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Abstract We take up in this paper the existence of positive continuous solutions for
some nonlinear boundary value problems with fractional differential equation based
on the fractional Laplacian (−�|D)

α
2 associated to the subordinate killed Brownian

motion process Z D
α in a bounded C1,1 domain D. Our arguments are based on potential

theory tools on Z D
α and properties of an appropriate Kato class of functions Kα(D).
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1 Introduction

Let χ = (�,F ,Ft , Xt , θt , Px ) be a Brownian motion in R
d , d ≥ 2 and π =

(�,G, Tt ) be an α
2 -stable process subordinator starting at zero, where 0 < α < 2

and such that χ and π are independent. In this paper, we always assume that D is
a bounded C1,1- domain in R

d . We are interested in the subordinate killed Brown-
ian motion process which is a symmetric Hunt process that we denote by Z D

α . This
process is obtained by killing χ at τD , the first exit time of χ from D giving the process
χD and then subordinating this killed Brownian motion using the α

2 -stable
subordinator Tt .
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260 A. Dhifli et al.

The infinitesimal generator of Z D
α is the fractional power (−�|D)

α
2 of the negative

Dirichlet Laplacian in D, which is a prototype of non-local operator and a very useful
object in analysis and partial differential equations, see, for instance [14,17].

Until recently and despite its importance, the process Z D
α was not fully developed.

This process was first studied in [7], where among other things, an one to one corre-
spondence between the family of positive harmonic functions of the killed Brownian
motion χD and the family of positive harmonic functions of the subordinate killed
Brownian motion Z D

α was established. This correspondence was improved later in
[6]. In particular, it was shown in [6], that there are no non-trivial bounded harmonic
functions for Z D

α . While the classical formulation of the Dirichlet problem becomes
impossible, the authors of [6] provide an appropriate reformulated Dirichlet problem
associated to (−�|D)

α
2 (see Proposition 3 and Remark 2 below). This approach allows

us to study two different nonlinear Dirichlet problems associated to (−�|D)
α
2 and to

transfer existence results about nonlinear equations based on Brownian motion tech-
niques, obtained in [12] and [13], into existence results in the new situation as it is
stated in Theorems 3 and 4 below.

On the other hand, a precise description of Z D
α in terms of the underlying Brownian

motion χ and the subordinator π was given in [16]. As a consequence, the authors
of [16] established the behavior of the Green function G D

α of Z D
α . Later, in [15], new

lower bounds for G D
α were proved giving sharp estimates on G D

α and also sharp esti-
mates for the density of Z D

α were performed. These bounds will be useful for our study.
In particular, this enables us to introduce a functional class Kα(D) called fractional
Kato class, which is characterized by an integral condition involving G D

α . This class
is quite rich (see Proposition 8) and it is a key tool for proving our existence results.

The content of this paper is organized as follows. In Sect. 2, we recapitulate some
potential theory tools pertaining to the process Z D

α developed in particular in [6] and
[7]. Then, we present our main results (see Theorems 3 and 4). In Sect. 3, we establish
some estimates and properties of G D

α . We give in Sect. 4 some interesting properties
of the class Kα(D) including a careful analysis about continuity of some potential
functions. Our main results are proved in Sects. 5 and 6.

2 Notation and setting

2.1 Potential theory associated to (−�|D)
α
2

Let pD(t, x, y) be the transition density of the semi-group (P D
t )t>0 corresponding

to the killed Brownian motion χD and ηαt be the density of Tt such that for every
t, s > 0,

∫∞
0 ηαt (u) exp(−su)du = exp(−ts

α
2 ). Further, we have

∫∞
0 ηαs (t)ds =

1

( α2 )

t
α
2 −1, t > 0.

Then the semi-group (Qα
t )t>0 generated by the process Z D

α is given by

Qα
t f (x) :=

∞∫

0

P D
s f (x)ηαt (s)ds =

∫

D

qα(t, x, y) f (y)dy, for f ∈ B+(D),
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On the subordinate killed B.M in bounded domains 261

where qα(t, x, y) := ∫∞
0 pD(s, x, y)ηαt (s)ds is the density of Qα

t and B+(D) denotes
the set of nonnegative Borel measurable functions defined on D.

It is shown in [15] that for any T > 0, we have

qα(t, x, y)≈min

(
δ(x)δ(y)

|x − y|2 + t
2
α

, 1

)

t
−d
α

(

1 + |x − y|2
t

2
α

)− d+α
2

, t < T and x, y ∈ D.

(2.1)

Here and throughout the paper δ(x) denotes the Euclidean distance between x and
the boundary ∂D of D and for nonnegative functions f and g defined on a set S, we
write f ≈ g if there exists c > 0 such that 1

c f ≤ g ≤ c f on S and we say that f is
comparable to g.

The Green function G D
α (x, y) associated to (Qα

t )t>0 is a continuous function on
D × D except along the diagonal and is given by

G D
α (x, y) =

∞∫

0

qα(t, x, y)dt = 1


(α2 )

∞∫

0

pD(t, x, y)t
α
2 −1dt. (2.2)

We will denote G D(x, y) the Green function associated to (P D
t )t>0 (i.e. α = 2).

The following sharp estimates on G D
α (x, y) are given in [15],

G D
α (x, y) ≈ 1

|x − y|d−α min

(

1,
δ(x)δ(y)

|x − y|2
)

, x, y ∈ D. (2.3)

These interesting inequalities extend those for the Green function G D of the killed
Brownian motion χD , in the case d ≥ 3 (see [18]) and consequently it was shown
a 3G-inequality for G D (see [8]) allowing to introduce and study the Kato class of
functions K (D) (see [13], for d ≥ 3 and [19] for d = 2). This class was extensively
used in the study of various elliptic differential equations in bounded domains (see
[2,13] and [19]).

Analogously, Theorem 1 below provides a fundamental 3G-inequality for G D
α , as

a consequence of the estimates (2.3). For the proof, we refer to [15].

Theorem 1 (3G-Theorem) There exists a positive constant C0 such that for all x, y, z
in D, we have

G D
α (x, z)G D

α (z, y)

G D
α (x, y)

≤ C0

(
δ(z)

δ(x)
G D
α (x, z)+ δ(z)

δ(y)
G D
α (y, z)

)

(2.4)

This allows us to introduce a new fractional Kato class of functions in D which
will be denoted by Kα(D) and defined as follows.
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262 A. Dhifli et al.

Definition 1 A Borel measurable function q in D belongs to the Kato class Kα(D) if
q satisfies the following condition

lim
r→0

⎛

⎜
⎝sup

x∈D

∫

D∩B(x,r)

δ(y)

δ(x)
G D
α (x, y) |q(y)| dy

⎞

⎟
⎠ = 0.

As a typical example of functions in Kα(D), we cite q(x) = δ(x)−λ, λ < α.

Remark 1 Replacing G D
α by G D in Definition 1 above, we find again the Kato class

K (D) introduced in [13,19].
Furthermore, since for x, y ∈ D, we have

G D(x, y)

G D
α (x, y)

≈ |x − y|2−α log

(

2 + δ(x)δ(y)

|x − y|2
)(3−d)+

,

we deduce that there exists c > 0 such that for x, y ∈ D,G D(x, y) ≤ cG D
α (x, y).

Consequently, we conclude that

Kα(D) ⊂ K (D).

Let us define the potential kernel G D
α of Z D

α on B+(D) by

G D
α ψ(x) =

∫

D

G D
α (x, y)ψ(y)dy.

By ([7, Proposition 1]), we have G D
α ψ 
= ∞ if and only if G D

α ψ ∈ L1
loc(D).

Also by ([7, p. 222]), we have the following interesting relation between the poten-
tial kernels G D

α and G D : For any ψ ∈ B+(D), we get

G D
α (G

D
2−αψ) = G Dψ. (2.5)

Then, using (2.3) and (2.5), it is easy to see, as in the classical case, that the following
assertions are equivalent

(i) G D
α ψ 
= ∞.

(ii)
∫

D δ(y)ψ(y)dy < ∞.

On the other hand, for any ψ ∈ B+(D) such that
∫

D δ(y)ψ(y)dy < ∞ and for any
φ ∈ C∞

c (D) we have (see [7, p. 230])

∫

D

ψ(x)(−�|D)
α
2 φ(x)dx = −

∫

D

G D
2−αψ(x)�φ(x)dx < ∞,
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On the subordinate killed B.M in bounded domains 263

that is

(−�|D)
α
2ψ = −�G D

2−αψ(in the distributional sense). (2.6)

In particular, by (2.5) we obtain that

(−�|D)
α
2 G D

α ψ = ψ in D (in the distributional sense) . (2.7)

In what follows we recall the definition of excessive and harmonic functions asso-
ciated to the process Z D

α (see [6]).

Definition 2 A nonnegative Borel measurable function h on D is said to be harmonic
with respect to Z D

α if h 
= ∞ on D and if for every relatively compact open subset
U ⊂ U ⊂ D, we have

h(x) = Ẽ x
[
h
(

Z D
α (̃τU )

)]
, x ∈ U,

where Ẽ x stands for the expectation with respect to Z D
α starting from x and τ̃U :=

inf
{
t > 0 : Z D

α (t) /∈ U
}
.

Definition 3 A nonnegative Borel measurable function s on D is said to be excessive
with respect to Z D

α if s 
= ∞ on D and satisfies

Qα
t s(x) ≤ s(x), t > 0, x ∈ D

and

lim
t→0

Qα
t s(x) = s(x).

We are going to use HD
α to denote the collection of all nonnegative functions on D

which are harmonic with respect to Z D
α and S D

α to denote the collection of all excessive
functions on D with respect to Z D

α .
Also we denote by HD and S D respectively the collections of the classical non-

negative harmonic functions and excessive functions on D (i.e. with respect to χD).
Recall that HD

α ⊂ S D
α and HD ⊂ S D . An important connection between S D

α and
S D was established in [7] and improved later in [6]. More precisely, it was shown in
[6] that G D

2−α is a bijection from S D
α to S D and the same from HD

α to HD . We can
summarize the result of [6, Theorem 3.1] as follows.

Theorem 2 If s ∈ S D, there exists a function g ∈ S D
α , such that s(x) = G D

2−αg(x)
on D, given by the formula

g(x) = 1 − α
2


(α2 )

∞∫

0

t−2+ α
2

(
s(x)− P D

t s(x)
)

dt.
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Conversely, if g ∈ S D
α , then s = G D

2−αg is in S D.
Moreover, g ∈ HD

α if and only if s = G D
2−αg ∈ HD.

Using this correspondence between HD
α and HD , the following properties are

obtained in [6, theorem 3.2 and proposition 3.8]

Proposition 1 (i) Every function h ∈ HD
α is continuous.

(ii) If h ∈ HD
α is bounded, then h ≡ 0.

Note that we have the following relation between the functions in HD
α and the solu-

tions (in the distributional sense) of the equation (−�|D)
α
2 u = 0 (see [6, proposition

3.11]).

Proposition 2 If h ∈ HD
α , then

∀φ ∈ C∞
c (D),

∫

D

h(x)(−�|D)
α
2 φ(x)dx = 0. (2.8)

Conversely, suppose that h is a nonnegative continuous function such that∫
D δ(y)h(y)dy is finite and (2.8) is satisfied. Then h ∈ HD

α .

Now, let us introduce the Martin kernel associated to (−�|D)
α
2 . Fix a point x0 ∈ D

and let

M D(x, z) := lim
D
y−→z

= G D(x, y)

G D(x0, y)
, x ∈ D, z ∈ ∂D,

be the the Martin kernel of χD based at x0. It is well known from the general potential
theory that for each fixed z ∈ ∂D, the function x −→ M D(x, z) ∈ HD (see [1]).

Since G D
2−α is a bijection from HD

α to HD , we define the function K D
α (x, z) on

D × ∂D by

G D
2−α
(

K D
α (·, z)

)
(x) = M D(x, z).

Then for each fixed z ∈ ∂D, K D
α (·, z) ∈ HD

α .
Let M D

α be the function defined on D × ∂D by

M D
α (x, z) = K D

α (x, z)

K D
α (x0, z)

, x ∈ D, z ∈ ∂D.

Then we have for each z ∈ ∂D,M D
α (·, z) ∈ HD

α . Moreover, M D
α is jointly continuous

on D × ∂D and satisfies for each x ∈ D

M D
α (x, z) = lim

y−→z∈∂D

G D
α (x, y)

G D
α (x0, y)

.
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On the subordinate killed B.M in bounded domains 265

M D
α (x, z) is called the Martin kernel based at x0 for Z D

α (see [6]).
On the other hand, by Martin’s representation theorem (see [1]), there exists a finite

positive measure σ on ∂D such that

1 =
∫

∂D

M D(·, z)σ (dz).

We know (see [4, p. 16]) that for every continuous function f on ∂D, the unique
solution h of the Dirichlet problem �h = 0, limx−→z∈∂D h(x) = f (z) is given by

M D f (x) =
∫

∂D

M D(x, z) f (z)σ (dz), x ∈ D.

Hence putting for a continuous function f on ∂D

M D
α f (x) =

∫

∂D

M D
α (x, z) f (z)ν(dz), x ∈ D,

where ν(dz) = K D
α (x0, z)σ (dz), we obtain that M D

α f ∈ HD
α and G D

2−α(M D
α f ) =

M D f .
Recall that by [6], we have

M D
α f (x) = 1


(α2 )
E x
(

f
(
XτD

)
τ
α
2 −1

D

)
. (2.9)

Note that, if f is the constant 1, then M D
α 1 is the function in HD

α playing the role
of the constant 1 in HD i.e.

G D
2−α
(

M D
α 1
)

= 1, (2.10)

and by Theorem 2,

M D
α 1(x) = 1 − α

2


(α2 )

∞∫

0

t−2+ α
2

(
1 − P D

t 1(x)
)

dt.

We remark that it was shown in ([16, remark 3.3]) that

M D
α 1(x) ≈ δ(x)α−2 in D. (2.11)

Moreover, we have the following Proposition due to [6].
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Proposition 3 Let f be a nonnegative continuous function on ∂D. The function M D
α f

is the unique function h ∈ HD
α such that

lim
x−→z∈∂D

h(x)

M D
α 1(x)

= f (z).

Remark 2 Proposition 3 provides the solvability of the following reformulated
Dirichlet problem associated to (−�|D)

α
2 . Namely, if f is a nonnegative continu-

ous function on ∂D, then M D
α f is the unique continuous solution of

{
(−�|D)

α
2 u = 0 in D (in the distributional sense)

limx−→z∈∂D
u(x)

M D
α 1(x)

= f (z).

2.2 Main results

As it is mentioned above, the main goal of this paper is to prove two existence the-
orems, stated in Theorems 3 and 4 below, for fractional differential equations with
reformulated Dirichlet boundary condition.

Our first purpose is to study the following problem

{
(−�|D)

α
2 u = ϕ(·, u) in D (in the distributional sense)

lim
x−→∂D

δ(x)2−αu(x) = 0. (2.12)

In view of (2.11), we remark that the boundary condition in (2.12) is equivalent to
limx−→z∈∂D

u(x)
M D
α 1(x)

= 0. The nonlinearity ϕ is required to satisfy the assumptions

(H1) ϕ is a non-trivial nonnegative measurable function in D × (0,∞) which is
continuous and nonincreasing with respect to the second variable.

(H2) ∀c > 0, x → δ(x)2−αϕ(x, cδ(x)α−2) is in Kα(D).

Note that x → ∂D means that x tends to a point ξ of ∂D.
As a typical example of functions ϕ satisfying (H1) and (H2) , we quote ϕ(x, u) =

k(x)u−σ , where σ ≥ 0 and k is a nonnegative measurable function in D such that the
function

x → k(x)δ(x)(σ+1)(2−α) ∈ Kα(D).

Using a fixed point theorem, we prove in Sect. 5 the following

Theorem 3 Assume (H1) − (H2). Then problem (2.12) has a positive continuous
solution u in D satisfying

u(x) = G D
α (ϕ(·, u))(x), x ∈ D. (2.13)

Note that this result extends a result of [12] in the elliptic case (i.e. α = 2).
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On the subordinate killed B.M in bounded domains 267

For our second purpose, we are interested in the following problem

⎧
⎨

⎩

(−�|D)
α
2 u + uϕ(·, u) = 0 in D (in the distributional sense)

lim
x−→z
z∈∂D

u(x)
M D
α 1(x)

= f (z), (2.14)

where f is a non-trivial nonnegative continuous function on ∂D and the nonlinear
term is required to satisfy the following assumptions

(H3) ϕ is a nonnegative measurable function in D × (0,∞).
(H4) For all c > 0, there exists a nonnegative function qc ∈ Kα(D) such that the map

s → s
[
qc (x)− ϕ

(
x, sδ(x)α−2

)]
is continuous and nondecreasing on [0, c],

for all x ∈ D.

To illustrate, let us present an example. Let p > 0 and k be a nonnegative measurable
function such that the function

x → k(x)δ(x)(α−2)p ∈ Kα(D).

Then the function ϕ(x, u) = k(x)u p satisfies (H3) and (H4).
Using a potential theory approach, we establish in Sect. 6 the following

Theorem 4 Assume (H3) − (H4). Then problem (2.14) has a positive continuous
solution u in D. Moreover, u satisfies the following

cM D
α f (x) ≤ u(x) ≤ M D

α f (x), (2.15)

where c ∈ (0, 1).

We end this section by noting that solutions for the nonlinear problems (2.12) and
(2.14) associated to (−�|D)

α
2 blow up at the boundary ∂D. On the contrary, for the

classical case (i.e. α = 2), solutions of elliptic nonlinear problems corresponding to
(2.12) and (2.14) are bounded (see [12,13]).

From here on, c denotes a positive constant which may vary from line to line.
Also we refer to C(D) the collection of all continuous functions in D and C0(D) the
subclass of C(D) consisting of functions which vanish continuously on ∂D.

3 Estimates and properties of G D
α

We provide in this section some estimates on the Green function G D
α (x, y) and some

interesting properties of the potential kernel G D
α , related to potential theory.

Proposition 4 For each x, y ∈ D, we have

G D
α (x, y) ≈ δ(x)δ(y)

|x − y|d−α (|x − y|2 + δ(x)δ(y))
(3.1)
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and

δ(x)δ(y) ≤ c G D
α (x, y). (3.2)

Moreover, if |x − y| � r then

G D
α (x, y) ≤ c

δ(x)δ(y)

rd+2−α . (3.3)

Proof Since for each a, b > 0, we have min(a, b) ≈ ab
a+b , then from (2.3) we deduce

(3.1). Inequalities (3.2) and (3.3) follow immediately from (3.1). ��
Proposition 5 If f and g are in B+(D) such that g ≤ f and the potential function
G D
α f is continuous in D. Then the potential function G D

α g is also continuous in D.

Proof Let θ ∈ B+(D) be such that f = g + θ . So, we have G D
α f = G D

α g + G D
α θ .

Now, since G D
α g and G D

α θ are two lower semi-continuous functions in D, we deduce
the result. ��

It is the same as the case α = 2, the potential kernel G D
α satisfies the complete

maximum principle, i.e. for each f ∈ B+(D) and v ∈ S D
α , such that G D

α f ≤ v in
{ f > 0}, we have G D

α f ≤ v in D (see [3, Chap. II, proposition 7.1]). Consequently,
we deduce the following

Proposition 6 Let h ∈ B+(D) and v ∈ S D
α . Let w be a Borel measurable function in

D such that G D
α (h |w|) < ∞ and v = w + Gα

D(hw). Then w satisfies

0 ≤ w ≤ v.

Proof Since G D
α (h |w|) < ∞, then we have

G D
α

(
hw+) ≤ v + G D

α

(
hw−) in {w > 0} = {w+ > 0

}
.

Now, since the function v + G D
α

(
hw−) is in S D

α , then we deduce by the complete
maximum principle that

G D
α

(
hw+) ≤ v + G D

α

(
hw−), in D.

That is

G D
α (hw) ≤ v = w + G D

α (hw).

Hence, we obtain

0 ≤ w ≤ w + G D
α (hw) = v.

��
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Remark 3 Let λ ∈ R and q be the function defined on D by

q(x) = 1

(δ(x))λ
.

As it is mentioned above, for any ψ ∈ B+(D), the function G D
α ψ is a potential if and

only if
∫

D δ(y)ψ(y)dy < ∞. Then by ([9, lemma p. 726]), we conclude that G D
α q is

a potential if and only if λ < 2. We shall give in Proposition 7 below, estimates on
G D
α q, for λ < 2.
This will provide us a class of potential functions p defined on D and satisfying

p(x) ≈ (δ(x))β, α − 2 < β ≤ 1.

To this end, we need the following lemma due to [11].

In what follows, we put for x ∈ D

D1 =
{

y ∈ D, |x − y|2 ≤ δ(x)δ(y)
}

D2 =
{

y ∈ D, |x − y|2 ≥ δ(x)δ(y)
}
.

Lemma 1 Let x ∈ D, then we have

(i) If y ∈ D1, then

3 − √
5

2
δ(x) ≤ δ(y) ≤ 3 + √

5

2
δ(x) and |x − y| ≤ 1 + √

5

2
min(δ(x), δ(y)).

(ii) If y ∈ D2, then

max(δ(x), δ(y)) ≤
√

5 + 1

2
|x − y| .

In particular,

B

(

x,

√
5 − 1

2
δ(x)

)

⊂ D1 ⊂ B

(

x,

√
5 + 1

2
δ(x)

)

.

Proposition 7 Let d0 = diam(D) and q be the function defined on D by q(x) =
δ(x)−λ, λ < 2. For x ∈ D, we have

(i) G D
α q(x) ≈ δ(x)α−λ, i f α − 1 < λ < 2

(ii) G D
α q(x) ≈ δ(x) log( 2d0

δ(x) ), i f λ = α − 1

(iii) G D
α q(x) ≈ δ(x), i f λ < α − 1
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270 A. Dhifli et al.

Proof Let λ < 2. We obtain from (2.3) that

I (x) =
∫

D

G D
α (x, y)

1

(δ(y))λ
dy ≈ I1(x)+ I2(x),

where

I1(x) =
∫

D1

1

|x − y|d−α
1

(δ(y))λ
dy

and

I2(x) =
∫

D2

δ(x)δ(y)1−λ

|x − y|d−α+2 dy.

It is clear from Lemma 1 that

1

c

1

δ(x)λ

∫

B(x,
√

5−1
2 δ(x))

dy

|x − y|d−α ≤ I1(x) ≤ c

(δ(x))λ

∫

B(x,
√

5+1
2 δ(x))

dy

|x − y|d−α ,

i.e.

1

c

1

(δ(x))λ

√
5−1
2 δ(x)∫

0

rα−1dr ≤ I1(x) ≤ c

(δ(x))λ

√
5+1
2 δ(x)∫

0

rα−1dr.

This implies that

I1(x) ≈ (δ(x))α−λ, x ∈ D. (3.4)

Now, we shall estimate I2(x). Let α − 1 < λ < 2. We derive the estimates by
considering two cases.

Case 1:α−1 < λ < α. Since for each x ∈ D, y ∈ D2 , we have δ(y) ≤
√

5+1
2 |x−y|,

then we get

I2(x) ≤ c(δ(x))α−λ
∫

D2

(
δ(x)

δ(y)

)λ+1−α 1

|x − y|d dy.

Using the fact that 0 < λ+ 1 − α < 1, we deduce from [11, corollary 2.8] that

I2(x) ≤ c(δ(x))α−λ, x ∈ D.

Case 2: α ≤ λ < 2. We distinguish two subcases:
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If λ ≤ 1, we have by Lemma 1

I2(x) ≤ c
∫

D2

δ(x)

|x − y|d+λ+1−α dy

≤ cδ(x)

2d0∫

√
5−1
2 δ(x)

rα−λ−2dr

≤ c(δ(x))α−λ.

If 1 < λ < 2, it follows from Lemma 1 that

I2(x) ≤ c(δ(x))α−λ
∫

D2

(
δ(x)

δ(y)

)λ−1 1

|x − y|d dy.

Since 0 < λ − 1 < 1, we deduce again from [11, corollary 2.8] that I2(x) ≤
c(δ(x))α−λ. This together with (3.4) gives the assertion (i).

Now, let λ < α − 1. Then 2 − α < 1 − λ and by Lemma 1, we obtain

I2(x) ≤ cδ(x).

Thus, the assertion (iii) follows immediately from (3.2) to (3.4).
Finally, let λ = α − 1. We remark from (i) that G D

2−α(δ(·)−1)(x) ≈ δ(x)1−α .
So using (2.5), we deduce that

G D
α

(
δ(·)1−α) (x) ≈ G D

α G D
2−α(δ(·)−1)(x) = G D(δ(·)−1)(x).

Hence (ii) holds by using the following estimates proved in [2, example 6 (ii)]

G D(δ(·)−1)(x) ≈ δ(x) log(
2d0

δ(x)
), x ∈ D.

��

4 The Kato class Kα(D)

We look in this section at some interesting properties of functions belonging to the
Kato class Kα(D) (see Definition 1). In particular, we characterize this class by means
of the density qα(t, x, y) of the semigroup

(
Qα

t

)
t>0. Also a careful analysis about

equicontinuity of some family of functions is performed. First to illustrate the class
Kα(D), let us present the following.
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4.1 A subclass in Kα(D)

Proposition 8 Let p > d
α

and q ≥ 1 be such that 1
p + 1

q = 1. Let d0 = diam(D)
and θ be a nonegative continuous function in (0, 2d0) satisfying for some η > 0 the
following conditions:

(i) The function t → tα− d
p θ(t) is nondecreasing on (0, η) and limt→0+ tα− d

p θ

(t) = 0.
(ii) The function t → max(θ(t), 1) is nonincreasing on (0, η).

(iii) The function t → tα−1− d−1
p θ(t) ∈ Lq((0, η)).

Then we have

θ(δ(·))L p(D) ⊂ Kα(D).

Proof Let p > d
α

and q ≥ 1 be such that 1
q + 1

p = 1. Let ϕ ∈ L p(D) and θ :
(0, 2d0) −→ [0,∞) be a continuous function satisfying (i)–(iii). Let r > 0 and
x ∈ D then
∫

B(x,r)∩D

δ(y)

δ(x)
G D
α (x, y)|ϕ(y)|θ(δ(y))dy =

∫

B(x,r)∩D1

δ(y)

δ(x)
G D
α (x, y)|ϕ(y)|θ(δ(y))dy

+
∫

B(x,r)∩D2

δ(y)

δ(x)
G D
α (x, y)|ϕ(y)|θ(δ(y))dy

= I1(x)+ I2(x)

where D1 and D2 are the sets define before Lemma 1. We aim to show that I1(x) and
I2(x) tend to zero as r −→ 0, uniformly on x .

First, we remark by using (2.3) and Lemma 1 that

δ(y)

δ(x)
G D
α (x, y) ≤ c

|x − y|d−α , if x ∈ D and y ∈ D1 (4.1)

and

δ(y)

δ(x)
G D
α (x, y) ≤ c

(δ(y))2

|x − y|d+2−α , if x ∈ D and y ∈ D2. (4.2)

Now let us estimate I1(x). For simplicity, we put

β = 3 − √
5

2
, σ = 1 + √

5

2

and ρ(x) = min(r, βδ(x)). So by Lemma 1, we have for y ∈ B(x, r) ∩ D1

|x − y| ≤ min(r, σ δ(x)) ≤ σ

β
min(r, βδ(x)) = σ

β
ρ(x).
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Since θ satisfies (ii), we get by the Hölder inequality and (4.1),

I1(x) ≤ c
∫

B(x,r)∩D1

1

|x − y|d−α |ϕ(y)| max(θ(δ(y)), 1)dy

≤ c ‖ϕ‖p max(θ(βδ(x)), 1)

⎛

⎜
⎝

∫

B(x,r)∩D1

|x − y|(α−d)q dy

⎞

⎟
⎠

1
q

≤ c ‖ϕ‖p max (θ(βδ(x)), 1)

⎛

⎜
⎝

σ
β
ρ(x)∫

0

td−1+(α−d)qdt

⎞

⎟
⎠

1
q

≤ c ‖ϕ‖p max(θ(ρ(x)), 1)(ρ(x))α− d
p

≤ c ‖ϕ‖p max
(
(ρ(x))α− d

p θ(ρ(x)), (ρ(x))α− d
p

)
.

Then, since θ satisfies (i), we deduce that

I1(x) ≤ c ‖ϕ‖p max
(

rα− d
p θ(r), rα− d

p

)
.

This implies by (i) that I1(x) tends to zero as r → 0, uniformly on x .

To control I2(x), we remark by (i) that the function t2θ(t) =
(

tα− d
p θ(t)

)
t2−α+ d

p

is nondecreasing. So, using the fact that if y ∈ D2, δ(y) ≤ σ |x − y|, we obtain

I2(x) ≤ c
∫

B(x,r)∩D2

(δ(y))2 θ (δ(y))

|x − y|d+2−α |ϕ(y)| dy

≤ c
∫

B(x,r)∩D2

1

|x − y|d−α θ(σ |x − y|)|ϕ(y)|dy.

By the Hölder inequality, we obtain

I2(x) ≤ c ‖ϕ‖p

⎛

⎜
⎝

∫

B(x,r)∩D2

|x − y|(α−d)q (θ(σ |x − y|))q dy

⎞

⎟
⎠

1
q

≤ c ‖ϕ‖p

⎛

⎝
σr∫

0

t

(
α−1− d−1

p

)
q
(θ(t))qdt

⎞

⎠

1
q

.

Now, using condition (iii), we deduce that I2(x) tends to zero as r → 0, uniformly in
x . This ends the proof. ��
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As application of the above proposition, we quote

Example 1 Let m ∈ N
∗ and a be a sufficiently large positive real number such that

the function

θ(t) = t−λ
m∏

k=1

(
logk

a

t

)−μk

is defined and positive on (0, 2d0), where logk(x) = log ◦ log ◦ · · · ◦ log(x) (k times).
Let p > d

α
, then if one of the following conditions is satisfied

• λ < α − d
p and μk ∈ R for k ∈ N

∗,

• λ = α− d
p , μ1 = μ2 = · · · = μk−1 = 1 − 1

p , μk > 1 − 1
p and μ j ∈ R for j > k,

we have

θ(δ(·))L p(D) ⊂ Kα(D).

4.2 Properties of functions in Kα(D)

Lemma 2 Let ϕ be a function in Kα(D). Then the function

x → δ(x)2ϕ(x),

is in L1(D). In particular, Kα(D) ⊂ L1
loc(D).

Proof Let ϕ ∈ Kα(D), then there exists r > 0 such that for each x ∈ D,

∫

D∩B(x,r)

δ(y)

δ(x)
G D
α (x, y) |ϕ(y)| dy ≤ 1.

Let x1,x2, . . . , xm in D be such that D ⊂
m⋃

i=1
B (xi , r), then by (3.2) there exists c > 0

such that for each i ∈ {1, 2, . . . ,m} and y ∈ B (xi , r) ∩ D, we have

δ(y)2 ≤ c
δ(y)

δ (xi )
G D
α (xi , y).

Hence, we have

∫

D

δ(y)2 |ϕ(y)| dy ≤ c
m∑

i=1

∫

D∩B(xi ,r)

δ(y)

δ (xi )
G D
α (xi , y) |ϕ(y)| dy

≤ cm < ∞.

This completes the proof. ��
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In the sequel, we use the notation

‖ϕ‖D := sup
x∈D

∫

D

δ(y)

δ(x)
G D
α (x, y)|ϕ(y)|dy

and

aα(ϕ) := sup
x,y∈D

∫

D

G D
α (x, z)G D

α (z, y)

G D
α (x, y)

|ϕ(z)|dz.

Proposition 9 Let ϕ be a function in Kα(D), then

aα(ϕ) ≤ 2C0‖ϕ‖D < ∞,

where C0 is the constant given in Theorem 1.

Proof Let ϕ ∈ Kα(D), then the first inequality follows immediately from Theorem 1.
Now to prove that ‖ϕ‖D is finite, we consider r > 0 such that for x ∈ D

∫

B(x,r)∩D

δ(y)

δ(x)
G D
α (x, y)|ϕ(y)|dy ≤ 1.

So using (3.3) and Lemma 2, we deduce that for x ∈ D

∫

D

δ(y)

δ(x)
G D
α (x, y)|ϕ(y)|dy ≤

∫

B(x,r)∩D

δ(y)

δ(x)
G D
α (x, y)|ϕ(y)|dy

+
∫

Bc(x,r)∩D

δ(y)

δ(x)
G D
α (x, y)|ϕ(y)|dy

≤ 1 + C

rd+2−α

∫

D

(δ(y))2|ϕ(y)|dy < ∞.

This ends the proof. ��

Proposition 10 Let ϕ be a function in Kα(D). Then for any function h in S D
α and

x ∈ D, we have

∫

D

G D
α (x, y) |ϕ(y)| h(y)dy ≤ aα(ϕ)h(x). (4.3)
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Moreover, we have for x0 ∈ D

lim
r→0

⎛

⎜
⎜
⎝sup

x∈D

1

h(x)

∫

D∩B
(
x0 ,r
)

G D
α (x, y) |ϕ(y)| h(y)dy

⎞

⎟
⎟
⎠ = 0. (4.4)

Proof Let h be a function in S D
α . Then by [3, Chap. II, proposition 3.11], there exists

a sequence ( fk) of nonnegative measurable functions in D such that for all y ∈ D

h(y) = sup
k

∫

D

G D
α (y, z) fk(z)dz.

Hence, it is enough to prove (4.3) and (4.4) for h(y) = G D
α (y, z) uniformly in z ∈ D.

Let ϕ ∈ Kα(D). We have for all x, z ∈ D

∫

D

G D
α (x, y)G D

α (y, z)|ϕ(y)|dy ≤ aα(ϕ)G
D
α (x, z).

Then (4.3) holds. Now, we shall prove (4.4). Let ε > 0 and r0 > 0 such that

sup
ξ∈D

∫

D∩B(ξ,r0)

δ(y)

δ(ξ)
G D
α (ξ, y)|ϕ(y)|dy ≤ ε.

Let r > 0. We deduce from Theorem 1 and (3.3) that for all x, z ∈ D

1

G D
α (x, z)

∫

D∩B(x0,r)

G D
α (x, y)G D

α (y, z)|ϕ(y)|dy

≤ C0

∫

D∩B(x0,r)

(
δ(y)

δ(x)
G D
α (x, y)+ δ(y)

δ(z)
G D
α (y, z)

)

|ϕ(y)|dy

≤ 2C0 sup
ξ∈D

∫

D∩B(x0,r)

δ(y)

δ(ξ)
G D
α (ξ, y)|ϕ(y)|dy

≤ 2C0 sup
ξ∈D

⎛

⎜
⎝

∫

D∩B(ξ,r0)

δ(y)

δ(ξ)
G D
α (ξ, y)|ϕ(y)|dy

+
∫

D∩B(x0,r)∩Bc(ξ,r0)

δ(y)

δ(ξ)
G D
α (ξ, y)|ϕ(y)|dy

⎞

⎟
⎠
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≤ 2C0ε + c

rd+2−α
0

∫

D∩B(x0,r)

(δ(y))2|ϕ(y)|dy.

By letting r → 0 and using Lemma 2, we reach (4.4). ��
Corollary 1 Let α−2 ≤ β ≤ 1. Then there exists c > 0 such that for any ϕ in Kα(D)

sup
x∈D

∫

D

(
δ(y)

δ(x)

)β
G D
α (x, y)|ϕ(y)|dy ≤ caα(ϕ) (4.5)

and for x0 ∈ D

lim
r→0

⎛

⎜
⎝sup

x∈D

∫

D∩B(x0,r)

(
δ(y)

δ(x)

)β
G D
α (x, y)|ϕ(y)|dy

⎞

⎟
⎠ = 0. (4.6)

Proof By (2.11), the function x → δ(x)α−2 is comparable to M D
α 1 which is in HD

α .
Also, we know from Proposition 7, that for α − 2 < β ≤ 1, the function x → δ(x)β

is comparable to G D
α

(
δ(·)α−β) which is in S D

α . Hence (4.5) and (4.6) are obtained
obviously from (4.3) and (4.4). ��
Remark 4 Let ϕ be a function in Kα(D) and putting β = 1 in (4.5), we obtain that
‖ϕ‖D ≤ caα(ϕ) and by Proposition 9, we deduce that ‖ϕ‖D ≈ aα(ϕ).

Corollary 2 Let ϕ be a function in Kα(D). Then the function x → δ(x)α−1ϕ(x) is
in L1(D).

Proof Let x0 ∈ D. By (3.2) and (4.5), it follows that

∫

D

δ(y)α−1|ϕ(y)|dy ≤ c
∫

D

(
δ(y)

δ(x0)

)α−2

G D
α (x0, y)|ϕ(y)|dy < ∞.

��

4.3 Characterization of Kα(D) by means of qα(t, x, y)

Lemma 3 For each t > 0 and x, y in D, we have

t∫

0

qα(s, x, y)ds ≤ G D
α (x, y). (4.7)

Moreover, if |x − y| ≤ t1/α then

G D
α (x, y) ≤ c

t∫

0

qα(s, x, y)ds. (4.8)
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Proof Let t > 0 and x, y ∈ D. The inequality (4.7) holds obviously from (2.2). Now,

we suppose that |x − y| ≤ t
1
α . Using (2.1), we have

t∫

0

qα(s, x, y)ds ≥ c

t∫

0

s
−d
α min

(
δ(x)δ(y)

|x − y|2 + s
2
α

, 1

)(

1 + |x − y|2
s

2
α

)− d+α
2

ds

Put r = |x − y|2s− 2
α , then we have

t∫

0

qα(s, x, y)ds ≥ c|x − y|α−d

∞∫

|x−y|2t− 2
α

r
d−α

2 −1(1 + r)−
d+α

2 min

(
δ(x)δ(y)

(1 + 1
r )|x − y|2 , 1

)

dr

≥ c|x − y|α−d

∞∫

1

r−α−1 min

(
δ(x)δ(y)

(1 + 1
r )|x − y|2 , 1

)

dr

≥ c|x − y|α−d min

(
δ(x)δ(y)

|x − y|2 , 1

)

.

Now we deduce the inequality (4.8) from (2.3). ��

Lemma 4 Let ϕ be a nonnegative function in Kα(D), then for each r > 0, we have

sup
0<t<1

⎛

⎜
⎝sup

x∈D

∫

(|x−y|≥r)∩D

δ(y)

δ(x)
qα(t, x, y)ϕ(y)dy

⎞

⎟
⎠ := M(r) < ∞. (4.9)

Proof Let 0 < t < 1 and 0 < r ≤ |x − y|. Using the fact that for a, b ∈ (0,∞) we
have min(a, b) ≈ ab

a+b , we deduce from (2.1) that

δ(y)

δ(x)
qα(t, x, y) ≤ c

tδ2(y)

δ(y)δ(x)+ |x − y|2 + t
2
α

(
|x − y|2 + t

2
α

)− d+α
2

≤ cδ2(y)
(
|x − y|2 + t

2
α

)− d+α+2
2

≤ cδ2(y)r−d+α+2.

Then we conclude from Lemma 2 that

M(r) ≤ c
∫

D

δ2(y)ϕ(y)dy < ∞.

This leads to (4.9). ��
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Proposition 11 A Borel measurable function ϕ in D belongs to the class Kα(D) if
and only if

lim
t→0

⎛

⎝sup
x∈D

∫

D

t∫

0

δ(y)

δ(x)
qα(s, x, y) |ϕ(y)| dsdy

⎞

⎠ = 0. (4.10)

Proof Suppose that the function ϕ satisfies (4.10), then using (4.8) for t = rα , we
deduce that

∫

D∩B(x,r)

δ(y)

δ(x)
G D
α (x, y)ϕ(y)dy ≤ c

rα∫

0

∫

D

δ(y)

δ(x)
qα(s, x, y)ϕ(y)dyds.

This implies that

lim
r−→0

⎛

⎜
⎝sup

x∈D

∫

D∩B(x,r)

δ(y)

δ(x)
G D
α (x, y)ϕ(y)dy

⎞

⎟
⎠ = 0

and so ϕ ∈ Kα(D).
Conversely, suppose that ϕ is a nonnegative function in Kα(D). Let ε > 0 and

r > 0 such that

sup
x∈D

∫

D∩B(x,r)

δ(y)

δ(x)
G D
α (x, y)ϕ(y)dy ≤ ε.

Using (4.7) and (4.9), we have for 0 < t < 1

0 ≤
∫

D

t∫

0

δ(y)

δ(x)
qα(s, x, y)ϕ(y)dsdy =

∫

D∩B(x,r)

t∫

0

δ(y)

δ(x)
qα(s, x, y)ϕ(y)dsdy

+
∫

(|x−y|≥r)∩D

t∫

0

δ(y)

δ(x)
qα(s, x, y)ϕ(y)dsdy

≤
∫

D∩B(x,r)

δ(y)

δ(x)
G D
α (x, y)ϕ(y)dy

+
t∫

0

∫

(|x−y|≥r)∩D

δ(y)

δ(x)
qα(s, x, y)ϕ(y)dyds

≤ ε + t M(r).

Then ϕ satisfies (4.10). ��
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4.4 Equicontinuity

In order to prove our existence results, we need the following theorem. The idea of
the proof follows closely from the properties of functions in Kα(D).

Theorem 5 Let α − 2 ≤ β < 1. Let ϕ be a nonnegative function in Kα(D), then the
family of functions

�ϕ =
⎧
⎨

⎩
x −→ T (θ)(x) =

∫

D

(
δ(y)

δ(x)

)β
G D
α (x, y)θ(y)dy, θ ∈ Kα(D), |θ | ≤ ϕ

⎫
⎬

⎭

is uniformly bounded and equicontinuous in D. Consequently�ϕ is relatively compact
in C0(D).

Proof Let ϕ be a nonnegative function in Kα(D) and θ ∈ Kα(D) such that |θ | ≤ ϕ

in D. By (4.5), we have

sup
x∈D

|T θ(x)| ≤ sup
x∈D

∫

D

(
δ(y)

δ(x)

)β
G D
α (x, y)ϕ(y)dy < +∞.

Hence �ϕ is uniformly bounded.
Let us prove the equicontinuity. Let x0 ∈ D and ε > 0. By (4.6), there exists r > 0

such that

sup
ζ∈D

∫

D∩B(x0,2r)

(
δ(y)

δ(ς)

)β
G D
α (ζ, y)ϕ(y)dy ≤ ε.

If x0 ∈ D and x, x ′ ∈ B(x0, r) ∩ D, then we have

∣
∣T θ(x)− T θ(x ′)

∣
∣ ≤
∫

D

∣
∣
∣
∣
∣

(
δ(y)

δ(x)

)β
G D
α (x, y)−

(
δ(y)

δ(x ′)

)β
G D
α (x

′, y)

∣
∣
∣
∣
∣
ϕ(y)dy

≤ 2 sup
ζ∈D

∫

D∩B(x0,2r)

(
δ(y)

δ(ζ )

)β
G D
α (ζ, y)ϕ(y)dy

+
∫

D∩Bc(x0,2r)

∣
∣
∣
∣
∣

(
δ(y)

δ(x)

)β
G D
α (x, y)−

(
δ(y)

δ(x ′)

)β
G D
α (x

′, y)

∣
∣
∣
∣
∣
ϕ(y)dy

≤ 2ε + I
(
x, x ′) .
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On the other hand, since |x − x0| ≤ r and
∣
∣x ′ − x0

∣
∣ ≤ r , then for y ∈ Bc (x0, 2r),

we have |x − y| ≥ r and
∣
∣x ′ − y

∣
∣ ≥ r . So we deduce that

∣
∣
∣
∣
∣

(
δ(y)

δ(x)

)β
G D
α (x, y)−

(
δ(y)

δ(x ′)

)β
G D
α (x

′, y)

∣
∣
∣
∣
∣
≤ c

δ(y)β+1

rd+2−α

≤ cδ(y)α−1.

Now since the function x → Gα
D(x,y)
δ(x)β

is continuous off the diagonal, we conclude by

Corollary 2 and the dominated convergence theorem that I
(
x, x ′) tends to zero as∣

∣x − x ′∣∣→ 0.
If x0 ∈ ∂D and x ∈ B (x0, r) ∩ D, then we have

|T θ(x)| ≤ sup
ζ∈D

∫

D∩B(x0,2r)

(
δ(y)

δ(ζ )

)β
G D
α (ς, y)ϕ(y)dy

+
∫

D∩Bc(x0,2r)

(
δ(y)

δ(x)

)β
G D
α (x, y)ϕ(y)dy

≤ ε + J (x)

Now since β < 1, we have by (3.1) that G D
α (x,y)
δ(x)β

→ 0 as |x − x0| → 0, for

y ∈ Bc (x0, 2r). So by same argument as for I (x, x ′), we prove that J (x) tends to 0
as |x − x0| → 0. Consequently, by Ascoli’s theorem, we deduce that�ϕ is relatively
compact in C0(D). ��

5 Proof of Theorem 3

In this section, we aim at proving the existence of a positive continuous solution for
the following boundary value problem

(Pλ)

{
(−�|D)

α
2 u = ϕ(·, u) in D (in the distributional sense)

lim
x−→∂D

u(x)
M D
α 1(x)

= λ,

where λ is a nonnegative constant.

Remark 5 (i) For λ > 0, we shall prove also the uniqueness of the solution of
problem (Pλ).

(ii) We remark that problem (P0) is equivalent to problem (2.12).

Lemma 5 Let w be a nonnegative continuous function in D, satisfying

lim
x−→∂D

w(x)

M D
α 1(x)

= λ ≥ 0. (5.1)
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Then G D
2−αw is continuous in D and lim

x−→∂D
G D

2−αw(x) = λ.

Proof Since the function x → w(x)
M D
α 1(x)

is nonnegative and continuous in D and satisfies

(5.1), it follows that there exists c > 0 such that for x ∈ D, we get

0 ≤ w(x)

M D
α 1(x)

≤ c.

This implies by (2.10) and Proposition 5 that G D
2−αw is continuous in D and conse-

quently we have
∫

D δ(y)w(y)dy < ∞.
Now, for η > 0, we denote by Dη the set defined by

Dη = {x ∈ D; δ(x) < η}.

Let ε > 0, then it follows from (5.1) that there exists η0 > 0 such that

|w(x)− λM D
α 1(x)| ≤ εM D

α 1(x), x ∈ Dη0 .

So for x ∈ D η0
2

, we deduce from (2.3), (2.10), and (2.11) that

|G D
2−αw(x)− λ| ≤

∫

D

G D
2−α(x, y)

∣
∣
∣w(y)− λM D

α 1(y)
∣
∣
∣ dy

≤
∫

Dη0

G D
2−α(x, y)

∣
∣
∣w(y)− λM D

α 1(y)
∣
∣
∣ dy

+
∫

Dc
η0

G D
2−α(x, y)

∣
∣
∣w(y)− λM D

α 1(y)
∣
∣
∣ dy

≤ ε + c
∫

Dc
η0

δ(x)δ(y)

|x − y|d+2−α (w(y)+ λM D
α 1(y))dy

≤ ε + cδ(x)

⎛

⎝
∫

D

δ(y)w(y)dy + λ

∫

D

(δ(y))α−1 dy

⎞

⎠.

Hence it follows that G D
2−αw(x) −→ λ as x −→ ∂D. This completes the proof. ��

Lemma 6 Letϕ be a function satisfying (H1) and (H2) andw be a positive continuous
function in D such that

lim
x−→∂D

w(x)

M D
α 1(x)

= λ > 0. (5.2)

Then we have the following
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(i) G D
α (ϕ(·, w)) ∈ C(D) and satisfies lim

x−→∂D

G D
α (ϕ(·,w))(x)

M D
α 1(x)

= 0.

(ii) G D(ϕ(·, w)) ∈ C0(D).
(iii) x → δ(x)ϕ(x, w(x)) ∈ L1(D).

Proof Since the function x → w(x)
M D
α 1(x)

is positive and continuous in D and satisfies

(5.2), it follows that w ≈ M D
α 1 in D and so by (2.11), we deduce that w ≈ δ(·)α−2.

Then we conclude by the monotonicity of ϕ that there exists c > 0 such that

ϕ(x, w(x)) ≤ ϕ(x, cδ(x)α−2), x ∈ D. (5.3)

Put ψ(x) := ϕ(x, cδ(x)α−2), for x ∈ D. Then we have

G D
α (ψ)(x) =

∫

D

G D
α (x, y)ψ(y)dy

= δ(x)α−2
∫

D

(
δ(y)

δ(x)

)α−2

G D
α (x, y)δ(y)2−αψ(y)dy.

It follows from Theorem 5 that the function

x → δ(x)2−αG D
α ψ(x) ∈ C0(D).

This implies in particular that G D
α (ψ) is a continuous function in D and consequently

by (5.3) and Proposition 5, the function G D
α (ϕ(·, w)) is continuous in D and satisfies

lim
x−→∂D

G D
α (ϕ(·, w))(x)

M D
α 1(x)

= 0.

To prove (ii), we apply Lemma 5 to the function G D
α (ϕ(·, w)) and we deduce that

G D(ϕ(·, w)) = G D
2−αG D

α (ϕ(·, w)) ∈ C0(D).

Finally (iii) holds from (ii). ��
Remark 6 Put ω = λM D

α 1 in Lemma 6, we obtain that the function

x → 1

M D
α 1(x)

G D
α ϕ
(
·, λM D

α 1
)
(x) ∈ C0(D). (5.4)

Lemma 7 Let λ > 0 and u be a positive continuous function defined on D. Then u is
a solution of problem (Pλ) if and only if u satisfies the integral equation

u(x) = λM D
α 1(x)+

∫

D

G D
α (x, y)ϕ(y, u(y))dy, x ∈ D. (5.5)
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Proof Suppose that the function u satisfies (5.5). Since ϕ is noninceasing with respect
to the second variable, we have obviously G D

α (ϕ(·, u)) ≤ G D
α

(
ϕ(·, λM D

α 1)
)
. This

together with (5.4) implies that lim
x−→∂D

u(x)
M D
α 1(x)

= λ. Now by Lemma 6 (ii), the func-

tion x → G D(ϕ(·, u))(x) is in C0(D). Hence, we apply (−�|D)
α
2 on both sides of

(5.5) and we conclude by (2.7) that u is a positive continuous solution of problem
(Pλ).

Conversely, suppose that u is a positive continuous solution of problem (Pλ).
We claim that u satisfies

{
�(G D

2−αu − G D(ϕ(·, u))) = 0 (in the distributional sense)
lim

x−→∂D
(G D

2−αu(x)− G Dϕ(·, u)(x)) = λ.

To show the claim, it suffices to remark by Lemma 5 that G D
2−αu is continuous in D and

lim
x−→∂D

G D
2−αu(x) = λ and by Lemma 6 that G D(ϕ(·, u)) ∈ C0(D). Thus, the claim

holds by (2.6). Furthermore since the function G D
2−αu −G Dϕ(·, u) is continuous, then

by [5, corollary 7, p. 294] it is a classical harmonic function in D satisfying

G D
2−αu − G Dϕ(·, u) = λ, on ∂D.

That is G D
2−α(u − G D

α ϕ(·, u)−λM D
α 1) = 0 in D. Hence using the fact that the kernel

G D
2−α is injective, we deduce that u satisfies (5.5). This ends the proof. ��

Proposition 12 Let ϕ be a function satisfying (H1) and (H2) and let 0 < μ ≤ λ.
Then we have

0 ≤ uλ − uμ ≤ (λ− μ)M D
α 1,

where uλ and uμ are respectively solutions of problems (Pλ) and (Pμ).

Proof Let h be the function defined on D by

h(x) =
{
ϕ(x,uλ(x))−ϕ(x,uμ(x))

uμ−uλ(x)
if uμ(x) 
= uλ(x)

0 if uμ(x) = uλ(x).

Then h ∈ B+(D). Using Lemma 7, we deduce

uλ − uμ + G D
α

(
h(uλ − uμ)

) = (λ− μ)M D
α 1.

Furthermore, by (5.4) we conclude that

G D
α (h|uλ − uμ|) ≤ G D

α ϕ(·, uλ)+ G D
α ϕ(·, uμ)

≤ G D
α ϕ(·, λM D

α 1)+ G D
α ϕ(·, μM D

α 1) < ∞.

Hence the result holds by Proposition 6. ��
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Theorem 6 Let ϕ be a function satisfying (H1)− (H2). Then for each λ > 0, problem
(Pλ) has a unique positive solution uλ ∈ C(D) satisfying

λM D
α 1(x) ≤ uλ(x) ≤ γM D

α 1(x), for x ∈ D, (5.6)

where γ > 0.

Proof In view of (5.4), the constant

γ = λ+ sup
x∈D

1

M D
α 1(x)

G D
α

(
ϕ(·, λM D

α 1)
)
(x)

is finite.
Let Y be the closed convex set given by

Y =
{

v ∈ C(D) : λ ≤ v ≤ γ, lim
x−→∂D

v(x) = λ

}

.

We define the integral operator T on Y by

T v(x) := λ+ 1

M D
α 1(x)

∫

D

G D
α (x, y)ϕ

(
y,M D

α 1(y)v(y)
)

dy.

We shall prove that T has a fixed point in Y . First, we have clearly for each v ∈
Y, λ ≤ T v ≤ γ . By same arguments as in the proof of Theorem 5, we obtain that
T Y is relatively compact in C(D) with limx−→∂D T v(x) = λ. In particular T Y ⊂ Y .
So it remains to prove the continuity of T in Y . Consider a sequence (vn)n in Y which
converges uniformly to a function v in Y . Then, by (2.11), (H1) and (H2), we obtain

|T vn(x)− T v(x)| ≤ c
∫

D

(
δ(y)

δ(x)

)α−2

G D
α (x, y)δ(y)2−α

∣
∣
∣ϕ(y,M D

α 1(y)vn(y))

−ϕ
(

y,M D
α 1(y)v(y)

)∣∣
∣ dy

and using again the monotonicity of ϕ, we get

δ(y)2−α|ϕ(y,M D
α 1(y)vn(y))− ϕ(y,M D

α 1(y)v(y))| ≤ 2ψ(y),

where ψ(y) := δ(y)2−αϕ(y, λM D
α 1(y)). Now, since ϕ is continuous with respect to

the second variable, we deduce by (4.5) and the dominated convergence theorem that

∀x ∈ D, T vn(x) −→ T v(x), as n −→ ∞.

Since T Y is a relatively compact family in C(D), we have the uniform convergence,
namely,

‖T vn − T v‖∞ −→ 0 as n −→ ∞.
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Thus, we have proved that T is a compact mapping from Y to itself. Hence by the
Schauder fixed-point theorem, T has a fixed point vλ ∈ Y . Put uλ(x) = M D

α 1(x)vλ(x),
for x ∈ D. Then uλ is a continuous function in D and satisfies

uλ(x) = λM D
α 1(x)+

∫

D

G D
α (x, y)ϕ(y, uλ(y))dy, x ∈ D

and

λM D
α 1(x) ≤ uλ(x) ≤ γM D

α 1(x), x ∈ D.

By Lemma 7, we conclude that uλ is a positive solution of problem (Pλ). The
uniqueness follows from Proposition 12. ��
Proof of Theorem 3 Let (λk) be a sequence of positive real numbers, nonincreasing
to zero. For each k ∈ N, put

γk = λk + sup
x∈D

1

M D
α 1(x)

G D
α

(
ϕ(·, λk M D

α 1)
)
(x)

and denote by uk the solution of problem (Pλk ). Then by Proposition 12, the sequence
(uk) decreases to a function u and so the sequence

(
uk − λk M D

α 1
)

increases to u.
Moreover, we have for each x ∈ D

u(x) ≥ uk(x)− λk M D
α 1(x)

=
∫

D

G D
α (x, y)ϕ(y, uk(y))dy

≥ G D
α ϕ(·, γk M D

α 1)(x) > 0.

Hence applying the monotone convergence theorem, we get by the continuity of ϕ
with respect to the second variable

u(x) =
∫

D

G D
α (x, y)ϕ(y, u(y))dy, ∀ x ∈ D. (5.7)

Let us prove that u is a positive continuous solution of (2.12). It is clear that u is
continuous in D. Indeed, we have

u = inf
k

uk = sup
k
(uk − λk M D

α 1)

and uk and M D
α 1 are continuous functions in D.

Furthermore, since 0 < u(x) ≤ uk(x), for each x ∈ D and k ∈ N, we deduce that
limx−→∂D

u(x)
M D
α 1(x)

= 0. This implies by Lemma 5 that G D
2−αu = G Dϕ(·, u) ∈ C0(D).
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Hence, applying (−�|D)
α
2 on both sides of Eq. 5.7, we conclude by (2.7) that u is a

positive continuous solution of problem (2.12). ��
Corollary 3 Let ϕ be a function satisfying (H1) and (H2) and let f be a nonnegative
continuous function on ∂D. Then the following problem

{
(−�|D)

α
2 u = ϕ(·, u) in D (in the distributional sense)

lim
x−→z∈∂D

u(x)
M D
α 1(x)

= f (z), (5.8)

has a positive continuous solution in D satisfying

u(x) = M D
α f (x)+ G D

α (ϕ(·, u))(x), x ∈ D.

Proof Let ψ be the function defined on D × (0,∞) by

ψ(x, t) = ϕ(x, t + M D
α f (x)).

Then ψ satisfies (H1) and (H2). Now by Theorem 3, the following problem

{
(−�|D)

α
2 v = ψ(·, v) in D (in the distributional sense)

lim
x−→∂D

v(x)
M D
α 1(x)

= 0,

has a positive continuous solution v satisfying v = G D
α (ψ(·, v)) on D. Then the

function

u = M D
α f + v

= M D
α f + G D

α (ψ(·, v))
= M D

α f + G D
α (ϕ(·, u))

is a positive continuous solution of problem (5.8). This completes the proof. ��

6 Proof of Theorem 4

Before giving the proof of Theorem 4, some potential theory tools are needed. We
are going to recall them in this paragraph and we refer to [4,10] for more details.
For a nonnegative measurable function q in D, we define the potential kernel Vq on
B+(D) by

Vq f (x) :=
∞∫

0

Ẽ x
(

e− ∫ t
0 q(Z D

α (s))ds f (Z D
α (t))

)
dt, x ∈ D,

with V0 := V = G D
α .
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Furthermore if q satisfies V q < ∞, we have the following resolvent equation

V = Vq + Vq(qV ) = Vq + V (qVq). (6.1)

In particular, if u ∈ B+(D) is such that V (qu) < ∞, then we have

(I − Vq(q·))(I + V (q·))u = (I + V (q·))(I − Vq(q·))u = u (6.2)

The following lemma plays a key role.

Lemma 8 Let q be a nonnegative function in Kα(D) and h be a positive finite function
in S D

α . Then for all x ∈ D, we have

exp (−aα(q)) h(x) ≤ h(x)− Vq(qh)(x) ≤ h(x).

Proof Since h ∈ S D
α , then by [3, Chap. II, proposition 3.11], there exists a sequence

of nonnegative measurable functions ( fn)n in D such that h = sup
n

V fn .

Let x ∈ D and n ∈ N be such that 0 < V fn(x) < ∞. Consider θ(t) = Vtq fn(x),
for t ≥ 0. Then the function θ is completely monotone on [0,∞) and so log θ is
convex on [0,∞). This implies that

θ(0) ≤ θ(1) exp

(

−θ
′(0)
θ(0)

)

i.e.

V fn(x) ≤ Vq fn(x) exp

(
V (qV fn)(x)

V fn(x)

)

.

Since V fn is in S D
α , it follows from (4.3) that

V fn(x) ≤ Vq fn(x) exp(aα(q)).

Hence by (6.1) we obtain

exp(−aα(q))V fn(x) ≤ Vq fn(x) = V fn(x)− Vq(qV fn)(x) ≤ V fn(x).

The result holds by letting n −→ ∞. ��
Proof of Theorem 4 We shall convert problem (2.14) into a suitable integral equation.
So we aim to show an existence result for the equation

u + V (uϕ(·, u)) = M D
α f. (6.3)

Let c0 > 0 be such that for each x ∈ D

M D
α 1(x) ≤ c0δ

α−2(x).
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Put c := c0‖ f ‖∞ and q := qc be the function in Kα(D) given by (H4).
Let


 = {u ∈ B+(D) : exp(−aα(q))M
D
α f ≤ u ≤ M D

α f }

and let T be the operator defined on 
 by

T u = M D
α f − Vq(q M D

α f )+ Vq((q − ϕ(·, u))u).

We claim that 
 is invariant under T . Indeed, since for all x ∈ D,M D
α f (x) ≤

cδα−2(x), then by using hypothesis (H4), we have for any u ∈ 


0 ≤ ϕ(·, u) ≤ q. (6.4)

Then it follows from Lemma 8 that for u ∈ 
 we have

T u ≥ M D
α f − Vq(q M D

α f ) ≥ exp(−aα(q))M
D
α f.

Moreover, for u ∈ 
, we have u ≤ M D
α f and consequently

T u ≤ M D
α f − Vq

(
q M D

α f
)

+ Vq(qu) ≤ M D
α f.

This shows that T
 ⊂ 
.
Next, we will prove that the operator T has a fixed point in 
. Let u and v be two

functions in 
 such that u ≤ v. Then from (H4), we have

T u − T v = Vq [(q − ϕ(·, u))u − (q − ϕ(·, v))v] ≤ 0.

Thus, T is nondecreasing on 
. Now, let (un) be the sequence defined by

u0 = exp(−aα(q))M
D
α f and un+1 = T un for n ∈ N.

We obviously obtain that the function un is in 
 and we deduce by the monotonicity
of T that

u0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ M D
α f.

Hence by the dominated convergence theorem and (H4), we conclude that the sequence
(un) converges to a function u ∈ 
 satisfying

u = M D
α f − Vq(q M D

α f )+ Vq [(q − ϕ(·, u))u] .

That is

(I − Vq(q·))u + Vq(uϕ(·, u)) = (I − Vq(q·))M D
α f.
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Applying the operator (I + V (q·)) on both sides of the above equality and using (6.1)
and (6.2), we deduce that u satisfies (6.3).

It remains to prove that u is a positive continuous solution of problem (2.14).
Since q ∈ Kα(D), then by Theorem 5, the function x → δ(x)2−α ∫

D G D
α (x, y)q(y)

δ(y)α−2dy is in C0(D). So using that

0 ≤ ϕ(·, u)u ≤ qu ≤ q M D
α f ≤ cqδα−2,

it follows from Proposition 5 that the function x → δ2−α(x)V (uϕ(·, u))(x) is in
C0(D).

Now, going back to (6.3) and applying (−�|D)
α
2 on both sides, we deduce by (2.7)

that u is a positive continuous solution of

(−�|D)
α
2 u + uϕ(·, u) = 0 in D (in the distributional sense)

and satisfies lim
x−→z∈∂D

u(x)
M D
α 1(x)

= f (z). This completes the proof. ��
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