valued function (h, �( ft , ft )h)). By (1.2), we may write v∂Pv as

∫∞
0 Tτdμ(τ) with
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710 M. Junge, T. Mei

∫∞
0 |dμ(τ)| ≤ c and

∫∞
0 Tτ |dμ(τ)| ≤ cPv

2
. We deduce from (3.1) and �2 ≥ 0 that

�(v∂Pv f, v∂Pv f ) ≤ c

∞∫

0

�(Tτ f, Tτ f )|dμ(τ)|

≤ c

∞∫

0

Tτ�( f, f )|dμ(τ)| ≤ cPv
2
�( f, f ).

��
Recall that�∂2

t
( f, g) = (∂t f ∗)(∂t g) is the gradient forms associated with Tt = et∂2

t

and satisfies �2
∂2

t
≥ 0. According to Lemma 3.1, we know that

|∂v(v∂vPv f )|2 ≤ cPv
2
|v∂vPv f |2. (3.2)

Since �̂ = � + �∂2
t
, we obtain

�̂(vP ′
v f, vP ′

v f ) ≤ cPv
2
�̂(Pv f, Pv f ). (3.3)

We now want to define singular integrals of the form F(A)where F is a nice function.
We follows Stein’s idea and assume that F is given by a Laplace transform. Let a be
a scalar valued function such that

s

∞∫

s

|a(v)|2
v2 dv ≤ c2

a,

for all s > 0 and some constant positive ca . Define Ma as

Ma( f ) =
∞∫

0

a(t)
∂Pt f

∂t
dt.

Lemma 3.2 Assume Tt be a standard semigroup satisfying �2 ≥ 0. We have

‖Ma( f )‖B M Oc(�) ≤ cca‖ f ‖B M Oc(�).

Proof Let

St ( f ) = Pt

t∫

0

s�(Ps f, Ps f )ds.
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We simplify the notation by using �[ f ] = �( f, f ). Let us compute ‖St (Ma( f ))‖:

‖St (Ma( f ))‖ =
∥∥∥∥
∥∥

Pt

t∫

0

s�[Ps Ma( f )]ds

∥∥∥∥
∥∥

=
∥∥∥∥∥∥

t∫

0

s Pt�

⎡

⎣Ps

∞∫

0

a(v)
∂Pv
∂v

f dv

⎤

⎦ ds

∥∥∥∥∥∥

=
∥∥∥
∥∥∥

t∫

0

s Pt�

⎡

⎣
∞∫

0

a(v)
∂Pv+s

∂v
f dv

⎤

⎦ ds

∥∥∥
∥∥∥

=
∥∥∥∥∥
∥

t∫

0

s Pt�

⎡

⎣
∞∫

s

a(v − s)
1

v
v
∂Pv
∂v

f dv

⎤

⎦ ds

∥∥∥∥∥
∥

(first inequality of Lemma 3.1) ≤
∥
∥∥∥∥∥

t∫

0

s Pt

⎛

⎝
∞∫

s

|a|2
v2 dv

∞∫

s

�

[
v
∂Pv
∂v

f

]
dv

⎞

⎠ ds

∥
∥∥∥∥∥

≤ ca

∥∥∥
∥∥∥

t∫

0

Pt

⎛

⎝
∞∫

s

�

[
v
∂Pv
∂v

f

]
dv

⎞

⎠ ds

∥∥∥
∥∥∥

(change of variables) = 8ca

∥∥∥∥
∥∥∥

t∫

0

Pt

⎛

⎜
⎝

∞∫

s
2

�

[
v
∂Pv
∂v

Pv f

]
dv

⎞

⎟
⎠ ds

∥∥∥∥
∥∥∥

(inequality (3.1)) ≤ cca

∥∥∥∥∥∥
∥

t∫

0

Pt

⎛

⎜
⎝

∞∫

s
2

Pv
2
�[Pv f ]dv

⎞

⎟
⎠ ds

∥∥∥∥∥∥
∥

≤ cca

∥
∥∥∥∥∥∥

t∫

0

∞∫

s
2

Pv
2 +t�[Pv f ]dvds

∥
∥∥∥∥∥∥

(Integrate ds first) = cca

∥∥∥
∥∥∥

∞∫

0

Pv
2 +t�[Pv f ] min(t, 2v)dv

∥∥∥
∥∥∥

(Lemma 2.7) ≤ cca‖ f ‖2
B M Oc(�)

Taking the supremum over t , we obtain

‖Ma( f )‖B M Oc(�) = sup
t

‖St (Ma( f ))‖ 1
2 ≤ cca‖ f ‖B M Oc(�).

��
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712 M. Junge, T. Mei

Using (3.2), exactly the same proof shows that, without assuming �2 ≥ 0,

‖Ma : B M Oc(∂) → B M Oc(∂)‖ ≤ cca (3.4)

Our main tool, the formula �(v∂vPv f, v∂vPv f ) ≤ c�(Pv f, Pv f ) from Lemma 3.1
also holds for higher order derivatives that�(vn∂n

v Pv f, vn∂n
v Pv f ) ≤ cn�(Pv f, Pv f ).

Therefore the same technique allows us to obtain estimates for operators of the form

Ma,n =
∞∫

0

a(t)tn−1∂n
t P(t)dt.

Here n ∈ N ∪ {0} and ∂n
t P(t) is the n-th derivative of P(t) with respect to t . Let us

state this explicitly.

Theorem 3.3 Let Tt be a standard semigroup. Then

‖Ma,n( f )‖B M Oc(∂) ≤ cnca‖ f ‖B M Oc(∂). (3.5)

If in addition, Tt satisfies �2 ≥ 0, then

‖Ma,n( f )‖B M Oc(�) ≤ cnca‖ f ‖B M Oc(�). (3.6)

Corollary 3.4 Let Tt be a standard semigroup satisfying �2 ≥ 0. Then

‖Ma( f )‖B M Oc(P) ≤ cca‖ f ‖B M Oc(P).

Proof By Theorem 2.9, we know

‖ f ‖B M Oc(P) � ‖ f ‖B M Oc(�̂)
.

By the definition of �̂, we see that

‖ f ‖B M Oc(�̂)
� max{‖ f ‖B M Oc(�), ‖ f ‖B M Oc(∂)}.

Therefore, Corollary 3.4 follows from Theorem 3.3. ��
Example 3.5 Let −φ be a real valued, symmetric, conditionally negative function on
a discrete group G satisfying φ(1) = 0. Let A be the unbounded operator defined on
C[G] as

A(λ(g)) = φ(g)λ(g).

Let Tt = exp(−t A), i.e.

Tt (λ(g)) = exp(−tφ(g))λ(g).
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BMO spaces associated with semigroups of operators 713

(Tt )t extends to a standard semigroup of operators with generator −A on the group
von Neumann algebra N = V N (G) following Schoenberg’s theorem. Tt satisfies
�2 ≥ 0 too. Therefore,Theorem 3.3 and Corollary 3.4 applies in this setting. Here we
note that Ma is indeed a Fourier multiplier. Indeed, assume that m is a complex valued
function of the form

m(g) = c

∞∫

0

φ
1
2 (g)e−tφ

1
2 (g)a(t)dt.

Then Ma(λ(g)) = m(g)λ(g). For example we may consider a(t) = t−2is with s a
real number. Then we deduce that m(g) = �(1 − is)[φ(g)]is is a Fourier multiplier.
Note the subordinated semigroup in this case is given by

Pt (λ(g)) = e−t
√
ψ(g)λ(g).

Therefore Corollary 3.4 imply that

‖Ma( f )‖B M Oc(P) ≤ cca‖ f ‖B M Oc(P). (3.7)

for all f ∈ L2(V N (G)).

In the remaining part of this article, we will use probabilistic methods to prove an
interpolation theorem for semigroup BMO spaces. This in turn allows us to obtain L p

bounds for Fourier multipliers of the form above.

4 Probabilistic models for semigroup of operators

In the section, we introduce BMO spaces for noncommutative martingales and
P. A. Meyer’s probabilistic model for semigroup of operators. We will apply them
in the next section to an interpolation theorem for BMO associated with semigroups.

4.1 Noncommutative martingales

Let (M, τ ) be a semifinite von Neumann algebra equipped with a semifinite normal
faithful trace τ . We will say that an increasing family (Mt )t ≥ 0 is an increasing
filtration if if s < t implies Ms ⊂ Mt ,

⋃
t Mt is weakly dense, and the restric-

tion of the trace is semifinite and faithful for every Mt . We refer to [45] for the fact
that this implies the existence of a uniquely determined trace preserving conditional
expectations Et : M → Mt . By uniqueness we have Es Et = Emin(s,t). Right con-
tinuity, i.e.

⋂
s>t Ms = Mt for all t ≥ 0, will be part of the assumption when we

talk about increasing filtrations. Similarly, we will say that (Mt )t ≥ 0 is a decreasing
filtration if s < t implies Ms ⊃ Mt ,M is the weak closure of

⋃
t Mt , and we have

left continuity. Again we have a family of conditional expectations Es : M → Ms

such that Es Et = Emax(s,t). We have M0 = M, E0 = id for decreasing filtration
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714 M. Junge, T. Mei

and set M∞ = ∧tMt as a convention. Set M∞ = M, E∞ = id,M0 = ∧tMt

for increasing filtration. A (reversed) martingale adapted to (Mt )t∈[0,∞) is a family
(xt ) ∈ L1(M)+ L∞(M) such that Et (xs − xt ) = 0 for any s > t ≥ 0 for increasing
filtration ( for t > s ≥ 0 for decreasing filtration).

For x ∈ L p(M), 1 ≤ p ≤ ∞, the family (xt ) given by xt = Et x is a martingale
with respect to Mt . For 2 < p ≤ ∞, we define

‖x‖Lc
pmo(M) =

∥∥∥
∥

+
sup

t
Et

(
|x − Et x |2

)∥∥∥
∥

1
2

p
2

,

where ‖ sup+ ·‖ p
2

should be understood in the sense of vector-valued noncommutative
L p spaces, see [20,22,35]). Let

‖x‖L pmo(M) = max
{
‖x‖Lc

pmo(M), ‖x∗‖Lc
pmo(M)

}
.

By Doob’s inequality, we know that

‖x‖L pmo(M) ≤ cp‖x‖L p(M). (4.1)

Let L0
p(M), 1 ≤ p ≤ ∞, be the quotient space of L p(M) by {x, x = Ex}. Here E

is the projection from M onto ∧tMt , which equals to E0 in the case of increasing
filtration and equals to E∞ in the case of decreasing filtration. For 2 < p < ∞,
let L0

pmo(M) (Lc,0
p mo(M)) be the completion of M0 = L0∞(M) by ‖ · ‖L pmo(M)

(‖·‖Lc
pmo(M))-norm. For p = ∞, we have to consider a weak∗ completion and denote

the completed spaces by bmoc(M) (resp. bmo(M)). We refer the interested readers
to [11,16] for more information on noncommutative martingales with continuous
filtrations.

We now introduce martingale hq -space, which are preduals of L pmo′s. Let σ =
{0 = s0 < s1, . . . , sn−1 < sn = ∞} be a finite partition of [0,∞]. For x ∈ L1(M)+
L∞(M), define the conditioned bracket 〈x, x〉(σ ) (k ≤ n) as

〈x, x〉(σ ) =
n∑

j=1

Es j−1

∣∣Es j x − Es j−1 x
∣∣2.

The hc
p(σ ), 1 ≤ p < ∞,-norm of x is defined as

‖x‖hc
p

=
∥∥∥(〈x, x〉(σ )) 1

2

∥∥∥
L p
.

Let U be an ultrafilter refining the natural order given by inclusion on the set of all
partitions of [0,∞]. The hc

p(U) and hr
p(U)-norms of x are defined as

‖x‖hc
p

= lim
σ,U

∥∥
∥(〈x, x〉(σ )) 1

2

∥∥
∥

L p
, ‖x‖hr

p
= ‖x∗‖hc

p
.
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BMO spaces associated with semigroups of operators 715

The hd
p(U)-norm of x is defined as

‖x‖hd
p

= lim
σ,U

⎛

⎝
∑

s j ∈σ

∥∥Es j x − Es j−1 x
∥∥p

L p

⎞

⎠

1
p

.

It is proved in [16] that these norms do not depend on the choice of U whenever U is
containing the filter base of tails. Let hc

p(M) (hr
p(M), hd

p(M) ) be the collection of
all x with finite hc

p(U) (hr
p(M), hd

p(U) )-norm. It is proved in [16] that

(
hc

p(M)
)∗ = Lc

qmo(M) = hc
q(M), 1 ≤ p < 2,

1

p
+ 1

q
= 1

hc
p(M)+ hr

p(M)+ hd
p(M) = L p(M), 1 < p < 2.

Denote by h p(M) = hc
p(M) + hr

p(M), Hp(M) = h p(M) + hd
p(M), 1 ≤ p <

2, h p(M) = hc
p(M) ∩ hr

p(M) for 2 ≤ p < ∞, and B M O(M) = (H1(M))∗ =
bmo(M) ∩ (hd

1(M))∗, we have

[B M O(M), L1(M)] 1
q

= Lq(M),

for all 1 < q < ∞.
Recall that a martingale x = (xt )t has a.u.continuous path provided that, for every

T > 0, ε > 0 there exists a projection e with τ(1 − e) < ε such that the function
fe : [0, T ] → M given by

fe(t) = xt e ∈ M

is continuous. The following observation will be crucial for us.

Lemma 4.1 Let xλ be a net of martingales in M∩ L2(M)with a. u. continuous path.
Suppose xλ weakly converges in L2(M) and the limit x is in bmo. Then x ∈ B M O
and

‖x‖B M O ≤ c‖x‖bmo.

Moreover, let p > 2 and x ∈ L p(M) with a.u. continuous path. Then ‖x‖h p �cp

‖x‖L p(M).

Proof We first prove that for martingales x ∈ L2(M)∩M with a. u.continuous path,
we have

‖x‖(hd
1 (M))∗ = 0. (4.2)

By Doob’s inequality for noncommutative martingales, one can show that a. u. con-
tinuity and x ∈ L2(M) ∩ M imply that xt = f (t)a for some a ∈ Lq(M) and a
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716 M. Junge, T. Mei

continuous function f : [0, T ] → M for any q > 2, T < ∞. This implies that

lim
σ,U

‖dt j (x)‖Lq (

c∞) = lim

σ,U

∥∥∥sup+
t j ∈σdt j (x)

∗dt j (x)
∥∥∥

q/2
= 0,

for any ultrafilter U of [0, T ] containing the filter base of tails. Note that

∥∥dt j ((x)
∗)
∥∥

Lq (

c∞)

≤ ∥∥dt j (x)
∥∥

Lq (
q )
≤ ∥∥dt j (x)

∥∥1−θ
Lq(
c∞)

‖x‖θHc
q (σ )

(4.3)

for θ = 2
q . Thus we also find that

lim
σ,U

‖dt j (x)‖Lq (
r∞) = 0.

We recall from [16] that
⋃

p>1 Bh1c
p +h1r

p
⊂ hd

1 are dense in the unit ball of hd
1 .

Here the h1c
p is defined such that the norm of x ∈ L2(M) ∩ (h1c

p )
∗ is given by

limσ,U ‖dt j (x)‖Lq (

c∞). Therefore, x satisfies (4.2) if x is in M ∩ L2(M) and has

a. u. continuous path. Now, let xλ be a net of weakly L2-converging martingales
in M ∩ L2(M) with a. u. continuous path. Suppose its weak L2-limit x is in bmo.
Recall from [16] that, for any y ∈ Hc

1 ∩L2(M)we may find a decomposition such that
y = y1+y2 with y1 ∈ hc

1∩L2(M), y2 ∈ hd
1 ∩L2(M) and ‖y1‖hc

1
+‖y2‖hd

1
≤ 2‖y‖Hc

1
.

Then

|τ(y∗x)| ≤ |τ(y∗
1 x)| + |τ(y∗

2 x)| = |τ(y∗
1 x)| + | lim

λ
τ (y∗

2 xλ)|
= |τ(y∗

1 x)| ≤ c‖x‖bmo‖y1‖hc
1
.

Since the unit ball of Hc
1 (M) ∩ L2(M) in dense in the unit ball of Hc

1 (M), we get

‖x‖bmoc ≤ c‖x‖B M Oc .

From (4.3) we have already seen that for martingales x ∈ Lq(M) with continuous
path we have limσ,U ‖x‖hd

q (σ )
= 0 because ‖x‖hd

q (σ )
= ‖dt j (x)‖Lq (
q ). Hence we

have

‖x‖Hc
q

≤ C‖x‖hc
q

for q > 2 because Hc
q = hc

q ∩ hd
q for q > 2. ��

In the previous argument we learned for continuous martingales with a.u. contin-
uous path we have ‖x‖hd

p
= 0 (see also [11]). In fact, in this paper we might simply

take this as a definition. We will need some more results in this direction and state
them in the following lemma.
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BMO spaces associated with semigroups of operators 717

Lemma 4.2 Let 1 < p < ∞. We have

(B M O(M), L1(M)) 1
p

= L p(M), (4.4)

(bmoc(M), L2(M)) 2
p

= hc
p(M) (4.5)

with equivalence constants � p. Suppose that x ∈ L p(M), 2 < p < ∞ and (Et x)t
is a.u. continuous. We have

‖x‖L pmo(M) + ‖Ex‖L p(M) � ‖x‖L p(M), (4.6)

with equivalence constants � p for p > 4.

We say that a standard semigroup (Tt ) on a semifinite von Neumann algebra N
admits a standard Markov dilation if there exists a larger semifinite von Neumann alge-
bra M, an increasing filtration (Ms])s ≥ 0 and trace preserving ∗-homomorphism πs

such that

Es](πt (x)) = πs(Tt−s x) s < t, x ∈ N.

We say that (Tt ) admits a reversed Markov dilation if there exists a larger von Neumann
algebra M, a decreasing filtration (M[s)s ≥ 0, and trace preserving ∗-homomorphisms
πs : N → M[s such that

E[s(πt (x)) = πs(Ts−t x) t < s, x ∈ N.

We say that (Tt ) admits a Markov dilation if it admits either a standard dilation or a
reversed dilation. We refer to [24] for related questions. A glance at (1.2) shows that
a Markov dilation for (Tt ) implies that the Pt ’s are factorable (in the sense of [1]).
According to [1], we know that a Markov dilation for Tt (standard or reversed) yields
a Markov dilation (standard and reversed) for Pt .

In the noncommutative setting the existence of a Markov dilation is no longer for
free, as it is in the commutative case. We refer the reader to [39] for its existence
for group von Neumann algebra and to [17] for its existence for finite von Neumann
algebra. However, the existence of a Markov dilation allows us to use probabilistic
tools for semigroups of operators. In particular, given a a reversed Markov dilation we
know that m(x) = (ms(x))s≥0 with

ms(x) = πs(Ts x), (4.7)

is a martingale with respect to the reversed filtration (M[s). A standard Markov
dilation implies that, for any v > 0,m(x) = (ms(x))v≥s≥0 with

ms(x) = πs(Tv−s x) (4.8)

is a martingale with respect to the standard filtration (Ms]).
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718 M. Junge, T. Mei

Proposition 4.3 Let (Tt ) be a standard semigroup of operators on N with reversed
Markov dilation (πt ,Mt ). Let x ∈ L p(N ). Then E[s(π0x) = πs Ts x and

‖π0(x)‖Lc
pmo(M) =

∥∥∥sup+
t πt

(
Tt |x |2 − |Tt x |2

)∥∥∥
1
2

p
2

, (4.9)

for 2 < p ≤ ∞.In particular,

‖π0(x)‖bmoc(M) = ‖x‖bmoc(T ). (4.10)

Proof To prove (4.9), we apply the reversed dilation condition and get E[tπ0(x) =
πt Tt x . Then

E[t |π0(x)|2 − ∣
∣E[tπ0(x)

∣
∣2 = πt

(
Tt |x |2 − |Tt x |2

)
.

Taking the supremum over all t , we obtain the assertion. The Eq. (4.10) now follows
immediately from the definition. ��

4.2 Meyer’s probabilistic model for semigroup of operators

Meyer’s probabilistic model provides another way to connect semigroups of operators
with martingales. Let us start with an observation due to Meyer [28].

Proposition 4.4 Let Tt be a semigroup with a standard (resp. reversed) Markov dila-
tion (πt ,Mt ). For x ∈ dom(A), let n(x) = (ns(x))s≥0 with

ns(x) = πs(x)+
s∫

0

πv(A(x))dv, (4.11)

for standard Markov dilation and

ns(x) = πs(x)+
∞∫

s

πv(A(x))dv, (4.12)

for reversed Markov dilation. Then n(x) is a (reversed) martingale with respect to the
filtration Ms .

Proof Let us verify that Et ns(x) = nt (x) for t > s in the reversed dilation case.
The verification for t < s in the standard dilation case is similar. Due to the dilation
property we have
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BMO spaces associated with semigroups of operators 719

Et

⎛

⎝πs(x)+
∞∫

s

πv(A(x))dv

⎞

⎠ = πt (Tt−s(x))+
t∫

s

πt (Tt−vA(x)) dv

+
∞∫

t

πv(A(x))dv

= πt (Tt−s(x))+
t∫

s

πt (∂vTt−v(x)) dv

+
∞∫

t

πv(A(x))dv

= πt (x)+
∞∫

t

πv(A(x))dv.

This means n(x) satisfies the martingale property Et ns(x) = nt (x) for t > s. ��
The main ingredient in Meyer’s model is to use Lévy’s stopping time argument for

the Brownian motion (see however [9,10] for more compact notation). Given a stan-
dard semigroup Tt with generator A, assume (Tt ) admits a standard Markov dilation
(πs,Ms). We consider a new generator

Â = − d2

dt2 + A.

defined densely on

L2(R)⊗ L2(N ).

This leads to a new semigroup of operators T̂t = exp(−t Â) such that

�̂( f (t), g(t)) = �( f (t), g(t))+ d f ∗(t)
dt

dg(t)

dt
.

Let (Bt ) be a classical one dimensional Brownian motion associated with dt (instead
of the usual 1

2 dt in the stochastic differential equation) such that B0 = a holds with

probability 1. Let M̂s = M B
s ⊗ Ms with M B

s the von Neumann algebra of the
Brownian motion observed until time s. The Markov dilation for the new semigroup
T̂t is given by M̂t and π̂t ( f (·)) = πt f (Bt (·)).

For x ∈ L p(N ), 1 ≤ p ≤ ∞, denote by Px for the L p(N )-valued function on
[0,∞)

Px(t) = Pt (x).
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720 M. Junge, T. Mei

Recall that we write P ′x for the functions d
dt Pt x . Fix a real number a > 0. Let ta be

the stopping time of Bt first hit 0, i.e.

ta = inf{t : Bt (ω) = 0}.

The following observation due to P. A. Meyer.

Proposition 4.5 For any x ∈ L p(N ), 1 ≤ p ≤ ∞,

n̂a(x) = (π̂ta∧t Px)t

is a martingale with respect to the filtration

M̂t,a =
∨

v≤t

π̂ta∧v(N ⊗ L∞(R)).

Proof Apply Proposition 4.4 to Â, π̂t , we get π̂t (Px) is a martingale because Â(Px)=0.
Therefore, π̂ta∧t (Px) is a martingale too since ta is a stopping time. ��

Let

M̂a = ∨t≥0M̂a,t

wot = ∨ta≥t≥0Mt
wot
.

Let Êt be the conditional expectation from M̂a onto M̂a,t . Proposition 4.5 implies
that

Êt (πta x) = π̂ta∧t Px = πta∧t PBta∧t x, (4.13)

for any x ∈ N .
Meyer’s model allows us to consider martingale spaces with respect to the time and

space filtrations simultaneously.LetLc,0
p mo(M̂a), L0

pmo(M̂a), 2 < p ≤ ∞ be the

martingale spaces with respect to the filtration M̂a,t . Recall that we have an orthogo-
nal projection Pbr on the subspace consisting of martingales x = (xt ) with the form

xt =
t∧ta∫

0

ysd Bs (4.14)

with ys adapted to Ms . By approximation, we see that (xt )t has continuous path, i.e.
xt is continuous on t with respect to the L p-norm, provided supt ‖yt‖L p(M̂a)

< ∞.

Denote P� = I − Pbr . Recall that it is our convention to write bmo instead of
L∞mo and B M O = bmo ∩ (hd

1)
∗.

Lemma 4.6 Let (Tt ) be a standard semigroup admitting a Markov dilation, (Pt )t the
semigroup subordinated to (Tt )t and f ∈ N ∪ L2(N ). Then

(i) ‖ f ‖bmoc(P) = ‖n̂a( f )‖bmoc(M̂a)
.
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(ii) ‖Pbr n̂a( f )‖B M Oc(M̂a)
� ‖Pbr n̂a( f )‖bmoc(M̂a)

� supb ‖ ∫∞
0 Pb+s | ∂Ps f

∂s |2 min

(s, b)ds‖ 1
2 .

(iii) If in addition �2 ≥ 0, then

‖P� n̂a( f )‖bmoc(M̂a)
� sup

b

∥∥∥∥
∥∥

∞∫

0

Pb+s�(Ps f, Ps f )min(s, b)ds

∥∥∥∥
∥∥

1
2

.

Proof We recall that (n̂a( f ))t = π̂ta∧t (P f ) = πta∧t (PBta∧t ( f )). So the end element
n̂a( f ) = πta ( f ), (n̂a( f ))0 = π0(PB0( f )) = 1(ω)⊗ π0 Pa f . Hence we get

Êt

(
|n̂a( f )|2

)
−
∣∣∣Êt (n̂a( f ))

∣∣∣
2 = πta∧t

(
PBta∧t | f |2 − |PBta∧t f |2

)
,

for ta(ω) > t . Thus in any case we have

ess sup
ω

∥∥
∥∥Êt

(∣
∣n̂a( f )

∣
∣2
)

−
∣∣
∣Êt

(
n̂a( f )

)∣∣
∣
2
∥∥
∥∥ ≤ sup

s

∥∥
∥πta∧t

(
Ps | f |2 − |Ps f |2

)∥∥
∥

≤ ‖ f ‖2
bmoc(P).

However, recall that B0(ω) = a almost everywhere. This means Bt = a + B̃t where
B̃t is a centered Brownian motion. Since lim supt |B̃t |/√2t log log t = 1, we know
that with probability 1 the process |B̃t | exceeds a. Thus with probability 1 the process
Bt hits 0 or 2a. Hence with probability 1

2 the process hits 2a before it hits 0. Let us
assume that Bt (ω)(ω) = 2a and Bs(ω) > 0 for 0 < s < t (ω). By starting a new
Brownian motion at t (ω), we see with conditional probability 1

2 we have Bt ′(ω) = 4a
for some t (ω) < t ′(ω) and Bs(ω) > 0 for all t (ω) < s < t ′(ω). By induction we
deduce that with probability 2−n the process Bt hits 2na before it hits 0. Thus given any
b > 0, we may choose n such that 2na > b. We see that with positive probability there
exists tn(ω) such that Btn(ω) = 2na and Bs(ω) > 0 on [0, tn(ω)] and Bs is continuous.
By continuity there exists t (ω) ∈ [tn(ω), ta(ω)] such that Btω = b. In particular,

∥∥∥
∥Êt (ω)(

∣∣n̂a( f )
∣∣2)−

∣∣∣Êt (ω)n̂a( f )
∣∣∣
2
∥∥∥
∥ =

∥∥∥πt (ω)

(
PBt (ω) | f |2 − ∣∣PBt (ω) f

∣∣2
)∥∥∥

=
∥∥∥Pb| f |2 − |Pb f |2

∥∥∥.

Taking the supremum over all b yields (i). For the proof of (iii) we first apply Lemma
2.5.5 and Lemma 2.5.10 (ii) of [14] (note there, ρa denotes for n̂a). This immediately
yields the first inequality (after a concise review of the involved constant for β = 2

3 ).
For the upper estimate of this term, we recall that with positive probability every value
b is hit. Then we start in equality (3.20) for a fixed b = Bt (ω). We use the monotonicity
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722 M. Junge, T. Mei

Pb+s (z)
b+s ≤ Pt (z)

t and find

E

tb∫

0

Ts(�(PB̃s
x, PB̃s

x))ds = 1

2

∞∫

0

b+s∫

|b−s|
Pt�(Ps x, Ps x)dtds

≥ 1

2

∞∫

0

Pb+s�(Ps x, Ps x)

b + s

⎛

⎜
⎝

b+s∫

|b−s|
tdt

⎞

⎟
⎠ ds

=
∞∫

0

Pb+s�(Ps x, Ps x)

b + s
bs ds

≥ 1

2

∞∫

0

Pb+s�(Ps x, Ps x)min(b, s)ds.

The proof of the second equivalence of (ii) uses Lemma 2.5.10 (i) of [14] and is similar
to (iii) but we only need |Pt z|2 ≤ Pt |z|2 instead of �2 ≥ 0. The first equivalence of
(ii) follows from Lemma 4.1 and the fact that Pbrn̂a( f ) has continuous path. ��
Lemma 4.7 For any y ∈ L p(N ), 2 < p < ∞, we have

∥∥Pbrπτa y
∥∥

L pmo(M̂a)
+ ‖Pa y‖L p(M̂a)

� ‖y‖L p(N ), (4.15)

with equivalent constants � p for p > 4. Assume that (Êtπτa y)t is a.u. continuous,
then

‖P�πτa y‖L pmo(M̂a)
+ ‖Pa y‖L p(M̂a)

� ‖y‖L p(N ) (4.16)

with equivalence constants � p for p > 4.

Proof This follows from the fact that Pbr Êtπta y has continuous path, Ê0πτa y = π0 Pa ,
Lemma 4.2 of this article, and Lemma 2.5.11 of [14] (note πτa is denoted by ρa there).

��

4.3 Noncommutative Riesz transforms

We will prove a L∞-BMO boundedness for the noncommutative Riesz transforms
studied in [14] in the first subsection.

Recall that the classical Riesz transforms on R
n can be viewed as ∂ · (−�)− 1

2 .
Given a standard semigroup of operators Tt = e−t A, it is P. A. Meyer’s idea to
view the generator A as an analogue of −� and the associated bilinear form �( f, f )

as |∂ f |2. The generalized Riesz transform of a function f is [�(A 1
2 f, A

1
2 f )] 1

2 .
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BMO spaces associated with semigroups of operators 723

As a noncommutative extension of Meyer’s result, Junge/Mei proved in [14] that

∥∥∥A
1
2 f
∥∥∥

L p(N )
≤ cp

∥∥∥[�( f, f )]
1
2

∥∥∥
L p(N )

,

for 2 < p < ∞ and self adjoint elements f ∈ L p(N ) with additional assumptions
on Tt . We will extend this L p-boundedness to L∞ − B M O boundedness.

Theorem 4.8 Assume Tt admits a Markov dilation and satisfies �2 ≥ 0, we have

∥
∥∥A

1
2 g
∥
∥∥

B M Oc(�)
≤ c max

{∥
∥∥[�(g, g)]

1
2

∥
∥∥ ,
∥∥
∥∥
[
�(g∗, g∗)

] 1
2

∥∥
∥∥

}
,

for g ∈ A.

Proof By the assumption of a Markov dilation (πt , Et ) of a standard semigroup
Tt = e−t A, we have

Etπu f − πt f = πt (Tu−t f − f ) = πt

u∫

t

∂Tr−t

∂r
f dr = −Et

u∫

t

πr A f dr,

for f ∈ dom(A). Apply to the Markov dilation (π̂t , Êt ) of the new semigroup
T̂t = e−t Â, we get

Êt π̂u f − π̂t f = −Êt

u∫

t

π̂r Â f dr.

Passing to the stopping time ta, we get

Êt π̂ta f − π̂ta∧t f = −Êt

ta∫

ta∧t

π̂r Â f dr.

For a given self adjoint g ∈ A, let

f (s) = �(Ps g, Ps g),

It is an easy calculation by definition of �2 that

− Â f = 2�2(Ps g, Ps g)+ 2�(P ′
s g, P ′

s g).

By �2 ≥ 0, we have

− Â f ≥ 2�(P ′
s g, P ′

s g) ≥ 0.
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724 M. Junge, T. Mei

By Lemma 2.5.10 (ii) of [14] (note ρa denotes the same martingale of n̂a),

∥∥P� n̂a(g)
∥∥

bmoc = sup
t

∥
∥∥∥∥∥
∥

Êt

ta∫

ta∧t

π̂r�(Ps g, Ps g)dr

∥
∥∥∥∥∥
∥
.

Therefore, by Proposition 4.6,

∥∥∥A
1
2 g
∥∥∥

2

B M Oc(�)
≈
∥∥∥P� n̂a(A

1
2 g)
∥∥∥

2

bmoc
= sup

t

∥∥∥∥∥
∥∥

Êt

ta∫

ta∧t

π̂r�(P
′
s g, P ′

s g)dr

∥∥∥∥∥
∥∥

≤ sup
t

∥∥∥∥∥
∥∥
−Êt

ta∫

ta∧t

π̂r Â f dr

∥∥∥∥∥
∥∥

= sup
t

∥∥Êt π̂ta f − π̂ta∧t f
∥∥

≤ ∥∥π̂ta f
∥∥+ sup

t

∥∥π̂ta∧t f
∥∥

= ∥∥π̂ta�(Pg, Pg)
∥∥+ sup

t

∥∥π̂ta∧t�(Pg, Pg)
∥∥

≤ ∥∥π̂ta P�(g, g)
∥∥+ sup

t

∥∥π̂ta∧t P�(g, g)
∥∥

= ∥∥π̂ta P�(g, g)
∥∥+ sup

t

∥∥Êt π̂ta P�(g, g)
∥∥

≤ 2 ‖�(g, g)‖ .

For non-self adjoint g, we obtain the desired inequality by splitting g = g∗+g
2 +i ig∗−ig

2 .
��

Corollary 4.9 Let Tt be a standard semigroup satisfying �2 ≥ 0 and admitting an
a.u. continuous Markov dilation (see definition at the beginning of the next section).
We have

∥∥
∥A

1
2 g
∥∥
∥

L p(N )
≤ cp max{‖�(g, g)‖L p(N ), ‖�(g∗, g∗)‖L p(N )},

for 2 < p < ∞.

Proof By the same argument used in the proof of Theorem 4.8, we have

∥∥∥P� n̂a

(
A

1
2 g
)∥∥∥

L pmo(M̂a)
≤ c max

{
‖�(g, g)‖L p(N ),

∥∥�
(
g∗, g∗)∥∥

L p(N )

}
.

We then obtain
∥∥∥A

1
2 g
∥∥∥

L p(N )
≤ cp max

{
‖�(g, g)‖L p(N ),

∥∥�
(
g∗, g∗)∥∥

L p(N )

}
.

for p > 4 by Lemma 4.7 and Proposition 5.1. The same inequality is proved in [14],
Theorem 2.5.13 with constant cp for 2 < p < 4. ��
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BMO spaces associated with semigroups of operators 725

Remark 4.10 Let N be a commutative von Neumann algebra, for example N =
L∞(Rn). Let A = � on R

n and R be the classical Riesz transform, i.e. R( f ) =
(. . . , ∂i (−�)− 1

2 f, . . . ). It is well known that R is L p-bounded uniformly on the dimen-
sion n for 1 < p < ∞ (see [29,34,43]). For p = 1, a dimension free weak (1, 1)
estimate is due to Varopoulos (see [47]). It is desirable to have some results for p = ∞
which implies the estimate in the range 1 < p < ∞ by interpolation. Note, in this
case,

‖ f ‖B M O(�) = ‖R( f )‖B M O(∂).

By Proposition 2.5, we have the dimension free estimate

‖R( f )‖B M O(∂) ≤ c‖ f ‖∞.

5 Interpolation

We will prove an interpolation theorem for BMO spaces associated with semigroups of
operators. Our BMO spaces are then good endpoints for noncommutative L p spaces.

Let (Tt ) be a standard semigroup on N admitting a (reversed) standard Markov dila-
tion (Mt , πt , Et ). We say the dilation has a.u. continuous path if there exist weakly
dense subsets Bp of L p(N ) such that both m( f ) and n( f ) have a.u. continuous path
for all 2 ≤ p < ∞. Here m( f ) and n( f ) are martingales given as in (4.7) and
Proposition 4.4.

Proposition 5.1 Suppose a standard semigroup Tt satisfies �2 ≥ 0 and admits an
a.u. continuous standard (reversed) Markov dilation (πt ,Mt]). Then the martingale
n̂a( f ) = π̂ta∧s(P f ) in Meyer’s model is a.u. continuous for all f ∈ L p(N ), p > 2.

Proof This is the second part of Lemma 2.5.3 (ii) of [14]. ��
We use the notation L0

p(N ), 1 ≤ p ≤ ∞ for the complemented subspace of L p(N )
which is orthogonal to

ker(Ap) = {
f ∈ dom p(A), A f = f

} =
{

f ∈ L p(N ), lim
t

Tt f = f
}
.

Equivalently, L0
p(N )= { f ∈ L p(N ), limt→∞ Tt f = 0} and hence we may also view

L0
p(N ) as a quotient space. The limit is taken with respect to the ‖ · ‖L p(N )-norm

for 1 < p < ∞ and is with respect to the weak∗ topology for p = 1,∞. Recall
from Proposition 2.3 we know that ‖ · ‖bmoc(T ) and ‖ · ‖B M Oc(T ) are norms on the
quotient space N 0 ∪ L0

2(N ). Note A f = 0 implies Tt f = f and Pt f = f for all t , we

get ker

(
A

1
2∞
)

= ker(A∞)= { f, limt Pt f = f }. So ‖ · ‖B M Oc(P) and ‖ · ‖bmoc(P) are

norms on N 0 ∪ L0
2(N ) too. The same is true for ‖ · ‖B M Oc(�), ‖ · ‖B M Oc(�̂)

, and for
‖ · ‖B M Oc(∂).
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726 M. Junge, T. Mei

5.1 Interpolation in the finite case

We assume that the underling von Neumann algebra N is with a finite trace τ in this
subsection. In this case, all the BMO-norms associated with semigroups are bigger than
the L2(N )-norm up to a constant. Let B M O(T ), B M O(P), B M O(�̂), B MO(�),
B M O(∂) and bmo(T ), bmo(P) be the spaces of f ∈ L0

2(N ) with finite correspond-
ing BMO-norms. We consider the complex interpolation couples [X, L0

p(N )] 1
q

with X

any of these BMO spaces. See [2] for basic properties of complex interpolation method.

Theorem 5.2 Let (Tt ) be a standard semigroup of operators. We have

(i) Assume (Tt ) admits a standard Markov dilation. Then

L0
pq(N ) =

[
X, L0

p(N )
]

1
q

,

with equivalence constant � pq for all p ≥ 1, q > 1 and X being semigroup-
BMO spaces B M O(T ), B M O(P), B M O(�̂), B M O(∂), and bmo(P).

(ii) Assume (Tt ) admits a reversed Markov dilation with a.u. continuous path. Then

L0
pq(N ) =

[
bmo(T ), L0

p(N )
]

1
q

,

equivalence constant � pq for all p ≥ 1, q > 1. If, in addition, Tt satisfies
�2 ≥ 0, we have

L0
pq(N ) =

[
B M O(�), L0

p(N )
]

1
q

,

equivalence constant � pq for all p ≥ 1, q > 1.

Proof For any choice of X , note that the trivial inclusion N 0 ⊂ X implies

L0
pq(N ) ⊂

[
X, L0

p(N )
]

1
q

.

Assume a Markov dilation exists, for X = B M O(∂), we consider Meyer’s model in
Sect. 4. Note (n̂a(x))0 = Ê0πta (x) = π0 Pa x for all x ∈ L2(N ) ⊇ X . Accord-
ing to Lemma 4.6 (ii), we get that Pbrπτa embeds B M O(∂) into B M O(M̂a).
Thus Pbrπτa embeds [B M O(∂), L0

p(N )] 1
q

into [B M O(M̂a), L p(M̂a)] 1
q

because

it embeds L p(N ) into L p(M̂a) too. Note

[
B M O

(
M̂a

)
, L p

(
M̂a

)]
1
q

= L pq

(
M̂a

)

with equivalence constant � pq by Lemma 4.2. We deduce that,

‖Pbrπτa x‖pq ≤ cpq‖x‖[B M O(∂),L0
p(N )] 1

q
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BMO spaces associated with semigroups of operators 727

holds for all x ∈ [B M O(∂), L0
p(N )] 1

q
. By Lemma 2.5.11 of [14], we have (note ρa

there denotes πτa and Pr is the projection to L0
p(N ))

‖x‖pq ≤ 2 lim
a→∞ ‖Pbrπτa x‖pq ≤ cpq‖x‖[B M O(∂),L0

p(N )] 1
q
.

We obtain the desired result for X = B M O(∂). For X = B M O(P), bmo(P),
B M O(�̂), B M O(T ), the interpolation result follows from the relation that N 0 ⊂
X ⊂ B M O(∂) because of Theorem 2.6 and Proposition 2.5 (ii).

We now prove (ii). Assume the admitted Markov dilation has a.u.continuous path.
By Proposition 4.3, we see that π0 embeds bmo(T ) into bmo(M). Now, for any
x ∈ bmo(T ) ⊂ L2(N ), we can find a net xλ ∈ L2(N ) ∩ N converging to x in
L2(N ). So π0(xλ) ∈ L2(M) ∩ M converging to π0(x) in L2(M). By Lemma 4.1,
π0(x) ∈ B M O(M) and ‖π0(x)‖B M O(M) ≤ c‖x‖bmo(M). Therefore, π0 embeds
bmo(T ) into B M O(M). By the same argument used for the proof of (i), we obtain
the desired result.

We now turn to B M O(�), Lemma 4.6 (iii) implies that P�πτa embeds B M O(�)
into bmo(M̂a). Note that Proposition 5.1 implies the a.u. continuity of n̂a(x) =
(Êtπτa x)t for all x ∈ L2(N )∩N assuming �2 ≥ 0. Then P�πτa embeds B M O(�)
into B M O(M̂a) by Lemma 4.1 and the argument used for (ii). Repeat the argument
used for the proof of (i), we obtain (iii). ��
Remark 5.3 According to [17] we have a Markov dilation for finite von Neumann
algebras. Hence B M O(∂) solves problem (0.1) in this case.

As a consequence, we obtain the boundedness of Fourier multiplier Ma discussed in
Sect. 3.

Corollary 5.4 Let (Tt ) be a standard semigroup admitting a Markov dilation. Let Ma

be as in Sect. 2. Then

‖Ma f ‖L p(N ) ≤ cp‖ f ‖L p(N ), (5.1)

with cp in order of � max{p, 1
p−1 }. In particular, for Ma = Lis , we have

‖Lis f ‖L p(N ) ≤ cs,p‖ f ‖L p(N ), (5.2)

with

cs,p � max

{
p,

1

p − 1

}
|s|−| 1

2 − 1
p | exp

(∣∣∣∣
πs

2
− πs

p

∣∣∣∣

)
.

Proof Apply Theorem 3.3 and Theorem 5.2 to Ma and their adjoint operators, we
have for f ∈ L0

p(N ),

‖Ma f ‖L p(N ) ≤ c max

{
p,

1

p − 1

}
‖ f ‖L p(N )
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728 M. Junge, T. Mei

for all 1 < p < ∞. Since Ma’s vanish on f with limt Tt f = f , they are bounded on
the whole L p(N ). For Ma = Lis , we have

‖Lis f ‖L2(N ) ≤ ‖ f ‖L p(N ),

‖Lis f ‖B M O(∂) ≤ c�(1 − is)−1‖ f ‖B M O(∂).

By interpolation, we have, for all 1 < p < ∞,

‖Lis f ‖L p(N ) ≤ c max

{
p,

1

p − 1

}
�(1 − is)

−
∣∣
∣1− 2

p

∣∣
∣‖ f ‖L p(N ).

It is well known that, e.g. see page 151 of [46],

|�(1 − is)| � |s| 1
2 e− π |s|

2 . (5.3)

Therefore, we conclude,

‖Lis f ‖L p(N ) ≤ c max

{
p,

1

p − 1

}
|s|−

∣
∣
∣ 1

2 − 1
p

∣
∣
∣
e

∣
∣
∣ πs

2 − πs
p

∣
∣
∣‖ f ‖L p(N ).

��

Remark 5.5 It is known that standard semigroups (Tt ) on von Neumann algebras
V N (G) of a discrete group always admit a Markov dilation (see [39]). Moreover,
a recent result of Junge/Ricard /Shlyakhtenko (see [17]) shows that standard semi-
groups (Tt ) on any finite von Neumann algebras admits a Markov dilation and for the
bounded generators At = t−1(I − Tt ) the Markov dilations also has almost uniformly
continuous path.

Remark 5.6 The L p-boundedness of Fourier multipliers Ma could be proved directly
following E. Stein’s Littlewood-paley g-function technique (see [41]) by the non-
commutative Hp theory developed in with worse constants. It could be also obtained
following a classical argument of M. Cowling (see [5]) through ‘transference tech-
nique’ in the noncommutative setting, which could become available after [17]. How-
ever, ‘transference technique’ does not seem to work for B M O . Cowling did obtain
optimal L p-boundedness constants for the imaginary powers Lis on abelian groups,
although our method provides a slightly better estimate on s as s → ∞ (see 5.2). But
Cowling did not have optimal L p-boundedness constants for general multipliers Ma’s

(he had � max{p
5
2 , (p − 1)− 5

2 }, see Theorem 3 of [5]).

As another application, we obtain optimal constants for the noncommutative max-
imal ergodic inequality proved by Junge and Xu (see Theorem 5.1 and Corollary 5.11
of [22]).
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Corollary 5.7 Suppose (Tt ) is a standard semigroup admitting a Markov dilation,
then

‖ sup
t

Tt f ‖L p(N ) ≤ c max

{
1,

1

(p − 1)2

}
‖ f ‖L p(N ). (5.4)

Proof The proof is to write Tt − 1
t

∫ t
0 Tvdv as an weighted average of Lis for each t

as Cowling did (see [5]) and use the uniform estimate of L p(N )-boundedness of Lis .
From the elementary identity

1

π

+∞∫

0

λis�(1 − is)(1 + is)−1ds = e−λ −
1∫

0

e−uλdu,

we deduce by functional calculus that

1

π

+∞∫

0

(t L)is�(1 − is)(1 + is)−1ds = e−t L −
1∫

0

e−ut Ldu

= Tt − 1

t

t∫

0

Tvdv. (5.5)

Theorem 4.1 and Theorem 4.5 of [22] imply that

∥∥∥
∥∥∥

sup
t

1

t

t∫

0

Tv f dv

∥∥∥
∥∥∥

L p(N )

≤ c max

{
p,

1

(p − 1)2

}
‖ f ‖L p(N ). (5.6)

On the other hand, for any a ∈ Lq(N+, L1(0,∞)), 1
p + 1

q = 1, we have

∣∣∣∣
∣∣
τ

∞∫

0

a(t)

+∞∫

0

(t L)is( f )�(1 − is)(1 + is)−1dsdt

∣∣∣∣
∣∣

=
∣
∣∣∣∣∣
τ

+∞∫

0

∞∫

0

a(t)t isdt Lis( f )�(1 − is)(1 + is)−1ds

∣
∣∣∣∣∣

≤ sup
s

∥∥∥∥
∥∥

∞∫

0

a(t)t isdt

∥∥∥∥
∥∥

Lq (N )

+∞∫

0

‖Lis( f )‖L p(N )|�(1 − is)(1 + is)−1|ds.

(5.7)
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A combination of (5.2), (5.3), (5.5), and (5.7) implies that

∣∣∣∣∣∣
τ

∞∫

0

a(t)

⎛

⎝Tt − 1

t

t∫

0

Tvdv

⎞

⎠ dt

∣∣∣∣∣∣

≤ c max

{
p,

1

p − 1

}
∥
∥∥∥∥∥

∞∫

0

a(t)dt‖Lq (N )

∥
∥∥∥∥∥

f ‖L p(N ). (5.8)

Without loss of generality, assume f ≥ 0. We deduce by duality (see Proposition 2.1
(iii) of [22]) that,

‖ sup
t

Tt f ‖L p(N )

≤ sup
a∈Lq (N+,L1(0,∞)),‖a‖≤1

τ

∞∫

0

a(t)Tt f dt,

= sup
a∈Lq (N+,L1(0,∞)),‖a‖≤1

τ

∞∫

0

a(t)

⎛

⎝Tt f − 1

t

t∫

0

Tv f dv + 1

t

t∫

0

Tv f dv

⎞

⎠ dt,

≤ sup
a∈Lq (N+,L1(0,∞)),‖a‖≤1

τ

∞∫

0

a(t)

⎛

⎝Tt f − 1

t

t∫

0

Tv f dv

⎞

⎠ dt

+
∥∥∥∥∥
∥

sup
t

1

t

t∫

0

Tv f dvdt

∥∥∥∥∥
∥

L p(N )

.

By (5.6) and (5.8) we obtain,

‖ sup
t

Tt f ‖L p(N ) ≤ c max

{
p2,

1

(p − 1)2

}
‖ f ‖L p(N ).

Note

‖ sup
t

Tt f ‖L∞(N ) ≤ ‖ f ‖L∞(N ).

Apply the interpolation result of Theorem 3.1 of [22], we obtain

‖ sup
t

Tt f ‖L p(N ) ≤ c max

{
1,

1

(p − 1)2

}
‖ f ‖L p(N ),

for all 1 < p < ∞. ��
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5.2 Interpolation in the semifinite case

We will extend Theorem 5.2 to the case that the underling von Neumann algebras N is
semifinite. In this case, B M O is no longer a subspace of L2. To study the interpolation
result, we first have to obtain a larger space that the interpolation couple B M O, L p

belongs to.

5.2.1 L p-Hilbert module

We will need the following definition and lemma of L p-Hilbert module due to
Junge/Sherman (see [18]). For p = ∞ these spaces are well-known through the
GNS construction for a completely positive map (see [25,33], Corollary 6.3).

Definition 5.8 Let M be a semifinite von Neumann algebra. Let E be an M right
module with an L p

2
(M)-valued inner product 〈·, ·〉. A (right) Hilbert L p(M) (1 ≤

p < ∞) module, denoted by Lc
p(E), is the completion of E with respect to the norm

|| · || = ‖〈·, ·〉‖
1
2

L
p
2 (M)

. A (right) Hilbert L∞(M) module, denoted by Lc∞(E) is the

completion of E with respect to the strong operator topology, briefly STOP topology.

The STOP topology is induced by the family of seminorms ‖x‖ξ = τ(ξ 〈x, x〉)] 1
2 .

Here is an easy proposition which we will use frequently.

Proposition 5.9 Suppose (Lc∞(E), 〈·, ·〉) is a Hilbert L∞(M)-module. Suppose a
net xλ ∈ M converges to x ∈ L∞(E) in the STOP topology. Then 〈xλ, xλ〉 weak∗
converges in M. We denote the limit by 〈x, x〉.

Given a Hilbert space H , denote by B(H) the space of all bounded operators on H .
Choose a norm one element e ∈ H , let Pe be the rank one projection onto Span{e}.
For 0 < p ≤ ∞, let

L p(M, Hc) = L p(B(H)⊗ M))(1 ⊗ Pe).

Namely, L p(M, Hc) is the column subspace of L p(B(H) ⊗ M)) consisting of all
elements with the form x(1 ⊗ Pe) for x ∈ L p(B(H) ⊗ M)). The definition of
L p(M, Hc) does not depend on the choice of e. L p(M, Hc) can be identified as the
predual of Lq(M, Hc) with q = p

p−1 for 1 ≤ p < ∞. The reader can find more
information on L p(M, Hc) in Chapter 2 of [12].

Lemma 5.10 Lc
p(E) is isomorphic to a complemented subspace of L p(M, Hc) for

some Hilbert space H. Moreover, the isomorphism does not depends on p and

(
Lc

p(E)
)∗ = Lc

q(E), (5.9)

for all 1 ≤ p < ∞, 1
p + 1

q = 1. Here the anti-linear duality bracket (w, z) =
tr(〈w, z〉) is used.
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5.2.2 Interpolation for B M O(∂), B M O(T ), B M O(P), B M O(�̂) and bmo(P)

We use Meyer’s model to prove an interpolation result for the BMO space correspond-
ing to the ‖ · ‖bmo(∂)-norm. For x ∈ N 0 we recall the definition

‖x‖bmoc(∂) = sup
t

∥∥∥∥
∥∥

t∫

0

Pt |P ′
s(x)|2sds

∥∥∥∥
∥∥

1
2

� sup
t

∥∥∥∥
∥∥

∞∫

0

Ps+t |P ′
s(x)|2 min(t, s)ds

∥∥∥∥
∥∥

1
2

.

Define the L∞(R+)⊗ N -valued inner product on N ⊗ N by

〈x ⊗ a, y ⊗ b〉∂ = a∗
⎛

⎝
∞∫

0

Ps+t (P
′
s

(
x∗) P ′

s(y))min(t, s)ds

⎞

⎠ b.

Let V be the Hilbert L∞-module corresponding to this inner product. Let B M Oc(∂)

be the strong operator closure of N 0 in V via the embedding

� : x → x ⊗ 1.

Let B M Or (∂) be the strong operator closure of N 0 in V via the embedding x →
x∗ ⊗ 1.

We define the column and row space of B M O(T ), B M O(P), B M O(�̂) and
bmo(P) similarly by using Hilbert L∞-modules corresponding to respective BMO-
norms given in Sect. 2.

To understand the intersection of B M Oc and B M Or , we need the following obser-
vation.

Lemma 5.11 Let x ∈ X with X ∈ {B M Oc(∂), B M Oc(T ), B M Oc(P), B M Oc(�̂),

bmoc(P)}. Then P ′
t x exists in N and

‖P ′
t x‖∈ f t y ≤ Ct−1‖x‖X . (5.10)

Proof Fix t > 0. Let xλ ∈ N 0 ⊂ B M Oc(∂) be a net such that �(xλ) = xλ ⊗ 1
converges in V with respect to the STOP topology. We will show that P ′

t xλ weakly
converges in N and the limit (denoted by P ′

t x) has norm smaller than ct−1‖x‖B M Oc(∂).
This is what we mean by P ′

t x exists in N .
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We first deduce from Proposition 1.2 that, for t > 0,

t2

2

∣∣∣
∣
∂P2t

2t
xλ

∣∣∣
∣

2

≤
t∫

0

∣∣∣
∣
∂P2t

2t
xλ

∣∣∣
∣

2

sds =
t∫

0

|P2t−s P ′
s xλ|2sds

≤
t∫

0

P2t−s(|P ′
s xλ|2)sds ≤

t∫

0

2t − s

t + s
Pt+s(|P ′

s xλ|2)sds

≤ 2

∞∫

0

Pt+s(|P ′
s xλ|2)min(s, t)ds (5.11)

= 2〈�(xλ),�(xλ)〉∂ . (5.12)

By Proposition 5.9, we know that P ′
t xλ converges with respect to the strong operator

topology of N and the limit exists in N with a norm bounded by c
t ‖x‖B M Oc(∂), since

�(xλ) converges in the STOP topology. Note the ‖ · ‖B M Oc(∂)-norm is smaller than
any of the other X -norms by Lemma 2.5 (ii) and Theorem 2.6. We obtain (5.10) for
all X . ��

We say that x ∈ B M Oc(∂) belongs to B M Or (∂) if P ′
t x = P ′

t y for some y ∈
B M Or (∂) for all t > 0. This y is unique in B M Or (∂). In fact, assume there are two
weak∗ convergent nets yλ, ỹλ in B M Or (∂) such that P ′

t x = P ′
t y = P ′

t ỹ holds for the
limit elements y, ỹ ∈ B M Or (∂) and any t > 0. Then P ′

t (yλ − ỹλ) converges to 0 for
any t with respect to the weak∗ topology of N . Hence

∫∞
0 Pb+s |P ′

s(yλ − ỹλ)∗|2sds
weak ∗ converges to 0 for any b by the dominated convergence theorem. This means
y − ỹ = 0 in B M Or (∂). Set B M O(∂) to be the space consisting of all such x’s
equipped with the maximum norm

‖x‖B M O(∂) = max{‖x‖B M Oc(∂), ‖y‖B M Or (∂)},

Here y is the unique y ∈ B M Or (∂) such that P ′
t x = P ′

t y for all t > 0 as
we explained above. Define B M O(T ), B M O(P), B M O(�̂) and bmo(P) to be the
intersection of the corresponding row, column spaces similarly.

Once we have these definitions, the same proof of Theorem 5.2 implies

Theorem 5.12 Let 1 ≤ p < ∞. Assume a standard semigroup Tt admits a standard
Markov dilation. Then

[
X, L0

1(N )
]

1
p

= L0
p(N ) ,

with equivalence constant in order p for X = B M O(∂), B M O(T ), B M O(P),
B M O(�̂) or bmo(P).
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5.2.3 Interpolation for bmo(T )

For the interpolation for bmo(T ), besides an appropriate definition of the interpolation
couple bmo(T ), L1, we also need to show that L0

p(N ) is dense in [bmo(T ), L0
1(N )] 1

p

because we only assume that the special martingales m(x)’s have a.u. continuous path
and general martingales may not, while in the case of B M O(∂)we have automatically
that all Brownian martingales have continuous path. This difficulty already appeared
in the finite case (see the end of the proof of Theorem 5.2). We will go around it by
defining an abstract predual of bmo(T ).

For a standard semigroup T = (Tt ) on N . We consider the L p
2
(
∞(R+) ⊗ N )-

valued inner products on E = 
∞(R+)⊗ (N ⊗ N ),

〈a ⊗ b, c ⊗ d〉c
T = b∗

t Tt
(
a∗

t ct
)

dt , 〈a ⊗ b, c ⊗ d〉r
T = bt Tt

(
at c

∗
t

)
d∗

t ,

for a ⊗ b ∈ 
∞(R+)⊗ (N ⊗ N ). Denote by V c
p (resp. V r

p ) the L p(L∞(R+)⊗ N )-
Hilbert module corresponding to E, 〈·, ·〉c

T (resp. E, 〈·, ·〉r
T ).

Let us denote by w : N → E the embedding map w(x)t = x ⊗ 1 − 1 ⊗ Tt x . Then

〈w(x), w(x)〉c
T = Tt |x |2 − |Tt x |2.

〈w(x), w(x)〉r
T = Tt |x∗|2 − |Tt x

∗|2.

Denote byw∗
c (resp.w∗

r ) the adjoint ofw with respect to N , τ (x∗, y); E, 〈·, ·〉c
T (resp.

N , τ (xy∗); E, 〈·, ·〉r
T ). We have

w∗
c (a ⊗ b) =

∑

t

at Tt (bt )− Tt (Tt (at )bt ), w
∗
r

(
a∗ ⊗ b∗)

=
∑

t

Tt
(
b∗

t

)
a∗

t − Tt
(
b∗

t Tt
(
a∗

t

))
, (5.13)

for a ⊗ b ∈ 
1(R+)⊗ (N ⊗ N ). Indeed, for x ∈ N and z = a ⊗ b = (at ⊗ bt )t ,

τ(x∗w∗
c (z)) = τ

∑

t

(〈x ⊗ 1 − 1 ⊗ Tt x, at ⊗ bt 〉c
T
)

= τ
∑

t

(
Tt
(
x∗at

)
bt
)− tr

(
Tt
(
x∗) Tt (at )bt

)

= τ
∑

t

(x∗(at Tt (bt )− Tt (Tt (at )bt ))).

Definition 5.13 (i) The space bmoc(T ) (resp. bmor (T )) is defined as the weak∗-
closure of N 0 in V c∞ (resp. V r∞) via the embedding w.

(ii) hc
1(T ) (resp. hr

1(T )) is defined as the quotient of V c
1 (resp. V r

1 ) by the kernel of
w∗

c (resp.w∗
r ). The Hardy space h1(T ) is defined as hc

1(T )+hr
1(T ) ⊂ L1(N ).

More precisely, for f ∈ L1(N ),

‖ f ‖hc
1(T ) = inf{‖v‖V c

1
, w∗

c (v) = f }.
In the following Lemma we report some elementary properties.
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Lemma 5.14 (i) x ∈ hc
1(T ) iff x∗ ∈ hr

1(T ).
(ii) hc

1(T ) ∩ hr
1(T ) ∩ L0

p(N ) is dense in L0
p(N ) for 1 ≤ p < ∞.

(iii) h1(T ) ∩ L p is dense in h1(T ) for all 1 ≤ p ≤ ∞.
(iv) (hc

1(T ))∗ = bmoc(T ), (hr
1(T ))∗ = bmor (T ). Assume hc

1(T ) ∩ hr
1(T ) is

dense in both hc
1(T ) and hr

1. Then (h1(T ))∗ = bmo(T ) = bmoc(T )∩bmor (T ).
(v) Assume that (Tt ) admits a reversed Markov dilation Mt , πt . Then the homomor-

phism π0 : N 0 → bmoc(M) extends to a weakly continuous map on bmoc(T )
and hc

1(T ) ∩ hr
1(T ) is dense in both hc

1(T ) and hr
1(T ).

Proof (i) is obvious because a ⊗ b ∈ V c
1 iff a∗ ⊗ b∗ ∈ V r

1 and w is bounded and
injective from N 0 to V c∞ ∩ V r∞.For the proof of (ii), we first show that

{aTt (b)− Tt (Tt (a)b) : t > 0, a, b ∈ L2 ∩ L∞} ⊂ L0
p(N )

is dense in L0
p(N ). Indeed, let y ∈ L p′(N ) such that

tr(aTt (b)y) = tr(Tt (Tt (a)b)y) (5.14)

holds for all a, b as above. By approximation with support projections and the weak
continuity of Tt , we deduce from (5.14) and the self adjointness property of Tt that

tr(ã y) = lim
λ,μ

tr(ãeμTt (eλ)y) = lim
λ,μ

tr(Tt (ãeμ)eλTt y) = tr(ãT2t y).

This shows T2t (y) = y and hence y ∈ L p′(N0) = (ker A)⊥
‖ ‖p

. Hence L0
p(N ) ∩ hc

1

is dense in L0
p(N ). Similarly,L0

p(N ) ∩ hr
1 is dense in L0

p(N ).
For (iii), Let A be the set of a ⊗ b = a(t)⊗ b(t) with a(t), b(t) ∈ L1(N )∩ N for

all t and a(t) = b(t) = 0 except finite many t’s. Then w∗
c (A), w

∗
r (A) ∈ L p(N ) and

A is dense in V c
1 and is dense in V r

1 . We conclude that hc
1(T ) ∩ L p(N ) is dense in

hc
1(T ) and hr

1(T )∩ L p(N ) is dense in hr
1(T ). So h1(T )

⋂
L p(N ) is dense in h1(T ).

For the proof of (iv) we see that the inclusion map ι : hc
1 → L1(N ) is injective.

By the Hahn Banach theorem, we deduce that ι∗(N ) ⊂ (hc
1)

∗ is weakly dense. How-
ever, by definition hc

1 is a quotient of V c
1 . Hence (hc

1)
∗ is a subspace of V c∞. We then

deduce from (5.13) that, when restricted to N , the map ι∗ is given by ι∗(x)(t) =
x ⊗ 1 − 1 ⊗ Tt x . Thus we have

(hc
1)

∗ = ι(N ) = bmoc.

Taking adjoints we get (hr
1)

∗ = bmor . Since X = hc
1 ∩ hr

1 is dense in both spaces,
we may then embed bmoc and bmor in X∗. We see that the inclusion map ιX : X →
L1(N ) is injective and factors through the inclusion map ιh1 : h1 → L1(N ). Since
X ⊂ h1 is dense, we deduce that h∗

1 is the weak∗-closure of

h∗
1 = ι∗(N )

σ(h∗
1,h1) ⊂ X∗.
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Note that the last inclusion is injective and certainly h∗
1 ⊂ bmoc ∩ bmor because

elements in N give rise to functionals which coincide on the intersection. For the
converse inclusion bmoc ∩ bmor ⊂ h∗

1, it suffices to recall that a bounded functional
extends uniquely from a dense subspace.

We now prove (v). Recall that a net xλ ∈ N 0 weakly converges in bmoc(T ),
if the inner product 〈w(xλ), w(xλ)〉c

T = Tt |x |2 −|Tt x |2 weakly converges in 
∞ ⊗N .
This is equivalent to the weak convergence of 〈π0xλ), π0xλ)〉c

E = πt (Tt |x |2 − |Tt x |2)
in 
∞ ⊗ M, which is the meaning of weak∗ convergence of (π0xλ) in bmoc(M)

(see [16]). Therefore, π0(bmoc(T )) ⊂ bmoc(M) is a weak∗ closed subspace and
π∗

0 (h
c
1(M)) = hc

1(T ). We obtain the density of hr
1(T ) ∩ hr

1(T ) ⊂ hc
1(T ) by the

corresponding result on martingale Hardy spaces. ��
Lemma 5.15 Assume that a standard semigroup (Tt ) has a reversed Markov dilation
with a.u. continuous path. Then

π∗
0 (H

c
1 (M)) ⊂ hc

1(T ) ⊂ L1(N ).

Proof We have seen that π∗
0 (h

c
1(M)) = hc

1(T ) and π∗
0 (H

c
1 (M)) ⊂ π∗

0 (L1(M)) =
L1(N ).Let us recall that Hc

1 (M) = hc
1(M) + hd

1(M). We are going to show that
π∗

0 (h
d
1(M))vanishes in L1(N ). By density it suffices to consider ξ ∈ hd

1(M)∩hd
p(M)

for some 1 < p < 2. Recall that there are weakly dense subsets Bq of Lq(N ) such that
the martingale m( f ) = (E[t (π0 f ))t has a. u. continuous path if Tt admits a reversed
Markov dilation with a.u. continuous path. (see the definition at the beginning of this
section). Let y ∈ Bq . By Lemma 4.1,

‖π0(y)‖hd
q
=0.

This implies

|tr(π∗
0 (ξ

∗)y)| = |tr(ξ∗π0(y))| ≤ lim
σ

‖ξ‖hd
p(σ )

‖π0(y))‖hd
q (σ )

= 0.

Hence tr(π∗
0 (ξ)·) vanishes on a weakly dense set of Lq(N ) and is 0 in L p(N ). So it

is 0 in L1(N ). Thus π∗
0 is 0 on hd

1 ∩ hd
p and hence identically 0. Therefore we have

indeed π∗
0 (H

c
1 (M)) ⊂ hc

1(T ). ��
Theorem 5.16 Let 1 < p < ∞ and (Tt ) be a standard semigroup admitting a
reversed Markov dilation with a. u. continuous path. Then

[bmo0(T ), L0
1(N )] 1

p
= [bmo0(T ), h1(T )] 1

p
= [N 0, h1(T )] 1

p
= L0

p(N ).

Proof By Lemma 5.15, we have, for 1 < p ≤ 2 and 1
p = 1+θ

2 ,

L0
p(N ) = π∗

0 (π0 L0
p(N )) ⊂ π∗

0 (L
0
p(M))

⊂ π∗
0 [L0

2(M), H1(M)]θ ⊂ [L0
2(N ), h1(T )]θ .
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Combining this with the trivial inclusion

[
L0

2(N ), h1(T )
]

θ
⊂
[

L0
2(N ), L0

1(N )
]

θ
= L0

p(N )

we equality in this range. Theorem 5.16 follows by duality and Wolffs’ theorem (see
[30] for a similar argument). ��

5.2.4 Interpolation for B M O(�)

Our last concern in this section are interpolation result for B M O(�) spaces. We first
need some definitions. We define a 
∞(R+)⊗ N -valued inner product on N ⊗ N by

〈x ⊗ a, y ⊗ b〉� = a∗
∞∫

0

Ps+t�(Ps x, Ps y)min(s, b)dsb.

Let L be the Hilbert 
∞(R+)⊗N -module corresponding to this inner product. Recall
that we denote by P� the projection on the spatial part in Meyer’s model.

Definition 5.17 Let B M Oc(�) be the weak∗-closure of N 0 in L via the embedding

� : x → x ⊗ 1.

Let B M Or (�) be the weak∗-closure of N 0 in L via the embedding x → x∗ ⊗ 1.

Let xλ ∈ N 0 be a bounded net in B M Oc(�) which weak∗ converges to x ∈
B M Oc(�). Recall that Pbx exists in B M Oc(�) for any b > 0 and

S(t) =
∞∫

0

Pt+s� [Ps(x)] min{t, s}ds.

exists in 
∞(R+)⊗ N as the weak∗ limit of

Sλ(t) =
∞∫

0

Pt+s� [Ps(xλ)] min{t, s}ds.

Here and in the following, �[x] denotes �(x, x) for simplification. We need the fol-
lowing lemma to understand the intersection of B M Oc(�) and B M Or (�).

Lemma 5.18 Let (Tt ) be a standard semigroup satisfying �2 ≥ 0. Then, for any
x ∈ B M Oc(�)

(i) P2b�(Pbx, Pbx) exists in N for any b > 0, and

‖P2b�(Pbx, Pbx)‖ ≤ 6

b2 ‖x‖2
B M Oc(�).
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(ii) Tt |Pbx |2 − |Tt Pbx |2 exists in N for any t, b > 0 and

‖Tt |Pbx |2 − |Tt Pbx |2‖ ≤ 6t

b2 ‖x‖2
B M Oc(�).

(iii) Pbx weak ∗ converges to x in B M Oc(�) as b → 0.
(iv) x = 0 in B M Oc(�) iff Pbx = 0 in bmoc(T ) for any b > 0. The similar

properties hold for y ∈ B M Or (�).

Proof Let us fix b > 0 and a net xλ ∈ N 0 such that �(xλ) converges with respect
to the STOP topology in L. By (i), we mean that P2b�(Pbxλ, Pbxλ) weak∗ converges
in N and the limit is with a norm smaller than b2

6 ‖x‖2
B M Oc(�). We first deduce from

�2 ≥ 0 and Proposition 1.2 that

b2

2
P2b� (Pbxλ, Pbxλ) =

b∫

0

P2b� (Pbxλ, Pbxλ) sds

=
b∫

0

P2b� (Pb−s Ps xλ, Pb−s Ps xλ) sds

≤
b∫

0

P3b−s� (Ps xλ, Ps xλ) sds

≤ 3

b∫

0

Pb+s� (Ps xλ, Ps xλ) sds. (5.15)

By Proposition 5.9, �(xλ) converges in the STOP topology implies that the last term
in inequality (5.15) weak ∗ converges in N . Thus �(Pbxλ, Pbxλ) weak ∗ converges
in N and the limit exists in N with a norm bounded by 54

b2 ‖x‖2
B M Oc(�). For (ii), we

apply lemma 1.1 (i) and �2 ≥ 0 and get

Tt |Pbxλ|2 − |Tt Pbxλ|2 =
t∫

0

Tt−s�(Ts Pbxλ, Ts Pbxλ)ds

≤
t∫

0

Tt P2b
3
�
(

Pb
3

xλ, Pb
3

xλ
)

ds = tTt P2b
3
�
(

Pb
3

xλ, Pb
3

xλ
)
.

Applying (5.15), we have

Tt |Pbxλ|2 − |Tt Pbxλ|2 ≤ 54t

b2 Tt

b∫

0

Pb+s�(Ps xλ, Ps xλ)sds.
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Thus Tt |Pbxλ|2 − |Tt Pbxλ|2 weak ∗ converges in N and the limit exists in N with a
norm bounded by 54t

b2 ‖x‖2
B M Oc(�) for any t > 0.

To prove (iii), we use the same idea in the proof of Lemma 3.2. For any t > 0, 0 <
b < min{t2, 1}. Let Qbx = (I − Pb)x = ∫ b

0
∂Ps x
∂s ds. Then

∞∫

0

Pt+s�[Ps Qb(x)] min{t, s}ds =
∞∫

0

Pt+s min{t, s}�
⎡

⎣
b+s∫

s

∂Pv
∂v

xdv

⎤

⎦ ds

(first ineq. of Lemma 3.1) ≤
∞∫

0

min{t, s}1

s
Pt+s

⎛

⎝
b+s∫

s

�

[
v
∂Pv
∂v

x

]
dv

⎞

⎠ ds

(Prop. 1.2) ≤ 2

∞∫

0

Pt

⎛

⎝
b+s∫

s

�

[
v
∂Pv
∂v

x

]
dv

⎞

⎠ ds

(change of variables) = 8

∞∫

0

Pt

⎛

⎜
⎝

b+s
2∫

s
2

�

[
v
∂Pv
∂v

Pvx

]
dv

⎞

⎟
⎠ ds

= 8

∞∫

0

Pt

⎛

⎜
⎝

b+s
2∫

s
2

Pv�[Pvx]dv
⎞

⎟
⎠ ds

(Integrate on ds first) = 8

∞∫

0

Pt Pv�[Pvx] min{2v, b}dv

≤ 8

∞∫

√
b

Pt Pv�[Pvx]bdv + 8

√
b∫

0

Pt Pv�[Pvx]vdv

≤ 8
√

b

∞∫

√
b

Pt+v�[Pvx] min{t, v}dv

+ 8

√
b∫

0

Pt+v�[Pvx] min{t, v}dv.

Thus, for any t > 0, g ∈ L1+(N ),

τ

⎛

⎝g

∞∫

0

Pt+s� [Ps Qb(x)] min{t, s}ds

⎞

⎠
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≤ 8
√

bτ

⎛

⎜
⎝g

∞∫

√
b

Pt+v� [Pvx] min{t, v}dv
⎞

⎟
⎠

+ 8τ

⎛

⎜
⎝g

√
b∫

0

Pt+v�[Pvx] min{t, v}dv
⎞

⎟
⎠ .

This means

lim
λ
τ

⎛

⎝g

∞∫

0

Pt+s�[Ps Qb(xλ)] min{t, s}ds

⎞

⎠

≤ 8
√

b lim
λ
τ

⎛

⎜
⎝g

∞∫

√
b

Pt+v�[Pvxλ] min{t, v}dv
⎞

⎟
⎠

+ 8 lim
λ
τ

⎛

⎜
⎝g

√
b∫

0

Pt+v�[Pvxλ] min{t, v}dv
⎞

⎟
⎠ .

The first term in the right hand side converges to 0 as b → 0. We claim the sec-

ond term converges to 0 too. If not, there exists ε > 0 such that τ(g limλ

∫√
b

0 Pt+v
�[Pvxλ] min{t, v}dv) > ε for all b. We reach a contradiction with the abso-
lute continuity of integrals by choosing xλ0 such that τ(g limλ

∫ 1
0 Pt+v�[Pv(xλ −

xλ0)] min{t, v}dv) < ε
2 . The assertion (iii) is proved.

We now prove (iv). Let xλ ∈ N 0 be a net weak∗ converges to x in B M Oc(�).
Suppose x = 0 in B M Oc(�). The proof of (ii) implies that w(Pbxλ) weakly con-
verges to 0 in V c∞. Herew and V c∞ are the embedding and Hilbert L∞-module defined
for the study of bmoc(T ) in Sect. 5.2.3. Therefore, Pbxλ weakly converges to 0 in
bmoc(T ) for every b > 0. To prove the reverse, recall that Pbx weakly converges to
0 in bmoc(T )means that Tt |Pb(xλ)|2 − |Tt Pb(xλ)|2 = ∫ t

0 Tt−s�(Ts Pbxλ, Ts Pbxλ)ds
weak ∗ converges to 0 in N for any b > 0. Use the same idea as the proof of (ii), we
have t PbTt (xλ) weakly converges to 0 in B M Oc(�) for any b, t > 0. Then P2b(xλ)
weakly converges to 0 in B M Oc(�) for any b > 0 since b2 Pb is an average of tTt .
This means P2bx = 0 in B M Oc(�) for any b. By (iii), we conclude that x = 0 in
B M Oc(�). The same argument works for B M Or (�). ��

For x ∈ B M Oc(�), y ∈ B M Or (�), we say x = y if Pb(x − y) = 0 in bmoc(T )∩
bmor (T ) for any b > 0. For x ∈ B M Oc(�) given, such a y is unique in B M Or (�)

because of Lemma 5.18 (iv).

Definition 5.19 Let B M O(�) be the space of all x ∈ B M Oc(�) which belongs to
B M Or (�) too. Define

‖x‖B M O(�) = max
{‖x‖B M Oc(�), ‖y‖B M Or (�)

}
.
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Here y is the unique element in B M Or (�) such that Pb(x − y) = 0 in bmoc(T ) ∩
bmor (T ) for all b > 0.

Theorem 5.20 Let (Tt ) be a standard semigroup satisfying �2 ≥ 0 and admitting a
reversed Markov dilation with a. u. continuous path. Then

[
B M O(�), L0

q(N )
]

q
p

= L0
p(N ).

Proof Let x ∈ B M O(�) ∩ L0
q(N ). By Proposition 5.1, we know that πta (x) has

continuous path with respect to the filtration M̂a,t . Note that

πta (x) = P�
(
πta (x)

)+ Pbr
(
πta (x)

)
.

However, Pbr (πta (x)) = ∫ ta
0 πr (∂PBr (x))dr is a stochastic integral against the

Brownian motion and hence has continuous path. Taking the difference, we know
that P�(πta (x)) has a.u. continuous path. We can now copy the proof for bmo(T ).
More precisely, let h1(�) be an abstract predual of B M O(�). Similar to the proof of
Lemma 5.15 we have π∗

0 (P�Hc
1 (M)) ⊂ hc

1(�) since π∗
0 (h

d
1(M)) = {0}. Then, by

the same argument used in the proof of Theorem 5.16, we have

L0
p(N ) ⊂

[
L0

2(N ), h1(�)
]

2−p
p

,

for 1 < p < 2. By duality and Wolff’s theorem, we obtain the result. ��
Open problems. At the end of this article we want to mention some open problems.

(i) H1-BMO duality for semigroup of operators. Fefferman’s H1-BMO duality
theory has been studied in the context of semigroups by many researchers. In
particular, Varopoulos established an H1-BMO duality theory for a “good”
semigroups by a probabilistic approach. Duong/Yan studied this topic for oper-
ators with heat kernel bounds (see [6]). In their proofs, the geometric structure
of Euclidean spaces is essential. Mei (see [27]) provides a first approach of this
problem in the context of von Neumann algebras with two additional assump-
tions on the semigroups. The authors expect a more general H1-BMO duality
in the context of semigroups.

(ii) Comparison of different semigroup BMO-norms. There are several natural
semigroup BMO norms as introduced in this article. A complete comparison of
them is in order. In particular, it will be interesting to investigate the conditions
on the semigroups so that we have the estimates,

(a) ‖ · ‖B M Oc(P) � ‖ · ‖B M Oc(∂) � ‖ · ‖B M Oc(�).
(b) ‖ · ‖bmoc(P) � ‖ · ‖B M Oc(P) � ‖ · ‖B M Oc(�̂)

.
(c) ‖ · ‖bmoc(T ) � ‖ · ‖B M Oc(T ).

(c′) supt ‖Tt x − T2t x‖ ≤ c‖x‖bmoc(T ).

(d) supt ‖Tt
∫ t

0

∣∣∣ ∂Ts x
∂s

∣∣∣
2

sds‖ ≤ c‖x‖2.
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742 M. Junge, T. Mei

(iii) The classical BMO functions ϕ on R is integrable with respect to 1
1+t2 dt . What

is a noncommutative analogue of this property ? A more precise question is,
does there exist a normal faithful state τ on N such that τ |x | ≤ c‖x‖B M O(T )
for x ∈ N .
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