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Abstract As a means to better understanding manifolds with positive curvature,
there has been much recent interest in the study of non-negatively curved manifolds
which contain either a point or an open dense set of points at which all 2-planes have
positive curvature. We study infinite families of biquotients defined by Eschenburg
and Bazaikin from this viewpoint, together with torus quotients of S3 × S3.
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0 Introduction

There exist many examples of (compact) manifolds with non-negative curvature. All
homogeneous spaces G/H and all biquotients G//U inherit non-negative curvature
from the bi-invariant metric on G. Additionally, it is shown in [16] that all cohomo-
geneity-one manifolds, namely manifolds admitting an isometric group action with
one-dimensional orbit space, admit metrics with non-negative curvature when the
singular orbits are of codimension ≤ 2.

On the other hand, the known examples with positive curvature are very sparse
(see [29] for a survey). Other than the rank-one symmetric spaces there are isolated
examples in dimensions 6,7,12,13 and 24 due to Wallach [26] and Berger [3], and two
infinite families, one in dimension 7 (Eschenburg spaces; see [1,7,8]) and the other
in dimension 13 (Bazaikin spaces; see [2]). In recent developments, two distinct met-
rics with positive curvature on a particular cohomogeneity-one manifold have been
proposed [4,15], while in [21] the authors propose that the Gromoll–Meyer exotic
7-sphere admits positive curvature. This would be the first exotic sphere known to
exhibit this property.
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156 M. Kerin

Unfortunately, for a simply connected manifold which admits a metric of non-
negative curvature there are no known obstructions to admitting positive curvature.

In this paper we are interested in the study of manifolds which lie “between” those
with non-negative and those with positive sectional curvature. It is hoped that the study
of such manifolds will yield a better understanding of the differences between these
two classes.

Recall that a Riemannian manifold (M, 〈 , 〉) is said to have quasi-positive curvature
(resp. almost positive curvature) if (M, 〈 , 〉) has non-negative sectional curvature and
there is a point (resp. an open dense set of points) at which all 2-planes have positive
sectional curvature.

Theorem A (i) All Eschenburg spaces E7
p,q = SU(3)//S1

p,q admit a metric with
quasi-positive curvature.

(ii) The Eschenburg space E7
p,q , p = (1, 1, 0), q = (0, 0, 2), admits almost posi-

tive curvature.
(iii) All Bazaikin spaces B13

q1,...,q5
= SU(5)//(Sp(2) ·S1

q1,...,q5
) such that 0 < q1, . . . ,

q4 admit quasi-positive curvature.
(iv) The Bazaikin space B13

1,1,1,1,−1 admits almost positive curvature.

The Eschenburg spaces are defined by E7
p,q = SU(3)//S1

p,q where p = (p1, p2,

p3), q = (q1, q2, q3) ∈ Z
3,

∑
pi = ∑

qi , and S1
p,q acts on SU(3) via

z � A = diag (z p1, z p2 , z p3) · A · diag (z̄q1, z̄q2 , z̄q3), z ∈ S1, A ∈ SU(3).

The Bazaikin spaces are defined by B13
q1,...,q5

= SU(5)//(Sp(2) · S1
q1,...,q5

), where
q1, . . . , q5 ∈ Z, q = ∑

qi , and Sp(2) · S1
q1,...,q5

= (Sp(2) × S1
q1,...,q5

)/Z2 acts on
SU(5) via

[A, z] � B = diag (zq1, . . . , zq5) · B · diag (A, z̄q),

z ∈ S1, A ∈ Sp(2) ⊂ SU(4), B ∈ SU(5).
Several large classes of examples of manifolds with almost positive curvature appear

in the work of Wilking [28]. The only other previously known examples of manifolds
with almost positive or quasi-positive curvature are given in [10,20,23,27,28].

One of the original motivations for studying manifolds with quasi-positive curvature
was the Deformation Conjecture, which stated that a complete Riemannian manifold
with quasi-positive curvature admits a metric with positive curvature. The examples
in [28] show that this conjecture is false since, for example, RP3 ×RP2 cannot admit
positive curvature by Synge’s Theorem. However, all of Wilking’s counter-examples
have non-trivial fundamental group. Therefore it is still possible that the Deformation
Conjecture holds for simply connected manifolds with quasi-positive curvature. In
particular, if this conjecture were true it would follow from Wilking’s examples that
S3 × S2 admits a metric with positive curvature. This would be a counter-example to
the celebrated Hopf Conjecture, which asserts that a product of spheres cannot admit
positive curvature.
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In [20] the authors suggest that consideration should be given to another mod-
ification of the Deformation Conjecture, namely that a Riemannian manifold with
quasi-positive curvature admits a metric with almost positive curvature.

A good illustration of the various deformations at work is the Gromoll–Meyer
exotic 7-sphere �7 = Sp(2)// Sp(1). In [13] �7 was shown to inherit quasi-positive
curvature from the bi-invariant metric on Sp(2). It has since been shown that this met-
ric on �7 may be deformed to have almost positive curvature (see [10,27]). Finally, it
is claimed in [21] that one may further deform �7 to achieve positive curvature.

Given the dearth of examples of manifolds with positive curvature and the relative
abundance of examples with non-negative curvature, it is natural to investigate the
topology of known examples. In particular, the Bazaikin spaces may be distinguished
by the order s of the cohomology groups H6 = H8 = Zs [2]. From this one can write
down infinitely many positively curved Bazaikin spaces which are distinct even up to
homotopy equivalence.

On the other hand, in [12] it is shown that there are only finitely many positively
curved Bazaikin spaces for a given cohomology ring. This statement should be viewed
in the context of the Klingenberg–Sakai conjecture. It states that there are only finitely
many positively curved manifolds in a given homotopy type, and the result in [12]
raises the question of whether the conjecture is true even for cohomology. In this
context we establish the following result.

Theorem B There exist infinitely many pairwise non-homeomorphic Bazaikin spaces
which admit quasi-positive curvature and share the same cohomology ring.

From Theorem B it is immediate that the Deformation Conjecture for simply
connected manifolds and the cohomology Klingenberg–Sakai Conjecture cannot both
be true.

If we now relax the constraint that U acts freely on G by allowing U to act almost
freely (i.e. all isotropy groups are finite), we can find the following orbifold examples:

Theorem C (i) All of the Eschenburg orbifolds SU(3)//S1
p,q with p=(p1, p2, p3),

q = (q1, q2, q3) ∈ Z
3 satisfying

q1 < q2 = p1 < p2 ≤ p3 < q3 (†)

admit almost positive curvature.
(ii) There are infinitely many orbifolds of the form (S3 × S3)//T 2 admitting almost

positive curvature.

We remark that there are no free S1
p,q -actions on SU(3) satisfying condition (†).

Moreover, for the T 2-actions on S3 × S3 we consider, the proof that (S3 × S3)//T 2

admits almost positive curvature breaks down precisely when the action is allowed to
be free, namely for the quotient manifold S2 × S2.

Among the orbifolds (S3 × S3)//T 2 there are examples with only one singular
point, having isotropy group Z3, and examples with only two singular points, each
with Z2 isotropy. Some of these examples are described in Table 2. In [11] the authors
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get precisely the same minimal isotropy groups for positively curved six-dimensional
orbifolds arising as quotients of Eschenburg spaces by an S1 action. This raises the
question of whether there are positively or almost positively curved orbifolds having
a unique singular point, with Z2 as its isotropy group.

The paper is organised as follows. In Sect. 1 we recall the basic notation and tech-
niques which will be used throughout the paper. In Sect. 2 we apply these techniques to
the Eschenburg spaces in order to prove Theorem A, (i) and (ii), and Theorem C(i). In
Sect. 3 we examine the Bazaikin spaces and prove Theorem A, (iii) and (iv), together
with Theorem B. Finally, in Sect. 4 we turn our attention to torus quotients of S3 × S3

and establish Theorem C(ii).

1 Biquotient actions and metrics

In his Habilitation, [7], Eschenburg studied biquotients in great detail. The following
section provides a review of the material in [7] which establishes the basic language,
notation and results that will be used throughout the remainder of the paper.

Let G be a compact Lie group, U ⊂ G×G a closed subgroup, and let U act on G via

(u1, u2) � g = u1gu−1
2 , g ∈ G, (u1, u2) ∈ U.

The action is free if and only if, for all non-trivial (u1, u2) ∈ U, u1 is never conjugate
to u2 in G. The resulting manifold is called a biquotient.

Let K ⊂ G be a closed subgroup, 〈 , 〉 be a left-invariant, right K -invariant metric
on G, and U ⊂ G × K ⊂ G × G act freely on G as above. Let g ∈ G. Define

U g
L := {(gu1g−1, u2) | (u1, u2) ∈ U },

U g
R := {(u1, gu2g−1) | (u1, u2) ∈ U }, and

Û := {(u2, u1) | (u1, u2) ∈ U }.

Then U g
L , U g

R and Û act freely on G, and G//U is isometric to G//U g
L , diffeomorphic

to G//U g
R (isometric if g ∈ K ), and diffeomorphic to G//Û (isometric if U ⊂ K × K ).

In the case of U g
L this follows from the fact that left-translation Lg : G −→ G is

an isometry which satisfies gu1g−1(Lgg′)u−1
2 = Lg(u1g′u−1

2 ). Therefore Lg induces
an isometry of the orbit spaces G//U and G//U g

L . Similarly we find that Rg−1 induces
a diffeomorphism between G//U and G//U g

R , which is an isometry if g ∈ K .
Consider now Û . The actions of U and Û are equivariant under the diffeomorphism

τ : G −→ G, τ (g) := g−1. That is, u1τ(g)u−1
2 = τ(u2gu−1

1 ). Notice that this is an
isometry only if U ⊂ K × K . In general G//U and G//Û are therefore diffeomorphic
but not isometric.

Suppose π : Mn −→ N n−k is a Riemannian submersion. The O’Neill formula
for Riemannian submersions implies that π is curvature non-decreasing. Therefore
if secM ≥ 0 then secN ≥ 0, and zero-curvature planes on N lift to horizontal zero-
curvature planes on M . In general, because of the Lie bracket term in the O’Neill
formula, the converse is not true, namely horizontal zero-curvature planes in M can-

123



On the curvature of biquotients 159

not be expected to project to zero-curvature planes on N . However, we will see at the
end of this section that in many situations we have secN (X, Y ) = 0 if and only if
secM (X̃ , Ỹ ) = 0, where X̃ denotes the horizontal lift to Tp M of X ∈ Tπ(p)N .

Let K ⊂ G be Lie groups, k ⊂ g the corresponding Lie algebras, and 〈 , 〉0 a
bi-invariant metric on G. Note that (G, 〈 , 〉0) has sec ≥ 0, and σ = Span {X, Y } has
sec(σ ) = 0 if and only if [X, Y ] = 0. We can write g = k ⊕ p with respect to 〈 , 〉0.
Given X ∈ g we will always use Xk and Xp to denote the k and p components of X
respectively.

Recall that

G ∼= (G × K )/�K

via (g, k) �−→ gk−1, where �K acts diagonally on the right of G × K . Thus we may
define a new left-invariant, right K -invariant metric 〈 , 〉1 (with sec ≥ 0) on G via the
Riemannian submersion

(G × K , 〈 , 〉0 ⊕ t〈 , 〉0|k) −→ (G, 〈 , 〉1)

(g, k) �−→ gk−1,

where t > 0 and

〈 , 〉1 = 〈 , 〉0|p + λ〈 , 〉0|k, λ = t

t + 1
∈ (0, 1). (1.1)

This is called a Cheeger Deformation. In particular notice that

〈X, Y 〉1 = 〈X,	(Y )〉0, where 	(Y ) = Yp + λYk, λ ∈ (0, 1).

It is clear that the metric tensor 	 is invertible with inverse given by 	−1(Y ) =
Yp + 1

λ
Yk.

In the special case that (G, K ) is a symmetric pair we have the following useful
lemma.

Lemma 1.1 (Eschenburg) Let (G, K ) be a symmetric pair. Then a plane
σ = Span {	−1(X),	−1(Y )} has sec(σ ) = 0 with respect to 〈 , 〉1 if and only if

0 = [X, Y ] = [Xk, Yk] = [Xp, Yp].

Recall that for a bi-invariant metric we get sec(X, Y ) = 0 if and only if [X, Y ] = 0.
For our left-invariant metric 〈 , 〉1 we have two extra conditions which must be satis-
fied for a plane to have zero-curvature, and hence we may have reduced the number
of such planes.

Suppose we have a biquotient G//U , where U ⊂ G × K ⊂ G × G and G is
equipped with a left-invariant, right K -invariant metric constructed as above. Then U
acts by isometries on G and therefore the submersion G −→ G//U induces a metric
on G//U from the metric on G. By our discussion of the O’Neill formula above we
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160 M. Kerin

know that a zero-curvature plane on G//U with respect to the induced metric must lift
to a horizontal zero-curvature plane in G.

In order to determine what it means for a plane to be horizontal we must first
determine the vertical distribution on G. Note that this is independent of the choice of
left-invariant metric on G. The fibre through a particular point g ∈ G is

Fg := {u1gu−1
2 | (u1, u2) ∈ U }.

If u(t) := exp(t X), where X = (X1, X2) ∈ u and u is the Lie algebra of U , then
u1(t) g u2(t)−1 is a curve in Fg and

d

dt
u1(t) g u2(t)

−1
∣
∣
∣
∣
t=0

= (Rg)∗ X1 − (Lg)∗ X2 =: vg(X)

is a typical vertical vector. The vector field v(X) on G defined in such a way is the
Killing vector field associated to X . Since G is equipped with a left-invariant metric
we may shift the vertical space Vg = {vg(X) | X ∈ u} to the identity e ∈ G by
left-translation and get

Vg := (Lg−1)∗Vg

whose elements are of the form

(Lg−1)∗vg(X) = Adg−1 X1 − X2.

We may therefore define the horizontal subspace at g ∈ G by

Hg := V⊥
g .

It is important to remark that the horizontal subspace at g depends on the choice
of left-invariant metric as it is defined by V⊥

g , where we are taking the orthogonal
complement with respect to the metric on G.

Suppose G is equipped with a bi-invariant metric. Eschenburg [7] provides some
sufficient conditions under which a horizontal zero-curvature plane in G projects to a
zero-curvature plane in a biquotient G//U . Wilking [28] has generalised this to show
that, given any biquotient submersion G −→ G//U , a horizontal zero-curvature plane
in G must always project to a zero-curvature plane in G//U . Tapp [24] has recently
generalised this result even further.

Theorem 1.2 (Tapp) Suppose G is a compact Lie group equipped with a bi-invariant
metric and that G −→ B is a Riemannian submersion. Then a horizontal zero-
curvature plane in G projects to a zero-curvature plane in B.

It follows immediately from the above theorem that if we have a pair of Riemannian
submersions G −→ M −→ B, where G is equipped with a bi-invariant metric, then
a horizontal zero-curvature plane in M must project to a zero-curvature plane in B.
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On the curvature of biquotients 161

Notice that in the metric construction on G//U described above we have Riemannian
submersions G × K −→ G −→ G//U where G × K is equipped with a bi-invariant
metric. Therefore in order to find zero-curvature planes in (G, 〈 , 〉1)//U we may con-
centrate exclusively on the more tractable problem of finding horizontal zero-curvature
planes in G.

2 Eschenburg spaces

Recall that the Eschenburg spaces are defined as E7
p,q := SU(3)//S1

p,q , where p =
(p1, p2, p3), q = (q1, q2, q3) ∈ Z

3,
∑

pi = ∑
qi , and S1

p,q acts on SU(3) via

z � A =
⎛

⎝
z p1

z p2

z p3

⎞

⎠ A

⎛

⎝
z̄q1

z̄q2

z̄q3

⎞

⎠ , A ∈ SU(3), z ∈ S1.

The action is free if and only if

(p1 − qσ(1), p2 − qσ(2)) = 1 for all σ ∈ S3. (2.1)

Let K = U(2) ↪→ G = SU(3) via

A ∈ U(2) �−→
(

A
α

)

∈ SU(3), α = det(A).

(G, K ) is a rank one symmetric pair. Let 〈 , 〉0 be the bi-invariant metric on G given
by 〈X, Y 〉0 = − Re tr(XY ). We can write su(3) = g = k ⊕ p with respect to 〈 , 〉0.
We define a new left-invariant, right K -invariant metric 〈 , 〉1 (with sec ≥ 0) on G as
in (1.1) and may therefore apply Lemma 1.1.

From Sect. 1 we know that, for the S1
p,q -action, permuting the pi ’s and permuting

q1, q2 are isometries, while permuting the qi ’s and swapping p, q are diffeomor-
phisms.

Let

Y1 := i

⎛

⎝
−2

1
1

⎞

⎠ , Y3 := i

⎛

⎝
1

1
−2

⎞

⎠ ∈ g = su(3).

Using Lemma 1.1 Eschenburg [7] showed that in this special case we can easily deter-
mine when a plane in g has zero-curvature.

Lemma 2.1 (Eschenburg) σ = Span {X, Y } ⊂ su(3) has sec(σ ) = 0 with respect to
〈 , 〉1 if and only if either Y3 ∈ σ , or Adk Y1 ∈ σ for some k ∈ K .

We may apply this lemma in order to discuss when an Eschenburg space E7
p,q

admits positive curvature. While this is well-known, in our proof we compute explicit
equations ((2.3) and (2.4)) for the existence of zero-curvature planes in E7

p,q , which
we use to prove Theorem A(i) and (ii).
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162 M. Kerin

Theorem 2.2 (Eschenburg) E7
p,q := (SU(3), 〈 , 〉1)//S1

p,q has positive curvature if
and only if

qi �∈ [p, p] for i = 1, 2, 3, (2.2)

where p := min{p1, p2, p3}, p := max{p1, p2, p3}.

Proof We will first prove that the condition (2.2) gives positive curvature. By Lemma
2.1 we need only show that we may choose an ordering on the qi ’s so that Y3 and
Adk Y1 are never horizontal.

Let P = i diag (p1, p2, p3) and Q = i diag (q1, q2, q3). From our discussion of
vertical spaces in Sect. 1 we find that the vertical subspace at A = (ai j ) ∈ SU(3) is

VA = {t vA | t ∈ R, vA := AdA∗ P − Q} ,

where A∗ = Āt . Notice that Y3 ∈ k. Thus 0 = 〈vA, Y3〉1 if and only if 0 = 〈vA, Y3〉0.
Now, since 〈X, Y 〉0 = − Re tr(XY ),

0 = 〈vA, Y3〉1 ⇐⇒
3∑

j=1

|a j3|2 p j = q3. (2.3)

Similarly, for Adk Y1, k ∈ K , we find

0 = 〈vA, Adk Y1〉1 ⇐⇒
3∑

j=1

|(Ak) j1|2 p j = |k11|2q1 + |k21|2q2. (2.4)

Now, since qi �∈ [p, p], i = 1, 2, 3, and
∑

p j = ∑
q j , we know that two of

the qi ’s must lie on one side of [p, p], and one on the other. We reorder and relabel
the qi ’s so that q1, q2 lie on the same side of [p, p]. Since A and k are both unitary

we therefore have that there are no solutions to either (2.3) or (2.4). Hence E7
p,q has

positive curvature.
For the converse suppose that E7

p,q has positive curvature. If qi ∈ [p, p] for some
i = 1, 2, 3 then by continuity there exists a solution to either (2.3) or (2.4), and hence
either Y3 or Adk Y1 is horizontal. By Lemma 2.1, since the orbits of S1

p,q are one-
dimensional, we can always find another horizontal vector X which, together with
either Y3 or Adk Y1, will span a zero-curvature plane. Theorem 1.2 then implies that
this horizontal zero-curvature plane must project to a zero-curvature plane in E7

p,q and
so we have a contradiction. ��

We will now discuss some new results on the curvature of general Eschenburg
spaces.

Theorem 2.3 All Eschenburg spaces admit a metric with quasi-positive curvature.
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Proof We need to find a point in SU(3) at which there are no horizontal zero-curvature
planes, i.e. at which Y3 and Adk Y1 are not horizontal.

Let A ∈ SU(3) be a diagonal matrix. Thus Eq. (2.4) becomes

|k11|2 p1 + |k21|2 p2 = |k11|2q1 + |k21|2q2

⇐⇒ (p1 − q1)|k11|2 + (p2 − q2)|k21|2 = 0.

Therefore, if

(p1 − q1)(p2 − q2) > 0 (2.5)

there is no k ∈ K satisfying (2.4), i.e. Adk Y1 is not horizontal at A.
On the other hand, Eq. (2.3) becomes p3 = q3. However, (2.5), together with∑
pi = ∑

qi , implies that p3 �= q3, i.e. that Y3 is not horizontal at A. Thus, if (2.5)
holds, E7

p,q has sec > 0 at [A], where A ∈ SU(3) is diagonal.
Recall the freeness condition (2.1) and that permuting the pi ’s and q j ’s are dif-

feomorphisms. Therefore, as long as there is no i ∈ {1, 2, 3} such that pi = q j for
all j ∈ {1, 2, 3}, we may always reorder and relabel the pi ’s and q j ’s such that (2.5)
holds.

By (2.1), the only Eschenburg space satisfying the condition “there is an i ∈
{1, 2, 3} such that pi = q j for all j ∈ {1, 2, 3}” is the Aloff–Wallach space W−1,1 :=
E7

p,q , p = (−1, 1, 0), q = (0, 0, 0). However, Wilking [28] has shown that W−1,1
admits a metric with almost positive curvature, and so we are done. ��

The special subfamily E7
n := E7

p,q , p = (1, 1, n), q = (0, 0, n + 2), admits a
cohomogeneity-one action by SU(2)×SU(2). These cohomogeneity-one Eschenburg
spaces are discussed in great detail in [14]. We may assume that n ≥ 0 since E7

n
∼=

E7
−(n+1). By Theorem 2.2, n > 0 implies that E7

n admits a metric with positive cur-
vature.

Theorem 2.4 E7
0 admits a metric with almost positive curvature.

Proof Given p = (1, 1, 0) and q = (0, 0, 2), Eqs. (2.3) and (2.4) become

2 = |a13|2 + |a23|2 (2.6)

and

|(Ak)11|2 + |(Ak)21|2 = 0

⇐⇒ (Ak)11 = (Ak)21 = 0

⇐⇒
(

a11 a12
a21 a22

)(
k11
k21

)

= 0 (2.7)
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respectively. Since A ∈ SU(3) it is clear that (2.6) cannot be satisfied. Since k ∈ K =
U(2), we are only interested in solutions

(
k11
k21

)

�= 0. This occurs if and only if

det

(
a11 a12
a21 a22

)

= 0,

which defines a codimension two sub-variety � ⊂ SU(3) of points with horizontal
zero-curvature planes. Moreover it is easy to check that � is a smooth sub-variety.
Since the equation which defines � is preserved under the S1

p,q -action, E7
0 has almost

positive curvature and points in E7
0 with zero-curvature planes form a smooth codi-

mension two submanifold. ��
We may fix a particular metric on E7

p,q by choosing p1 ≤ p2 ≤ p3 and q1 ≤ q2 ≤
q3. Therefore Eschenburg’s positive curvature condition is

q1 ≤ q2 < p1 ≤ p2 ≤ p3 < q3 or q1 < p1 ≤ p2 ≤ p3 < q2 ≤ q3. (2.8)

It is natural to ask what happens when q2 = p1 or q2 = p3, which we refer to as the
“boundary” of the positive curvature condition.

Lemma 2.5 The only free S1
p,q -actions on SU(3) on the boundary of the positive

curvature condition are, up to diffeomorphism,

(i) p = (0, 0, 0) and q = (−1, 0, 1), and
(ii) p = (0, 1, 1) and q = (0, 0, 2).

Proof We need only consider the case q2 = p1, since it is clear that E7
p,q is diffeo-

morphic to E7
p′,q ′ , where p′ = (−p3,−p2,−p1), q ′ = (−q3,−q2,−q1). Since �S1

commutes with SU(3) we may write p = (0, p2, p3) and q = (q1, 0, q3) without loss
of generality. By considering the freeness condition (2.1) and the ordering of our inte-
gers we must have p = (0, p2, p3) and q = (p2 − 1, 0, p2 + 1). Since

∑
pi = ∑

qi

we have p = (0, p2, p2) and q = (p2 − 1, 0, p2 + 1). Hence, since we have assumed
that our triples of integers are ordered, i.e. 0 ≤ p2 and p2 − 1 ≤ 0 ≤ p2 + 1, either
p2 = 0 or p2 = 1 as desired. ��

Notice that the manifolds resulting from the actions (i) and (ii) are diffeomorphic
to the exceptional Aloff–Wallach space W 7−1,1 and the exceptional cohomogeneity-

one Eschenburg space E7
0 , respectively. As previously discussed, both manifolds have

been shown to admit metrics with almost positive curvature. Note also that action (i)
is the action given by q1 < q2 = p1 = p2 = p3 < q3, and action (ii) is the action
given by q1 = q2 = p1 < p2 = p3 < q3. Even though there are no other manifolds
on the boundary of the positive curvature condition, we can prove the following:

Theorem 2.6 All orbifolds E7
p,q satisfying

q1 < q2 = p1 < p2 ≤ p3 < q3 or q1 < p1 ≤ p2 < p3 = q2 ≤ q3 (2.9)

admit almost positive curvature.
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Proof As in the proof of Lemma 2.5, we need only consider

q1 < q2 = p1 < p2 ≤ p3 < q3, (2.10)

since E7
p,q is diffeomorphic to E7

p′,q ′ , where as before p′ = (−p3,−p2,−p1) and
q ′ = (−q3,−q2,−q1).

Notice that (2.10) implies that (2.3) has no solutions, since q3 > pi for all i =
1, 2, 3.

Consider for a moment the more general case of Eschenburg spaces E7
p,q given by

q1 < p1 ≤ q2 < p2 ≤ p3 < q3, hence not admitting positive curvature. Suppose that
there is a k ∈ K such that Adk Y1 is horizontal at some A ∈ SU(3). Then (2.4) implies
that

p1 ≤
3∑

j=1

|(Ak) j1|2 p j = |k11|2q1 + |k21|2q2 ≤ q2.

Since |k11|2 + |k21|2 = 1 we thus have

p1 ≤ |k11|2(q1 − q2) + q2 ≤ q2 and p1 ≤ q1 + |k21|2(q2 − q1) ≤ q2,

which are equivalent to

0 ≤ |k11|2 ≤ q2 − p1

q2 − q1
and

p1 − q1

q2 − q1
≤ |k21|2 ≤ 1.

In particular, when the hypothesis of the theorem is satisfied, namely p1 = q2, we get
|k11|2 = 0 and |k21|2 = 1, i.e.

k =
⎛

⎝
0 k12 0

k21 0 0
0 0 −k12k21

⎞

⎠ ∈ K = U(2).

Hence (2.4) becomes

|a12|2 p1 + |a22|2 p2 + |a32|2 p3 = q2 = p1

⇐⇒ |a22|2(p2 − p1) + |a32|2(p3 − p1) = 0, since A ∈ SU(3)

⇐⇒ a22 = a32 = 0, since p1 < p2 ≤ p3

⇐⇒ A =
⎛

⎝
0 a12 0

a21 0 a23
a31 0 a33

⎞

⎠ ∈ SU(3).

The set of such A ∈ SU(3) is preserved under the S1
p,q -action, hence projects to a

set of measure zero in E7
p,q . Therefore E7

p,q has almost positive curvature. ��
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In [11] it is shown that the set

⎧
⎨

⎩
S1

p,q � A
∣
∣
∣A =

⎛

⎝
0 a12 0

a21 0 a23
a31 0 a33

⎞

⎠

⎫
⎬

⎭
⊂ E7

p,q describes

a totally geodesic lens space. For q1 < q2 = p1 < p2 ≤ p3 < q3 we know from the
proof of Theorem 2.6 that these are the only points admitting zero-curvature planes.
The problem of determining how large the set of zero-curvature planes is at each
point of this lens space is equivalent to determining how large the set of horizontal

zero-curvature planes is at each A =
⎛

⎝
0 a12 0

a21 0 a23
a31 0 a33

⎞

⎠ ∈ SU(3).

Proposition 2.7 If q1 < q2 = p1 < p2 ≤ p3 < q3 then there is a one-dimensional

family of horizontal zero-curvature planes at each point A =
⎛

⎝
0 a12 0

a21 0 a23
a31 0 a33

⎞

⎠ ∈

SU(3).

Proof Recall we have shown in the proof of Theorem 2.6 that Y3 is never horizontal,
and Adk Y1 being horizontal at A implies that

k =
⎛

⎝
0 k12 0

k21 0 0
0 0 −k12k21

⎞

⎠ ∈ K = U(2).

Hence Adk Y1 = Y2 := i

⎛

⎝
1

−2
1

⎞

⎠.

Let Y =	−1(Y2), where 〈X, Z〉1 =〈X,	(Z)〉0. Let X ∈ HA be such that Span {X, Y }
is a horizontal zero-curvature plane. Then, by Lemma 1.1 and since 	−1(Y2) = 1

λ
Y2 ∈

k, [X, Y ] = [Xk, Y ] = 0, which is equivalent to

[X, Y2] = [Xk, Y2] = 0

⇐⇒ [X, Y2] = 0

⇐⇒ X =
⎛

⎝
is 0 x
0 i t 0

−x̄ 0 −i(s + t),

⎞

⎠ ,

where s, t ∈ R, x ∈ C. We may assume without loss of generality that 〈X, Y 〉1 = 0.
Hence

X =
⎛

⎝
is 0 x
0 0 0

−x̄ 0 −is

⎞

⎠.

The set of such X is 3-dimensional. We also require that X is horizontal, i.e. 〈X, AdA∗
P − Q〉1 = 0, and without loss of generality we may assume that ||X ||2 = 1. Thus, for
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each A =
⎛

⎝
0 a12 0

a21 0 a23
a31 0 a33

⎞

⎠ ∈ SU(3) there is a one-dimensional family of horizontal

zero-curvature planes Span {X, Y }. ��

3 Bazaikin spaces

The proof of positive curvature on an infinite subfamily of the Bazaikin spaces (given
in [5,30]) follows from essentially the same techniques as in the case of the Eschenburg
spaces. A slight modification of this argument allows us to prove Theorem A(iii) and
(iv).

Recall that the Bazaikin spaces are defined as

B13
q1,...,q5

:= SU(5)// Sp(2) · S1
q1,...,q5

,

where q1, . . . , q5 ∈ Z, and

Sp(2) · S1
q1,...,q5

= (Sp(2) × S1
q1,...,q5

)/Z2, Z2 = {±(I, 1)},

acts effectively on SU(5) via

[A, z] � B =
⎛

⎜
⎝

zq1

. . .

zq5

⎞

⎟
⎠ B

(
Â

z̄q

)

,

with z ∈ S1, A ∈ Sp(2) ↪→ SU(4), B ∈ SU(5), and q = ∑
qi . We recall that

Sp(2) ↪→ SU(4)

A = S + T j �−→ Â =
(

S T
−T̄ S̄

)

.

It is not difficult to show that the action of Sp(2) · S1
q1,...,q5

is free if and only all
q1, . . . , q5 are odd and

(qσ(1) + qσ(2), qσ(3) + qσ(4)) = 2 for all σ ∈ S5. (3.1)

Let G = SU(5) ⊃ K = U(4), where K ↪→ G via

A �−→
(

A
det A

)

.

Then (G, K ) is a rank one symmetric pair, with Lie algebras (g, k). With respect to the
bi-invariant metric 〈X, Y 〉0 = − Re tr XY we may write g = k ⊕ p. Define a metric,
〈 , 〉1, on G as in (1.1) which is left-invariant and right K -invariant. In particular we
have 〈X, Y 〉1 = 〈X,	(Y )〉0, where 	(Y ) = Yp+λYk, λ ∈ (0, 1). By Lemma 1.1 we
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know that a plane σ = Span {	−1(X),	−1(Y )} ⊂ g has zero-curvature with respect
to 〈 , 〉1 if and only if

0 = [X, Y ] = [Xp, Yp] = [Xk, Yk].

It is clear that the action of U := Sp(2) · S1
q1,...,q5

is by isometries and we therefore
get an induced metric on B13

q1,...,q5
= G//U .

Let Q = i diag (q1, . . . , q5). From our discussion of vertical subspaces in Sect. 1,
the vertical subspace at A ∈ SU(5) with respect to the U -action may be written as

VA =
{

t AdA∗ Q −
(

X
itq

) ∣
∣
∣ t ∈ R, X ∈ sp(2) ⊂ su(4)

}

where A∗ = Āt . Our aim is to determine when zero-curvature planes with respect to
〈 , 〉1 are horizontal at A ∈ SU(5). A vector 	−1(X) is orthogonal to VA with respect
to 〈 , 〉1 if and only if

〈X, AdA∗ Q − diag (0, 0, 0, 0, iq)〉0 = 0 and X ⊥0 sp(2) ⊂ su(4), (3.2)

where ⊥0 denotes orthogonality with respect to 〈 , 〉0.

Lemma 3.1 A 2-plane σ = Span {	−1(X),	−1(Y )} ⊂ g is a horizontal zero-
curvature plane with respect to 〈 , 〉1 if and only if either

W1 := diag (i, i, i, i,−4i) or W2 := Adk diag (2i,−3i, 2i,−3i, 2i),

for some k ∈ Sp(2), is in σ and is horizontal.

Proof Suppose that the plane σ = Span {	−1(X),	−1(Y )} has zero-curvature with
respect to 〈 , 〉1. Then, since [Xp, Yp] = 0 by Lemma 1.1, we may assume without
loss of generality that Yp = 0, i.e X = Xp + Xk, Y = Yk.

If we also have Xp = 0, then X, Y ∈ k. Notice that k = z ⊕ sp(2) ⊕ m, where z ⊥
su(4) is the centre of k, generated by diag (i, i, i, i,−4i), and m = sp(2)⊥ ⊂ su(4).
But we have assumed that X, Y ⊥0 sp(2). Thus X, Y ∈ z ⊕ m, and [X, Y ] = 0 if and
only if [Xm, Ym] = 0. Now SU(4) = Spin(6), Sp(2) = Spin(5) and (SU(4), Sp(2))

is a rank one symmetric pair. Therefore Xm, Ym must be linearly dependent and we
may assume without loss of generality that X = Xm, Y = Yz. Then z ⊂ σ , i.e.
W1 = diag (i, i, i, i,−4i) ∈ σ .

We now note that W1 being horizontal is not only a necessary condition for σ ⊂ k
to be a horizontal zero-curvature plane, but also sufficient for the existence of such
a plane as, by counting dimensions, we may always find a vector X ∈ m such that
σ = Span {	−1(X),	−1(W1)} is a horizontal zero-curvature plane.

On the other hand, suppose now that Xp �= 0. Then the conditions for zero-curvature
become 0 = [Xp, Yk] = [Xk, Yk]. Suppose that

Xp =
(

0 x
−x̄ t 0

)

, Y = Yk =
(

Z
− tr Z

)

,
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where x ∈ C
4 and Z ∈ u(4) = z ⊕ su(4). Then 0 = [Xp, Yk] if and only if Z x =

−(tr Z)x . Let Z = i t I + Z ′ ∈ z⊕su(4), t ∈ R. Since it is required that Y ⊥ sp(2) we
have Z ′ ⊥ sp(2) ⊂ su(4). Recall that SU(4) = Spin(6), Sp(2) = Spin(5). Therefore
SU(4)/ Sp(2) = S5 and, since Sp(2) = Spin(5) acts transitively on distance spheres
in m = sp(2)⊥ ⊂ su(4), we may write

Z ′ = k

⎛

⎜
⎜
⎝

is
−is

is
−is

⎞

⎟
⎟
⎠ k−1, k ∈ Sp(2).

This in turn implies that Z may be written as

Z = k

⎛

⎜
⎜
⎝

i(t + s)
i(t − s)

i(t + s)
i(t − s)

⎞

⎟
⎟
⎠ k−1, k ∈ Sp(2).

But we established above that − tr Z = −4i t is an eigenvalue of Z . Therefore either
−4t = t + s or −4t = t − s, i.e. s = −5t or s = 5t . Thus we have shown that Y
must be conjugate by an element of Sp(2) to either diag (−4i t, 6i t,−4i t, 6i t,−4i t)
or diag (6i t,−4i t, 6i t,−4i t,−4i t), and so up to scaling we have

Y = k

⎛

⎜
⎜
⎜
⎜
⎝

2i
−3i

2i
−3i

2i

⎞

⎟
⎟
⎟
⎟
⎠

k−1, k ∈ Sp(2) ⊂ SU(4) ⊂ SU(5).

Notice that 	−1(Y ) is a multiple of Y and so we have Y ∈ σ . Conversely, if such a
vector Y is horizontal it is not difficult to find a complementary vector X such that
σ = Span {	−1(X),	−1(Y )} is a horizontal zero-curvature plane. Set Xk = 0. X is
therefore automatically orthogonal to sp(2) and it remains to choose Xp such that X
satisfies the first condition of (3.2), namely that X is orthogonal to a one-dimensional
subspace. A choice of appropriate Xp is equivalent to choosing an eigenvector for Z
above. The set of such eigenvectors has dimension > 1 and we may thus choose Xp

such that X has the desired properties. ��
At this stage of the positive curvature argument in [30] a lemma due to Eschenburg

is applied to avoid direct computations. However, to prove Theorem A(iii) and (iv) we
need to perform these computations in order to derive some equations which may be
exploited in a similar manner to that employed in Sect. 2.

Lemma 3.2 The vectors

W1 = diag (i, i, i, i,−4i) and W2 = Adk diag (2i,−3i, 2i,−3i, 2i),
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k ∈ Sp(2), are horizontal with respect to 〈 , 〉1 at A = (ai j ) ∈ SU(5) if and only if

q =
5∑

=1

|a5|2q, and (3.3)

0 =
5∑

=1

(|(Ak)2|2 + |(Ak)4|2)q (3.4)

respectively.

Proof We first recall that both W1 and W2 lie in k = u(4). Therefore W1 and W2 are
horizontal with respect to 〈 , 〉1 if and only if they are horizontal with respect to 〈 , 〉0.
Moreover, W1 and W2 are both orthogonal to sp(2) with respect to the bi-invariant
metric by our discussion above. Hence we need only obtain expressions for W1 and
W2 being orthogonal with respect to 〈 , 〉0 to vA := AdA∗ Q − diag (0, 0, 0, 0, iq),
where Q = diag (iq1, . . . , iq5).

Recall that 〈X, Y 〉0 = − Re tr(XY ). Then W1 is horizontal if and only if

−4q = 〈diag (0, 0, 0, 0, iq), W1〉0

= 〈AdA∗ Q, W1〉0

=
5∑

=1

(|a1|2 + |a2|2 + |a3|2 + |a4|2 − 4|a5|2)q.

Now using the fact that A is unitary together with q = ∑5
=1 q yields

−4q = q − 5
5∑

=1

|a5|2q

as desired.
Consider now W2 = Adk Ŵ , where Ŵ = diag (2i,−3i, 2i,−3i, 2i). Then W2 is

horizontal if and only if

2q = 〈
diag (0, 0, 0, 0, iq), Ŵ

〉
0

= 〈
Adk∗ diag (0, 0, 0, 0, iq), Ŵ

〉
0 for k ∈ Sp(2) ⊂ SU(4)

= 〈diag (0, 0, 0, 0, iq), W2〉0

= 〈AdA∗ Q, W2〉0

= 〈
Ad(Ak)∗ Q, Ŵ

〉
0

=
5∑

=1

(
2|(Ak)1|2− 3|(Ak)2|2+ 2|(Ak)3|2− 3|(Ak)4|2+ 2|(Ak)5|2

)
q

=
5∑

=1

(
2 − 5

(
|(Ak)2|2 + |(Ak)4|2

))
q, since A is unitary.

Equation (3.4) now follows immediately from q = ∑5
=1 q. ��
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It is well-known (see [5,30]) that a general Bazaikin space B13
q1,...,q5

admits positive
curvature if and only if qi + q j > 0 for all 1 ≤ i < j ≤ 5. In general, since each q j

is odd, it is clear that at least three of the q j must have the same sign. Suppose that
four of the q j share the same sign. We may assume without loss of generality that
q1, . . . , q4 are all positive. We now prove Theorem A(iii).

Theorem 3.3 All B13
q1,...,q5

with q1, . . . , q4 > 0 admit quasi-positive curvature.

Proof As we established in Lemmas 3.1 and 3.2, there is a horizontal zero-curvature
plane at A ∈ SU(5) if and only if we can solve either Eq. (3.3) or Eq. (3.4) at A. If we
allow A to be diagonal then Eqs. (3.3) and (3.4) become

q5 =
5∑

=1

q, and (3.5)

0 =
5∑

=1

(
|k2|2 + |k4|2

)
q (3.6)

respectively. By hypothesis q1, . . . , q4 > 0 and therefore equality in (3.5) is impossi-
ble. On the other hand, because of how we have embedded Sp(2) in SU(5), both k52
and k54 are zero. Now since k is unitary there are at least two non-zero coefficients
|k2|2 + |k4|2,  = 1, . . . 4. Therefore the right-hand side of Eq. (3.6) is positive and
thus no solutions exist. We have shown there are no horizontal zero-curvature planes
at diagonal A ∈ SU(5), which in turn implies the desired result. ��

It is natural to ask whether we can make a stronger curvature statement than quasi-
positive curvature on the “boundary” of the positive curvature condition, namely when
qi + q j = 0 for some i, j . In fact, this is a rather restrictive condition.

Lemma 3.4 Up to diffeomorphism, the spaces B13
1,1,1,n,−n, n ∈ Z odd, describe all

Bazaikin spaces satisfying qi + q j = 0 for some 1 ≤ i < j ≤ 5.

Proof Recall that reordering the qi is a diffeomorphism, so we may assume without
loss of generality that q4 + q5 = 0. By the freeness condition (3.1) we must have
qi + q j = ±2 for 1 ≤ i < j ≤ 3. If we examine the eight possible combinations of
these expressions we find that, up to sign and reordering, the only 5-tuples which can
arise are (1, 1, 1, q4, q5) and (1, 1,−3, q4, q5), with q4 +q5 = 0. However, following
[9], Remark 4.2, and the discussion in Section 1 of [12], we know that these 5-tuples
in fact describe the same manifolds. ��

With Theorem 3.3 and Lemma 3.4 in hand, and recalling the situation for
Eschenburg spaces (Theorem 2.4), B13

1,1,1,n,−n provide a family of natural candidates
to admit a metric with almost positive curvature. In the case of n = 1 we can indeed
exhibit this property and in so doing we establish Theorem A(iv). For the cases n > 1
the problem is open.

Theorem 3.5 The Bazaikin space B13
1,1,1,1,−1 admits almost positive curvature.
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Proof Since A is unitary, Eq. (3.3) becomes

3 =
4∑

=1

|a5|2 − |a55|2 = 1 − 2|a55|2 < 1.

Therefore (3.3) has no solutions. On the other hand, Eq. (3.4) becomes

0 =
4∑

=1

(|(Ak)2|2 + |(Ak)4|2) − (|(Ak)52|2 + |(Ak)54|2)

= 2(1 − (|(Ak)52|2 + |(Ak)54|2)).

Since Ak is unitary, we know that |(Ak)52|2 + |(Ak)54|2 ≤ 1. Thus

|(Ak)52|2 + |(Ak)54|2 = 1

implies |(Ak)51|2 = |(Ak)53|2 = |(Ak)55|2 = 0. In particular (Ak)55 = 0. But
(Ak)55 = a55k55 because of our embedding of Sp(2) in SU(5), and for the same
reason |k55| = 1. Hence a55 = 0, and so B13

1,1,1,1,−1 admits almost positive curvature
since this is clearly invariant under the action of Sp(2) · S1

q1,...,q5
. ��

Remark 3.6 As previously mentioned, one can find the argument for positive curva-
ture on the Bazaikin spaces in [30] and [5]. A proof following the modified argument
used in this article may be found in [17].

Until recently only the integral cohomology ring of the Bazaikin spaces was known
[2]. Bazaikin spaces may be distinguished from one another via the order s of the finite
torsion groups H6 = H8 = Zs . In [12] the authors give explicit expressions for s and
some other topological invariants. In particular, the order s and the first Pontrjagin
class, p1, are given by

s = 1

8

∣
∣
∣σ3

(
q1, . . . , q5,−

∑
qi

) ∣
∣
∣, and (3.7)

p1 = −σ2

(
q1, . . . , q5,−

∑
qi

)
∈ H4 = Z, (3.8)

where σi (a1, . . . , ar ) denotes the elementary symmetric polynomial of degree i in the
variables a1, . . . , ar . Note that p1 is a homeomorphism invariant. Theorem B now
follows easily.

Theorem 3.7 The quasi-positively curved Bazaikin spaces B13
1,1,1,n,−n, n ≥ 1 odd,

share the same cohomology ring but are pairwise homeomorphically distinct.

Proof Given (3.7) it is a simple exercise to compute that s = 1 for each of the mani-
folds B13

1,1,1,n,−n , whereas p1 = 6 + n2 by (3.8). ��

123



On the curvature of biquotients 173

4 Torus quotients of S3 × S3

Wilking, [28], has shown that a particular circle action on S3 × S3 induces almost
positive curvature on S3 × S2. This, together with the description in [25] of CP2#CP2

as a biquotient (S3 × S3)//T 2, suggests that it may be beneficial to study T 2 actions
on S3 × S3. We are, of course, interested in finding new examples of biquotients with
almost and quasi-positive curvature. Recall that a bi-invariant metric on S3 × S3 is
simply a product of bi-invariant metrics on each factor. Suppose we use a Cheeger
deformation from the bi-invariant metric to equip S3 × S3 with a left-invariant metric
which is right-invariant under our T 2 action. If we allow such isometric torus actions
to be arbitrary on the right-hand side of S3 × S3 then, since Im H is 3-dimensional, at
every point of S3×S3 we will be able to obtain a horizontal zero-curvature plane of the
form Span {(v, 0), (0, w) | v,w ∈ Im H}, which hence will project to a zero-curvature
plane in (S3 × S3)//T 2. Therefore we shall restrict our attention to a special subfamily
of torus actions which act arbitrarily on the left, but diagonally on the right of S3 × S3.

Let G = S3 × S3. As we are interested in biquotient actions, we need to consider
homomorphisms

f : T 2−→ T 2 ⊂ T 2 × T 2 ⊂ G × G

such that f (T 2) is diagonal in the second factor, i.e. the projection onto the second
factor is either trivial or one-dimensional. Hence all tori f (T 2) must have either one
or two-dimensional projections onto the first factor. If we perform the appropriate re-
parametrizations we may thus assume without loss of generality and up to a reordering
of factors that the torus f (T 2) ⊂ G × G has one of the forms

UL :=
{((

z
w

)

,

(
1
1

)) ∣
∣
∣ z, w ∈ S1

}

; or (4.1)

Ua,b :=
{((

z
w

)

,

(
zawb

zawb

)) ∣
∣
∣ z, w ∈ S1

}

, a, b ∈ Z; or (4.2)

Uc :=
{((

z
zc

)

,

(
w

w

)) ∣
∣
∣ z, w ∈ S1

}

, c ∈ Z. (4.3)

It is clear that UL acts effectively and freely on G. We are interested in determining
when the other actions are free.

Consider H = C+C j and recall that j z = z̄ j for all z ∈ C. Therefore, given some
q ∈ S3 ⊂ H,

zkwqz̄mw̄n = q

⇐⇒ (zkw)1(z̄mw̄n) = 1 and (zkw) j (z̄mw̄n) = j

⇐⇒ zk−mw−n = 1 and zk+mw+n = 1. (4.4)

It is a simple exercise using the equations in (4.4) to show that Uc and Ua,b act
effectively on G when c and a + b respectively are even, while in the event that either
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c or a + b is odd there is an ineffective kernel �Z2 := {±(1, 1)} for the respective
action.

Moreover, one can easily check that the only points which can possibly be fixed
by the actions of Uc or Ua,b (modulo any ineffective kernel) lie on the orbits of the
points (1, 1), (1, j), ( j, 1) and ( j, j). Therefore we need only examine these points
in order to determine when the actions are free.

Proposition 4.1 Up to a change of coordinates or reordering of factors, the only free
T 2 actions on S3 × S3 which are diagonal on the right are given by UL = Ua,b, a =
b = 0, and Uc, c = 0. The actions are, respectively,

(z, w) �

(
q1
q2

)

=
(

zq1
wq2

)

, z, w ∈ S1, q1, q2 ∈ S3; and

(z, w) �

(
q1
q2

)

=
(

zq1w̄

q2w̄

)

, z, w ∈ S1, q1, q2 ∈ S3.

The resulting manifolds are both diffeomorphic to S2 × S2.

Proof As the arguments are analogous, we consider only the action of Ua,b. The Uc

case is left to the reader. For a + b even the equations in (4.4) yield

(1, 1) fixed ⇐⇒ z = w and z1−a−b = 1;
(1, j) fixed ⇐⇒ z = w̄ and z1−a+b = 1;
( j, 1) fixed ⇐⇒ z = w̄ and z1+a−b = 1;
( j, j) fixed ⇐⇒ z = w and z1+a+b = 1.

Thus we see that the action is free (namely z = w = 1 in each case) if and only if
1 ± a ± b = ±1. But a + b is even, hence ±a ± b is even, and so a = b = 0 is the
only situation in which we can obtain a free action.

Suppose now that a + b is odd. The existence of a �Z2 ineffective kernel implies
that the action is free (namely z = w = ±1 in each case) if and only if 1±a±b = ±2.
It is a simple exercise to check that there are no values of a and b which satisfy all four
equations simultaneously. Hence we will always have a fixed point and so the action
of Ua,b, a + b odd, is never free.

The fact that the quotients under the free actions are diffeomorphic to S2 × S2

follows from computing the cohomology ring. Four dimensional manifolds with non-
negative curvature that admit an effective, isometric circle action were classified in
[19] (see also [22]). Only the manifolds S4, CP2, CP2# ± CP2 and S2 × S2 can
arise. These manifolds are clearly distinguished by their cohomology rings. To com-
pute the cohomology of the biquotients under consideration one can follow the process
described in [18] (see also [6]). ��

For those actions which are not free we may consider the equations obtained in
the proof of Proposition 4.1 in order to write down explicitly the isotropy groups
�(q1,q2) of singular points, which we recall can only be the T 2-orbits of the points
(q1, q2) = (1, 1), (1, j), ( j, 1), ( j, j) ∈ S3 × S3. The isotropy groups for each action
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Table 1 Isotropy groups of the T 2 actions Ua,b and Uc

Γ

Table 2 Some special cases of
the actions Ua,b and Uc

Γ

(modulo any ineffective kernel) are collected in Table 1. By considering the groups in
this table we can easily find examples which have only one or two singular points and
small isotropy groups at these points. In the event that they arise, Z0 and Z1 denote
S1 and {1} respectively. We include some examples in Table 2.

We turn now to the curvature computations. Consider the subgroup K = �S3 ⊂
G = S3 × S3, and let 〈 , 〉0 be the bi-invariant product metric on G. Then g = k ⊕ p,
where p is the orthogonal complement to k with respect to 〈 , 〉0. Notice that (G, K )

is a rank one symmetric pair. We define a new left-invariant, right K -invariant metric
〈 , 〉1 on G as in (1.1), namely

〈X, Y 〉1 = 〈X,	(Y )〉0,

where 	(Y ) = Yp + λYk, λ ∈ (0, 1). By Lemma 1.1 we know that a plane σ =
Span {	−1(X),	−1(Y )} ⊂ g has zero-curvature with respect to 〈 , 〉1 if and only if

0 = [X, Y ] = [Xp, Yp] = [Xk, Yk].

Hence, for G and K as above, a zero-curvature plane must be of the form

σ = Span {	−1(v, 0),	−1(0, v) | v ∈ Im H}. (4.5)

Since we are considering T 2 actions which are diagonal on the right of G, it is clear
that the actions are by isometries and hence induce a metric on G//T 2.

Theorem 4.2 (G, 〈 , 〉1)//T 2 has almost positive curvature if and only if the action is
not free.

Proof By O’Neill’s formula it is sufficient to show that points in G with horizontal
zero-curvature planes lie on a hypersurface. Recall that the existence of an ineffective
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kernel will have no impact on our curvature computations. We therefore need only
consider torus actions of the form

Ua,b =
{((

z
w

)

,

(
zawb

zawb

)) ∣
∣
∣ z, w ∈ S1

}

, a, b ∈ Z;

Uc =
{((

z
zc

)

,

(
w

w

)) ∣
∣
∣ z, w ∈ S1

}

, c ∈ Z,

and notice that the UL action of (4.1) is the special case (a, b) = (0, 0) of Ua,b.
Consider first the action by Ua,b. The vertical subspace at (q1, q2), left translated

to (1, 1), is given by

V(q1,q2) =
{

1

2

(
s Adq̄1 i − (a s + b t)i
t Adq̄2 i − (a s + b t)i

) ∣
∣
∣
∣ s, t ∈ R

}

.

Thus the horizontal subspace with respect to 〈 , 〉1 is

H(q1,q2) =
{

	−1(v,w)

∣
∣
∣
∣

Adq1 v − a(v + w) ⊥ i
Adq2 w − b(v + w) ⊥ i

}

.

Hence, by Eq. (4.5), a zero-curvature plane

σ = Span {	−1(v, 0),	−1(0, v)}

is horizontal if and only if

Adq1 v − av ⊥ i, av ⊥ i, Adq2 v − bv ⊥ i and bv ⊥ i.

We want to show that v, Adq1 v, Adq2 v ⊥ i since this is equivalent to v ⊥ i, Adq̄1 i,
Adq̄2 i . This will imply that v = 0 unless i, Adq̄1 i , and Adq̄2 i are linearly dependent,
which in turn would imply positive curvature at the point [(q1, q2)] ∈ G//Ua,b. It
is clear that this situation arises if and only if (a, b) �= (0, 0), i.e. if and only if the
action of Ua,b is not free. Suppose (a, b) �= 0. Then i, Adq̄1 i , and Adq̄2 i are linearly
dependent if and only if

det

( 〈Adq̄1 i, j〉 〈Adq̄1 i, k〉
〈Adq̄2 i, j〉 〈Adq̄2 i, k〉

)

= 0, (4.6)

which defines a hypersurface in G. Note that Eq. (4.6) is invariant under the action
of Ua,b since Adzkwqz̄m w̄n i = Adzkwq i and 〈Adq i, j〉 = 2 Re(ūvi), 〈Adq i, k〉 =
2 Re(ūv), for z, w ∈ S1, q = u + v j ∈ S3, u, v ∈ C. Thus we have a hypersurface
in G//Ua,b defined by (4.6) on which points with horizontal zero-curvature planes
must lie.
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We now turn our attention to the action by Uc. The vertical subspace at (q1, q2),
left translated to (1, 1), is given by

V(q1,q2) =
{

1

2

(
s Adq̄1 i − t i

c s Adq̄2 i − t i

) ∣
∣
∣
∣ s, t ∈ R

}

.

Thus the horizontal subspace with respect to 〈 , 〉1 is

H(q1,q2) =
{

	−1(v,w)

∣
∣
∣
∣
Adq1 v + c Adq2 w ⊥ i

v + w ⊥ i

}

.

Hence, by (4.5), a zero-curvature plane σ = Span {	−1(v, 0),	−1(0, v)} is horizon-
tal if and only if

Adq1 v ⊥ i, c Adq2 v ⊥ i and v ⊥ i.

It is clear that the only situation in which we do not get v, Adq1 v, Adq2 v ⊥ i is when
c = 0, i.e. when the action is free. In all other situations we have almost positive
curvature by the same argument as for Ua,b. ��
Remark 4.3 In each case there is a horizontal zero-curvature plane at (q1, q2) if one
of the following holds:

(i) Adq̄1 i = ±i, i.e. q1 ∈ C or C j
(ii) Adq̄2 i = ±i, i.e. q2 ∈ C or C j

(iii) Adq̄1 i = ± Adq̄2 i, i.e. q1 ⊥ q2, iq2 or q1 ⊥ jq2, kq2.

Thus we will always have a zero-curvature plane at the singular points when the action
is not free. Moreover, in the free cases we have a zero-curvature plane at every point.
More precisely:

– The action Ua,b with a = b = 0 yields Adq̄1 i, Adq̄2 i ⊥ v, which implies that
there is a unique horizontal zero-curvature plane when Adq̄1 i and Adq̄2 i are line-
arly independent, and there is an S1 worth of zero-curvature planes when Adq̄1 i =
± Adq̄2 i , i.e. when q1 ⊥ q2, iq2 or q1 ⊥ jq2, kq2.

– The action Uc with c = 0 yields i, Adq̄1 i ⊥ v, which implies that there is a unique
horizontal zero-curvature plane when q1 �∈ C or C j , and there is an S1 worth of
zero-curvature planes when q1 ∈ C or C j .

Remark 4.4 It is not difficult to show that on each of the orbifolds above there is, up
to reparametrization, a unique non-trivial isometric circle action. The image of the
loci of points admitting a zero-curvature plane in the corresponding S1-orbit space is
topologically a two-dimensional sphere.
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