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Abstract We study the microlocal analyticity and smoothness of solutions u of
of the nonlinear PDE ut = f (x, t, u, ux ) under some assumptions on the repeated
brackets of the linearized operator and its conjugate.

Résumé Nous étudions l’analyticité microlocale et la régularité des solutions u de
l’EDP non linéaire ut = f (x, t, u, ux ) sous certaines conditions portant sur les cro-
chets itérés de l’opérateur linéarisé et de son conjugué.
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1 Introduction

This article is inspired by a recent paper [13] in which the authors studied the microlocal
analyticity and strong instability (with respect to a C∞ perturbation) of the Cauchy
problem for quasi-linear equations of the type

{
∂u
∂t + ∑N

j=1 a j (x, t, u) ∂u
∂x j

= b(x, t, u), 0 < t < T, x ∈ �,
u(x, 0) = ω(x), x ∈ � (1)
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240 Z. Adwan, S. Berhanu

where � ⊆ R
N is an open subset, T > 0. The functions a j , b, j = 1, . . . , N are the

restrictions to � × [0, T ] × V3 of some holomorphic functions defined on a domain
V = V1 × V2 × V3 ⊆ C

N+2. Let

L = ∂

∂t
+

N∑
j=1

a j (x, t, v)
∂

∂x j
+ b(x, t, v)

∂

∂v
.

We recall from [13] the vectors νk for k ∈ N defined by

ν0 = (a1, . . . , aN ), ν1 = (L(a1), . . . ,L(aN ))= L(ν0), . . . , νk = L(νk−1)= Lk(ν0).

The main result in [13] is as follows:

Theorem 1 Let k ∈ N. If the Cauchy Problem (1) has a Ck+1 solution for t ≥ 0 on
a neighborhood of (x0, 0), and ∀x ∈ �, ∀ j with 0 ≤ j < k, �ν j (x, 0, ω(x)) = 0,
�νk(x0, 0, ω(x0)) 	= 0, then ∀ξ0 ∈ R

N such that �νk(x0, 0, ω(x0)) ·ξ0 > 0, the point
(x0, ξ

0) /∈ W Fa(ω).

Here W Fa(ω) denotes the analytic wave-front set of ω(x) (see [14,15] for the def-
inition of microlocal analyticity). In this work we extend the preceding theorem to
solutions of the Cauchy Problem for fully nonlinear equations of the form

{
ut = f (x, t, u, ux ), 0 < t < T, x ∈ �,
u(x, 0) = ω(x), x ∈ � (2)

where f = f (x, t, ζ0, ζ ) is the restriction of a holomorphic function.
To extend the preceding theorem to the fully nonlinear case, we first generalize the

vectors �ν j (x, 0, ω(x)). We achieve this in Sect. 2 by expressing �ν j (x, 0, ω(x)) in
terms of the repeated brackets of Lυ and its complex conjugate Lυ where Lυ is the
linearization of the equation ut = f (x, t, u(x, t), ux (x, t)) at u given by

Lυ = ∂

∂t
−

N∑
j=1

f υζ j
(x, t)

∂

∂x j

and f υζ j
(x, t) = fζ j (x, t, u(x, t), ux (x, t)) for 1 ≤ j ≤ N . Section 3 contains two

applications to microlocal analyticity and smoothness of the trace u(x, 0) of a solution
to the nonlinear equation. For the result on smoothness, f (x, t, ζ0, ζ ) is assumed to
be C∞ in all variables, and holomorphic in (ζ0, ζ ) in an appropriate domain.

When the initial datum ω(x) is real-analytic, as in [13], our results imply the strong
instability of the Cauchy–Kovalevskaya solution of the Cauchy problem for (2) with
respect to a C∞ perturbation. Results on microlocal analyticity for brackets up to order
3 were proved in [6,7] under assumptions on brackets made just at a point. In the linear
case, analyticity results were proved under repeated brackets assumptions in [10,11].
Microlocal smoothness results for nonlinear PDEs were obtained in [3,9]. For results
on Gevrey/Denjoy–Carleman regularity we refer the reader to [1,2,5]. The approach
to the fully nonlinear case by using the Holomorphic Hamiltonian is motivated by [4].
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On microlocal analyticity and smoothness of solutions 241

2 A bracket condition

In this section we show how to express �ν j (x, 0, ω(x)) in terms of the repeated brack-
ets of Lυ and its complex conjugate Lυ . Let u be a sufficiently smooth solution of the
non-linear equation

ut = f (x, t, u, ux ) (3)

where f (x, t, ζ0, ζ ) is a C∞ function on �× [0, T )× C × C
N (� is an open subset

of R
N ), and f is holomorphic in the variables (ζ0, ζ ). Let

L = ∂

∂t
−

N∑
j=1

fζ j (x, t, ζ0, ζ )
∂

∂x j
.

Set υ = (u, ux ). If ψ = ψ (x, t, ζ0, ζ ) is a smooth function, holomorphic in (ζ0, ζ ),
we will use the notation

ψυ (x, t) = ψ (x, t, u, ux ).

With this notation, the linearized operator of ut = f (x, t, u, ux ) can be written as

Lυ = ∂

∂t
−

N∑
j=1

f υζ j
(x, t)

∂

∂x j
.

It follows that

Lυυ = gυ (x, t), (4)

where g = (g0, . . . , gN ),

g0 (x, t, ζ0, ζ ) = f (x, t, ζ0, ζ )−
N∑

j=1

ζ j fζ j (x, t, ζ0, ζ ), and

gi (x, t, ζ0, ζ ) = fxi (x, t, ζ0, ζ )+ ζi fζ0 (x, t, ζ0, ζ ) (1 ≤ i ≤ N ).

Consider now the principal part of the holomorphic Hamiltonian of (4):

H = L+g0∂ζ0 +
N∑

j=1

g j∂ζ j . (5)

Lemma 2 Letψ = ψ (x, t, ζ0, ζ ) be a smooth function, holomorphic in (ζ0, ζ ). Then

(i) For all n ∈ N, we have

(Lυ)n
ψυ = (Hnψ

)υ
. (6)
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242 Z. Adwan, S. Berhanu

(ii) For all n ∈ N, we have

(Lυ)n
ψυ = ∂n

t

(
ψυ

) −
N∑

j=1

n−1∑
l=0

l∑
s=0

(
l

s

)

×
((Lυ)s

f υζ j

) ((Lυ)l−s
∂x j ∂

n−1−l
t ψυ

)
. (7)

Proof (i) We use induction on n. The case n = 1 can be easily checked. Now, suppose
that the result holds for all 1 ≤ j ≤ n. Then

(Lυ)n+1
ψυ = Lυ ((Lυ)n

ψυ
) = Lυ ((Hnψ

)υ) =
(
Hn+1ψ

)υ
,

where the second equality above follows from the induction hypothesis when j = n,
and the third equality follows from the case n = 1 but taking Hnψ instead of ψ .
Hence, by induction, we obtain the equation in (6).
(ii) We use induction on n. The case n = 1 follows by definition of Lυ . Now, suppose
that the result holds for some n ≥ 1. Then

(Lυ)n+1 (
ψυ

) = Lυ ((Lυ)n
ψυ

)

= Lυ
⎛
⎝∂n

t

(
ψυ

) −
N∑

j=1

n−1∑
l=0

l∑
s=0

(
l

s

)((Lυ)s
f υζ j

)

×
((Lυ)l−s

(
∂x j ∂

n−1−l
t ψυ

))⎞⎠

= Lυ (∂n
t

(
ψυ

)) −
N∑

j=1

n−1∑
l=0

l∑
s=0

(
l

s

)((Lυ)s+1
f υζ j

)

×
((Lυ)l−s

(
∂x j ∂

n−1−l
t ψυ

))

−
N∑

j=1

n−1∑
l=0

l∑
s=0

(
l

s

)((Lυ)s
f υζ j

)((Lυ)l−s+1
(
∂x j ∂

n−1−l
t ψυ

))

= I1 − I2 − I3.

We have, by definition of Lυ ,

I1 = ∂n+1
t

(
ψυ

) −
N∑

j=1

f υζ j
∂x j ∂

n
t

(
ψυ

)
.
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On microlocal analyticity and smoothness of solutions 243

The second term, after rearrangement, can be written as

I2 =
N∑

j=1

n−1∑
l=0

l+1∑
s=1

(
l

s − 1

)((Lυ)s
f υζ j

) ((Lυ)l−s+1
(
∂x j ∂

n−1−l
t ψυ

))

=
N∑

j=1

n−1∑
l=0

l∑
s=1

(
l

s − 1

)((Lυ)s
f υζ j

) ((Lυ)l−s+1
(
∂x j ∂

n−1−l
t ψυ

))

+
N∑

j=1

n−1∑
l=0

((Lυ)l+1
f υζ j

) (
∂x j ∂

n−1−l
t ψυ

)

The third term can be written as

I3 =
N∑

j=1

n−1∑
l=0

l∑
s=1

(
l

s

)((Lυ)s
f υζ j

) ((Lυ)l−s+1
(
∂x j ∂

n−1−l
t ψυ

))

+
N∑

j=1

n−1∑
l=0

f υζ j

((Lυ)l+1
(
∂x j ∂

n−1−l
t ψυ

))
.

Using the fact that for all 1 ≤ s ≤ l,

(
l

s

)
+
(

l

s − 1

)
=

(
l + 1

s

)
,

we get

I2 + I3 =
N∑

j=1

n−1∑
l=0

l+1∑
s=0

(
l + 1

s

)((Lυ)s
f υζ j

) ((Lυ)(l+1)−s
(
∂x j ∂

n−(l+1)
t ψυ

))

=
N∑

j=1

n∑
l=1

l∑
s=0

(
l

s

)((Lυ)s
f υζ j

) ((Lυ)l−s
(
∂x j ∂

n−l
t ψυ

))
.

Thus,

I1 − I2 − I3 =
⎛
⎝∂n+1

t

(
ψυ

) −
N∑

j=1

f υζ j
∂x j ∂

n
t

(
ψυ

)⎞⎠

−
N∑

j=1

n∑
l=1

l∑
s=0

(
l

s

)((Lυ)s
f υζ j

) ((Lυ)l−s
(
∂x j ∂

n−l
t ψυ

))

= ∂n+1
t

(
ψυ

) −
N∑

j=1

n∑
l=0

l∑
s=0

(
l

s

)((Lυ)s
f υζ j

) ((Lυ)l−s
(
∂x j ∂

n−l
t ψυ

))
.
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Hence, by induction, we obtain the equation in (7). 
�

Notation 3 Letψ = ψ (x, t, ζ0, ζ ) be a smooth function on�× (−T, T )×C×C
N ,

holomorphic in (ζ0, ζ ). For 1 ≤ j ≤ N , we set

B j (ψ) = ∂x j (ψ
υ).

Also, for 1 ≤ j ≤ N , n ∈ N, and 0 ≤ k ≤ n − 1, we define the functions Ak,n
j =

Ak,n
j (x, t) recursively as follows:

A0,1
j = B j (ψ) (1 ≤ j ≤ N ),

A0,n
j = Lυ A0,n−1

j +B j

(
Hn−1ψ

)
+

n−2∑
s=0

N∑
l=1

B j
(Hs fζl

)
As,n−1

l (n ≥2, 1≤ j ≤ N ),

Ak,n
j = Ak−1,n−1

j + Lυ Ak,n−1
j (n ≥ 3, 1 ≤ k ≤ n − 2, 1 ≤ j ≤ N ), and

An−1,n
j = An−2,n−1

j (n ≥ 2, 1 ≤ j ≤ N ). (8)

Lemma 4 Let ψ = ψ (x, t, ζ0, ζ ) be a smooth function, holomorphic in (ζ0, ζ ) and
let Ak,n

j be as in (8). Then for all n ∈ N,

(Lυ)n �ψυ = � ((Lυ)n
ψυ

) +
N∑

j=1

n−1∑
k=0

(
�
((Lυ)k

f υζ j

)
× Ak,n

j

)

= � (Hnψ
)υ +

N∑
j=1

n−1∑
k=0

�
(
Hk fζ j

)υ × Ak,n
j , (9)

where the second equation follows from Lemma 2 above.

Proof We use induction on n. The case n = 1 follows since

Lυ (�ψυ) =
⎛
⎝∂t −

N∑
j=1

f υζ j
∂x j

⎞
⎠(�ψυ)

= �
⎛
⎝ψυt + ψυζ0

ut +
N∑

j=1

ψυζ j
utx j

⎞
⎠ −

N∑
j=1

f υζ j
∂x j

(�ψυ).
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On microlocal analyticity and smoothness of solutions 245

Using Eq. (3) we see that the first term above equals

�
⎛
⎝ψυt + ψυζ0

f υ +
N∑

j=1

ψυζ j
∂x j

(
f υ
)⎞⎠

= �
⎛
⎝ψυt + f υψυζ0

+
N∑

j=1

(
f υx j

+ f υζ0
ux j +

N∑
k=1

f υζk
ux j xk

)
ψυζ j

⎞
⎠.

We next note that the last quantity above is equal to

� (Hψ)υ + �
N∑

j=1

f υζ j

(
∂x j

(
ψυ

))
.

Hence,

Lυ (�ψυ) = � (Hψ)υ + �
N∑

j=1

f υζ j

(
∂x j

(
ψυ

)) −
N∑

j=1

f υζ j
∂x j

(�ψυ).
Using the fact that

� (zw)− z (�w) = (�z) (w),

we see that

Lυ (�ψυ) = � (Hψ)υ +
N∑

j=1

�
(

f υζ j

)
× ∂x j (ψ

υ)

= � (Hψ)υ +
N∑

j=1

�
(

f υζ j

)
× A0,1

j .

and this is exactly Eq. (9) with n = 1. Suppose now that the result is true for all
1 ≤ j ≤ n. Then

(Lυ)n+1 �ψυ = Lυ
⎛
⎝� (Lυ)n

ψυ +
N∑

j=1

n−1∑
k=0

(
�
((Lυ)k

(
f υζ j

))
× Ak,n

j

)⎞⎠

= Lυ (� (Lυ)n
ψυ

) +
N∑

j=1

n−1∑
k=0

(
Lυ�

((Lυ)k
(

f υζ j

)))
× Ak,n

j

+
N∑

j=1

n−1∑
k=0

�
((Lυ)k

(
f υζ j

))
×
(
Lυ Ak,n

j

)
.
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We now compute each term separately. We have by the induction hypothesis (but
replacing ψυ with (Hnψ)υ )

Lυ� ((Lυ)n
ψυ

) = �
((Lυ)n+1

ψυ
)

+
N∑

j=1

�
(

f υζ j

)
× B j

(Hnψ
)
.

Similarly, we also have

Lυ�
((Lυ)k

(
f υζ j

))
= �

((Lυ)k+1
(

f υζ j

))
+

N∑
l=1

�
(

f υζl

)
× Bl

(
Hk fζ j

)
.

Hence, we have

(Lυ)n+1 (�ψυ) = �
((Lυ)n+1 (

ψυ
)) +

N∑
j=1

�
(

f υζ j

)
× B j

(Hnψ
)

+
N∑

j=1

n−1∑
k=0

(
�
((Lυ)k+1

(
f υζ j

))
+

N∑
l=1

�
(

f υζl

)
× Bl

(
Hk fζ j

))

×Ak,n
j +

N∑
j=1

n−1∑
k=0

�
((Lυ)k

(
f υζ j

))
×
(
Lυ Ak,n

j

)

= �
((Lυ)n+1 (

ψυ
))

+
N∑

j=1

�
(

f υζ j

)
×
(

Lυ A0,n
j + B j

(Hnψ
) +

n−1∑
k=0

N∑
l=1

B j

(
Hk fζl

)
× Ak,n

l

)

+
N∑

j=1

n−1∑
k=1

�
((Lυ)k

(
f υζ j

))
×
(

Ak−1,n
j + Lυ Ak,n

j

)

+
N∑

j=1

�
((Lυ)n

(
f υζ j

))
× An−1,n

j

= �
((Lυ)n+1 (

ψυ
)) +

N∑
j=1

n∑
k=0

(
�
((Lυ)k

(
f υζ j

))
× Ak,n+1

j

)

where the last equality follows from the way we defined the Ak,n
j ’s. Hence, by induction

and Lemma 2, we obtain Eq. (9). 
�
Corollary 5 (i) � (Hk fζ

)υ
(x0, 0) = 0, for all 0 ≤ k ≤ n − 1, if and only if

(Lυ)k
(
� f υζ j

)
(x0, 0) = 0,

for all 0 ≤ k ≤ n − 1, and all 1 ≤ j ≤ N .
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On microlocal analyticity and smoothness of solutions 247

(ii) If � (Hk fζ
)υ
(x0, 0) = 0 for all 0 ≤ k ≤ n − 1, and � (Hn fζ

)υ
(x0, 0) 	= 0,

then

(Lυ)n
(
� f υζ j

)
(x0, 0) = � (Hn fζ j

)υ
(x0, 0) ∀ j.

Proof The two claims follow immediately from Eq. (9) in Lemma (4 ). 
�
Notation 6 Let k ∈ N, k ≥ 1 be fixed and let X0, X1, X2, . . . , Xk be complex vector
fields. We shall use the notation

[
Xk,

[
Xk−1, . . . , [X1, X0]

]]
to denote the k-bracket Yk, where

Y1 = [X1, X0],

Yn = [
Xn,Yn−1

]
, (2 ≤ n ≤ k).

Lemma 7 Define Mυ = ∑N
j=1 � f υζ j

(x, t) ∂x j . Let X0 = Mυ, and for k ≥ 1, let
X1, X2, . . . , Xk be vector fields where each X j , 1 ≤ j ≤ k, is either Mυ or Lυ. Then
the k-bracket

[
Xk,

[
Xk−1, . . . , [X1, X0]

]] =
N∑

j=1

∑
σ1,...,σk

(
Xσk

k Xσk−1
k−1 · · · Xσ1

1 � f υζ j

)

×
[

X1−σk
k ,

[
X1−σk−1

k−1 , . . . ,
[

X1−σ1
1 , ∂x j

]]]
, (10)

where each σ j is either 0 or 1 and if a power of zero appears in a bracket, we sim-
ply ignore the term raised to zero and delete its brackets. (e.g.,

[
X0

1, ∂x j

] = ∂x j and[
X1

3,
[
X0

2,
[
X1

1, ∂x j

]]] = [
X3,

[
X1, ∂x j

]]
).

Proof We use induction on k ≥ 1. The case k = 1 follows because if X1 is either Mυ

or Lυ, then

[
X1,Mυ

] =
⎡
⎣X1,

N∑
j=1

� f υζ j
∂x j

⎤
⎦

=
N∑

j=1

X1

(
� f υζ j

)
∂x j +

N∑
j=1

(
� f υζ j

) [
X1, ∂x j

]

=
N∑

j=1

(X1)
1
(
� f υζ j

) [
(X1)

0 , ∂x j

]
+

N∑
j=1

(X1)
0
(
� f υζ j

) [
(X1)

1 , ∂x j

]

=
N∑

j=1

∑
σ1

(X1)
σ1
(
� f υζ j

) [
(X1)

1−σ1 , ∂x j

]
,
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248 Z. Adwan, S. Berhanu

where σ1 is either 0 or 1. Now suppose that the result is true for k ≥ 1. Then with
Xk+1 either Mυ or Lυ,
[
Xk+1, [Xk, . . . , [X1, X0]]

]
=

N∑
j=1

∑
σ1,...,σk

(
Xk+1 Xσk

k · · · Xσ1
1 � f υζ j

) [
X1−σk

k ,
[

X1−σk−1
k−1 , . . . ,

[
X1−σ1

1 , ∂x j

]]]

+
N∑

j=1

∑
σ1,...,σk

(
Xσk

k Xσk−1
k−1 · · · Xσ1

1 � f υζ j

) [
Xk+1,

[
X1−σk

k , . . . ,
[

X1−σ1
1 , ∂x j

]]]

=
N∑

j=1

∑
σ1,...,σk

(
X1

k+1 Xσk
k · · · Xσ1

1 � f υζ j

) [
X0

k+1,
[

X1−σk
k , . . . ,

[
X1−σ1

1 , ∂x j

]]]

+
N∑

j=1

∑
σ1,...,σk

(
X0

k+1 Xσk
k · · · Xσ1

1 � f υζ j

) [
X1

k+1,
[

X1−σk
k , . . . ,

[
X1−σ1

1 , ∂x j

]]]

=
N∑

j=1

∑
σ1,...,σk+1

(
Xσk+1

k+1 Xσk
k · · · Xσ1

1 � f υζ j

) [
X1−σk+1

k+1 ,
[

X1−σk
k , . . . ,

[
X1−σ1

1 , ∂x j

]]]
,

with σk+1 either 0 or 1. Our result now follows by induction. 
�

Corollary 8 If all of the X j ’s (1 ≤ j ≤ k) in Lemma 7 are equal to Lυ , then

[Lυ, [Lυ, · · · , [Lυ,Mυ
]]] =

N∑
j=1

k∑
l=0

(
k

l

)((Lυ)l � f υζ j

)

× [Lυ, [Lυ, · · · , [Lυ, ∂x j

]]]
︸ ︷︷ ︸

k−l brackets

. (11)

Proof Follows immediately from Lemma 7. 
�

Corollary 9 Let k ≥ 1. If all the brackets [Lυ, [Lυ, · · · , [Lυ,Mυ ]]] of length < k
vanish at (x, 0) for some x ∈ � (where we define the bracket of length 0 to be Mυ ),
then, at the point (x, 0), the k− bracket

[Lυ, [Lυ, · · · , [Lυ,Mυ
]]] =

N∑
j=1

((Lυ)k � f υζ j

)
∂x j . (12)

Proof For k ≥ 1, let P (k) denote the statement “if all the brackets of length < k
vanish at (x, 0), then the k-bracket is given by Eq. (12) at (x, 0)”. We will prove that
P (k) holds for all k using induction. If k = 1, then we are assuming that Mυ vanishes
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at (x, 0), and so � f υζ j
(x, 0) = 0 for all 1 ≤ j ≤ N . Since

[Lυ,Mυ
] =

N∑
j=1

(
� f υζ j

) [Lυ, ∂x j

] +
(
Lυ� f υζ j

)
∂x j ,

at the point (x, 0), we have

[Lυ,Mυ
] =

N∑
j=1

(
Lυ� f υζ j

)
∂x j .

Hence, P (1) is true. Suppose now that P (l) is true for all 1 ≤ l ≤ k. We would like to
show that P (k + 1) is true. So suppose that all the brackets [Lυ, [Lυ, . . . , [Lυ,Mυ ]]]
of length < k + 1 vanish at (x, 0). Then the induction hypothesis implies that for all
0 ≤ l ≤ k, all 1 ≤ j ≤ N ,

((Lυ)l � f υζ j

)
(x, 0) = 0.

Hence, Eq. (11) implies that, at the point (x, 0), the k + 1-bracket

[Lυ, [Lυ, . . . , [Lυ,Mυ
]]] =

N∑
j=1

((Lυ)k+1 � f υζ j

)
∂x j ,

as desired. Corollary 9 now follows. 
�
Lemma 10 Suppose that for some x0 ∈ �, and

∀ 0 ≤ j ≤ k − 1, �
(
H j fζ

)υ
(x0, 0) = 0, �

(
Hk fζ

)υ
(x0, 0) 	= 0. (13)

With the same notation as in Lemma 7, if at least one of the X ′
j s is Mυ , then for all

possible choices of σ j , we have:

(
Xσk

k Xσk−1
k−1 · · · Xσ1

1 � f υζ j

)
(x0, 0) = 0, (14)

and if all of the X j ’s are Lυ , then at the point (x0, 0), we have

[Lυ, [Lυ, . . . , [Lυ,Mυ
]]]
(x0, 0) =

N∑
j=1

�
(
Hk fζ j

)υ
(x0, 0)

∂

∂x j
. (15)

Proof We prove (14) first. Assume that at least one of the X j ’s (1 ≤ j ≤ k) is Mυ .
For 1 ≤ l ≤ k, let YlYl−1 · · · Y1 denote the elements that have their σ j = 1 in
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Xσk
k Xσk−1

k−1 · · · Xσ1
1 , keeping the order the same (e.g., we denote X1

4 X0
3 X1

2 X0
1 by Y2Y1

with Y2 = X4 and Y1 = X2). We would like to show that

(
YlYl−1 · · · Y1� f υζ j

)
(x0, 0) = 0.

To do so, note first that if Yl = Mυ , then

(
YlYl−1 · · · Y1� f υζ j

)
= Mυ

(
Yl−1 · · · Y1� f υζ j

)

=
N∑

j=1

(
� f υζ j

)
∂x j

(
Yl−1 · · · Y1� f υζ j

)
,

and this vanishes at (x0, 0) by assumption. Hence, we are left with the case in which
l ≥ 2,Yl = Lυ and some Ys = Mυ for some 1 ≤ s ≤ l −1. Let s be the biggest such.
Then (

YlYl−1 · · · Y1� f υζ j

)
= (Lυ)l−s

MυYs−1 · · · Y1� f υζ j

= (Lυ)l−s
N∑

p=1

(
� f υζp

)
∂x p

(
Ys−1 · · · Y1� f υζ j

)

=
N∑

p=1

l−s∑
m=0

(
l − s

m

)((Lυ)m � f υζp

)

×
((Lυ)l−s−m

∂x p Ys−1 · · · Y1� f υζ j

)
,

and this vanishes at (x0, 0)by assumption and Corollary 5. Hence, we have proved (14).
It remains to prove (15). Notice that (15) follows immediately from Corollary 5 and
Corollary 8. 
�
Proposition 11 Condition (13) in Lemma 10 holds if and only if the following two
conditions hold:

(a) All the brackets of Lυ and Lυ of order < k vanish at (x0, 0),
(b) the k−bracket

1

2i

[Lυ, [Lυ, . . . , [Lυ,Lυ]]] (x0, 0) 	= 0. (16)

Proof (⇒) Suppose that condition (13) in Lemma 10 holds. Then

(a) Notice that

Lυ =
⎛
⎝∂t −

N∑
j=1

f υζ j
∂x j

⎞
⎠ +

N∑
j=1

(
f υζ j

− f υζ j

)
∂x j = Lυ + 2i Mυ. (17)
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Hence,

1

2i

[Lυ,Lυ] = [Lυ,Mυ
]
. (18)

If we take any bracket of Lυ and Lυ of order< k, then we can use Eq. (17) to replace
each Lυ by Lυ + 2i Mυ . This way we can write our original bracket in terms of Lυ
and Mυ only. Then the result follows from Lemma 10.
(b) Using Eq. (18), we have 1

2i [Lυ, [Lυ, . . . , [Lυ,Lυ ]]] = [Lυ, [Lυ, . . . ,
[Lυ,Mυ ]]], and Eq. (16) follows from Lemma 7 and Lemma 10.
(⇐) This follows from Corollary 9. 
�

We end this section with the following lemma that will be used in the proof of the
main theorem.

Lemma 12 Fix k ∈ N. If

(
∂ l

t � f υζi

)
(x, 0) = 0 ∀x ∈ �, 1 ≤ i ≤ N , 0 ≤ l ≤ k − 1, (19)

then ((Lυ)k � f υζi

)
(x, 0) = ∂k

t

(
� f υζi

)
(x, 0) ∀x ∈ �, 1 ≤ i ≤ N . (20)

Proof Condition (19) implies that for all x ∈ �,

(Lυ)l
∂

p
t � f υζi

(x, 0) ≡ 0, for 0 ≤ l + p ≤ k − 1,

and hence the lemma follows from Eq. (7) in Lemma 2, namely,

(Lυ)k
(
� f υζi

)
=∂k

t

(
� f υζi

)
−

N∑
j=1

k−1∑
l=0

l∑
s=0

(
l

s

)((Lυ)s
f υζ j

) (
∂x j

(Lυ)l−s
∂k−1−l

t � f υζi

)
.


�

3 Applications to solutions of first order nonlinear PDE

3.1 The smooth case

In the following Theorem, � is an open subset of R
N and f = f (x, t, ζ0, ζ ) is a

C∞ function on � × [0, T ] × C × C
N , holomorphic in the variables (ζ0, ζ ). Also,

recall the notation f υ (x, t) = f (x, t, u (x, t), ux (x, t)). For the definition and basic
properties of the concept of the C∞ wave-front set of a distribution, we refer the reader
to chapter 8 in the book [12].
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Theorem 13 Let f (x, t, ζ0, ζ ) be a C∞ function that is holomorphic in (ζ0, ζ ). Let
k ∈ N. If the nonlinear first order equation

∂t u = f (x, t, u (x, t), ux (x, t)), 0 < t < T, x ∈ �, (21)

has a Ck+1 solution for t ≥ 0 on a neighborhood of (x0, 0), and

∀x ∈ �, ∀0 ≤ j < k, �
(
H j fζ

)υ
(x, 0) = 0, �

(
Hk fζ

)υ
(x0, 0) 	= 0, (22)

then for all ξ0 ∈ S
N−1 such that

�
(
Hk fζ

)υ
(x0, 0) · ξ0 < 0, (23)

the point
(
x0, ξ

0
)

does not belong to the C∞ wave-front set of the trace u (x, 0).

Proof We consider the (holomorphic) Hamiltonian given by (see the beginning of
Sect. 2 for the definition of L and g j ):

H = L+g0∂ζ0 +
N∑

j=1

g j∂ζ j , (24)

on a neighborhood V = V1 × V2 × V3 × V4 ⊂ C
N
x × Ct × Cζ0 × C

N
ζ of the point

(x0, 0, u (x0, 0), ux (x0, 0)), and we assume, with r0, T0, ρ0, ρ > 0, that

V1 =
{

x ∈ C
N : |x − x0| < r0

}
,

V2 = {t ∈ C : |t | < T0},
V3 = {ζ0 ∈ C : |ζ0 − u (x0, 0)| < ρ0}, and

V4 =
{
ζ ∈ C

N : |ζ − ux (x0, 0)| < ρ
}
.

For 1 ≤ j ≤ N , 0 ≤ l ≤ N , let Z j (x, t, ζ0, ζ ), and �l (x, t, ζ0, ζ ) be smooth
functions in V , holomorphic in (ζ0, ζ ), such that (see [A])

HZ j = O
(
tn), n = 1, 2, . . . , and Z j (x, 0, ζ0, ζ ) = x j (1 ≤ j ≤ N ),

H�l = O
(
tn), n = 1, 2, . . . , and �l (x, 0, ζ0, ζ ) = ζl (0 ≤ l ≤ N ).

Let

Lυ = ∂t −
N∑

j=1

f υζ j
(x, t) ∂x j .

Recall from Lemma 2 that Lυ f υ = (H f )υ . This implies that the Z j ’s and�l ’s (when
we restrict them to (x, t, u (x, t), ux (x, t))) are approximate solutions of Lυ .
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Observe that for any i , ∂ j
t � f υζi

(x, 0) = 0 for 0 ≤ j ≤ k −1. Indeed, the case j = 0
follows from (22). Assume it holds for all 0 ≤ i ≤ j , for some j < k − 1. Then
using (22), Corollary 5, and Lemma 12, we have:

0 = �
(
H j+1 fζi

)υ
(x, 0) = (Lυ) j+1 � f υζi

(x, 0) = ∂
j+1

t � f υζi
(x, 0).

Thus

∂
j

t � f υζi
(x, 0) = 0 f or 0 ≤ j ≤ k − 1. (25)

Equation (25), Lemma 12, and Corollary 5 lead to:

�
(
Hk fζi

)υ
(x0, 0) = (Lυ)k � f υζi

(x0, 0) = ∂k
t � f υζi

(x0, 0). (26)

We can write the approximate solution

Zυ (x, t) = x + tψ (x, t) = x + tψ(1) (x, t)+ i tψ(2) (x, t),

where ψ(1) and ψ(2) are real-valued. Since Lυ Zυj (x, t) = O(tn), n ∈ N, we have:

t
∂ψ j

∂t
+ ψ j −

N∑
i=1

f υζi

(
δi j + t

∂ψ j

∂xi

)
= O(tn) n ∈ N.

Differentiating this latter equation repeatedly with respect to t and using (25) and (26),
we get

∂
j

t ψ
(2)(x, 0) = 0 f or 0 ≤ j ≤ k − 1, ∂k

t ψ
(2)(x0, 0) = ∂k

t � f υζi
(x0, 0)

= �
(
Hk fζi

)υ
(x0, 0) (27)

Let Mi = ∑N
j=1 bi j (x, t) ∂

∂x j
be vector fields for i = 1, . . . , N that satisfy Mi Zυl =

δil for 1 ≤ i, l ≤ N . For any C1 function h = h(x, t),

dh =
N∑

i=1

Mi (h) d Zυi +
⎛
⎝Lυh −

N∑
j=1

M j (h)Lυ(Zυj )
⎞
⎠ dt

as can be seen by applying both sides of the equation to the basis of vector fields
{Lυ,M1, . . . ,MN }. The latter implies that

d(h d Zυ1 ∧ · · · ∧ d ZυN ) =
⎛
⎝Lυh −

N∑
j=1

M j (h)Lυ Zυj

⎞
⎠ dt ∧ d Zυ1 ∧ · · · ∧ d ZυN .

(28)
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For (y, ξ) ∈ R
N , let

Q(x, t, y, ξ) = iξ · (y − Zυ (x, t)
) − |ξ | (y − Zυ(x, t))2

where for z ∈ C
N , we write z2 = z2

1 + · · · + z2
N . Let η(x) ∈ C∞

0 (R
N ), η ≡ 1 for

|x − x0| < r0 and η ≡ 0 when |x − x0| > 2r0, r0 to be chosen later. Let

g(x, t, y, ξ) = η(x)�υ0 (x, t)eQ(x,t,y,ξ)

where y and ξ are parameters. Denoting d Zυ1 ∧ · · · ∧ d ZυN by d Z and using (28),
we get:

d(g d Z) =
⎛
⎝Lυ(η�υ0 )+ (η�υ0 )Lυ(Q)−

N∑
j=1

(M j (η�
υ
0 )+ η�υ0 (M j Q))Lυ Zυj

⎞
⎠

×eQ dt ∧ d Z . (29)

By Stokes theorem we have, after decreasing T0 > 0:

∫
RN

g(x, 0, y, ξ) dx =
∫

RN

g(x, T0, y, ξ) d Z(x, T0)+
T0∫

0

∫
RN

d(gd Z). (30)

We will estimate the two integrals on the right in (30). Note that

�Q (x, t, y, ξ) = tξ · ψ(2) − |ξ |
(
|y − x |2 − 2t

[
(y − x) · ψ(1)

]
+t2

∣∣∣ψ(1)∣∣∣2 − t2
∣∣∣ψ(2)∣∣∣2).

Observe that using (27),

ψ(2)(x, t) = ∂k
t ψ

(2)(x, 0)

k! tk + O(tk+1)

= ∂k
t ψ

(2)(x0, 0)

k! tk + O(|x − x0|tk)+ O(tk+1)

= � (Hk fζ
)υ
(x0, 0)

k! tk + O(|x − x0|tk)+ O(tk+1).

Hence if ξ0 ∈ S
N−1 satisfies condition (23), then there exists a conic neighborhood

B2r0(x0) × � of (x0, ξ
0) in R

N × (RN \{0}) and a constant a > 0 such that for T0
small enough, and for (x, ξ) ∈ B2r0(x0)× �,

tψ(2)(x, t) · ξ ≤ −a|ξ |tk+1, 0 ≤ t ≤ T0.
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Since ψ(2)(x, t) = O(tk), after decreasing r0 and T0, for a > 0 small enough,

tψ(2)(x, t) · ξ + |ξ |t2|ψ(2)(x, t)|2 ≤ −a|ξ |tk+1, 0 ≤ t ≤ T0. (31)

Using the inequality

2|t (y − x) · ψ(1)(x, t)| ≤ |y − x |2 + t2|ψ(1)(x, t)|2

and (31), we get:

�Q(x, t, y, ξ) ≤ −a|ξ |tk+1, 0 ≤ t ≤ T0 (32)

whenever (x, ξ) ∈ B2r0(x0)× �. Next observe that for T0 sufficiently small, we can
find δ > 0 such that

�Q(x, t, y, ξ) ≤ −δ|ξ | whenever r0 ≤ |x − x0| ≤ 2r0 and |y − x0| ≤ r0

2
(33)

For y near x0 and ξ ∈ �, inequality (32) leads to

∣∣∣∣∣∣∣
∫

RN

g(x, T0, y, ξ) d Z(x, T0)

∣∣∣∣∣∣∣ ≤ c1e−c2|ξ |

for some c1, c2 > 0. To estimate the second integral on the right in (30), we will use
the expression (29) which has two kinds of terms. The first type consists of terms
which can be bounded by constant multiples of

tne�Q(x,t,y,ξ) for n = 1, 2, . . .

and hence using (32), the integrals of these terms decay rapidly in ξ . The second type
of terms involve derivatives of η(x) and hence ( 33) can be used to get an exponential
decay in ξ for their integrals. Since �0(x, 0) = u(x, 0) = ω(x), it follows that the
FBI transform of the trace

Fηω(y, ξ) =
∫

RN

eiξ ·(y−x)−|ξ |(y−x)2 η(x)ω(x) dx

decays rapidly in a conic neighborhood of (x0, ξ
0). By a result in [8] (see the last

part of the proof of Theorem 2.1 in [8]), we conclude that (x0, ξ
0) is not in the C∞

wave-front set of ω(x) = u(x, 0). 
�
Example 14 Let u(x, t) be a Ck+1 solution of the semilinear equation

∂u

∂t
+ √−1tk ∂u

∂x
= g(x, t, u), 0 ≤ t < T, x ∈ (a, b)
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where g(x, t, ζ0) is a C∞ function that is holomorphic in ζ0. Then for any x0 ∈ (a, b)
and ξ > 0, the point (x0, ξ) is not in the C∞ wave-front set of the trace u(x, 0).

Note also that if u is a solution in a full neighborhood of a point (x0, 0) and k is
an even integer, then the trace u(x, 0) is a C∞ function near x0. When the function
g(x, t, ζ0) is real analytic, the microlocal analyticity of u(x, 0) was discussed in [13].

Example 15 Let u(x, t) be a C2 solution of the Cauchy problem

{
∂u
∂t + √−1tu ∂u

∂x = g(x, t, u), 0 ≤ t < T, x ∈ (a, b)
u(x, 0) = ω(x)

where g(x, t, ζ0) is a C∞ function that is holomorphic in ζ0. For any x0 ∈(a, b) and ξ ,
if ξ �ω(x0) > 0, then the point (x0, ξ) is not in the C∞ wave-front set of the trace
u(x, 0). Again when the function g(x, t, ζ0) is real analytic, the microlocal analyticity
of u(x, 0) was treated in [13].

3.2 The analytic case

In the paper [13], the authors studied microlocal analyticity of solutions of a class
of quasi-linear first order PDE. Their main result (see Theorem 2.3 in [13]) can be
generalized to the fully nonlinear case as we show in this subsection. For the definition
and basic introduction to the concept of microlocal analyticity, we refer the reader to
chapter 9 in [15] and to [14]. We consider the Cauchy problem:

{
ut = f (x, t, u (x, t), ux (x, t)), 0 < t < T, x ∈ �,
u|t=0 = ω (x), x ∈ �, (34)

where � ⊆ R
N is an open set, T > 0, and the function f is the restriction on

� × [0, T ) × V3 × V4 of some holomorphic function defined on a complex open
domain V = V1 × V2 × V3 × V4 ⊂ C

N × C
1 × C

1 × C
N . We have the following

theorem:

Theorem 16 Let f (x, t, ζ0, ζ ) be be real analytic in all the variables, and holomor-
phic in (ζ0, ζ ). Let k ∈ N. If the nonlinear first order equation

∂t u = f (x, t, u (x, t), ux (x, t)), 0 < t < T, x ∈ �, (35)

has a Ck+1 solution for t ≥ 0 on a neighborhood of (x0, 0), and

∀x ∈ �, ∀0 ≤ j < k, �
(
H j fζ

)υ
(x, 0) = 0, �

(
Hk fζ

)υ
(x0, 0) 	= 0, (36)

then for all ξ0 ∈ S
N−1 such that

�
(
Hk fζ

)υ
(x0, 0) · ξ0 < 0, (37)
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the point
(
x0, ξ

0
)

does not belong to the analytic wave-front set of the trace u (x, 0).

Proof For 1 ≤ j ≤ N ,0 ≤ l ≤ N , let Z j (x, t, ζ0, ζ ), and �l (x, t, ζ0, ζ ) be the
holomorphic first integrals satisfying

HZ j = 0, and Z j (x, 0, ζ0, ζ ) = x j (1 ≤ j ≤ N ),

H�l = 0, and �l (x, 0, ζ0, ζ ) = ζl (0 ≤ l ≤ N ).

We have

Lυ(Zυj ) = (HZ j )
υ = 0 and Lυ(�υl ) = (H�l)

υ = 0 ∀ j, l.

Therefore, with

g(x, t, y, ξ) = η(x)�v0(x, t)eQ(x,t,y,ξ)

as before, this time (29) becomes

d(g d Z) = (Lυ(η)�υ0 ) eQ dt ∧ d Z .

Hence each of the two integrals on the right in (30) decay exponentially leading to

∣∣Fηω (y, ξ)∣∣ ≤ c1e−c2|ξ |

for y near x0 and ξ in an open cone � containing ξ0. It follows that the point
(
x0, ξ

0
)

does not belong to the analytic wave-front set of ω(x) = u(x, 0). 
�

As in [13], the preceding theorem together with Lemma 4.3 in [13] lead to the
following instability result with respect to a non-analytic perturbation of an analytic
initial datum.

Corollary 17 Suppose that for some (x0, v0), there exists k ∈ N such that

�
(
Hk fζ

)υ
(x0, 0) 	= 0.

Then for any analytic function ω0 such that ω0(x0) = v0, the Cauchy–Kovalevskaya
solution of the Cauchy problem (2) with Cauchy datum ω0 is strongly instable with
respect to a C∞ perturbation, in the sense that, for any neighborhood W of x0 and any
neighborhood W of ω0 in C∞(W ), there exists ω ∈ W such that the Cauchy problem
(2) with initial datum ω does not have a Ck+1 solution. Moreover, for any analytic
function ω0 such that ω0(x0) = v0, there exists a C∞ function ω with the same Taylor
expansion at x0 as ω0 such that the Cauchy problem (2) with initial datum ω does not
have a Ck+1 solution.
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