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Abstract We take up in this paper the existence of positive continuous solutions for
some nonlinear boundary value problems with fractional differential equation based
on the fractional Laplacian (—A, D)% associated to the subordinate killed Brownian
motion process Z~ in abounded C 1.1 domain D. Our arguments are based on potential
theory tools on Zé) and properties of an appropriate Kato class of functions K, (D).
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1 Introduction

Let x = (R, F, F:, X;,0;, P*) be a Brownian motion in Rid >2and 7 =
(22,4, Ty) be an %‘-stable process subordinator starting at zero, where 0 < o < 2
and such that x and 7 are independent. In this paper, we always assume that D is
a bounded C!'- domain in R?. We are interested in the subordinate killed Brown-
ian motion process which is a symmetric Hunt process that we denote by Z2. This
process is obtained by killing x at tp, the first exit time of y from D giving the process
xP and then subordinating this killed Brownian motion using the 5 -stable

subordinator 7;.
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260 A. Dhifli et al.

The infinitesimal generator of Zé) is the fractional power (—A, D)% of the negative
Dirichlet Laplacian in D, which is a prototype of non-local operator and a very useful
object in analysis and partial differential equations, see, for instance [14,17].

Until recently and despite its importance, the process Z2 was not fully developed.
This process was first studied in [7], where among other things, an one to one corre-
spondence between the family of positive harmonic functions of the killed Brownian
motion x? and the family of positive harmonic functions of the subordinate killed
Brownian motion Zull) was established. This correspondence was improved later in
[6]. In particular, it was shown in [6], that there are no non-trivial bounded harmonic
functions for Z2. While the classical formulation of the Dirichlet problem becomes
impossible, the authors of [6] provide an appropriate reformulated Dirichlet problem
associated to (—A|p) 7 (see Proposition 3 and Remark 2 below). This approach allows
us to study two different nonlinear Dirichlet problems associated to (—A D)% and to
transfer existence results about nonlinear equations based on Brownian motion tech-
niques, obtained in [12] and [13], into existence results in the new situation as it is
stated in Theorems 3 and 4 below.

On the other hand, a precise description of Z2 in terms of the underlying Brownian
motion y and the subordinator m was given in [16]. As a consequence, the authors
of [16] established the behavior of the Green function G2 of ZP. Later, in [15], new
lower bounds for G 5 were proved giving sharp estimates on G g and also sharp esti-
mates for the density of Z2 were performed. These bounds will be useful for our study.
In particular, this enables us to introduce a functional class K, (D) called fractional
Kato class, which is characterized by an integral condition involving Gg . This class
is quite rich (see Proposition 8) and it is a key tool for proving our existence results.

The content of this paper is organized as follows. In Sect. 2, we recapitulate some
potential theory tools pertaining to the process Z developed in particular in [6] and
[7]. Then, we present our main results (see Theorems 3 and 4). In Sect. 3, we establish
some estimates and properties of G(? . We give in Sect. 4 some interesting properties
of the class Ky (D) including a careful analysis about continuity of some potential
functions. Our main results are proved in Sects. 5 and 6.

2 Notation and setting
2.1 Potential theory associated to (— A D)%

Let pP(t, x, y) be the transition density of the semi-group (PtD )¢=0 corresponding
to the killed Brownian motion x? and n¢ be the density of T; such that for every
t,s > 0, 57 n%(u) exp(—su)du = exp(—ts?). Further, we have JoSn%(nds =

1,21
— 12
F(%)t ,t > 0.

Then the semi-group (Q%);~o generated by the process ZD? is given by

07 f(x) ::/PSDf(x)nf‘(s)ds Z/q“(t,x,y)f(y)dy, for f € B¥(D),
0 D
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On the subordinate killed B.M in bounded domains 261

where g% (1, x, y) := [~ pP (s, x, y)n¥ (s)ds is the density of Q¢ and BT (D) denotes
the set of nonnegative Borel measurable functions defined on D.
It is shown in [15] that for any 7 > 0, we have

d+a

8(x)8 - -y 7

qa(t,x’y)%min(%,] l‘tf(l—i— &l 2_)" ) ,t<Tandx,y€D.
|x — yI” +te ta

2.1

Here and throughout the paper 6 (x) denotes the Euclidean distance between x and
the boundary 9 D of D and for nonnegative functions f and g defined on a set S, we
write f & g if there exists ¢ > 0 such that % f < g < cf on S and we say that f is
comparable to g.

The Green function Gg (x, y) associated to (Q%);~0 is a continuous function on
D x D except along the diagonal and is given by

oo o0
1 a_
62w = [ wxondr = o [pPuxnt a2
2
0 0

We will denote GP (x, y) the Green function associated to (P,D )is0 (l.e. o = 2).
The following sharp estimates on G2 (x, y) are given in [15],

n(l,w), x,y € D. 2.3)

Gaxe 0 = =P

|x — yld—«

These interesting inequalities extend those for the Green function G of the killed
Brownian motion XD , in the case d > 3 (see [18]) and consequently it was shown
a 3G-inequality for GP (see [8]) allowing to introduce and study the Kato class of
functions K (D) (see [13], for d > 3 and [19] for d = 2). This class was extensively
used in the study of various elliptic differential equations in bounded domains (see
[2,13] and [19]).

Analogously, Theorem 1 below provides a fundamental 3G-inequality for G g , as
a consequence of the estimates (2.3). For the proof, we refer to [15].

Theorem 1 (3G-Theorem) There exists a positive constant Cq such that forall x, y, z
in D, we have

56)
5(y)

Gl (x.2)GP(.y) < Co (@

D
GD(x.y) 5(x) Ce A

G2y, z)) (2.4)

This allows us to introduce a new fractional Kato class of functions in D which
will be denoted by K, (D) and defined as follows.
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262 A. Dhifli et al.

Definition 1 A Borel measurable function ¢ in D belongs to the Kato class Ky (D) if
q satisfies the following condition

) 35(y) .p

1 —G , d =0.

tim [ sup / S GE ) la0)ldy
DNB(x,r)

As a typical example of functions in Ky (D), we cite g(x) = S(x) ™M A < a.

Remark I Replacing G2 by GP in Definition 1 above, we find again the Kato class
K (D) introduced in [13,19].
Furthermore, since for x, y € D, we have

GP(x.y) _

N
_ 58\
~|x—y|2 0510 (2+_ 9
GD(x,y) g

Ix — yl?

we deduce that there exists ¢ > 0 such that for x,y € D, GP(x, y) < CG£ (x, y).
Consequently, we conclude that

K« (D) C K(D).

Let us define the potential kernel G2 of ZD on B*(D) by

GPy(x) = / G2 (x, ¥ ()dy.

D

By ([7, Proposition 1]), we have G2 # oo if and only if GP € L] (D).

loc

Also by ([7, p. 222]), we have the following interesting relation between the poten-
tial kernels GOL? and GP : For any ¢ € BT(D), we get

GP(GY v) =GPy (2.5)

Then, using (2.3) and (2.5), it is easy to see, as in the classical case, that the following
assertions are equivalent

(i) GPy # o0.
(i) [ MY (y)dy < oc.

On the other hand, for any v € B (D) such that [;, 8(y)¥ (y)dy < oo and for any
¢ € C°(D) we have (see [7, p. 230])

/¢(X)(—A|D)%¢(X)dx = —/Gf_aW(x)Aqﬁ(X)dx < 00,
D

D
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On the subordinate killed B.M in bounded domains 263

that is
(—A|D)%1ﬁ = —AGzD_aw(in the distributional sense). (2.6)
In particular, by (2.5) we obtain that
(—A|D)%G£I/f =1 in D (in the distributional sense) . 2.7

In what follows we recall the definition of excessive and harmonic functions asso-
ciated to the process ZaD (see [6]).

Definition 2 A nonnegative Borel measurable function /2 on D is said to be harmonic
with respect to ZD? if h # oo on D and if for every relatively compact open subset
U C U C D, we have

h(x) = E* [h (zo? (?U))], xel,

where E* stands for the expectation with respect to ZO? starting from x and Ty =
inf {r >0:2z2@1) ¢ U}.

Definition 3 A nonnegative Borel measurable function s on D is said to be excessive
with respect to Z2 if s # oo on D and satisfies

Ofs(x) <s(x),t>0,xeD
and

tli_r)r(l) 0%s(x) = s(x).

We are going to use Hf to denote the collection of all nonnegative functions on D
which are harmonic with respect to Z2 and S? to denote the collection of all excessive
functions on D with respect to Z2.

Also we denote by HP and S respectively the collections of the classical non-
negative harmonic functions and excessive functions on D (i.e. with respect to XD ).
Recall that H(? C SO? and HP ¢ SP. An important connection between SaD and
SP was established in [7] and improved later in [6]. More precisely, it was shown in
[6] that G?_a is a bijection from SQD to SP and the same from Hg to HP. We can
summarize the result of [6, Theorem 3.1] as follows.

Theorem 2 [f s € S, there exists a function g € SP, such that s(x) = GzD_ag(x)
on D, given by the formula

—_

NG

IR

glx) =

~

/f“% (s(x) - PtDs(x)) dr.
0
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264 A. Dhifli et al.

Conversely, if g € Sf, then s = G?ﬁag is in SP.
Moreover, g € HP if and only if s = G?_ag e HP.

Using this correspondence between ’Hf and HP, the following properties are
obtained in [6, theorem 3.2 and proposition 3.8]

Proposition1 (i) Every function h € Hg is continuous.
(i) Ifh € HP is bounded, then h = 0.

Note that we have the following relation between the functions in 2 and the solu-
tions (in the distributional sense) of the equation (—A, D)%u = 0 (see [6, proposition
3.11]).

Proposition 2 Ifh € HD, then

Vo € C?O(D),/h(x)(—Aw)%(p(x)dx =0. (2.8)
D

Conversely, suppose that h is a nonnegative continuous function such that
fD 8(y)h(y)dy is finite and (2.8) is satisfied. Then h € ’HO?.

Now, let us introduce the Martin kernel associated to (—A|p) 7 Fixa point xg € D
and let

GP(x,
MD(x,z) = lim :ﬁ, xeD, z€dD,
D>y—>z GP (xo, y)

be the the Martin kernel of x  based at xo. It is well known from the general potential
theory that for each fixed z € 9D, the function x — MP(x,z) € HP (see [1]).

Since G¥ _ is a bijection from H2 to HP, we define the function K2 (x, z) on
D x aD by

G2, (K2¢.0) (1) = MP(x, 2).

Then for each fixed z € 9D, KD[D(-, z) € H‘?.
Let MP be the function defined on D x 3D by

KP(x,2)

M (x.2) = 5
“ KP (x0,2)

, xeD, zedD.

Then we have foreach z € 9D, MaD (,2) € Ho? . Moreover, MO? is jointly continuous
on D x 9D and satisfies for each x € D

GD(x,
MP(e, )= lim o))
y—zedD G5 (x0, y)
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On the subordinate killed B.M in bounded domains

Mo? (x, z) is called the Martin kernel based at x( for Zo? (see [6]).

On the other hand, by Martin’s representation theorem (see [1]), there exists a finite
positive measure o on d D such that

l:/MD(~,z)0(dz).
aD

We know (see [4, p. 16]) that for every continuous function f on dD, the unique
solution /4 of the Dirichlet problem Ah = 0, limy_, .cyp h(x) = f(2) is given by

MDf(x)Z/MD(x,z)f(z)o(dz), xeD
9D

Hence putting for a continuous function f on 9D

MP f(x) = /Mf(x,z)f(z)v(dz), xeD,
oD

where v(dz) = KaD(xo, z)o (dz), we obtain that Mo?f IS HO? and GZD a(Mo?f) =
MPf.
Recall that by [6], we have

MP f(x) =

ret () )

(2.9)
Note that, if f is the constant 1, then M1 is the function in H2 playing the role
of the constant 1 in H? i.e.

GP (Mo?l) =1,

(2.10)

and by Theorem 2,
o0
1-¢% a
MP1(x) = —2 /f“f (1 _ P,D1(x)) dr.
I'(%)
0
We remark that it was shown in ([16, remark 3.3]) that
MP1(x) ~ 8(x)* 2 in D (2.11)

Moreover, we have the following Proposition due to [6].
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266 A. Dhifli et al.

Proposition 3 Let f be a nonnegative continuous function on d D. The function M 0? f
is the unique function h € Hé) such that

h(x)
x—>z€dD MaDl(x)

= f@).

Remark 2 Proposition 3 provides the solvability of the following reformulated
Dirichlet problem associated to (—A|p)Z. Namely, if f is a nonnegative continu-
ous function on d D, then MO? f is the unique continuous solution of

(—A|D)%u =0 in D (in the distributional sense)
limy_;eyp % = f(2).

2.2 Main results

As it is mentioned above, the main goal of this paper is to prove two existence the-
orems, stated in Theorems 3 and 4 below, for fractional differential equations with
reformulated Dirichlet boundary condition.
Our first purpose is to study the following problem
(—A|D)%u =@(-,u) in D (in the distributional sense)
{ lim 5(x)*u(x) = 0. (2.12)
X—>

In view of (2.11), we remark that the boundary condition in (2.12) is equivalent to
limy_—.eap M’;)(—sz) = 0. The nonlinearity ¢ is required to satisfy the assumptions

(H;) ¢ is a non-trivial nonnegative measurable function in D x (0, co) which is
continuous and nonincreasing with respect to the second variable.
(H,) Ve > 0,x — 8(x)>%p(x, c8(x)*2) is in Ky (D).

Note that x — 90D means that x tends to a point & of 9 D.

As a typical example of functions ¢ satisfying (H1) and (Hz) , we quote ¢ (x, u) =
k(x)u=?, where o > 0 and k is a nonnegative measurable function in D such that the
function

x = k(x)8(x)DE=) ¢ K (D).

Using a fixed point theorem, we prove in Sect. 5 the following

Theorem 3 Assume (Hy) — (H>). Then problem (2.12) has a positive continuous
solution u in D satisfying

ulx) = Go?(go(-, u))(x),x € D. (2.13)

Note that this result extends a result of [12] in the elliptic case (i.e. ¢ = 2).
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On the subordinate killed B.M in bounded domains 267

For our second purpose, we are interested in the following problem

(—A|D)%u +up(-,u) =0 in D (in the distributional sense)

Jim s = f @, (2.14)
z€dD

where f is a non-trivial nonnegative continuous function on d D and the nonlinear
term is required to satisfy the following assumptions

(H3) ¢ is a nonnegative measurable function in D x (0, 00).

(H4) Forall ¢ > 0, there exists a nonnegative function g. € K, (D) such that the map
s — S [qc x)—¢ (x, s8(x)°‘_2)] is continuous and nondecreasing on [0, c],
forall x € D.

To illustrate, let us present an example. Let p > 0 and k be a nonnegative measurable
function such that the function

x = k()8(x) 2P € Ky (D).
Then the function ¢ (x, u) = k(x)u? satisfies (H3) and (Hy).
Using a potential theory approach, we establish in Sect. 6 the following

Theorem 4 Assume (Hz) — (Ha). Then problem (2.14) has a positive continuous
solution u in D. Moreover, u satisfies the following

eMP f(x) <ux) < MP f(x), (2.15)

where ¢ € (0, 1).

We end this section by noting that solutions for the nonlinear problems (2.12) and
(2.14) associated to (—A D)% blow up at the boundary 9 D. On the contrary, for the
classical case (i.e. « = 2), solutions of elliptic nonlinear problems corresponding to
(2.12) and (2.14) are bounded (see [12,13]).

From here on, ¢ denotes a positive constant which may vary from line to line.
Also we refer to C (D) the collection of all continuous functions in D and Co(D) the
subclass of C (D) consisting of functions which vanish continuously on 3 D.

3 Estimates and properties of Gol[)

We provide in this section some estimates on the Green function Go? (x, y) and some
interesting properties of the potential kernel G2, related to potential theory.

Proposition 4 For each x,y € D, we have

3(x)8(y)
lx — 197 (Ix — yI* + 8(x)8(y))

GP(x,y)~ G.1)
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268 A. Dhifli et al.

and

8(0)8(y) < ¢ Gy (x, y). (3.2)
Moreover, if |x — y| > r then

GD(x.y) < c(sfﬂ%. (3.3)
Proof Since for each a, b > 0, we have min(a, b) ~ %, then from (2.3) we deduce
(3.1). Inequalities (3.2) and (3.3) follow immediately from (3.1). O

Proposition 5 If f and g are in BT (D) such that g < f and the potential function
Gg f is continuous in D. Then the potential function GO? g is also continuous in D.

Proof Let® € B (D) be such that f = g + 6. So, we have Ggf = Go?g + GaDG.
Now, since Gf g and Gg 6 are two lower semi-continuous functions in D, we deduce
the result. O

It is the same as the case @ = 2, the potential kernel G2 satisfies the complete
maximum principle, i.e. for each f € BT(D) and v € SP, such that G f < v in
{f > 0}, we have Ggf < vin D (see [3, Chap. I, proposition 7.1]). Consequently,
we deduce the following

Proposition 6 Leth € BY(D)andv € SO? . Let w be a Borel measurable function in
D such that Gg(h [w]) < oo and v = w + G (hw). Then w satisfies

0<w<w.
Proof Since GO? (h |lw|) < oo, then we have
GY (hw?) <v+ G (hw™) in {w > 0} = {w?t > 0}

Now, since the function v + GZ (hw™) is in S2, then we deduce by the complete
maximum principle that

GL (hw?) <v+GE (hw™), in D.
That is
GP(hw) < v =w+ GP (hw).
Hence, we obtain

0<w<w+GLhw) =v.
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On the subordinate killed B.M in bounded domains 269

Remark 3 Let A € R and ¢ be the function defined on D by

1
109 = Gy

As it is mentioned above, for any ¢ € B (D), the function Gf Y is a potential if and
only if fD (Y)Y (y)dy < oo. Then by ([9, lemma p. 726]), we conclude that Ggq is
a potential if and only if A < 2. We shall give in Proposition 7 below, estimates on

GO? q,for A < 2.
This will provide us a class of potential functions p defined on D and satisfying

P~ B)fa—2<p<1.
To this end, we need the following lemma due to [11].

In what follows, we put for x € D
Dy ={yeD x—yP =580}
Dy ={yen v =y =swsm}.

Lemma 1 Let x € D, then we have

(1) Ify € Dy, then

345 3+ V5 >
2[ +2~/_ V5 min(s(x), 8(»)).

§(x) =é8(y) =

8(x) and |x — y| =

(i) Ify € D», then

1
max(8(x), 8(y)) < [x —yl.

In particular,

B(x, “/32_ 15(x)) c D C B(x, “/§2+ 18(x)).

Proposition 7 Let dy = diam(D) and q be the function defined on D by q(x) =
§(x)~*, A < 2. For x € D, we have
(i) GPq(x) ~8(x)*™*, ifa—1<ir<2
(i) GPq(x) ~ 800 log(§8), ifh=a—1
(iii) Go?q(x) ~§(x), ifr<a-—1
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270 A. Dhifli et al.

Proof Let A < 2. We obtain from (2.3) that

1
100 = [ 626 G Sy & 1)+ (o),

D
where

11 (x) / ! L 4

X) =
: I —yl e S(yr
D

and

33y

b= | Ty ®

D>

It is clear from Lemma 1 that

1# / d—y <] (x) < ; / d—y
c8(x) e —yle = S @) lx — yld—e’

B(x, 571 5(x)) B(x, 55 (x))
i.e.
Brtow B0
1 1 c
- / rldr < Li(x) < — / r*ldr.
¢ (8(x)) ) (8(x)) )

This implies that
L(x) ~ (8(x)**, xeD. (3.4)

Now, we shall estimate />(x). Let « — 1 < A < 2. We derive the estimates by
considering two cases.

Casel:a—1 < A < «.Sinceforeachx € D,y € Dy ,wehaved(y) < @pc—yl,

then we get

v @ Al—a 1
L(x) < c(8(x)) / (S(y)) e y|dd)’-

Ds

Using the fact that 0 < A + 1 — a < 1, we deduce from [11, corollary 2.8] that
L(x) <c(x)**, xeD.

Case 2: @ < A < 2. We distinguish two subcases:
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On the subordinate killed B.M in bounded domains 271

If A <1, we have by Lemma 1

8(x)
hx) = /|x y|d+AFI= =4y

2dy
< c8(x) / re*2qr
Boe)

< c(8(x)* M.

If 1 < A < 2, it follows from Lemma 1 that

a—X 8()6) ! !
L(x) < c(6(x)) D/ (S(y)) |x — y|ddy.

2

Since 0 < A — 1 < 1, we deduce again from [11, corollary 2.8] that I,(x) <
c(8(x))**. This together with (3.4) gives the assertion (7).
Now, let L <« —1.Then2 —«a < 1 — A and by Lemma 1, we obtain

I(x) < cd(x).
Thus, the assertion (iii) follows immediately from (3.2) to (3.4).

Finally, let A = o — 1. We remark from (i) that G? _(8()"1)(x) ~ §(x)!2.
So using (2.5), we deduce that

G2 (60)'7) (0 ~ GLGP () ™H(x) = GPBO™H().

Hence (ii) holds by using the following estimates proved in [2, example 6 (ii)]

GPBO)™H) ~6<x)log( 50r )> x e D.

4 The Kato class K, (D)

We look in this section at some interesting properties of functions belonging to the
Kato class Ky (D) (see Definition 1). In particular, we characterize this class by means
of the density ¢“(z, x, y) of the semigroup (Q‘;’) (=~ Also a careful analysis about
equicontinuity of some family of functions is performed. First to illustrate the class
K, (D), let us present the following.
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272 A. Dhifli et al.

4.1 A subclass in K, (D)

Proposition 8 Ler p > g and q > 1 be such that Ly 5 = 1. Let dy = diam(D)
and 6 be a nonegative continuous function in (0, de;) satisfying for some n > 0 the
following conditions:

d d
(i) The function t — t*~ 7O(t) is nondecreasing on (0,1n) and lim,_ o+ t*~ 70
@)= 0.
(i1) The function t — max(0(t), 1) is nonincreasing on (0, ).

d—1
(iii) The functiont — ta_l_TG(t) e L1((0, n)).

Then we have
0(8()LP(D) C Ko(D).
Proof Let p > g and ¢ > 1 be such that é + % = 1.Letp € LP(D) and 6 :

(0,2dyp) —> [0, 00) be a continuous function satisfying (i)—(iii). Let » > 0 and
x € D then

s 5
/ 20062 eyl IBE Ny = / 20 G (x, g (166 ()dy
(x) 5x)
B(x,r)ND B(x,r)ND;
5(y) .p
8—Ga (x, MIeNIO G (y)dy
(x)
B(x,r)NDy

= 1L(x) + (x)

where D and D; are the sets define before Lemma 1. We aim to show that /; (x) and
I>(x) tend to zero as r —> 0, uniformly on x.
First, we remark by using (2.3) and Lemma 1 that

8(y) ¢ .
Ti})Gg(X,y)f m, 1fx€DandyeD1 (41)
and
5(y) CICD
%GQD(X,)))SCW, if x eDandyeDz. (42)

Now let us estimate /1 (x). For simplicity, we put

3-45 14+4/5
= o =
2 7 2

B
and p(x) = min(r, B5(x)). So by Lemma 1, we have for y € B(x, r) N D

|x — yl < min(r, 08(x)) =< %min(r, pé(x)) = %p(X)~
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On the subordinate killed B.M in bounded domains 273

Since 6 satisfies (ii), we get by the Holder inequality and (4.1),

1
nose [ e maxee ). dy

B(x,r)NDy
7
< clgll, max(@(B8(x)), 1) / x| Da gy
B(x,r)NDy

Zo(x) i
< cllgll, max (O(BS(x)), 1) / (A=1+=d)q g

0

_d

=c ||§0||p max (6 (p(x)), 1)(,0(x))a P

a_d a_d
= cllpll, max (o) 76(p(0), (o)™ 7).

Then, since 0 satisfies (i), we deduce that

d d
1) = e lpll, max (F7 200,777,

This implies by (i) that /1 (x) tends to zero as r — 0, uniformly on x.
d d
To control I>(x), we remark by (i) that the function 20 (1) = (tafﬁe(t)) 2ot

is nondecreasing. So, using the fact thatif y € D3, §(y) < o|x — y|, we obtain

8(3))%6 (8
hwsee [ %wwm

B(x,r)ND;

1
<c —— O(o|x — dy.
<o [ el —yDleoldy
B(x,r)NDy

By the Holder inequality, we obtain

L(x) <cllell, / lx = y[@=D9 @ (0 |x — y)? dy

B(x,r)NDy
1

or

<clgl, /r(“‘l‘d?l)q(e(nﬂdr

0

Now, using condition (iii), we deduce that /> (x) tends to zero as r — 0, uniformly in
x. This ends the proof. O
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As application of the above proposition, we quote

Example 1 Let m € N* and a be a sufficiently large positive real number such that
the function

emzzkﬁogk)
k=1

is defined and positive on (0, 2dp), where log; (x) = logologo - - - olog(x) (k times).
Let p > g, then if one of the following conditions is satisfied

.A<a—%mm%eRmMeNﬂ
° A:a—%,ul=u2=~~~:uk_1=1—%,uk>1—%andujeRforj>k,

we have

0(8()LP (D) C Ku(D).

4.2 Properties of functions in K, (D)
Lemma 2 Let ¢ be a function in Ky (D). Then the function
x = 3%,

is in LY(D). In particular, Ko(D) C L} (D).

loc

Proof Let ¢ € Ky (D), then there exists r > 0 such that for each x € D,

3(y) D
/ e )G (x, ) leldy < 1.

DNB(x,r)

Letx; x2, ..., X, in D besuchthat D C U B (x;, r), then by (3.2) there exists ¢ > 0
=1
such that for eachi € {1,2,...,m} and y € B (x;,r) N D, we have

3(y)

——GPx,
5 00) (xi, ).

s(»?<c

Hence, we have

é
/8(y>2|<p<y)|dy<c2 [ 3262 nleonay

=l pB(xi,r)
<cm < o0.

This completes the proof. O
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In the sequel, we use the notation

lolp == u Szy;GD(x VleO)ldy
xXe
and
GP(x,2GP(z, y)
(@) = 2 2 dz.
wlp) = s D/ el G

Proposition 9 Let ¢ be a function in Ky (D), then

aq(p) < 2Co|lellp < oo,

where Cy is the constant given in Theorem 1.

Proof Let ¢ € Ky (D), then the first inequality follows immediately from Theorem 1.
Now to prove that ||| p is finite, we consider r > 0 such that for x € D

5(¥) .p
/ EGL gy < 1

B(x,r)ND

So using (3.3) and Lemma 2, we deduce that for x € D

)
8?;6% NleOldy < / Sﬁyic’)( Wle()ldy
B(x,r)ND
3(y) .p
/ S G IOy
B¢(x,r)ND

¢ 2
=1+ m/@(y)) lp(»)ldy < oo.

This ends the proof. O

Proposition 10 Let ¢ be a function in K, (D). Then for any function h in SaD and
x € D, we have

/Gfx)(x, W eWIh(y)dy < aq(@)h(x). 4.3)
D
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Moreover, we have for x, € D

i 1 D _
rh_% jggm / G, (x,y) eI h(y)dy | =0. 4.4)

DﬂB(xO,r)

Proof Let h be a function in SP. Then by [3, Chap. II, proposition 3.11], there exists
a sequence (fx) of nonnegative measurable functions in D such that forall y € D

() = sup / G2 (3, 2) fe(2)dz.

D

Hence, it is enough to prove (4.3) and (4.4) for h(y) = Gg (v, z) uniformly in z € D.
Letp € K, (D). We have forall x,z € D

/fo(x, WGP, Dleldy < ag(9)GP (x, 2).
D

Then (4.3) holds. Now, we shall prove (4.4). Let ¢ > 0 and r¢p > 0 such that

sup / Y 60 & yylp(nldy < e.
ceb 5(€)
DNB(&,rp)

Let r > 0. We deduce from Theorem 1 and (3.3) that for all x,z € D

1 o
GP(x,2) / Gy (0, )Gy (v, Dle()ldy
DNB(xo.r)
8
= / (8?; Gal () + aiy))G% z))lw(y)ldy
DNB(xq,r)

< 2Cy sup / 30 60¢ yylp(yldy
EeD 3()
DNB(xq,r)

< 2Cy sup / 80 5 e, v lp(dy

o 5)
DNB(&,rp)
+ / Y 60 & yyp()ldy
56)

DNB(xo,r)NBC(&,r0)
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<26t g [ GOy,

0 DNB(xq,r)

By letting r — 0 and using Lemma 2, we reach (4.4). O

Corollary 1 Leta—2 < B < 1. Then there exists ¢ > 0 such that for any ¢ in K, (D)

s\’ »
sup —— ] G, &, »eWldy < can(p) 4.5)
xeD 5()6)
D
andforxoeﬁ
S B
lim | sup / (ﬂ) GP(x, y)lp()dy | =0. (4.6)
r=>0\ xep 8(x)
DNB(xq,r)

Proof By (2.11), the function x — §(x)®~2 is comparable to M1 which is in H2.
Also, we know from Proposition 7, that for « — 2 < § < 1, the function x — (S(x)/3
is comparable to GaD (8(-)"“'3) which is in SaD . Hence (4.5) and (4.6) are obtained
obviously from (4.3) and (4.4). m]

Remark 4 Let ¢ be a function in K, (D) and putting 8 = 1 in (4.5), we obtain that
llellp < caq (@) and by Proposition 9, we deduce that ||¢|| p & ay(@).

Corollary 2 Let ¢ be a function in Ko (D). Then the function x — 8(x)* 'o(x) is
in L'(D).

Proof Let xg € D. By (3.2) and (4.5), it follows that

S a—2
/8(y)°‘_1l<p(y)ldy < c/( ©) ) G2 (x0, »)lp(y)ldy < oco.
D D

3(x0)
[m}
4.3 Characterization of Ky (D) by means of ¢“(z, x, y)
Lemma 3 Foreacht > 0and x, y in D, we have
'
/ q%(s.x, y)ds < GD(x. y). 4.7)
0
Moreover; if |x — y| < t'/% then
t
GPx,y) < c/q“(s,x,y)ds. (4.8)
0
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Proof Lett > 0and x, y € D. The inequality (4.7) holds obviously from (2.2). Now,
we suppose that |[x — y| < té. Using (2.1), we have

d+a

t t
B § § L2\ T 7
/q“(s,x,y)ds ZC/STd min L(y)z,l (1+ A 2y| ) ds
lx — y|> + s s

0 0

2
Put r = |x — y|?s~«, then we have

t o0
—a d+a k) k)
/qo‘(s,x,y)ds > clx —y*™? / r%71(1+r)7% min (16)7(”2,1 dr
0 I+ Dlx =yl

2
[x—y[?~ &

o0
8(x)é
= Cleyl‘)‘*d/r*o‘*1 min %,1 dr
4 A+ Dlx =yl

8(x)8(y) 1)

lx —y?’

> clx — y|*“ min (

Now we deduce the inequality (4.8) from (2.3). O

Lemma 4 Let ¢ be a nonnegative function in K, (D), then for each r > 0, we have

5(y)
sup | sup / S ot x yye(ydy | = M(r) < 0. (4.9)
O<t<l \ xeD S(x)

(lk—y[zrnD

Proof Let0 <t < 1and 0 < r < |x — y|. Using the fact that for a, b € (0, co) we

have min(a, b) ~ %, we deduce from (2.1) that

() 18%(y) , a4
PN (tv-x’y)ic |.x—y| +ta
500 5(3)8(x) + |x — y|? +ta ( )

2 _d+a+2
< e82(y) (I =y +17)
S C82(y)r7d+a+2.

Then we conclude from Lemma 2 that

M(r) < C/Sz(y)gz)(y)dy < 0.
D

This leads to (4.9). O
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Proposition 11 A Borel measurable function ¢ in D belongs to the class Ky (D) if
and only if

11m sup//—q (s, x,y) |le(y)|dsdy | =0. (4.10)
xeD 3(x)

Proof Suppose that the function ¢ satisfies (4.10), then using (4.8) for t = r%, we
deduce that

o

() 5(y)
/ 50 G2 (x, ye(y)dy <c / mq “(s,x, Y)o(y)dyds.

DNB(x,r) 0 D

This implies that

lim | sup / (y)GD(x Ye(y)dy | =0
r—0\ xeD 3(x)
DNB(x,r)

and so ¢ € Ky (D).
Conversely, suppose that ¢ is a nonnegative function in K, (D). Let ¢ > 0 and
r > 0 such that

5(y)

sup / Y GP(x, y)p(y)dy < e

ren 5(x)
DNB(x,r)

Using (4.7) and (4.9), we have for 0 < ¢t < 1

0</ Sgy;q (s, x, Y)o(y)dsdy = / /iiy;q (s, x, Y)o(y)dsdy

D 0 DNB(x,r) 0

+ / /%q (s, x, )o(y)dsdy

(lx=y|=r)ND 0

/ 50 60 (x, yyp(y)dy

3(x)

DNB(x,r)

13
3(y)

+ / / 500" (6 e dyds

0 (Ix—y|=rnD
<e—+tM(r).
Then ¢ satisfies (4.10). O
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4.4 Equicontinuity

In order to prove our existence results, we need the following theorem. The idea of
the proof follows closely from the properties of functions in K (D).

Theorem § Let o« — 2 < B < 1. Let ¢ be a nonnegative function in Ky (D), then the
family of functions

s\ .
Ap={x — T(9><x>=/(@) GP(x, y)0(y)dy,0 € Koy(D), 0] < ¢

D

is uniformly bounded and equicontinuous in D. Consequently A is relatively compact
in Co(D).

Proof Let ¢ be a nonnegative function in Ky (D) and 6 € K, (D) such that |6 < ¢
in D. By (4.5), we have

S\’ b
sup |T8(x)| < sup —— ] G, &, »)e(y)dy < +oo.
xeD xEDD (S()C)

Hence A, is uniformly bounded. B
Let us prove the equicontinuity. Let xo € D and ¢ > 0. By (4.6), there exists r > 0
such that

S B
sup / (ﬂ) G2, ye(ydy <e.

teD 3(s)
DNB(x0.2r)

If xo € D and x, x’ € B(xg, r) N D, then we have

s\’ 8 p
T0(x) — TO()| < / (%) Go?(x,y)—(ag/))) Gl y)|p(dy
D
s .o
2 — ) G s d
< ;S:g / (8@)) o (& e()dy

DNB(xp,2r)

MY’ oo s\ p
(E) Ga(x’y)_((g(x/)) G, (x", )| e(y)dy

v
DB (x0,2r)
<2 +1(x,x).
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On the other hand, since |[x — xg| < r and ‘x’ — xo‘ < r, then for y € B (xg, 2r),
we have [x — y| > r and |x’ — y| > r. So we deduce that

SO\ b s\ ., S(y)Pt!
(%) G“(x’y)_(w)) Ca W) =€ e
< syl

G%(x.y)
S(x)P
Corollary 2 and the dominated convergence theorem that / (x, x/ ) tends to zero as

|x —x'| = 0.
If xo € 9D and x € B (xg, r) N D, then we have

Now since the function x —

is continuous off the diagonal, we conclude by

5 B
[TO(x)| < sup / (&) G2 (s, v)p(y)dy

ceD 3(¢)
DNB(x,2r)
s\’ »
— | G , d
+ / (S(x)) o (s »)e(y)dy
DN B¢ (xq,2r)
<e+J(x)
GR .y

Now since 8 < 1, we have by (3.1) that Sof - 0 as |x —xo| — O, for

y € B¢ (xq, 2r). So by same argument as for I (x, x’), we prove that J (x) tends to 0
as [x — xg| — 0. Consequently, by Ascoli’s theorem, we deduce that A, is relatively
compact in Co(D). O

5 Proof of Theorem 3

In this section, we aim at proving the existence of a positive continuous solution for
the following boundary value problem

: ux)
A i =

(—A|D)%u =@(-,u) in D (in the distributional sense)
(P2)
where A is a nonnegative constant.

Remark5 (i) For A > 0, we shall prove also the uniqueness of the solution of
problem (Py).
(i) We remark that problem (Py) is equivalent to problem (2.12).

Lemma 5 Let w be a nonnegative continuous function in D, satisfying

im 2o 5.1
x—>3DMOll)1(x)_ - '
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Then GP_ w is continuous in D and lim G2 w(x) = A
2—«a 2—«a
x—>9D

w(x)
MP1(x)
(5.1), it follows that there exists ¢ > 0 such that for x € D, we get

Proof Since the function x — is nonnegative and continuous in D and satisfies

LIC)
-~ MP1(x) ~

This implies by (2.10) and Proposition 5 that G?_aw is continuous in D and conse-
quently we have [, 8(y)w(y)dy < oc.
Now, for n > 0, we denote by D, the set defined by

={x € D;8(x) < n}.
Let ¢ > 0, then it follows from (5.1) that there exists o > 0 such that
lwx) — AMP21(x)| < eMP1(x), x € Dy,.

So for x € D”TO , we deduce from (2.3), (2.10), and (2.11) that

6wt =31 = [ 680w - a210)] ay
D

< [ 6Bt |0 - 2am2100] ay

Dy,

+ / G2 o, ) [w(») = AMP1(v)| dy

8(x)8
<e+tc /| (x)|d(+yz)a( ) + AMP1(y)dy

<e+cdx) /S(y)w(y)dy+)»/(5(y))°‘_1dy
D

D

Hence it follows that G?faw(x) —> X as x —> dD. This completes the proof. O

Lemma 6 Let ¢ be afunction satisfying (Hy) and (H>) and w be a positive continuous
function in D such that

w(x)

lim — _; 20, 5.2
o MP1(x) 7 (5-2)

Then we have the following
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() GP(g(-,w)) € C(D) and satisfies lim S2&L2D0) _ ¢

x—Dp ML)
(i) GP(p(, w)) € Co(D).

(i) x — §()e(x, w(x)) € L'(D).
w(x)
MP1(x)
(5.2), it follows that w ~ Mo?l in D and so by (2.11), we deduce that w =~ 8()*2,

Then we conclude by the monotonicity of ¢ that there exists ¢ > 0 such that

Proof Since the function x — is positive and continuous in D and satisfies

ox, wx)) < e(x, c8(x)°‘_2), x e€D. (5.3)

Put ¥ (x) := ¢(x, c§(x)*~2), for x € D. Then we have

GPH(x) = /Gf(x, WY (y)dy

D

S a—2
= §(x)* 2 / (%) G2 (x, »)5(n)* Y (y)dy.
D

It follows from Theorem 5 that the function
x = 8(x)>“GPy(x) e Co(D).

This implies in particular that GO’? (¥) is a continuous function in D and consequently
by (5.3) and Proposition 5, the function Goll) (¢ (-, w)) is continuous in D and satisfies

5 G o w))
m ———=0
x—> 0D MaDl(x)

To prove (ii), we apply Lemma 5 to the function Gf (¢(-, w)) and we deduce that
GP(p(,w) = G7 ,GL(p(-, w)) € Co(D).
Finally (iii) holds from (ii). m]
Remark 6 Putw = )»M‘XD 1 in Lemma 6, we obtain that the function

1

D D
= WG“ ¢ ( M, 1) (x) € Co(D). (5.4)

Lemma 7 Let A > 0 and u be a positive continuous function defined on D. Then u is
a solution of problem (P,) if and only if u satisfies the integral equation

u(x) = AMP1(x) + / G2 (x, oy, u(y)dy, x € D. (5.5)
D
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Proof Suppose that the function u satisfies (5.5). Since ¢ is noninceasing with respect
to the second variable, we have obviously Goll)((p(-, u)) < Gol[) (go(-, )\Mo?l)). This

together with (5.4) implies that lim Lz,(x ) — ). Now by Lemma 6 (ii), the func-
x—aD My 1(x)

tion x — GP(p(-,u))(x) is in Co(D). Hence, we apply (—A‘D)% on both sides of
(5.5) and we conclude by (2.7) that u is a positive continuous solution of problem

(P).
Conversely, suppose that u is a positive continuous solution of problem (PF;).
We claim that u satisfies

A(Gé),au — GP(@(-,u))) =0 (in the distributional sense)
lim (G2 u() = GPy(, () = .
x—>

To show the claim, it suffices to remark by Lemma 5 that G2D_ ! 18 continuous in D and

1in5D GP ,u(x) = ) and by Lemma 6 that G (¢ (-, u)) € Co(D). Thus, the claim
xX—>

holds by (2.6). Furthermore since the function G?ﬁau —-GPb ¢(-, u) is continuous, then
by [5, corollary 7, p. 294] it is a classical harmonic function in D satisfying

GP u—GPo(,u)=2x, on aD.

Thatis G2 ,(u — G2¢(-,u) — AMP1) = 0in D. Hence using the fact that the kernel
Gf_a is injective, we deduce that u satisfies (5.5). This ends the proof. O

Proposition 12 Let ¢ be a function satisfying (Hy) and (Hp) and let 0 < pu < A.
Then we have

0<uy—uy <(—wMP1,

where u; and u,, are respectively solutions of problems (Py) and (Py).

Proof Let h be the function defined on D by

plx,up () —px,uu(x) .
h(x) = L) # U ()
0 if uy(x) = uy(x).

Then i € BT(D). Using Lemma 7, we deduce
wp — uy + GE (h(u —up) = 0 — wMP1.
Furthermore, by (5.4) we conclude that

G2 hu;, —uyl) < GPo(, ) + GPo(- uy)
<GPy, aMP1) + GPy(-, uMP1) < 0.

Hence the result holds by Proposition 6. O
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Theorem 6 Let ¢ be a function satisfying (Hy) — (H3). Then for each A > 0, problem
(Py) has a unique positive solution u, € C (D) satisfying

AMP1(x) < up(x) < yMP1(x), forx € D, (5.6)
where y > 0.

Proof In view of (5.4), the constant

y = A+ sup

is finite.
Let Y be the closed convex set given by

Y = [veC(D):kfvfy, lim v(x):k].
x— 0D
We define the integral operator 7 on Y by

1
To0) =t s [ 62w (3. M210000)) a.
D

We shall prove that 7" has a fixed point in Y. First, we have clearly for each v €
Y, A < Tv < y. By same arguments as in the proof of Theorem 5, we obtain that
TY is relatively compact in C(E) with limy_, 3p Tv(x) = A. In particular TY C Y.
So it remains to prove the continuity of 7 in Y. Consider a sequence (v,),, in ¥ which
converges uniformly to a function v in Y. Then, by (2.11), (H;) and (H3), we obtain

o(y, M21(»)v, ()

5(y) o2 D 2—a
[Tv,(x) —Tv(x)| < c — Gy (x,¥)8(y)
8(x)
D

—¢ (y, My 1(y)v(y)) ‘ dy
and using again the monotonicity of ¢, we get

SN ey, MP1(0)va () — (v, M21()v )| < 29 (),

where ¥/ (y) 1= §(y)> %o(y, )\Mof’ 1(y)). Now, since ¢ is continuous with respect to
the second variable, we deduce by (4.5) and the dominated convergence theorem that

Vx € D, Tv,(x) — Tv(x), as n — oo.

Since T'Y is a relatively compact family in C (D), we have the uniform convergence,
namely,

1Tvy, — Tv|loo — 0 as n —> oo.
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Thus, we have proved that T is a compact mapping from Y to itself. Hence by the
Schauder fixed-point theorem, 7" has a fixed point v, € Y.Putu, (x) = MO? 1(x)vy(x),
for x € D. Then u; is a continuous function in D and satisfies

u(x) = AMP1(x) + / GP(x, y)o(y, u; (y))dy,x € D
D

and
D D
AM, 1(x) <up(x) <yM, 1(x),x € D.

By Lemma 7, we conclude that u;, is a positive solution of problem (P;). The
uniqueness follows from Proposition 12. O

Proof of Theorem 3 Let (M) be a sequence of positive real numbers, nonincreasing
to zero. For each k € N, put

Yk = Ak + sup

— D . D
Sup 3 G (#0MED) (0

and denote by u the solution of problem ( Py, ). Then by Proposition 12, the sequence
(ug) decreases to a function u and so the sequence (ux — AxMP1) increases to u.
Moreover, we have for each x € D

u(x) > up(x) — MMP1(x)

/ G2 (x, )p(y, ur(y))dy
D

> Glo(, MP1)(0) > 0.

Hence applying the monotone convergence theorem, we get by the continuity of ¢
with respect to the second variable

u(x) = / GP(x, )y, u(y)dy, ¥ x € D. (5.7)
D

Let us prove that u is a positive continuous solution of (2.12). It is clear that u is
continuous in D. Indeed, we have

u= ir]:f up = sup(ug — A MP1)
k

and u; and MP1 are continuous functions in D.
Furthermore, since 0 < u(x) < ug(x), for each x € D and k € N, we deduce that
limy_4p M"D(—’l‘zx) = 0. This implies by Lemma 5 that G _u = GPo(-,u) € Co(D).
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Hence, applying (—A, p)?Z on both sides of Eq. 5.7, we conclude by (2.7) that u is a
positive continuous solution of problem (2.12). O

Corollary 3 Let ¢ be a function satisfying (Hy) and (H) and let f be a nonnegative
continuous function on 3 D. Then the following problem

(5.8)

(—A|D)%u =@(-,u) in D (in the distributional sense)
it = [ @
x—>z€dD MP1(x) ’
has a positive continuous solution in D satisfying
u(x) = My f () + Gg (9. w) (@), x € D.
Proof Let ¢ be the function defined on D x (0, 0co) by
Y1) =t + My f().

Then  satisfies (H1) and (Hz). Now by Theorem 3, the following problem

v(x) 0
x— 9D MP1(x) ’

[ (—A‘D)%v =y (,v) in D (in the distributional sense)

has a positive continuous solution v satisfying v = Gg(w(-, v)) on D. Then the
function

U= Man +v
=MPF+G2w(, v
=MD f+ Gl u)

is a positive continuous solution of problem (5.8). This completes the proof. O

6 Proof of Theorem 4

Before giving the proof of Theorem 4, some potential theory tools are needed. We
are going to recall them in this paragraph and we refer to [4,10] for more details.
For a nonnegative measurable function ¢ in D, we define the potential kernel V;, on
B*(D) by

o0

Vo f(x) = / E* (e—féq(Zé’(s))de(zo?(t))) dt,x € D,

0

with Vo :=V = Gg.
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Furthermore if ¢ satisfies V¢ < oo, we have the following resolvent equation
V=V, +V,(qV) =V, +V(gVy). (6.1)
In particular, if u € B*(D) is such that V (qu) < oo, then we have

(I =Ve@NU+VgNu=U+V(gNU—Vy(g-)u=u (6.2)
The following lemma plays a key role.

Lemma 8 Let g be anonnegative function in K, (D) and h be a positive finite function
in SP. Then for all x € D, we have

exp (—au(q)) h(x) = h(x) — Vg(gh)(x) < h(x).
Proof Since h € SP, then by [3, Chap. II, proposition 3.11], there exists a sequence
of nonnegative measurable functions ( f;,), in D such that h = sup V f;,.

n
Letx € D and n € N be such that 0 < Vf,(x) < oo. Consider 8(¢) = Vi4 f(x),
for + > 0. Then the function 6 is completely monotone on [0, o) and so log 9 is
convex on [0, co). This implies that

8(0) < 0(1) exp (—9 (O))

6(0)
i.e.

V fu(x)
Since V f, is in S, it follows from (4.3) that
Vfu(x) < Vy fu(x) explaq(q)).
Hence by (6.1) we obtain
exp(—aa(@)V fn(x) = Vg fu(x) =V fu(x) = Va(qV ) (x) <V fu(x).

The result holds by letting n — oo. O

Proof of Theorem 4 We shall convert problem (2.14) into a suitable integral equation.
So we aim to show an existence result for the equation

w+ V(- u) =M f. (6.3)
Let co > 0 be such that for each x € D

MP1(x) < co8*2(x).

@ Springer



On the subordinate killed B.M in bounded domains 289

Put ¢ := col| fllco and g := g, be the function in K, (D) given by (Hy).
Let

I'={ucB"(D):exp(~aa(@)My f < u < Mg f)
and let 7' be the operator defined on I" by
Tu= M) f = Vo(@My )+ Vy((q = ¢, w)u).

We claim that I' is invariant under 7. Indeed, since for all x € D, MaD fx) <
¢8%~2(x), then by using hypothesis (Hy), we have for any u € T’

0=<eC,u)=<gq. (6.4)
Then it follows from Lemma 8 that for u € I we have
Tu>MPf—v,(gmP - b
uz=My f—VegMy f) = exp(—aq(g)) M, f.
Moreover, for u € I', we have u < Mol[) f and consequently
Tu<MPf = Vy (aMPf) + Vylqu) < MP f.
This shows that TI" C I".
Next, we will prove that the operator T has a fixed point in I". Let # and v be two
functions in I" such that u < v. Then from (Hy), we have
Tu—Tv="Vl(g — o, u)u— (g —¢(,v)v] <0.
Thus, T is nondecreasing on I'. Now, let (u,) be the sequence defined by
uy = exp(—aa(q))Man and uy41 = Tu, forn e N.

We obviously obtain that the function u, is in I' and we deduce by the monotonicity
of T that

uo <up < --- <ty <upp < MPf.

Hence by the dominated convergence theorem and ( Hy ), we conclude that the sequence
(u,,) converges to a function u € I' satisfying

u=MPf—V,qMPf)+V, (g —¢(,w)ul.
That is

(I = Va(g-Nu+ Vy(up(-,w) = (I = Vy(g )M f.
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Applying the operator (I + V (g-)) on both sides of the above equality and using (6.1)
and (6.2), we deduce that u satisfies (6.3).

It remains to prove that u is a positive continuous solution of problem (2.14).
Since g € K4(D), then by Theorem 5, the function x — S(x)2 @ fD GO? x, y)g(y)
8(y)*2dy is in Co(D). So using that

0<o(,u)u <qu< qMan < cq5“72,
it follows from Proposition 5 that the function x — 82—« x)V(ue(-,u))(x) is in
Co(D). 3
Now, going back to (6.3) and applying (—A|p) 2 on both sides, we deduce by (2.7)

that u is a positive continuous solution of

(—A‘D)%u +up(,u) =0 in D (in the distributional sense)

and satisfies  lim u(x)
x—>zedD MP1(x)

= f(z). This completes the proof. O
Acknowledgment The authors gratefully acknowledge the referees for many valuable comments and
suggestions.

References

Armitage, D.H., Gardiner, S.J.: Classical Potential Theory. Springer, Berlin (2001)
. Ben Othman, S., Maagli, H., Masmoudi, S., Zribi, M.: Exact asymptotic behavior near the boundary
to the solution for singular nonlinear Dirichlet problems. Nonlinear Anal. 71, 4137-4150 (2009)

3. Bliedtner, J., Hansen, W.: Potential Theory. An Analytic and Probabilistic Approach to Balay-
age. Springer, Berlin (1986)

4. Chung, K.L., Zhao, Z.: From Brownian motion to Schrodinger’s equation. Springer, Berlin (1995)

5. Dautry, R., Lions, J.L., et al.: Analyse mathématique et calcul numérique pour les sciences et les
techniques, coll. CEA, vol. 2, L’opérateur de Laplace, Masson (1987)

6. Glover, J., Pop-Stojanovic, Z., Rao, M., éikié, H., Song, R., Vondracek, Z.: Harmonic functions of
subordinate killed Brownian motion. J. Funct. Anal. 215, 399-426 (2004)

7. Glover, J., Rao, M., gikic’, H., Song, R.: I"-potentials, In: GowriSankaran K., et al. (eds.) Classical
and modern potential theory and applications (Chateau de Bonas, 1993), pp. 217-232. Kluwer Acad.
Publ., Dordrecht (1994)

8. Kalton, N.J., Verbitsky, I.E.: Nonlinear equations and weighted norm inequalities. Trans. Am. Math.
Soc. 351(9), 3441-3497 (1999)

9. Lazer, A.C., Mckenna, P.J.: On a singular nonlinear elliptic boundary value problem. Proc. Am. Math.
Soc. 111, 721-730 (1991)

10. Maagli, H.: Perturbation semi-linéaire des résolvantes et des semi-groupes. Potential Anal. 3, 61-87
(1994)

11. Maagli, H.: Inequalities for the Riesz potentials. Arch. Inequal. Appl. 1, 285-294 (2003)

12. Maagli, H., Zribi, M.: Existence and estimates of solutions for singular nonlinear elliptic problems.
J. Math. Anal. Appl. 263, 522-542 (2001)

13. Maagli, H., Zribi, M.: On a new Kato class and singular solutions of a nonlinear elliptic equation in
bounded domain of R”. Positivity 9, 667-686 (2005)

14. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.
Spinger, New York (1983)

15. Song, R.: Sharp bounds on the density, Green function and jumping function of subordinate killed

BM. Probab. Theory Relat. Fields 128, 606628 (2004)

o —

@ Springer



On the subordinate killed B.M in bounded domains 291

16.

17.
18.

19.

Song, R., Vondracek, Z.: Potential theory of subordinate killed Brownian motion in a domain. Probab.
Theory Relat. Fields 125, 578-592 (2003)

Yosida, K. : Functional Analysis. Springer, Berlin (1980)

Zhao, Z.: Green function for Schrodinger operator and conditional Feynman-Kac gauge. J. Math. Anal.
Appl. 116, 309-334 (1986)

Zeddini, N.: Positive solutions for a singular nonlinear problem on a bounded domain in R2. Potential
Anal. 18, 97-118 (2003)

@ Springer



	On the subordinate killed B.M in bounded domains and existence results for nonlinear fractional Dirichlet problems
	Abstract
	1 Introduction
	2 Notation and setting
	2.1 Potential theory associated to (-Δ|D)α2
	2.2 Main results

	3 Estimates and properties of GαD
	4 The Kato class Kα(D)
	4.1 A subclass in Kα(D)
	4.2 Properties of functions in Kα(D)
	4.3 Characterization of Kα(D) by means of qα(t,x,y)
	4.4 Equicontinuity

	5 Proof of Theorem 3
	6 Proof of Theorem 4
	Acknowledgment
	References


