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Abstract We give a group theoretic characterization of geodesics with superlin-
ear divergence in the Cayley graph of a right-angled Artin group A� with connected
defining graph. We use this to prove that the divergence of A� is linear if � is a join
and quadratic otherwise. As an application, we give a complete description of the cut
points in any asymptotic cone of A� . We also show that every non-abelian subgroup
of A� has an infinite-dimensional space of non-trivial quasimorphisms.
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1 Introduction

The divergence of a geodesic, γ : (−∞,∞) → X , in a metric space, can roughly
be thought of as the growth rate of a function from N to R, which for each N ∈ N

gives the length of the shortest path in X \ BN (γ (0)) from γ (−N ) to γ (N ), where
BN (γ (0)) is the open ball of radius N about γ (0). We refer to the divergence of
a finitely generated group to mean the largest divergence over all geodesics in a given
Cayley graph of G.

The divergence function has proven to be a useful tool in studying the large scale
geometry of groups. Gersten classified geometric 3-manifolds by their divergence
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340 J. Behrstock, R. Charney

[22] which allows one to distinguish quasi-isometry classes of 3-manifold groups
containing hyperbolic pieces from graph manifold groups [25]. In addition, divergence
functions are closely related to cut-points in the asymptotic cones of a group. Interest
in the existence of such cut-points arose from Druţu–Osin–Sapir’s result that a group
is relatively hyperbolic with respect to a collection of subgroups H if and only if every
asymptotic cone has cut-points and the collection of asymptotic cones of the cosets of
subgroups in H are pairwise either disjoint, coincide, or intersect at a cut-point [18].

On the other hand, cut-points in asymptotic cones also arise in groups which are not
relatively hyperbolic. To prove that any point in an asymptotic cone of a mapping class
group is a cut-point, the first author showed that axes of pseudo-Anosov elements in a
mapping class group have super-linear divergence. This also implies that these direc-
tions are quasi-geodesically stable, or equivalently, Morse geodesics [2]. (Alternate
proofs have since been obtained in [17] and [20]). More recently, Druţu–Mozes–Sapir
showed in [17] that a group has superlinear divergence if and only if its asymptotic
cones contain cut-points, and that this occurs if and only if the group contains Morse
geodesics.

In this paper we discuss divergence in right-angled Artin groups. Given a finite,
simplicial graph �, the right-angled Artin group A� is the finitely presented group
with generators corresponding to vertices of � and relators of the form x−1 y−1xy
whenever the vertices x and y of � are connected by an edge. Right-angled Artin
groups form a rich family of groups interpolating between Z

n , the group correspond-
ing to the complete graph on n vertices, and the free group Fn , corresponding to the
graph with n vertices and no edges.

If � is disconnected or consists of a single vertex, then A� is a free product or
A� = Z and the divergence in A� is infinite. Thus, we assume throughout that � is a
connected graph with at least two vertices. If �1 and �2 are two graphs, their join is
the graph obtained by connecting every vertex of �1 to every vertex of �2 by an edge.
Subgraphs of � that decompose as joins are central to understanding divergence of
geodesics. We define a notion of join length of a geodesic, which measures the number
of cosets of join subgroups the geodesic passes through (see Sect. 3 for the precise
definition) and we prove,

Theorem 4.4 (Divergence and join length) Let � be a connected graph with at least
2 vertices and let α be a bi-infinite geodesic in A� . Then α has linear divergence if
and only if the join length of α is finite.

The proof uses the action of A� on a CAT(0) cube complex, X� , the universal
cover of the Salvetti complex of A� . We show that the join length of a geodesic α

determines the behavior of the walls in X� crossed by α.
From the divergence theorem, we obtain the following complete characterization

of when two points in an asymptotic cone of a right-angled Artin group, Aω
� , can be

separated by a cut-point.

Theorem 4.6 (Classification of pieces). Let � be a connected graph with at least 2
vertices. Fix a pair of points a, b ∈ Aω

� . The following are equivalent.

(1) No point of Aω
� separates a from b.
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Divergence and quasimorphisms of right-angled Artin groups 341

(2) There exist points a′, b′ arbitrarily close to a, b, respectively for which the join
length between a′, b′ is finite.

In the terminology of [18], cut-points in an asymptotic cone give rise to a tree-
grading whose pieces are the maximal subsets that cannot be separated by a point.
The above result gives a complete description of the pieces in Aω

� . Since, except for
the integers, freely indecomposable right-angled Artin groups are not relatively hyper-
bolic with respect to any collection of subgroups or even subsets [3], it follows that
these pieces do not arise by taking asymptotic cones of subgroups of A� [18].

In [3], Behrstock–Druţu–Mosher introduce a notion of algebraic thickness of a
group. Theorem 4.6 shows that for a connected graph �, A� is algebraically thick of
order zero if � is a join, and otherwise it is algebraically thick of order at least one with
respect to the set of maximal join subgroups. It was established in [3, Corollary 10.8],
that, except for Z, right-angled Artin groups with connected presentation graph are
thick of order at most one. Together, these two results show that if A� is a join, then
it is algebraically thick of order exactly zero, and otherwise it is algebraically thick of
order exactly one.

As a consequence, we deduce the following result.

Corollary 4.8 (Quadratic divergence). Let � be a connected graph with at least 2
vertices. A� has linear divergence if and only if � is a join; otherwise its divergence
is quadratic.

An independent proof of this corollary appears in a recently posted preprint by
Abrams et al. [1].

Right-angled Artin groups have been shown to have an extremely rich family of
subgroups, cf. [4,14,24], and [31]. Thus, properties which apply to arbitrary subgroups
of a right-angled Artin groups are of particular interest. Recall that a rank-one isometry
of a CAT(0) space is a hyperbolic isometry with an axis not bounding a half-plane. Our
characterization of divergence of geodesics identifies all rank-one geodesics in X� .
In the case of periodic geodesics, it implies

Theorem 5.2 (Rank-one isometries). If G ⊆ A� is any subgroup which is not con-
tained in a conjugate of a join subgroup, then G contains an element which acts as a
rank-one isometry of X� .

This is consistent with the results of Caprace and Fujiwara [11] characterizing rank-
one periodic geodesics in Coxeter groups, as well as the recent results of Caprace and
Sageev [12] giving more general criteria for a group of isometries of a CAT(0) cube
complex to contain a rank-one isometry.

Bestvina and Fujiwara [6] have shown that for group actions on a CAT(0) space
satisfying a weak discontinuity property, the existence of rank-one isometries gives
rise to non-trivial quasimorphisms. A function φ : G → R is a homogeneous quasi-
morphism if φ(gn) = nφ(g) for all n > 0, and there exists a constant D ≥ 0 such
that

|φ(gh) − φ(g) − φ(h)| ≤ D
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for every g, h ∈ G. The vector space of homogeneous quasimorphisms, modulo the
subspace of true homomorphisms, is denoted Q̃ H(G) and is related to the bounded
cohomology of G.

Corollary 5.3 (Quasimorphisms). If G is any non-abelian subgroup of A� , then
Q̃ H(G) is infinite dimensional.

This corollary can also be derived from the analogous theorem of Bestvina–
Fujiwara [5] for mapping class groups by embedding the right-angled Artin group
into a mapping class group using results of Crisp and Paris [13]. On the other hand,
the action of A� on its Salvetti complex is a much more direct way to obtain quasi-
morphisms.

Quasimorphisms also give rise to rigidity theorems. By Burger and Monod [8,9,27],
if � is an irreducible lattice in a connected semisimple Lie group with finite center,
no compact factors, and rank at least 2, then � has no non-trivial quasimorphisms.
Thus, Corollary 5.3 implies that for such a �, every homomorphism ρ : � → A�

is trivial. This statement, however, also follows from another well-known property
of right-angled Artin groups: a theorem of Duchamp and Krob [19] states that A� is
residually torsion-free nilpotent, from which it follows that every non-trivial subgroup
of A� has infinite abelianization.

2 Walls

Let � be a finite, simplicial graph with vertex set V . The right-angled Artin group
associated to � is the group A� with presentation

A� = 〈V | vw = wv if v and w are connected by an edge in �〉.

Associated to any right-angled Artin group A� is a CAT(0) cubical complex X� with
a free action of A� . In this section we describe X� and investigate the structure of
walls in this complex.

Let T be a torus of dimension |V | with edges labeled by the elements of V . Let X�

denote the subcomplex of T consisting of all faces whose edge labels span a complete
subgraph in � (or equivalently, mutually commute in A�). X� is called the Salvetti
complex for A� . It is easy to verify that the Salvetti complex has fundamental group
A� and that the link of the unique vertex is a flag complex. It follows that its universal
cover, X� , is a CAT(0) cube complex with a free, cocompact action of A� .

If �′ is a full subgraph of �, then the inclusion �′ → � induces an injective homo-
morphism A�′ → A� and an embedding X�′ → X� . This embedding is locally
geodesic, and hence (since X� is CAT(0)) it is globally geodesic. We may thus view
X�′ as a convex subspace of X� .

We now recall some basic facts about walls in a CAT(0) cube complex X . Consider
the equivalence relation on the set of midplanes of cubes generated by the rule that
two midplanes are related if they share a face. A wall (or hyperplane), H , is the union
of the midplanes in a single equivalence class. Every wall H is a geodesic subspace
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Divergence and quasimorphisms of right-angled Artin groups 343

of X which separates X into two components. Moreover, if H contains a (positive
length) segment of a geodesic γ , then it contains the entire geodesic γ .

In the discussion that follows, we are interested in the relation between non-
intersecting pairs of walls. The following terminology will be convenient.

Definition 2.1 Two walls H1, H2 in a CAT(0) cube complex are strongly separated
if H1 ∩ H2 = ∅ and no wall intersects both H1 and H2.

Consider this definition in the context of a right-angled Artin group A� and the
cube complex X� . For example, suppose � consists of two disjoint edges, so A� is the
free product Z

2 ∗ Z
2. In this case, the Salvetti complex is the wedge of two tori, and

its universal cover X� consists of flats which pairwise intersect in at most one vertex.
Since walls never contain vertices of X� , they remain entirely in one flat. It follows
that two walls are strongly separated if and only if they lie in different flats.

At the other extreme, suppose � is a square, in which case A� = F2 × F2, the
product of two free groups of rank 2, and X� is the product of two trees T1 × T2. The
walls consist of trees of the form T1 × {y} and {x} × T2 where x and y are midpoints
of edges in T1 and T2 respectively. It is now easy to see that no two walls are strongly
separated.

Now let A� be an arbitrary right-angled Artin group and let H1 and H2 be two walls
in X� . Consider the set of all minimal length geodesics from H1 to H2. It follows from
[7, Proposition II.2.2] that the union of all such paths forms a convex subspace of X�

which we call the bridge between H1 and H2.

Lemma 2.2 If H1 and H2 are strongly separated, then the bridge B between them
consists of a single geodesic from H1 to H2.

Proof It suffices to show that B ∩ H1 (and by symmetry B ∩ H2) is a single point. We
first show that B∩H1 does not intersect any other wall H . For suppose x ∈ B∩H1∩H .
Since x ∈ B, it is the initial point of some minimal length geodesic γ from H1 to H2.
The initial segment of γ lies in some cube σ of X� which contains midplanes in both
H1 and H . These midplanes span σ , hence the initial segment of γ , which is orthog-
onal to H1, must lie in H . It follows that all of γ lies in H and hence H ∩ H2 �= ∅.
This contradicts the assumption that H1 and H2 are strongly separated.

Now every wall H has an open neighborhood N (H) isometric to H ×(0, 1), namely
the neighborhood consisting of the interiors of all cubes containing a midplane in H .
Then the same argument as above (using parallel copies of H in N (H)) shows that
B ∩ H1 ∩ N (H) must also be empty for all H �= H1. The only convex subsets of
H1 disjoint from every N (H) are single vertices, so it follows that B ∩ H1 is a single
point. ��
Lemma 2.3 There are universal constants C, D > 1 (depending only on the dimen-
sion of X�) such that if H1 and H2 are strongly separated and B is the bridge between
them, then

(1) for any x ∈ H1 and y ∈ H2,

d(x, y) ≥ C−1(d(x, B) + d(y, B)) − d(H1, H2) − 4

123



344 J. Behrstock, R. Charney

(2) for any geodesic α in X� , and any point c on α, if H1 and H2 intersect α inside
the ball of radius r about c, then the bridge B is contained in the ball of radius
Dr about c.

Proof (1) For any two points x, y in X� , define dH (x, y) to be the number of walls
separating x and y, or equivalently, the number of walls crossed by a geodesic
from x to y. This distance function is quasi-isometric to the geodesic metric in
X� . More precisely,

d(x, y) − C ≤ dH (x, y) ≤ Cd(x, y) + C

where C is the diameter of a maximal cube.
By Lemma 2.2, B consists of a single geodesic γ from H1 to H2. Let h1, h2 be
the endpoints of γ . Let α be the geodesic from h1 to x , and β be the geodesic
from y to h2. Note that α lies in H1 and β lies in H2. Since the strongly separated
hypothesis guarantees that no wall crosses both α and β, the path αγβ crosses
any given wall at most twice and dH (x, y) is the number of walls it crosses
exactly once. It follows that

dH (x, y) ≥ dH (x, h1) + dH (y, h2) − dH (h1, h2).

Applying the inequalities above, we obtain

d(x, y) ≥ C−1dH (x, y) − 1
≥ C−1(dH (x, h1) + dH (y, h2) − dH (h1, h2)) − 1
≥ C−1(d(x, h1) + d(y, h2) − 2C) − d(h1, h2) − 2
≥ C−1(d(x, B) + d(y, B)) − d(H1, H2) − 4.

(2) Suppose x = H1 ∩ α and y = H2 ∩ α are in the ball of radius r about c. Then
every point in B is within k = 1

2 (d(x, B) + d(y, B)) + d(H1, H2) of either x or
y and hence within k + r of c. By part (1), d(x, B) + d(y, B) is bounded by a
linear function of d(x, y), and by hypothesis, d(H1, H2) ≤ d(x, y) ≤ 2r so k is
bounded by a linear function of r .

��
We now introduce the notion of divergence for bi-infinite geodesics and discuss

how the existence of strongly separated walls affects the divergence.

Definition 2.4 Let X be a geodesic metric space. Let α : R → X be a bi-infinite
geodesic in X and let ρ be a linear function ρ(r) = δr −λ with 0 < δ < 1 and λ ≥ 0.
Define div(α, ρ)(r) = length of the shortest path from α(−r) to α(r) that stays outside
the ball of radius ρ(r) about α(0) (or div(α, ρ)(r) = ∞ if no such path exists). We
say α has linear divergence if for some choice of ρ, div(α, ρ)(r) is bounded by a
linear function of r , and say α has super-linear divergence otherwise.

It is not difficult to verify that the definition of linear divergence is independent of
the choice of basepoint α(0). We leave this as an exercise for the reader.
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Theorem 2.5 Let α be a bi-infinite geodesic in X� and suppose α crosses an infinite
sequence of walls (H0, H1, . . . ) such that for all i, Hi is strongly separated from
Hi+1. Then Hi is strongly separated from Hj for all i �= j and α has superlinear
divergence.

Proof Let α+ and α− denote the limit points of α in ∂ X� . Since Hi is disjoint from
Hi+1, the half spaces H+

i containing α+ form a directed set H+
0 ⊂ H+

1 ⊂ . . .. Hence
no two of these walls intersect and if some wall H intersects both Hi and Hj , i < j ,
then it must cross Hi+1, contradicting the strong separation of Hi from Hi+1. It follows
that Hi and Hj are strongly separated for any i < j .

Let r ′ = ρ(r) and consider the ball Br ′ of radius r ′ about α(0). Let xi = Hi ∩ α.
By Lemma 2.3, for any n, we can choose r large enough so that Br ′/2 contains xi for
all i ≤ n, as well as the bridge between Hi−1 and Hi . Let β be any path from α(−r)

to α(r) which stays outside Br ′ . Then β must cross H0, H1, . . . , Hn in a sequence of
points y0, y1, . . . yn . Note that each yi is distance at least r ′/2 from the bridges to the
adjacent walls, hence by Lemma 2.3, there is a universal constant C such that

d(yi−1, yi ) ≥ r ′
C − (d(Hi−1, Hi ) − 4

≥ r ′
C − d(xi−1, xi ) − 4.

It follows that the length of β satisfies

|β| ≥ ∑
d(yi−1, yi )

≥ nr ′
C − 4n − d(x0, xn)

≥ nr ′
C − 4n − r ′.

Since n → ∞ as r → ∞, this proves the superlinear divergence of α. ��
The following example shows that the converse of the above theorem does not

hold in complete generality. However, when � is a connected graph, we will give a
complete characterization of geodesics with superlinear divergence in Theorem 4.4
below.

Example 2.6 Suppose � is disconnected, then A� splits as a free product and every
vertex of X� is a global cut-point. Take any vertex p ∈ X� , and any pair of geodesic
rays γ1 and γ2 emanating from p for which γ1 \ {p} and γ2 \ {p} are in distinct
components of X� \ {p}. Then the union of γ1 and γ2 is a bi-infinite geodesic with
super-linear divergence (indeed infinite divergence, since γ1 and γ2 can not be con-
nected in the complement of any ball around p). Assuming � has two connected
components consisting of more than one vertex, we can choose each of the γi to lie in
the cube neighborhood of a wall. Then α = γ1 ∪γ2 yields a geodesic with superlinear
divergence such that no three walls crossed by α are pairwise strongly separated.

3 Joins

In this section we give a group-theoretic interpretation of Theorem 2.5. We assume
throughout the section that � is connected and contains at least two vertices.
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346 J. Behrstock, R. Charney

Choosing a vertex x0 in X� as a basepoint, we may identify the 1–skeleton of
X� with the Cayley graph of A� so that vertices are labeled by elements of A� and
edges by elements of the standard generating set (namely the vertex set of �). For a
generator v, let ev denote the edge from the basepoint 1 to the vertex v. Any edge in
X� determines a unique wall, namely the wall containing the midpoint of that edge.
Denote by Hv the wall containing the midpoint of ev .

For a cube in X� , all of the parallel edges are labeled by the same generator v. It
follows that all of the edges crossing a wall H have the same label v, and we call this
a wall of type v. Since A� acts transitively on edges labeled v, a wall is of type v if
and only if it is a translate of the standard wall Hv .

Let lk(v) denote the subgraph of � spanned by the vertices adjacent to v and let
st (v) denote the subgraph spanned by v and lk(v). The stabilizer of the wall Hv is
the group generated by lk(v), which we denote by Lv and call a link subgroup. To see
this, note that in any cube containing the edge ev , all other edges labeled v are of the
form gev for some g ∈ Lv . An induction on the number of cubes between ev and e
now shows that the same holds for any edge e which crosses Hv .

In what follows, for two subgroups K and L of A� , we consider the double coset,
denoted K L , which is the set of elements of A� which can be written as a product kl
for some k ∈ K , l ∈ L . In general, K L is not a subgroup.

Lemma 3.1 Let H1 = g1 Hv and H2 = g2 Hw. Then

(1) H1 intersects H2 ⇐⇒ v,w commute and g−1
1 g2 ∈ Lv Lw.

(2) ∃ H3 intersecting both H1 and H2 ⇐⇒ ∃ u ∈ st (v) ∩ st (w) such that
g−1

1 g2 ∈ Lv Lu Lw.

Here (2) includes the case in which H3 is equal to H1 or H2, hence H1 and H2 are
strongly separated if and only if the conditions in (2) are not satisfied.

Proof Without loss of generality, we may assume that H1 = Hv and H2 = gHw.

(1) If v,w commute, they span a cube in X� , hence Hv and Hw intersect. Sup-
pose g = ab, with a ∈ Lv, b ∈ Lw. Then Hv = a−1 Hv and Hw = bHw, so
translating by a, we see that Hv intersects gHw.
Conversely, suppose Hv intersects gHw in a cube C . Then C contains edges of
type v and of type w hence v and w must commute. Moreover, C is a translate
C = hC ′ of a cube C ′ at the basepoint containing the edges ev and ew. Since
ev and hev both intersect Hv, h lies in Lv . Since gew and hew both intersect
gHw, h−1g lies in Lw. Thus, g ∈ Lv Lw.

(2) If u ∈ st (v) ∩ st (w) and g = abc ∈ Lv Lu Lw, then Hv and bHw = bcHw both
intersect Hu = bHu . Translating by a, we see that Hv and gHw both intersect
aHu .
Conversely, suppose that H3 = h Hu intersects both H1 and H2. By part (1),
u must commute with both v and w, so u ∈ st (v) ∩ st (w). Also by part (1),
h ∈ Lv Lu and h−1g ∈ Lu Lw, so g ∈ Lv Lu Lw.

��
For two walls Hv and gHw to satisfy the conditions of (2), both w and the letters in

g must lie in a 2–neighborhood of v. The converse is not true. Consider for example
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the case of the Artin group associated to a pentagon � with vertices labeled (in cyclic
order) a, b, c, d, e. Every vertex lies in a 2-neighborhood of a, but we claim that Ha

and daHc are strongly separated. This follow from the lemma since st (a)∩st (c) = {b}
and da does not lie in La Lb Lc = 〈e, b〉〈a, c〉〈b, d〉.

To guarantee that no two walls in X� are strongly separated, we need a stronger
condition. Let �1 and �2 be (non-empty) graphs. The join of �1 and �2 is the graph
formed by joining every vertex of �1 to every vertex of �2 by an edge. The Artin group
associated to such a graph splits as a direct product, A� = A�1 × A�2 and X� splits
as a metric product X� = X�1 × X�2 . The walls in X� are thus of the form H1 × X�2

or X�1 × H2 for some wall Hi in X�i . Clearly, every wall of the first type intersects
every wall of the second type, and it follows that no two walls are strongly separated.

We now introduce two a priori different ways to measure how an edge path travels
through X� , these will then be related via Lemmas 3.2 and 3.3.

Let g ∈ A� and let v1v2 . . . vk be a minimal length word representing g. For i < k,
set gi = v1v2 . . . vi . Then the set of walls crossed by the edge path in X� from x0 to
gx0 labeled v1v2 . . . vk is given by

H = {Hv1, g1 Hv2 , g2 Hv3 . . . gk−1 Hvk }.

A different choice of minimal length word gives the same set of walls, changing only
the order in which they are crossed. Define the separation length of g to be

�S(g) = max{k | H contains k walls which are pairwise strongly separated}.

If J is a complete subgraph of � which decomposes as a non-trivial join, then we
call AJ a join subgroup of A� . Define the join length of g to be

�J (g) = min{k | g = a1 . . . ak where ai lies in a join subgroup of A�}.

If α is a (finite) geodesic in A� , we can approximate α by an edge path p which
crosses the same set of walls as α. The word labeling this edge path determines an
element gα ∈ A� which is independent of the choice of p. We define �S(α) = �S(gα)

and �J (α) = �J (gα). If α is a bi-infinite geodesic, and αn denotes the restriction of α

to the interval [−n, n], we define the separation and join lengths of α to be

�S(α) = limn→∞�S(αn) �J (α) = limn→∞�J (αn).

Lemma 3.2 A bi-infinite geodesic α in X� has finite join length if and only if both
the positive and negative rays of α eventually stay in a single join, i.e., the ray minus
some compact set is completely contained in a translate of X J for some join J ⊂ �.
If every bi-infinite periodic geodesic in X� has finite join length, then � is itself a join.

Proof For any join J in �, X J is a convex subspace of X� so once α leaves X J , it
will never return, and similarly for translates of X J . If α has finite join length it lies
entirely in some finite set of these join subspaces and hence each ray must eventually
remain in a single join. The reverse implication is obvious.

123



348 J. Behrstock, R. Charney

For the second statement, suppose � is not a join. Let J be a maximal join in �

and let v be a vertex not in J . Let g ∈ AJ be the product of all the vertices in J and
consider the bi-infinite geodesic α = · · · gvgvgvgv · · ·. Note that no vertex w ∈ J ∪v

commutes with both J and v since otherwise, we would have J ∪ v contained in the
join st (w), contradicting the maximality of J . It follows that the tails of α must involve
every vertex of J ∪ v, hence by the first statement of the lemma, α has infinite join
length. ��

In the proof of the previous lemma, we used the fact that for any vertex v of �, st (v)

is always a join, namely it is the join of {v} and lk(v). This fact plays a crucial role in
the next lemma as well as in the proof of Theorem 4.4 below.

Lemma 3.3 For any g ∈ A� ,

�S(g) ≤ �J (g) ≤ 2�S(g) + 1.

Thus a bi-infinite geodesic has infinite join length if and only if it has infinite separation
length.

Proof The first inequality follows from the observation above that no two walls in
a join are strongly separated. For the second inequality, fix a minimal word for g
and let H be the sequence of walls crossed by the corresponding edge path as listed
above. Set H = Hv1 and let H ′ = gi Hvi+1 be the first wall in the sequence strongly
separated from H . Then by Lemma 3.1, gi lies in the product of three link subgroups,
Lv1 Lu1 Lvi+1 , for some u1, hence gi+1 = givi+1 lies in a product of the three join sub-
groups generated by st (v1), st (u1), and st (vi+1). Now repeat this argument starting
with H = gi Hvi+1 and taking H ′ = g j Hv j+1 to be the next strongly separated wall
(or H ′ = the last wall in H if no more strongly separated walls exist), to conclude that
g j+1 lies in the product of join subgroups

〈st (v1)〉〈st (u1)〉〈st (vi+1)〉〈st (u2)〉〈st (v j+1)〉.

Continuing this process, each new strongly separated wall adds two star subgroups.
Since we encounter at most �S(g) strongly separated walls, the inequality follows.

��

4 The asymptotic cone

The goal of this section is to understand the structure of the asymptotic cones of A� .
We begin by recalling some preliminaries on asymptotic cones, tree graded spaces,
and divergence; we refer the reader to [16–18] for more details.

Let (X, d) be a geodesic metric space. Let ω be a non-principal ultrafilter on the nat-
ural numbers, (on) a sequence of observation points in X , and (dn) a sequence of scaling
constants such that limω dn = ∞. Then the asymptotic cone, Coneω(X, (on), (dn)),
is the metric space consisting of equivalence classes of sequences (an) satisfying
limω d(on, an)/dn < ∞, where two such sequences (an), (a′

n) represent the same

123



Divergence and quasimorphisms of right-angled Artin groups 349

point a if and only if limω d(an, a′
n)/dn = 0, and the metric is given by dω(a, b) =

limω d(an, bn)/dn .
We will assume the observation points and scaling constants are fixed and write

Xω for Coneω(X, (on), (dn)). In general, Xω is a complete geodesic metric space.
In the case where X has a cocompact group action, Xω is independent of choice of
observation points (but not, in general, of scaling constants) and is homogeneous.

A complete geodesic metric space is tree graded if it contains a collection of closed
subsets, P , called pieces such that the following three properties are satisfied: in each
P ∈ P , every pair of points is connected by a geodesic in P; any simple geodesic
triangle is contained in some P ∈ P; and each distinct pair P, P ′ ∈ P is either dis-
joint or intersects in a single point. Druţu–Osin–Sapir proved that a group is relatively
hyperbolic if and only if all of its asymptotic cones are tree-graded with respect to
pieces obtained by taking asymptotic cones of the peripheral subgroups. On the other
hand, Behrstock–Druţu–Mosher proved that right-angled Artin groups (except for the
integers) are relatively hyperbolic if and only if their defining graph is disconnected
[3]. In this section, we show that for connected defining graphs, although the Artin
group A� is not relatively hyperbolic, the asymptotic cones of A� still have a non-triv-
ial tree grading provided � is not a join. Moreover, although the pieces do not come
from asymptotic cones of subgroups, they can be characterized group-theoretically
(see Theorem 4.6).

We begin by recalling the work of Druţu–Mozes–Sapir [17] on divergence and
cut-points.

Definition 4.1 Let ρ(k) = δk − λ with 0 < δ < 1 and λ ≥ 0. For points a, b, c ∈ X ,
set k = d(c, {a, b})) and define div(a, b, c; ρ) to be the length of the shortest path in
X from a to b which lies outside the ball of radius ρ(k) about c. The divergence of X
with respect to ρ is the function

Div(X, ρ)(r) = sup{div(a, b, c; ρ) | a, b, c ∈ X, d(a, b) ≤ r}.
We say X has linear divergence if Div(X, ρ)(r) is linear for some ρ.

For a bi-infinite geodesic α, the divergence function introduced in Sect. 2 can be
written as,

div(α, ρ)(r) = div(α(−r), α(r), α(0); ρ).

In particular, if X has linear divergence, then every bi-infinite geodesic in X has linear
divergence.

Druţu–Mozes–Sapir establish the following correspondence between cut-points
and divergence functions [17, Lemma 3.14].

Proposition 4.2 ([17]). Let a = (an), b = (bn), c = (cn) be three points in Xω,
and let k = dω(c, {a, b}). Then c is a cut-point separating a from b if and only if for
some ρ,

limωdiv(an, bn, cn; ρ
k )

dn
= ∞.
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In particular, for a bi-infinite geodesic α in X , taking an = α(−dn), bn = α(dn),
and cn = α(0), the proposition implies that c is a cut-point separating a from b if and
only if α has super-linear divergence.

We say that X is wide if no asymptotic cone of X has cut-points. In the case that X
is the Cayley graph of a group G, the proposition above leads to the following criterion
for G to be wide (see [17, Proposition 1.1]).

Proposition 4.3 ([17]). A group G is wide if and only if Div(G, ρ)(r) is linear for
ρ(r) = 1

2r − 2.

In the case of A� , the divergence of a bi-infinite geodesic is determined by its join
length.

Theorem 4.4 (Divergence and join length). Let � be a connected graph with at least
2 vertices and let α be a bi-infinite geodesic in X� . Then α has linear divergence if and
only if the join length of α is finite.

Proof If the join length of α is infinite, then by Lemma 3.3, so is the separation length.
By Theorem 2.5, it follows that α has super-linear divergence.

Now suppose that the join length of α is finite. We will show that α lies in a subspace
of X� whose image in any asymptotic cone Xω

� has no cut-points. It then follows from
the remarks following Proposition 4.2 that α has linear divergence.

By Lemma 3.2, α lives entirely in a finite union of join subspaces, that is, subspaces
which are translates of X J for some join J . Since AJ decomposes as a direct product of
infinite groups, X J is wide. Hence in any asymptotic cone Xω

� , the cone on gX J gives
rise to a subspace with no cut-points. If g′X J ′ is another join subspace which shares
a geodesic line with gX J , then the intersection of their asymptotic cones contains a
line in Xω

� hence their union also has no cut-points.
Thus, it suffices to show that any two join subspaces gX J and g′ X J ′ are connected

by a sequence of join subspaces such that consecutive subspaces share a line. We will
call this a connecting sequence. By hypothesis, the graph � is connected, so we can
find a sequence of joins beginning at J and ending at J ′ such that consecutive joins
in the sequence share at least one vertex in �. (For example, take a path from J to J ′
and take the sequence of stars of the vertices along this path.) For g = g′, it follows
that there is a connecting sequence from gX J to gX ′

J .
For the general case, we may assume without loss of generality that g = 1. Say

g′ = a1 . . . ak where each ai lies in some join Ji . Then the observation above shows that
there are connecting sequences from X J to X J1(= a1 X J1 ), from a1 X J1 to a1 X J2(=
a1a2 X J2 ), and so on to g′X Jk , and finally, from g′X Jk , to g′ X J ′ . ��

We now generalize the notion of join length to points in the asymptotic cone
Aω

� . For two points a, b ∈ Aω
� , we say that the pair a, b (or the geodesic between

them) has finite join length if there exist representative sequences (an), (bn) for which
limω �J (a−1

n bn) < ∞.

Lemma 4.5 Let a, b be distinct points in Aω
� and let α be a geodesic between them.

If c is a point in the interior of α which does not separate a from b, then there exists a
neighborhood of c in α such that any two points in this neighborhood have finite join
length. Moreover, the union of any two such neighborhoods of c also has this property.
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Proof By Proposition 4.2, the hypotheses imply that for some choice of linear func-
tion ρ, div(an, bn, cn; ρ/k) is bounded by a linear function of dn . Let D > 0 be as
in Lemma 2.3 and let kn = d(an, bn). Since limω

kn
dn

> 0, we can choose ε > 0 such

that Dε <
ρ(kn)
2dn

for ω-almost every n. Consider two sequences (a′
n), (b′

n) lying within
εdn of (cn). For any two strongly separated walls between a′

n and b′
n , Lemma 2.3 (2)

implies that the bridge between them lies in the ball of radius ρ(kn)
2 about cn . The

number of such walls must be bounded (independent of n), since if not, then arguing
as in Theorem 2.5, we would deduce that div(an, bn, cn; ρ/k) was super-linear. It
follows from Lemma 3.3 that the join length is also bounded.

To prove the last statement of the lemma, suppose c lies in two such intervals and let
a′, b′ be a point in each. Then there exist two representative sequences (cn), (c′

n) for
c such that the sequences (a′−1

n cn) and (c′−1
n b′

n) have bounded join length. If (c−1
n c′

n)

has infinite join length, then div(a′
n, b′

n, cn; ρ/k′)/dn is unbounded for every ρ, so by
Proposition 4.2, c is a cut-point. This contradicts the hypotheses of the lemma, so we
conclude that (c−1

n c′
n), and hence (a′−1

n bn), has bounded join length. ��
Theorem 4.6 (Classification of pieces). Let � be a connected graph with at least 2
vertices. Fix a pair of points a, b ∈ Aω

� . The following are equivalent.

(1) No point of Aω
� separates a from b.

(2) There exist points a′, b′ arbitrarily close to a, b, respectively for which the join
length between a′, b′ is finite.

Proof Suppose (1) holds. Let α be the geodesic from a to b. Then by Lemma 4.5,
every point on α is contained in an open interval in which any two points have finite
join length. Moreover, if two such intervals intersect, then their union also has this
property. It now follows easily that the maximal open interval of α such that any two
points have finite join length is the entire interior of α.

Now suppose (2) holds. By hypothesis, for every ε > 0 there exist points a′ and b′
with representatives (a′

n) and (b′
n) whose distances in Aω

� are less than ε from a and
b, respectively, and the join length between a′ and b′ is finite, that is, there exists a
constant M such that ω-almost every a′−1

n b′
n is a product of at most M subwords, each

contained in a join subgroup. Hence the corresponding geodesic is contained in a finite
sequence of join cosets. As in the proof of Theorem 4.4 there is a connecting sequence,
that is, a finite sequence of additional join cosets which we may add between any two
of these to get an ordered sequence of join cosets where each intersects the next in
an infinite diameter set. Starting with M join cosets, the construction in Theorem 4.4
yields a connecting sequence whose length is at most M · diam(�), where diam(�) is
the diameter of �. Denote this sequence by Sn .

We will say that a coset of AJ has join type J . Since there are only finitely many
joins in �, the sequence of join types in Sn is the same for ω-almost every n. Any
two cosets of the same join type are isometric, so for each i , the subspace of points
(xn) ∈ Aω

� such that xn lies in the i th term of Sn is isometric to Aω
Ji

for some join Ji . In
particular, this subspace has no cut-points. Moreover, the intersection of any two con-
secutive subspaces in this sequence has infinite diameter. It follows that their union,
which contains a′ and b′, has no cut-points.
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Hence, a and b can be approximated arbitrarily closely by points a′ and b′ which
cannot be separated by a point. Since not being separated by a point is a closed con-
dition, this completes the proof that (2) implies (1). ��

The following example shows that one cannot replace condition (2) by the simpler
statement that the geodesic from a to b has finite join length.

Example 4.7 Suppose x, y are two vertices in � that are not contained in a join. For
simplicity, take the scaling constants for Aω

� to be dn = n. Let an = 1 for all n and let

bn = x� n
2 �y� n

4 �x� n
8 �y� n

16 � . . .

Then the join length of the geodesic from a to b is infinite. However, if we truncate
each bn after k terms, setting

b(k)
n = x� n

2 �y� n
4 � . . . z

� n
2k �

where z = x, y depending on whether k is odd or even, we obtain a point b(k) in the
asymptotic cone whose distance from b is 1

2k while the join length from a to b(k) is k.
It follows from the theorem above that a and b lie in the same piece of the asymptotic
cone, despite the fact that the join length between them is infinite.

Combining the results above, we obtain

Corollary 4.8 (Quadratic divergence). Let � be a connected graph with at least 2
vertices. Then the following are equivalent.

(1) � is a join,
(2) A� is wide,
(3) A� has linear divergence.

If � is not a join, then A� has quadratic divergence.

Proof (1) implies (2) by Theorem 4.6, (2) implies (3) by Theorem 4.3, and (3) implies
(1) by Theorem 4.4.

For the last statement, assume � is not a join. Then A� contains a cyclically reduced
element g that does not lie in any join subgroup. It is easy to see that for such an ele-
ment, the join length of gn grows linearly with n, and hence by Lemma 3.3, so does
the separation length. It follows from the proof of Theorem 2.5 that the divergence
of gn is at least quadratic. (One can also deduce this from a more general result of
Kapovich and Leeb [25, Proposition 3.3] which implies that a complete periodic geo-
desics in a locally-compact CAT(0) space has divergence which is either linear or at
least quadratic.)

On the other hand, for any finite length geodesic β, the argument in Theorem 4.4
shows that β is contained in a connecting sequence of join cosets whose length is at
most linear in the length of β. Since divergence in each join coset is linear, it follows
that the divergence of β is at most quadratic in the length of β. ��

The last argument in the proof uses the fact that A� is algebraically thick of order 1
in the sense of [3]. A generalization of this argument for metric spaces which are thick
of arbitrary degree will appear in a forthcoming paper of the first author and C. Druţu.
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5 Rank-one isometries and quasimorphisms

Recall that a hyperbolic isometry of a proper CAT(0) space is called a rank-one
isometry if some axis of that isometry does not bound a half-plane. Bestvina and Fu-
jiwara [5] show that for a group acting properly discontinuously on a CAT(0) space,
rank-one isometries give rise to quasimorphisms. A quasimorphism on a group G is a
function φ : G → R for which there exists a constant D(φ) ≥ 0 such that

|φ(gh) − φ(g) − φ(h)| ≤ D(φ)

for every g, h ∈ G. A quasimorphism is homogeneous if for each g ∈ G and each
n ∈ N, we have φ(gn) = nφ(g). The set of homogeneous quasimorphisms on a given
group G form a vector space. The quotient of this vector space by homomorphisms
from G to R is denoted Q̃ H(G) and is isomorphic to the kernel of the map from the
second bounded cohomology of G (with R coefficients) to the second cohomology
of G. (For details, see [10] and [23].)

Burger and Monod proved that there are no non-trivial homogeneous quasimor-
phisms on any irreducible lattice in a connected semisimple Lie group of rank at
least 2 with finite center and no compact factors [8,9,27]. On the other hand, several
interesting families of groups, including non-elementary hyperbolic groups [21] and
mapping class groups [5], have been shown to have infinite dimensional Q̃ H .

We will show that for a right-angled Artin group A� acting on its Salvetti complex
X� , rank-one isometries are prevalent. We begin with some basic facts about normal
forms in right-angled Artin groups. We refer the reader to [26] for details.

Let V be the generating set for A� and let g be an element of A� . A reduced
word for g is a minimal length word in the free group F(V ) representing g. Given an
arbitrary word representing g, one can obtain a reduced word by a process of “shuf-
fling” (i.e. interchanging commuting elements) and canceling inverse pairs. Any two
reduced words for g differ only by shuffling. In particular, the support of g, that is
the set Supp(g) ⊆ V of letters appearing in a reduced word for g, is independent of
choice of reduced word.

For an element g ∈ A� , a cyclic reduction of g is a minimal length element of the
conjugacy class of g. If w is a reduced word representing g, then we can find a cyclic
reduction ḡ by shuffling commuting generators in w to get a maximal length word u
such that w = uw̄u−1. In particular, g itself is cyclically reduced if and only if every
shuffle of w is cyclically reduced as a word in the free group F(V ). Moreover, any
other cyclic reduction of g can be obtained by shuffling and cyclically permuting w̄

so Supp(ḡ) is independent of the choice of cyclic reduction.

Lemma 5.1 Let g = ḡ be a cyclically reduced element of A� . Then the following are
equivalent.

(1) g is contained in a join subgroup.
(2) The centralizer of g is non-cyclic.
(3) The centralizer of g is contained in a join subgroup.
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Proof (1) implies (2) since the centralizer of any element (g1, g2) of a direct product
G1 × G2 is the product of the centralizers CG1(g1) × CG2(g2). (3) implies (1) is
obvious, so it remains only to prove that (2) implies (3).

For any subset S ⊂ V , let lk(S) denote the (possibly empty) set of vertices at dis-
tance 1 from every vertex of S. It follows from Servatius’ Centralizer Theorem [30]
(see also Thm 1.2 of [26]) that the centralizer of a cyclically reduced element g lies in
the subgroup generated by Supp(g) ∪ lk(Supp(g)) and that the centralizer is cyclic
unless either lk(Supp(g)) is nonempty or Supp(g) decomposes as a join. In either
case, Supp(g) ∪ lk(Supp(g)) spans a join in �. ��
Theorem 5.2 (Rank-one isometries). If G ⊆ A� is any subgroup that is not contained
in a conjugate of a join subgroup, then G contains an element which acts as a rank-one
isometry of X� .

Proof Let g be an element of A� and let ḡ be a cyclic reduction of g. Then ḡk is
geodesic for all k. If ḡ does not lie in a join subgroup, then the axis for ḡ has infinite
join length, hence by Theorem 4.4, it has super-linear divergence. It follows that the
axis for ḡ cannot bound a half-flat and the same holds for the axis of g since it is a
translate of the axis for ḡ. Thus to prove the first statement of the theorem, it suffices
to show that G contains an element g whose cyclic reduction ḡ does not lie in a join
subgroup, that is, Supp(ḡ) is not contained in any join.

Choose an element c ∈ G such that Supp(c̄) is maximal, that is, if g ∈ G satisfies
Supp(c̄) ⊆ Supp(ḡ), then Supp(c̄) = Supp(ḡ). Conjugating G if necessary, we may
assume without loss of generality that c = c̄. If c is not contained in a join subgroup,
we are done. So suppose c is contained in a join subgroup, then by Lemma 5.1 the
centralizer of c is also contained in a join subgroup, AJ .

By hypothesis, G does not lie in a join subgroup, so there is some element h ∈ G
whose support is not contained in J . Consider an element of the form x = ckhck ∈ G.
We claim that for sufficiently large k, Supp(x̄) � Supp(c) contradicting the max-
imality assumption on Supp(c). To see this, note that since c is cyclically reduced,
cancellations can only occur between generators in c and generators in h. It follows
that repeatedly multiplying h on the left or right by c, can result in at most finitely
many cancellations and all cancelled letters must lie in Supp(c)∩Supp(h). Thus, for k
sufficiently large, a reduced word for x is of the form ci uc j for some i, j > 0 and some
reduced word u. In particular, the support of x satisfies Supp(x) = Supp(ci uc j ) =
Supp(c) ∪ Supp(h). If x is cyclically reduced, we are done.

Suppose x is not cyclically reduced. Write u = aūa−1 where ū is a cyclic reduction
of u, so x = ci aūa−1c j . Since c is cyclically reduced, the only way x can fail to be
cyclically reduced is if some initial subword a′ of a commutes with c. But in this case,
we can conjugate G by a′−1 and repeat the argument replacing h by h′ = a′−1ha′ and
u by u′ = a′−1ua′ to conclude that x ′ = ci u′c j is cyclically reduced. Since a′ lies
in the centralizer of c, it lies in AJ , whereas h /∈ AJ . It follows that h′ /∈ AJ , hence
Supp(x̄ ′) = Supp(x ′) = Supp(c) ∪ Supp(h′) � Supp(c), as claimed. ��

As a corollary, we obtain a new proof of the following facts.

Corollary 5.3 (Quasimorphisms). If G is any non-abelian subgroup of A� , then Q̃ H
(G) is infinite dimensional.
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Proof We will prove the corollary by induction on the number of vertices in �. Since
A� is torsion-free, virtually cyclic subgroups are cyclic. In particular, if G is non-abe-
lian, then it is not virtually cyclic. Suppose G does not lie in the conjugate of a join
subgroup. Since the action of G on X� is properly discontinuous and by Theorem 5.2,
it contains a rank-one isometry, the Main Theorem of [6] implies that Q̃ H(G) is
infinite dimensional.

If G can be conjugated into a join subgroup A�1 × A�2 , then the projection of G
on one of the factors must also be non-abelian. By induction, this projection has an
infinite dimensional space of quasimorphisms, hence so does G. ��
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