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Abstract We prove a special case of a dynamical analogue of the classical
Mordell–Lang conjecture. Specifically, let ϕ be a rational function with no periodic
critical points other than those that are totally invariant, and consider the diagonal
action of ϕ on (P1)g . If the coefficients of ϕ are algebraic, we show that the orbit of a
point outside the union of the proper preperiodic subvarieties of (P1)g has only finite
intersection with any curve contained in (P1)g . We also show that our result holds for
indecomposable polynomials ϕ with coefficients in C. Our proof uses results from
p-adic dynamics together with an integrality argument. The extension to polynomi-
als defined over C uses the method of specialization coupled with some new results
of Medvedev and Scanlon for describing the periodic plane curves under the action
of (ϕ, ϕ) on A

2.
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2 R. L. Benedetto et al.

1 Introduction

Let X be a variety over the complex numbers C, let � : X −→ X be a morphism,
and let V be a subvariety of X . For any integer m ≥ 0, denote by �m the mth iterate
� ◦ · · · ◦�, with �0 denoting the identity map. For any point α ∈ X , its orbit under
� is the set of all �n(α) for n ∈ N. If α ∈ X (C) has the property that there is some
integer � ≥ 0 such that ��(α) ∈ W (C), where W is a periodic subvariety of V , then
there are infinitely many integers n ≥ 0 such that �n(α) ∈ V . More precisely, if
k ≥ 1 is the period of W (the smallest positive integer m for which �m(W ) ⊂ W ),
then �nk+�(α) ∈ W (C) ⊂ V (C) for all integers n ≥ 0. In other words, if V contains
a periodic subvariety W which meets the orbit of α under �, then there are infinitely
many integers n ≥ 0 such that �n(α) ∈ V . It is natural to ask if the converse state-
ment holds: if there exist infinitely many n ≥ 0 such that �n(α) ∈ V , must V then
contain a periodic subvariety which meets the orbit of α under �? More precisely,
given α ∈ X (C), if there are infinitely many integers m ≥ 0 such that�m(α) ∈ V (C),
are there necessarily integers k ≥ 1 and � ≥ 0 such that �nk+�(α) ∈ V (C) for all
integers n ≥ 0? In 2007 two of the authors proposed the following Conjecture (see
[12,14]).

Conjecture 1.1 (The cyclic case of the Dynamical Mordell–Lang Conjecture) Let
X be a quasiprojective variety defined over C, let � be an endomorphism of X, let
V ⊂ X be a closed subvariety, and let α ∈ X (C) be an arbitrary point. Then the
set of integers n ∈ N such that �n(α) ∈ V (C) is a union of finitely many arithmetic
progressions {nk + �}n∈N for some nonnegative integers k and �.

Note that if Conjecture 1.1 holds for a given map�, variety V , and non-preperiodic
point α, and if V intersects the �-orbit of α in infinitely many points, then V must
contain a positive-dimensional subvariety W that is periodic under �. Indeed, the
conjecture says that there are integers k ≥ 1 and � ≥ 0 such that �nk+�(α) lies on
V for all n ≥ 0. Since α is not preperiodic, the set S = {�nk+�(α)}n≥0 is infinite,
and therefore its Zariski closure V0 contains some positive-dimensional component
W . Thus, W is positive-dimensional and is mapped into itself by some iterate of �,
as claimed.

Note also that the arithmetic progressions for which k = 0 are singletons, so that
Conjecture 1.1 allows not only infinite arithmetic progressions but also finitely many
extra points. We view this conjecture as an analogue of the classical Mordell–Lang con-
jecture for arithmetic dynamics, with cyclic groups replaced by single orbits. Indeed,
the classical Mordell–Lang conjecture describes the intersection between a subvariety
V of a semiabelian variety X defined over C and a finitely generated subgroup � of
X (C). If � is a cyclic subgroup generated by some element γ ∈ X (C), then � may
be viewed as the orbit of the identity 0 of X under the cyclic group of automorphisms
of X generated by the translation-by-γ map τγ on X .

In fact, the above reformulation of the cyclic case of the classical Mordell–Lang
conjecture follows from a positive answer to our Conjecture 1.1. Indeed, assume V
contains infinitely many points of the form nγ with n ∈ Z; without loss of gener-
ality we may assume there are infinitely many n ∈ N such that nγ ∈ V (C). Then
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Dynamical Mordell–Lang 3

by Conjecture 1.1 applied to the map � = τγ and the point α = 0, we would con-
clude that there exist positive integers k and � such that (nk + �) · γ ∈ V (C) for all
n ∈ N. In particular, this means that −�γ + V contains the Zariski closure H of the
set {nkγ : n ∈ N}. It is easy to see that H is fixed by τkγ , and thus H contains the
entire set {nkγ : n ∈ Z}. Hence V contains the entire coset (�+ kZ) · γ of the cyclic
subgroup generated by kγ , as claimed.

Conjecture 1.1 is known to be true in many special cases. When X is a semiabelian
variety and � is a multiplication-by-m map [m], it follows from the Mordell–Lang
conjecture, which is a theorem due to Faltings [11] and Vojta [34]. Indeed, if we let
� be the cyclic subgroup of X (C) spanned by α, then using the positive answer to
the classical Mordell–Lang conjecture for the subvariety V of X and the subgroup �
of X (C), we conclude that there exist finitely many (doubly infinite) arithmetic pro-
gressions {nk + �}n∈Z (for given k, � ∈ N) such that (nk + �) · α ∈ V (C). Turning to
� = [m] specifically, we must determine, for each arithmetic progression {nk +�}n∈Z

above, the set of integers r for which mr ≡ � (mod k). This set is obviously a union
of finitely many arithmetic progressions, thus proving Conjecture 1.1 when X is a
semiabelian variety and � = [m].

More generally, Conjecture 1.1 holds when� is any endomorphism of a semiabelian
variety (see [12]). Denis [9] treated the conjecture under the additional hypothesis that
the integers n for which�n(α) ∈ V (C) are sufficiently dense in the set of all positive
integers; he also obtained results for automorphisms of projective space without using
this additional hypothesis. Bell [5] later solved the problem completely in the case of
automorphisms of affine varieties. Building on the ideas from [5], the case when� is
any étale endomorphism of any quasiprojective variety was completely solved in [6].

One may even ask a higher rank version of Conjecture 1.1 by replacing the single
action of�with the action of a semigroup of endomorphisms of X spanned by finitely
many commuting endomorphisms�1, . . . , �r . This leads to a more general Dynami-
cal Mordell–Lang Conjecture which was studied in the case X is a semiabelian variety
in [15]. In addition, in [14] and [16], this higher rank Dynamical Mordell–Lang prob-
lem was completely solved in the case that X = A

r and V is a line, and that each map
�i is of the form �i (x1, . . . ,xr ) = (x1, . . . ,xi−1, fi (xi ),xi+1, . . . ,xr ) for some
nonlinear polynomials fi ∈ C[x].

In [12], a general framework for attacking Conjecture 1.1 was developed and the
following special case of Conjecture 1.1 was made.

Conjecture 1.2 Let f1, . . . , fg ∈ C[t] be polynomials, let� be their coordinatewise
action on A

g , let (x1, . . . ,xg) ∈ A
g(C), and let V be a closed subvariety of A

g . Then
the set of integers n such that �n(x1, . . . ,xg) ∈ V (C) is a union of finitely many
arithmetic progressions.

Conjecture 1.1 fits into Zhang’s far-reaching system of dynamical conjectures
[36]. Zhang’s conjectures include dynamical analogues of the Manin–Mumford and
Bogomolov conjectures for abelian varieties (now theorems of Raynaud [25,26],
Ullmo [33], and Zhang [35]). We note that two of the authors found counterexam-
ples to Zhang’s original Dynamical Manin–Mumford and Bogomolov conjectures;
a reformulation of those two conjectures will soon appear due to work of Ghioca,
Tucker and Zhang [13]. Also, in [36], Zhang formulates a conjecture about the Zariski
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density of orbits of points under fairly general maps from a projective variety to itself.
Amerik, Bogomolov, and Rovinsky [1,2] have obtained partial results towards this
conjecture, using p-adic methods similar to those used in this paper. This latter con-
jecture of Zhang takes the following form in the case of coordinatewise polynomial
actions on A

g .

Conjecture 1.3 Let f1, . . . , fg ∈ Q[t] be polynomials of the same degree d ≥ 2, and
let� be their action coordinatewise on A

g . Then there is a point (x1, . . . ,xg) ∈ A
g(Q)

such that the orbit O�((x1, . . . ,xg)) of (x1, . . . ,xg) under � is Zariski dense in A
g .

Conjectures 1.2 and 1.3 may be thought of as complementary. Conjecture 1.3 posits
that there is a point in A

g outside the union of the preperiodic proper subvarieties of
A

g under the action of �, while Conjecture 1.2 asserts if a point α lies outside this
union of preperiodic subvarieties, then the orbit of α under � intersects any proper
subvariety V of A

g in at most finitely many points. We also note that a stronger form
of Conjecture 1.3 was proved by Medvedev and Scanlon in [23, Theorem 5.11].

In this paper, we prove Conjecture 1.2 over number fields for curves embedded in
A

g under the diagonal action of any polynomial which has no superattracting periodic
points. (A periodic point at which the derivative vanishes is said to be superattracting;
see Sect. 2 for a more precise definition.) In fact, we prove the following more general
statement.

Theorem 1.4 Let C ⊂ (P1)g be a curve defined over Q, and let � := (ϕ, . . . , ϕ) act
on (P1)g coordinatewise, where ϕ ∈ Q(t) is a rational function with no superattract-
ing periodic points other than exceptional points. Then for each point (x1, . . . ,xg) ∈
(P1)g(Q), the set of integers n such that�n(x1, . . . ,xg) ∈ C(Q) is a union of finitely
many arithmetic progressions.

See Sect. 2 for a definition of exceptional points. In particular, if ϕ is a polynomial
of degree d, the hypothesis on superattracting points in Theorem 1.4 is satisfied if
none of the at most d − 1 critical points ϕ (i.e. points α ∈ C such that ϕ′(α) = 0) is
periodic. We note that this condition holds for almost all polynomials in the follow-
ing sense: the set of polynomials with periodic critical points is a countable union of
proper subvarieties in the space of all complex polynomials of fixed degree; thus, over
the uncountable field C, a generic polynomial has no such points.

Using recent results of Medvedev and Scanlon [23] from model theory, we will
extend Theorem 1.4 to the complex numbers, at least under the action of indecompos-
able polynomials. (See Definition 7.1.) Our method from Sect. 7 also extends to the
case of arbitrary polynomials with complex coefficients, as long as they do not have
superattracting periodic points other than exceptional points (see Remark 7.10).

Theorem 1.5 Let ϕ ∈ C[t] be an indecomposable polynomial with no periodic super-
attracting points other than exceptional points, and let� be its diagonal action on A

g

(for some g ≥ 1). Then for each point P ∈ A
g(C), and for each curve C ⊂ A

g(C),
the set of integers n such that �n(P) ∈ C(C) is a union of finitely many arithmetic
progressions.

When the function ϕ is a quadratic polynomial, we can prove a similar result for
subvarieties of any dimension.
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Dynamical Mordell–Lang 5

Theorem 1.6 Let V ⊂ A
g be a subvariety defined over Q, and let � := ( f, . . . , f )

act on A
g coordinatewise, where f ∈ Q[t] is a quadratic polynomial with no periodic

superattracting points in Q. Then for each point (x1, . . . ,xg) ∈ A
g(Q), the set of

integers n such that �n(x1, . . . ,xg) ∈ V (Q) is a union of finitely many arithmetic
progressions.

For quadratic polynomials over the rational numbers, we can remove the hypothesis
on superattracting points and obtain a stronger result.

Theorem 1.7 Let V ⊂ A
g be a subvariety defined over Q, and let � := ( f, . . . , f )

act on A
g coordinatewise, where f ∈ Q[t] is a quadratic polynomial. Then for each

point (x1, . . . ,xg) ∈ A
g(Q), the set of integers n such that �n(x1, . . . ,xg) ∈ V (Q)

is a union of finitely many arithmetic progressions.

Using results of Jones [18], we can prove the corresponding result for maps of the
form � = ( f1, . . . , fg), without the restriction that fi = f j , if each f j is of the form
f j (t) = t2 + c j with c j ∈ Z.

Theorem 1.8 Let V ⊂ A
g be a subvariety defined over Q, and let� := ( f1, . . . , fg)

act on A
g coordinatewise, where fi (t) = t2 + ci with ci ∈ Z for each i . Then for each

point (x1, . . . ,xg) ∈ Z
g , the set of integers n such that �n(x1, . . . ,xg) ∈ V (Q) is a

union of finitely many arithmetic progressions.

Our method of proof involves an interplay between arithmetic geometry and p-adic
dynamics. It is based in part on a nonlinear analogue of Skolem’s technique [32] (later
extended by Mahler [22] and Lech [21]) for treating linear recurrence sequences of
complex numbers. The starting point of Skolem’s approach is to find a suitable prime
p in order to obtain a p-adic analytic parametrization for the elements in a linear recur-
rence sequence. When the sequence consists of algebraic numbers, it turns out that one
may find a p-adic analytic parametrization of the sequence for all but finitely many
primes p. However, unlike in the linear case, finding a suitable prime p in our case is
more difficult and involves the application of Silverman’s dynamical Siegel theorem
for P

1 [31]; see Sect. 4. We also use Rivera-Letelier’s classification [27] of dynamics
on p-adic Fatou sets to deal with the nonlinearity; see Sect. 3. More precisely, we find
an arithmetic progression S of integers, a prime p, a p-adic disk U containing S, and
a p-adic analytic map θ : U → A

g(Cp) such that on the one hand, �m(α) lies on V
for infinitely many m ∈ S, but on the other hand, θ(m) = �m(x1, . . . ,xg) for every
m ∈ S. Then, for any polynomial F that vanishes on V , we have F(θ(m)) = 0 for
infinitely many m. Since the zeros of a nontrivial p-adic analytic function are isolated,
F ◦ θ must vanish at all m ∈ S. We use Silverman’s result to prove the existence
of an integer � and a place p at which ϕ�(xi ) is in a p-adic quasiperiodicity disk for
each i . (A quasiperiodicity disk is a periodic residue class on which the derivative
has absolute value equal to one; see Definition 3.1.) Then, the existence of S and θ
follows from Rivera-Letelier’s work.

The Skolem–Mahler–Lech technique has also appeared in other work done on this
subject. Bell’s [5] and Denis’s [9] work on automorphisms may be viewed as algebro-
geometric realizations of the Skolem–Mahler–Lech theorem. Evertse, Schlickewei,
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6 R. L. Benedetto et al.

and Schmidt [10] have given a strong quantitative version of the Skolem–Mahler–
Lech theorem. It may be possible to use their result to give quantitative versions of
the theorems of this paper.

The same Skolem–Mahler–Lech technique was used again in [12] to prove the
Dynamical Mordell–Lang Conjecture for endomorphisms of a semiabelian variety
and in [6] to prove the Dynamical Mordell–Lang conjecture for unramified endo-
morphisms � of quasiprojective varieties X . However, the significant novelty of our
present paper is that we are able to deal with the case of a ramified endomorphism
� = (ϕ, . . . , ϕ) (where each ϕ is a rational map), as long as the ramification of ϕ is
not too wild, in the sense that ϕ does not have superattracting periodic points. To our
knowledge, the only papers in literature dealing with the ramification of the endomor-
phism� for the Dynamical Mordell–Lang Conjecture in both the cyclic and non-cyclic
cases are [14] and [16]. In the cyclic case, however, the results of the present paper
are somewhat more general, because our techniques allow the subvariety V to be an
arbitrary curve, rather than a line as in [14] and [16]. For more general subvarieties,
the only other result we know of is from our paper [7], in which we proved that in any
counterexample to the coordinatewise cyclic case of the conjecture, the sequence of
iterates n for which �n(α) ∈ V must grow extremely rapidly.

We exclude the case that the rational function ϕ has superattracting points because
we have been unable, thus far, to extend the method of Skolem–Mahler–Lech to this
situation. Although ϕ is locally conjugate to z 	→ zm in a neighborhood of such a
point (see [27, Proposition 3.3]), the conjugation is still not amenable to our proof,
unlike Rivera-Letelier’s more powerful conjugation to z 	→ z + k on subsets of quasi-
periodicity disks (see Sect. 3). While superattracting points may behave quite simply
from a dynamical perspective, it is perhaps not surprising that their inherent ramifica-
tion presents difficulties in the diophantine context. In the cases of endomorphisms of
semiabelian varieties (see [11,12,15,34]), of automorphisms of affine varieties (see
[5,9]), or of étale endomorphisms in general (see [6]), the underlying maps have no
ramification.

Thus, at this point, the main obstacle to proving Conjecture 1.1 is overcoming the
difficulties that ramification presents. Roughly speaking, our approach is to show that
there are primes of good reduction at which the relevant �-orbit contains no rami-
fied points. In Sect. 4, this is done via what is essentially a one-variable diophantine
method, one which appears unlikely to generalize to higher dimensions. In the appen-
dix, by Umberto Zannier, a result similar to but stronger than Proposition 4.2 is proved
by an alternative method, using Siegel’s Theorem and some local analysis of curves
in P

2. This method connects our strategy to dynamical questions about integral points
on surfaces, and it suggests a possible approach to treating dynamical Mordell–Lang
problems for more general maps than those studied here.

The outline of our paper is as follows. In Sect. 2 we introduce our notation. Section 3
provides necessary lemmas from p-adic dynamics, while Sect. 4 provides necessary
lemmas from diophantine geometry, derived from a result of Silverman [31]. In Sect. 5,
we prove Theorem 1.4, while in Sect. 6, we prove Theorems 1.6, 1.7, and 1.8. In Sect. 7,
we describe the results of [23] and use them to deduce Theorem 1.5. Finally, as men-
tioned above, the appendix written by Umberto Zannier provides an alternative, and
possibly more general, approach to some of the results of Sect. 4.
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2 Notation

We write N for the set of nonnegative integers. If K is a field, we write K for an alge-
braic closure of K . Given a prime number p, the field Cp will denote the completion of
an algebraic closure Qp of Qp, the field of p-adic rationals. We denote by | · | := | · |p

the usual absolute value on Cp. Given a ∈ Cp and r > 0, we write D(a, r) and
D(a, r) for the open disk and closed disk (respectively) of radius r centered at a.

If K is a number field, we let oK be its ring of algebraic integers, and we fix an
isomorphism π between P

1
K and the generic fibre of P

1
oK

. For each nonarchimedean
place v of K , we let kv be the residue field of K at v, and for each x ∈ P

1(K ), we let
xv := rv(x) be the intersection of the Zariski closure of π(x)with the fibre above v of
P

1
oK

. (Intuitively, xv is x modulo v.) This map rv : P
1(K ) −→ P

1(kv) is the reduction
map at v.

If ϕ : P
1 → P

1 is a morphism defined over the field K , then (fixing a choice
of homogeneous coordinates) there are relatively prime homogeneous polynomials
F,G ∈ K [X,Y ] of the same degree d = degϕ such that ϕ([X,Y ]) = [F(X,Y ) :
G(X,Y )]. (In affine coordinates, ϕ(t) = F(t, 1)/G(t, 1) ∈ K (t) is a rational function
in one variable.) Note that by our choice of coordinates, F and G are uniquely defined
up to a nonzero constant multiple. We will need the notion of good reduction of ϕ,
first introduced by Morton and Silverman in [24].

Definition 2.1 Let K be a field, let v be a nonarchimedean valuation on K , let ov be
the ring of v-adic integers of K , and let kv be the residue field at v. Let ϕ : P

1 −→ P
1

be a morphism over K , given by ϕ([X,Y ]) = [F(X,Y ) : G(X,Y )], where F,G ∈
ov[X,Y ] are relatively prime homogeneous polynomials of the same degree such
that at least one coefficient of F or G is a unit in ov . Let ϕv := [Fv,Gv], where
Fv,Gv ∈ kv[X,Y ] are the reductions of F and G modulo v. We say that ϕ has good
reduction at v if ϕv : P

1(kv) −→ P
1(kv) is a morphism of the same degree as ϕ.

If ϕ ∈ K [t] is a polynomial, we can give the following elementary criterion for
good reduction: ϕ has good reduction at v if and only if all coefficients of ϕ are v-adic
integers, and its leading coefficient is a v-adic unit.

Definition 2.2 Two rational functions ϕ and ψ are conjugate if there is a linear frac-
tional transformation μ such that ϕ = μ−1 ◦ ψ ◦ μ.

In the above definition, if ϕ and ψ are polynomials, then we may assume that μ is a
polynomial of degree one.

Definition 2.3 If K is a field, and ϕ ∈ K (t) is a rational function, then z ∈ P
1(K ) is a

periodic point for ϕ if there exists an integer n ≥ 1 such that ϕn(z) = z. The smallest
such integer n is the period of z, and λ = (ϕn)′(z) is the multiplier of z. If λ = 0, then
z is called superattracting. If | · |v is an absolute value on K , and if |λ|v < 1, then z
is called attracting.

Let z be a periodic point of ϕ. If ϕ = μ−1 ◦ψ ◦μ, thenμ(z) is a periodic point ofψ ,
and by the chain rule, it has the same multiplier. In particular, we can define the multi-
plier of a periodic point at z = ∞ by changing coordinates. Also by the chain rule, the
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8 R. L. Benedetto et al.

multiplier of ϕ�(z) is the same as that of z, because (ϕk)′(z) = ∏k−1
i=0 (ϕ

′(ϕi (z))) =
(ϕk)′(ϕ�(z)).

Whether or not z is periodic, we say z is a ramification point or critical point of ϕ
if ϕ′(z) = 0. If ϕ = μ−1 ◦ ψ ◦ μ, then z is a critical point of ϕ if and only if μ(z)
is a critical point of ψ ; in particular, coordinate change can again be used to deter-
mine whether z = ∞ is a critical point. Note that a periodic point z is superattracting
if and only if at least one of z, ϕ(z), ϕ2(z), . . . , ϕn−1(z) is critical, where n is the
period of z.

Let ϕ : V −→ V be a map from a variety to itself, and let z ∈ V (K ). The (for-
ward) orbit Oϕ(z) of z under ϕ is the set {ϕk(z) : k ∈ N}. We say z is preperiodic
if Oϕ(z) is finite. If μ is an automorphism of V , and if ϕ = μ−1 ◦ ψ ◦ μ, note that
Oϕ(z) = μ−1(Oψ(μ(z))).

We say z is exceptional if there are only finitely many pointsw such that z ∈ Oϕ(w)

(i.e. the backward orbit of z is finite). Of course, the image and inverse image of an
exceptional point consist only of exceptional points. It is a classical result in dynamics
(e.g., see [4], Theorem 4.1.2) that a morphism ϕ : P

1 → P
1 of degree larger than one

has at most two exceptional points. Moreover, it has exactly two if and only if ϕ is
conjugate to the map t 	→ tn , for some integer n ∈ Z; and it has exactly one if and
only if ϕ is conjugate to a polynomial but not to any map t 	→ tn . In particular, ϕ has
at least one exceptional point if and only if ϕ2 is conjugate to a polynomial.

3 Quasiperiodicity disks in p-adic dynamics

As in [12], we will need a result on non-preperiodic points over local fields. By an
open disk in P

1(Cp), we will mean either an open disk in Cp or the complement (in
P

1(Cp)) of a closed disk in Cp. Equivalently, an open disk in P
1(Cp) is the image of

an open disk D(0, r) ⊆ Cp under a linear fractional transformation γ ∈ PGL(2,Cp).
Closed disks are defined similarly.

The following definition is borrowed from [27, Sect. 3.2], although we have used
a simpler version that suffices for our purposes.

Definition 3.1 Let p be a prime, let r > 0, let γ ∈ PGL(2,Cp), and let U =
γ (D(0, r)). Let f : U → U be a function such that

γ−1 ◦ f ◦ γ (t) =
∑

i≥0

ci t
i ∈ Cp[[t]],

with |c0| < r , |c1| = 1, and |ci |r i ≤ r for all i ≥ 1. Then we say U is a quasiperiodicity
disk for f .

The conditions on f in Definition 3.1 mean precisely that f is p-adic analytic
and maps U bijectively onto U . In particular, the preperiodic points of f in U are
in fact periodic. By [27, Corollaire 3.12], our definition implies that U is indeed a
quasiperiodicity domain of f in the sense of [27, Définition 3.7].

The main result of this section is the following.
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Theorem 3.2 Let p be a prime and g ≥ 1. For each i = 1, . . . , g, let Ui be an
open disk in P

1(Cp), and let fi : Ui → Ui be a map for which Ui is a quasi-
periodicity disk. Let � denote the action of f1 × · · · × fg on U1 × · · · × Ug , let
α = (x1, . . . ,xg) ∈ U1 × · · · × Ug be a point, and let O be the �-orbit of α. Let V
be a subvariety of (P1)g defined over Cp. Then V (Cp)∩ O is a union of finitely many
orbits of the form {�nk+�(α)}n≥0 for nonnegative integers k and �.

Note that the conclusion of Theorem 3.2 says precisely that the set of n ∈ N such
that �n(α) ∈ V is a finite union of arithmetic progressions.

The proof of Theorem 3.2 relies on the following lemma from p-adic dynamics,
which in turn follows from the theory of quasiperiodicity domains in [27, Sect. 3.2].

Lemma 3.3 Let U ⊆ Cp be an open disk, let f : U → U be a map for which U
is a quasiperiodicity disk, and let x ∈ U be a non-periodic point. Then there exist
an integer k ≥ 1, real numbers r > 0 and s ≥ |k|p, and, for every integer � ≥ 0,
a bijective p-adic analytic function h� : D(0, s) → D( f �(x), r), with the following
properties:

(i) h�(0) = f �(x), and
(ii) for all z ∈ D( f �(x), r) and n ≥ 0, we have

f nk(z) = h�(nk + h−1
� (z)).

Proof Write U = D(a, R). By [27, Proposition 3.16(2)], there is an integer k ≥ 1 and
a neighborhood Ux ⊆ U of x on which f k is (analytically and bijectively) conjugate
to t 	→ t +k. That is, there are radii r, s > 0 (with r < R and s ≥ |k|p) and a bijective
analytic function h0 : D(0, s) → D(x, r) such that f nk(z) = h0(nk + h−1

0 (z)) for
all z ∈ D(x, r) and n ≥ 0.

For each nonnegative integer �, note that f � is a bijective analytic function from
D(x, r) onto D( f �(x), r). Thus, if we let h� := f � ◦h0, then h� is a bijective analytic
function from D(0, s) onto D( f �(x), r). Moreover, for all z ∈ D( f �(x), r), if we let
ζ = f −�(z) ∈ D(x, r), then for every n ≥ 0,

f nk(z) = f �( f nk(ζ )) = f �(h0(nk + h−1
0 (ζ ))) = h�(nk + h−1

� (z)).

Finally, replacing h�(z) by h�(z + h−1
� ( f �(x))), we can also ensure that h�(0) =

f �(x). ��
We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2 By applying linear fractional transformations γi to each Ui , we
may assume without loss that each Ui is an open disk in Cp.

For each i = 1, . . . , g, consider the fi -orbit of xi . If xi is periodic, let ki ≥ 1
denote its period, and for every � ≥ 0, define the power series hi,� to be the constant
f �i (xi ). Otherwise, choose ki ≥ 1 and radii ri , si > 0 according to Lemma 3.3, along
with the associated conjugating maps hi,� for each � ≥ 0.
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Let k = lcm(k1, . . . , kg) ≥ 1. For each �∈ {0, . . . , k − 1} such that V (Cp) ∩
O�k (��(α)) is finite, we can cover V (Cp)∩ O�k (��(α)) by finitely many singleton
orbits.

It remains to consider those �∈ {0, . . . , k − 1} for which there is an infinite set N
of nonnegative integers n such that �nk+�(α) ∈ V (Cp). We will show that in fact,
�nk+�(α) ∈ V (Cp) for all n ∈ N.

For any |z| ≤ 1, note that kz ∈ D(0, si ) for all i = 1, . . . , g. Thus, it makes sense
to define θ : D(0, 1) → U1 × · · · × Ug by

θ(z) = (h1,�(kz), . . . , hg,�(kz));

Then for all n ≥ 0, we have

θ(n) = �nk+�(α),

because for each i = 1, . . . , g, we have ki |k, and therefore

hi,�(nk) = hi,�(nk + h−1
i,� ( f �i (xi ))) = f nk

i ( f �i (xi )) = f nk+�
i (xi ).

Given any polynomial F vanishing on V , the composition F ◦ θ is a convergent
power series on D(0, 1) that vanishes at all integers in N . However, a nonzero con-
vergent power series can have only finitely many zeros in D(0, 1); see, for example,
[28, Sect. 6.2.1]. Thus, F ◦ θ is identically zero. Therefore,

F(�nk+�(α)) = F(θ(n)) = 0

for all n ≥ 0, not just n ∈ N . This is true for all such F , and therefore O�k (��(α)) ⊆
V (Cp).

The conclusion of Theorem 3.2 now follows, because O is the finite union of the
orbits O�k (��(α)) for 0 ≤ � ≤ k − 1. ��

As an immediate corollary, we have the following result, which proves Conjec-
ture 1.2 in the case that � is defined over Q and there is a nonarchimedean place v
with the following property: for each i , the rational function fi has good reduction
at v, and O fi (xi ) avoids all v-adic attracting periodic points.

Theorem 3.4 Let V be a subvariety of (P1)g defined over Cp, let f1, . . . , fg ∈Cp(t)
be rational functions of good reduction on P

1, and let � denote the coordinatewise
action of ( f1, . . . , fg) on (P1)g . Let O be the �-orbit of a point α = (x1, . . . ,xg) ∈
(P1(Cp))

g , and suppose that for each i , the orbit O fi (xi ) does not intersect the residue
class of any attracting fi -periodic point. Then V (Cp)∩O is a union of at most finitely
many orbits of the form {�nk+�(α)}n≥0 for nonnegative integers k and �.

Proof For each i , the reduction rp(xi ) ∈ P
1(Fp) is preperiodic under the reduced

map ( fi )p. Replacing α by �m(α) for some m ≥ 0, and replacing � by � j for some
j ≥ 1, then, we may assume that for each i , the residue class Ui of xi is mapped
to itself by fi . By hypothesis, there are no attracting periodic points in those residue
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classes; thus, by [27, Proposition 4.32] (for example), Ui is a quasiperiodicity disk
for fi . Theorem 3.2 now yields the desired conclusion. ��

4 Integrality arguments for arithmetic dynamical systems

In this Section, given a number field K , we will prove several lemmas needed in the
proofs of Theorems 1.6 and 1.7. We will continue to work with the same reduction
maps rv : P

1(K ) −→ P
1(kv) as in Sect. 2, where v is a finite place of K . We begin

with a lemma derived from work of Silverman [31].

Lemma 4.1 Let K be a number field, let ϕ : P
1 −→ P

1 be a morphism of degree
greater than one defined over K , let α ∈ P

1(K ) be a point that is not preperiodic
for ϕ, and let β ∈ P

1(K ) be a nonexceptional point for ϕ. Then there are infinitely
many v such that there is some positive integer n for which rv(ϕn(α)) = rv(β).

Proof Suppose there were only finitely many such v; let S be the set of all such v,
together with all the archimedean places. We may choose coordinates [x : y] for P

1

such thatβ is the point [1 : 0]. Since [1 : 0] is not exceptional forϕ, we see thatϕ2 is not
a polynomial with respect to this coordinate system. Therefore, by [31, Theorem 2.2],
there are at most finitely many n such that ϕn(α) = [t : 1] for t ∈ oS , where oS is the
ring of S-integers in K . Hence, for all but finitely many integers n ≥ 0, there is some
v /∈ S such that rv(ϕn(α)) = rv(β); but this contradicts our original supposition. ��
Proposition 4.2 Let K be a number field, let ϕ : P

1 −→ P
1 be a morphism of degree

greater than one defined over K , and let α, β ∈ P
1(K ) be points that are not prepe-

riodic for ϕ. Then there are infinitely many finite places v of K such that ϕ has good
reduction at v and such that either

(i) for all m ≥ 0, ϕm(α) and ϕm(β) do not lie in the residue class of any attracting
ϕ-periodic points; or

(ii) there are integers k ≥ 1 and � ≥ 0 and attracting periodic points γ1, γ2 ∈
P

1(Kv) of period k such that rv(ϕ�(α)) = rv(γ1), rv(ϕ�(β)) = rv(γ2), and
(ϕk)′(γ1) = (ϕk)′(γ2).

Proof By Lemma 4.1, there are infinitely many places v of good reduction such that
there is some positive integer n for which rv(ϕn(α)) = rv(β). Fix any such v. Then
for any periodic point γ , the orbit of α intersects the residue class of γ if and only if
the orbit of β does. Thus, if condition (i) of the Proposition fails, we can choose an
integer � ≥ 0 and an attracting periodic point γ1 such that rv(ϕ�(α)) = rv(γ1). By [27,
Proposition 3.2], γ1 lies in the v-adic closure of the orbit of α, and hence γ1 ∈ P

1(Kv).
Set γ2 = ϕn(γ1); then

rv(ϕ
�(β)) = rv(ϕ

n+�(α)) = rv(ϕ
n(γ1)) = rv(γ2).

Finally, as noted after Definition 2.3, (ϕk)′(γ1) = (ϕk)′(γ2). ��
The following result will be used in the proof of Theorem 1.6. Recall that if ϕ has

good reduction at v, we write ϕv for the reduction of ϕ at v.
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12 R. L. Benedetto et al.

Lemma 4.3 Let K be a number field, let ϕ : P
1 −→ P

1 be a morphism of degree
greater than one defined over K , and let α ∈ K be a point that is not periodic for ϕ.
Then there are infinitely many places v of good reduction for ϕ such that rv(α) is not
periodic for ϕv .

Proof If α is ϕ-preperiodic but not periodic, then the ϕ-orbit Oϕ(α) is finite. Hence,
the reduction map rv is injective on Oϕ(α) for all but finitely many places v, and
Lemma 4.3 holds in this case.

Thus, we may assume that α is not preperiodic. After passing to a finite extension
L of K , we may also assume that ϕ has a nonexceptional fixed point β. We extend
our isomorphism between P

1
K and the generic fibre of P

1
oK

to an isomorphism from
P

1
L to the generic fibre of P

1
oL

; and for each place w|v of L , we obtain reduction maps
rw : P

1(L) −→ P
1(�w), where �w is the residue field atw. For each suchw|v, we have

rv(γ ) = rw(γ ) for any γ ∈ P
1(K ). By Lemma 4.1, there are infinitely many places

w such that there is some n for which rw(ϕn(α)) = rw(β). When w|v for v a place of
good reduction for ϕ, this means that rv(ϕm(α)) = rv(ϕn(α)) = rw(β) for all m ≥ n,
since β is fixed by ϕ. At all but finitely many of these v, we have rv(α) �= rw(β), which
means that there is no positive integer m such that rv(ϕm(α)) = rv(α), as desired. ��

We will also need the following result for quadratic polynomials.

Proposition 4.4 Let K be a number field, and let f ∈ K [t] be a quadratic polynomial
with no periodic critical points other than the point at infinity. Then there are infinitely
many finite places v of K such that | f ′(z)|v = 1 for each z ∈ K such that |z|v ≤ 1
and rv(z) is fv-periodic.

Proof Since f is a quadratic polynomial, it only has one critical point α other than
the point at infinity. By Lemma 4.3 and because α is not periodic, there are infinitely
many places v of good reduction for f such that rv(α) is not fv-periodic, and such that
|α|v ≤ 1 and |2|v = 1. (The last two conditions may be added because each excludes
only finitely many v.) In particular, | f ′(z)|v = |z − α|v for any z ∈ K .

Hence, for any such v, and for any z ∈ K as in the hypotheses, we have rv(z) �=
rv(α), since rv(z) is periodic but rv(α) is not. Thus, | f ′(z)|v = |z − α|v = 1. ��

5 Dynamical Mordell–Lang for curves

Using Proposition 4.2, we can now prove a dynamical Mordell–Lang statement for
curves embedded in P

1 × P
1.

Theorem 5.1 Let C ⊂ P
1 × P

1 be a curve defined over Q, and let� :=(ϕ, ϕ) act on
P

1 ×P
1, where ϕ ∈ Q(t) is a rational function with no superattracting periodic points

other than exceptional points. Let O be the�-orbit of a point (x, y) ∈ (P1 × P
1)(Q).

Then C(Q)∩O is a union of at most finitely many orbits of the form {�nk+�(x, y)}n≥0
for k, � ∈ N.

Proof If deg(ϕ) = 1, we may change coordinates so that ϕ(∞) = ∞, and hence �
induces an automorphism of A

2. The result then follows immediately from the work
of Denis [9] and Bell [5]; see also [6]. Hence, we may assume deg(ϕ) ≥ 2.
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We may assume that C is irreducible, and that C(Q) ∩ O is infinite. Let K be a
number field over which ϕ, C , (x, y), and any exceptional points of ϕ are defined. If
either x or y is ϕ-periodic, then the projection of C to one of the two coordinates of
P

1 × P
1 consists of a single point (which must be a ϕ-periodic point), and the con-

clusion of Theorem 5.1 would be immediate. Thus, the hypotheses of Proposition 4.2
hold for (α, β) = (x, y).

Suppose there is a place v of good reduction satisfying condition (i) of Proposi-
tion 4.2. Let p ∈ N be the prime number lying in the maximal ideal of the nonarchime-
dean place v, and fix an embedding of K into Cp respecting v. The desired conclusion
is immediate from Theorem 3.4.

If no such place exists, then by Proposition 4.2, there must be a place v of good
reduction meeting condition (ii) for which neither α nor β lies in the same resi-
due class as an exceptional point. (Here, we are using the fact that there are at
most two exceptional points.) It follows that the orbits of α and β also avoid the
residue classes of exceptional points. In particular, the attracting periodic points γ1
and γ2 given in condition (ii) cannot be exceptional. By hypothesis, then, γ1 and
γ2 are attracting but not superattracting, and therefore the Theorem follows from
[12, Theorem 1.3]. ��

We can now prove Theorem 1.4 as a consequence of Theorem 5.1.

Proof of Theorem 1.4 Let O denote the �-orbit of the point (x1, . . . ,xg). We may
assume that C is irreducible, and that C(Q)∩O is infinite. It suffices to prove that C is
�-periodic. Indeed, if �k(C) = C , then for each � ∈ {0, . . . , k − 1}, the intersection
of C with O�k (��(α)) either is empty or else consists of all �nk+�(α), for some n
sufficiently large. Either way, the conclusion of Theorem 1.4 holds.

We argue by induction on g. The case g = 1 is obvious, while the case g = 2 is
proved in Theorem 5.1. Assuming Theorem 1.4 for some g ≥ 2, we will now prove
it for g + 1. We may assume that C projects dominantly onto each of the coordinates
of (P1)g+1; otherwise, we may view C as a curve in (P1)g , and apply the inductive
hypothesis. We may also assume that no xi is preperiodic, lest C should fail to project
dominantly on the i th coordinate.

Let π1 : (P1)g+1 → (P1)g be the projection onto the first g coordinates, let C1 :=
π1(C), and let O1 := π1(O). By our assumptions, C1 is an irreducible curve that has
an infinite intersection with O1. By the inductive hypothesis, C1 is periodic under the
coordinatewise action of ϕ on the first g coordinates of (P1)g+1.

Similarly, let C2 be the projection of C on the last g coordinates of (P1)g+1. By
the same argument, C2 is periodic under the coordinatewise action of ϕ on the last g
coordinates of (P1)g+1.

Thus, C is �-preperiodic, because it is an irreducible component of the one-
dimensional variety (C1 × P

1) ∩ (P1 × C2), and because both C1 × P
1 and P

1 × C2
are �-periodic.

Claim 5.2 Let X be a variety, let α ∈ X (K ), let � : X −→ X be a morphism, and
let C ⊂ X be an irreducible curve that has infinite intersection with the orbit O�(α).
If C is �-preperiodic, then C is �-periodic.
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14 R. L. Benedetto et al.

Proof of Claim 5.2 Assume C is not periodic. Because C is preperiodic, there exist
k0, n0 ≥ 1 such that �n0(C) is periodic of period k0. Let k := n0k0, and let C ′ :=
�k(C), which is fixed by �k . Then C �= C ′, since C is not periodic. Because C and
C ′ are irreducible curves, it follows that

C ∩ C ′ is finite. (5.2.1)

On the other hand, there exists � ∈ {0, . . . , k − 1} such that C ∩ O�k (��(α)) is
infinite, because C ∩O�(α) is infinite. Let n1 ∈ N be the smallest nonnegative integer
n such that �nk+�(α) ∈ C . Since C ′ = �k(C) is fixed by �k , we conclude that
�nk+�(α) ∈ C ′ for each n ≥ n1 + 1. Therefore

C ∩ O�k (�
�(α)) ∩ C ′ is infinite. (5.2.2)

Statements (5.2.1) and (5.2.2) are contradictory, proving the claim. ��
An application of Claim 5.2 with X = (P1)g+1 now completes the proof of Theo-
rem 1.4. ��

6 Quadratic polynomials

We are now ready to prove Theorems 1.6, 1.7, and 1.8.

Proof of Theorem 1.6. Let K be a number field such that V is defined over K , the
polynomial f is in K [t], and x1, . . . ,xg are all in K .

Using Proposition 4.4, we may choose a place v of K such that

(a) v is a place of good reduction for f ;
(b) |xi |v ≤ 1, for each i = 1, . . . , g;
(c) | f ′(z)|v = 1 for all z such that |z|v ≤ 1 and rv(z) is fv-periodic.

Indeed, conditions (a) and (b) are satisfied at all but finitely many places v, while
condition (c) is satisfied at infinitely many places. Because f is a polynomial, condi-
tions (a) and (b) together imply that | f n(xi )|v ≤ 1 for all i = 1, . . . , g and n ≥ 0.
Meanwhile, condition (c) implies that f has no attracting periodic points at v. The
desired conclusion now follows from Theorem 3.4. ��
Proof of Theorem 1.7 After changing coordinates, we assume that f (t) = t2 + c for
some c ∈ Q. Thus, 0 is the only finite critical point of f . If c �∈ Z, then there is some
prime p such that |c|p > 1, so that | f n(0)|p → ∞; similarly, if c ∈ Z\{0,−1,−2},
then | f n(0)|∞ → ∞. Either way, 0 cannot be periodic. If c = −2, then 0 is only
f -preperiodic, but not f -periodic. In all the above cases, the hypotheses of Theo-
rem 1.6 are met, and we are done. If c = 0, then f (t) = t2 is an endomorphism of
G

g
m , and thus our result follows from [12, Theorem 1.8].
We are left with the case that f (t) = t2 − 1. As in the proof of Theorem 1.4, we

may assume (via induction on g) that no xi is preperiodic; in particular, all xi and
f (xi ) are nonzero. If f 2(z) = 0, then either z = 0, or z = ±√

2. Bearing this fact in
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mind, we note that there are infinitely many primes p such that 2 is not a quadratic
residue modulo p; more precisely, the density of such primes p is 1

2 . Thus, we may
choose an odd prime p such that each xi and f (xi ) is a p-adic unit, and such that 2 is
not a quadratic residue modulo p. Then there is no positive integer n such that f n(xi )

is in the same residue class as 0 modulo p for any i . Therefore, | f ′( f n(xi ))|p = 1 for
all n, and hence f n(xi ) never lies in the same residue class as an attracting periodic
point. Theorem 1.7 now follows from Theorem 3.4. ��
Proof of Theorem 1.8 As before, we may assume that no x j is preperiodic for f j . By
[18, Theorem 1.2(iii)], for each f j that is not equal to t2 − 1, the set of primes p
such that there is an n for which f n

j (x j ) ≡ 0 (mod p) has Dirichlet density zero.
Meanwhile, as noted in the proof of Theorem 1.7, the density of primes p such that
−2 is a square modulo p is 1/2, and therefore the set of primes p for which there are
an n and j satisfying f j (t) = t2 − 1 and f n

j (x j ) ≡ 0 (mod p) must have (upper)
density at most 1/2. Hence, the set of primes p such that f n

j (x j ) �≡ 0 (mod p) for
all n and all j = 1, . . . , g has (lower) density at least 1/2. Choosing such a prime p,
we see that f n

j (x j ) never lies in the same residue class as an attracting periodic point
for any n and any j = 1, . . . , g, and the result follows from Theorem 3.4. ��

7 Extensions to the field of complex numbers

In this section we will use recent work of Medvedev and Scanlon [23] to prove
Theorem 1.5. We begin with the following definitions.

Definition 7.1 Let K be a field, and let ϕ ∈ K [t] be a nonconstant polynomial. We
say that ϕ is indecomposable if there are no polynomials ψ1, ψ2 ∈ K [t] of degree
greater than one such that ϕ = ψ1 ◦ ψ2.

Generic polynomials over C of any positive degree are indecomposable. This is
obvious for (all) polynomials of prime degree or degree one, and it is easy to prove in
degree at least 6 (say by reducing to monic decompositions and counting dimensions);
but it can also be shown in degree 4.

Definition 7.2 Let K be a field, and let f ∈ K [t] be a polynomial of degree m ≥ 1.
If f is monic with trivial tm−1 term, we say that f is in normal form; that is, f is of
the form

tm + cm−2tm−2 + · · · + c0.

In that case, we say that f is of type (a, b) if a is the smallest nonnegative integer such
that ca �= 0, and b is the largest positive integer such that f (t) = tau(tb) for some
polynomial u ∈ K [t].

While we have introduced this definition of “type” to aid our exposition, the accom-
panying notion of normal form is not new. In fact, as noted in [3, Equation (2.1)], if
char K = 0 and f ∈ K [t] is a polynomial of degree m ≥ 2, and if K contains an
(m − 1)-st root of the leading coefficient, then there is a linear polynomial μ ∈ K [t]
such that μ−1 ◦ f ◦ μ is in normal form.
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Definition 7.3 For each positive integer m, define Dm ∈ Z[t] to be the unique poly-
nomial of degree m such that Dm(t + 1/t) = tm + 1/tm .

The usual Chebyshev polynomial Tm (satisfying Tm(cos(θ)) = cos(mθ)) is conju-
gate to Dm , since Dm(2t) = 2Tm(t). However, Dm is in normal form.

The following result is an immediate consequence of Theorem 3.149 in [23]
(see also Section 3.2 in [23]).

Theorem 7.4 (Medvedev, Scanlon) Let K be an algebraically closed field of charac-
teristic 0, and let ϕ ∈ K [t] be a nonlinear indecomposable polynomial which is not
conjugate to tm or Dm for any positive integer m. Assume that ϕ is in normal form,
of type (a, b).

Let � denote the action of (ϕ, ϕ) on A
2. Let C be a �-periodic irreducible plane

curve defined over K . Then C is defined by one of the following equations in the
variables (x, y) of the affine plane:

(i) x = x0, for a ϕ-periodic point x0; or
(ii) y = y0, for a ϕ-periodic point y0; or

(iii) x = ζϕr (y), for some r ≥ 0; or
(iv) y = ζϕr (x), for some r ≥ 0,

where ζ is a d-th root of unity, where d | b and gcd(d, a) = 1.

Remark 7.5 Note that if b = 1 or a = 0 in Theorem 7.4, then d = 1, and hence ζ = 1.

Using Theorem 7.4, we can prove the following result.

Theorem 7.6 Let ϕ ∈ C[t] be an indecomposable polynomial with no periodic super-
attracting points other than exceptional points, and let � := (ϕ, ϕ) be its diagonal
action on A

2. Let O be the �-orbit of a point (x0, y0) in A
2(C), and let C be a curve

defined over C. Then C(C) ∩ O is a union of at most finitely many orbits of the form
{�nk+�(x0, y0)}n≥0 for nonnegative integers k and �.

We will need three more ingredients to prove Theorem 7.6.

Proposition 7.7 Fix integers m, g ≥ 1, let ϕ ∈ C[t] be a polynomial which is a con-
jugate of either tm or Dm, and let� be its coordinatewise action on A

g . Let O be the
�-orbit of a point α ∈ A

g(C), and let V be an affine subvariety of A
g defined over C.

Then V (C) ∩ O is a union of at most finitely many orbits of the form {�nk+�(P)}n≥0
for nonnegative integers k and �.

Proof By hypothesis, there is a linear polynomial h(t)∈ C[t] such that either
ϕ(h(t)) = h(tm) or ϕ(h(t)) = h(Dm(t)). In the first case, let k(t) = h(t), and in
the second, let k(t) = h(t + 1/t). Then ϕ(k(t)) = k(tm) for some nonconstant ratio-
nal function k(t) ∈ C(t). Note that in either case, k(C) ⊇ C, and the only possible
poles of k are at 0 and ∞.

Let α := (x1, . . . ,xg). For each i ∈ {1, . . . , g}, pick zi ∈ C such that k(zi ) = xi .
Then O�(α) = {(k(zmn

1 ), . . . , k(zmn

g )) : n ≥ 0}. Let W be the affine subvariety of
G

g
m defined by the equations f (k(t1), . . . , k(tg)) = 0, where f ranges over a set of
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generators for the vanishing ideal of V . (Note that W is an algebraic subvariety of G
g
m

because k has no poles on Gm .)
Let � be the endomorphism of G

g
m given by �(t1, . . . , tg) = (tm

1 , . . . , tm
g ). Then

�n(x1, . . . ,xg) ∈ V (C) if and only if �n(z1, . . . , zg) ∈ W (C).

Thus, Proposition 7.7 holds for � and V because, by [12, Theorem 1.8], it holds for
� and W . ��

Proposition 7.8 Let E be a field of characteristic 0, and K a function field of tran-
scendence degree 1 over E. Let ϕ ∈ K [t] be a polynomial of degree m ≥ 2 in normal
form. Assume that ϕ is not conjugate to tm or Dm over the algebraic closure K of K .
Then for all but finitely places v of the function field K , the reduction ϕv of ϕ at v
is not conjugate to tm or Dm over the algebraic closure kv of the residue field kv
corresponding to the place v.

Proof After replacing K by a finite extension, we may assume that K contains all
(m − 1)-st roots of unity. All coefficients of ϕ are v-adic integers at all but finitely
many places v. For any such place, write kv for the residue field and ϕv for the reduc-
tion of ϕ. If ϕv is conjugate to the reduction fv of either f = Dm or f (t) = tm , write
ϕv(t) = μ−1

v ◦ fv ◦μv for some linear polynomial μv(t) = At + B ∈ kv[t]. Because
ϕv and fv are both in normal form, we must have μv(t) = ζvt , for some (m − 1)-st
root of unity ζv ∈ kv . (Indeed, because char kv = char E = 0 and both ϕv and fv
have trivial tm−1 term, we must have B = 0; and because both are monic, A must be
an (m − 1)-st root of unity.)

Thus, at any such place v, ϕ is congruent modulo v to one of the m polynomials
ζ−1 Dm(ζ t) or ζ−1(ζ t)m = tm , where ζ ∈ K is an (m − 1)-st root of unity. Since ϕ
is not one of those m polynomials itself, there are only finitely many such v at which
that occurs. ��

Proposition 7.9 Let E be a field, and K a function field of transcendence degree 1
over E. Let f ∈ K [t] be an indecomposable polynomial of degree greater than one.
Then for all but finitely many places v of K , the reduction of f modulo v is also an
indecomposable polynomial over kv of degree greater than one, where kv is the residue
field of K at v.

Proof First we note that for all but finitely many places v of K , the coefficients of f
are integral at v, and the leading coefficient of f is a unit at v. Thus, the reduction fv
of f modulo v is a polynomial of same degree as f .

We will show that for any given positive integers m and n (with m, n ≥ 2) such
that mn = deg( f ), if f is not a composition of a polynomial of degree m with a
polynomial of degree n, then for all but finitely many places v of K , the reduction
of f modulo v cannot be written as a composition of two polynomials of degrees m
and n, respectively, with coefficients in kv . Because there are finitely many pairs of
positive integers (m, n) such that mn = deg( f ), our desired conclusion follows.
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Let m and n be positive integers such that mn = deg( f ) (with m, n ≥ 2). Then the
nonexistence of polynomials

g(t) =
m∑

i=0

ai t
i and h(t) =

n∑

j=0

b j t
j

with coefficients in K , such that f = g ◦ h, where f (t) = ∑deg( f )
�=0 c�t�, translates to

the statement that the variety X ⊂ A
m+n+2 given by the equations which must be sat-

isfied by the ai ’s and the b j ’s has no K -points. Furthermore, X is a variety defined over
a subring R of K such that all but finitely many places of K are maximal ideals of R.

Suppose there is an infinite set S of places v of K at which fv is actually a com-
position of two polynomials of degrees m and n, with coefficients in kv . Then the
special fibre of X over v is nonempty over kv for each v ∈ S. Therefore, the equations
defining X determine a nonempty locus over the ultraproduct KS,U of all the infinitely
many fields kv with respect to a non-principal ultrafilter U based on S. However, K
embeds into KS,U (see [17, p. 198–199]). Since X is defined over K and has a rational
point over a field containing K , it must in fact have an algebraic point over K , giving
a contradiction to the fact that X (K ) is empty. ��

We are ready to prove Theorem 7.6.

Proof of Theorem 7.6 If ϕ is a linear polynomial, then the result follows from [5]. If ϕ
is conjugate to tm or Dm , then our conclusion follows from Proposition 7.7. We may
therefore assume that ϕ is an indecomposable, nonlinear polynomial which is neither
a conjugate of tm , nor of Dm . Furthermore, after conjugating ϕ by a linear polynomial
μ (and replacing (x0, y0) by (μ−1(x0), μ

−1(y0)) and C by (μ−1, μ−1)(C)), we may
assume that ϕ is in normal form. Let m = degϕ.

As before, we may assume that C is an irreducible curve, and that C does not project
to a single point to any of the coordinates. For example, if C = A

1 × {y1}, then y1 is
ϕ-periodic, and hence C is �-periodic. In particular, we may assume that neither x0
nor y0 is ϕ-preperiodic.

Let K be a finitely generated field over which C , ϕ, x0 and y0 are defined. Further-
more, at the expense of replacing K by a finite extension, we may assume that C is
geometrically irreducible and that K contains all critical points of ϕ and all (m −1)-st
roots of unity.

We will prove Theorem 7.6 by induction on d := trdegQ K . If d = 0, then K is a
number field, and our conclusion follows from Theorem 5.1.

Assume d ≥ 1. Then K may be viewed as the function field of a smooth, geomet-
rically irreducible curve Z defined over a finitely generated field E ; thus, trdegQ E =
d − 1. Moreover, the curve C extends to a 1-dimensional scheme over Z (called C),
all but finitely many of whose fibres Cγ are irreducible curves.

We claim that there are infinitely many places γ of K for which all of the following
statements hold. (By a place of K , we mean a valuation of the function field K/E , cf.
Chapter 2 of [29].)

(a) The fibre Cγ is an irreducible curve defined over the residue field E(γ ) of γ , of
the same degree as C .
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(b) All nonzero coefficients of ϕ are units at the place γ ; in particular, ϕ has good
reduction at γ , and so we write ϕγ and �γ := (ϕγ , ϕγ ) for the reductions of ϕ
and � at γ .

(c) The critical points of ϕγ are reductions at γ of the critical points of ϕ.
(d) For each critical point z ofϕ (other than infinity), the reduction zγ is not a periodic

point for ϕγ .
(e) The map O −→ Oγ from the�-orbit of (x0, y0) to the�γ -orbit of (x0,γ , y0,γ ),

induced by reduction at γ , is injective.
(f) ϕγ is not conjugate to tm or Dm . (Recall m = degϕ.)
(g) ϕγ is a nonlinear, indecomposable polynomial.

Conditions (a)–(c) above are satisfied at all but finitely many places γ of K . The same
is true of conditions (f)–(g), by Proposition 7.8 and Proposition 7.9. Condition (d) for
preperiodic (but not periodic) critical points also holds at all but finitely many places;
see the first paragraph of the proof of Lemma 4.3. Meanwhile, [14, Proposition 6.2]
says that the reduction of any finite set of nonpreperiodic points remains nonpreperi-
odic at infinitely many places γ (in fact, at all γ on Z of sufficiently large Weil height).
Thus, conditions (d)–(e) hold by applying [14, Proposition 6.2] to (x0, y0) and the
nonpreperiodic critical points, proving the claim.

Let γ be one of the infinitely many places satisfying conditions (a)–(g) above. From
condition (e), we deduce that Cγ (E(γ ))∩Oγ is infinite. Conditions (c)–(d) guarantee
that ϕγ has no periodic critical points (other than the exceptional point at infinity).
Because E(γ ) is a finite extension of E , we get trdegQ E(γ ) = d −1. By the inductive
hypothesis, then, Cγ is�γ -periodic. By conditions (f)–(g) and Theorem 7.4, Cγ is the
zero set of an equation from one of the four forms (i)–(iv) in Theorem 7.4. In fact, if
ϕ has type (a, b), then the degree d in Theorem 7.4 satisfies d|b and gcd(d, a) = 1,
because condition (b) implies that ϕγ also has type (a, b). Thus, for one of the four
forms (i)–(iv), there are infinitely many places γ satisfying (a)–(g) above such that
the equation for Cγ is of that form. By symmetry, it suffices to consider only forms
(i) and (iii).

Case 1 Assume there are infinitely many γ satisfying (a)–(g) such that Cγ is given
by an equation x = x(γ ), for some ϕγ -periodic point x(γ ) ∈ E(γ ). Then, since the
degree of C is preserved by the reduction at γ , we see that the degree of C must be
1. Thus, C is defined by an equation of the form ax + by + c = 0. Since there are
infinitely many γ such that the above equation reduces at γ to x = x(γ ), we must
have b = 0; hence, the curve C must be given by an equation x = x1 for some
x1 ∈ K , contradicting our assumption that C does not project to a point in any of the
coordinates.

Case 2 Assume there are infinitely many γ satisfying (a)–(g) such that Cγ is given
by an equation y = ζϕr

γ (x), for some r ≥ 0 and some d-th root of unity ζ , where
d | b and gcd(d, a) = 1. Because there are only finitely many b-th roots of unity,
we may assume ζ is the same for all of the infinitely many γ . Moreover, because
Cγ has the same degree as C , the integer r is the same for all such γ . Thus, there are
infinitely many places γ for which the polynomial equation for C reduces modulo γ to
y−ζϕr (x), and hence the two polynomials are the same. Thus, C is the zero set of the
polynomial y−ζϕr (x). Because ϕ is of type (a, b), it follows that C is�-periodic. ��
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Arguing precisely as in the proof of Theorem 1.4, Theorem 1.5 follows as a conse-
quence of Theorem 7.6.

Remark 7.10 In personal communications, Medvedev and Scanlon told us that, using
the methods of [23], it is possible to prove the conclusion of Theorem 7.4 even for
decomposable polynomials f that are not compositional powers of other polynomials.
Using that stronger result in our proofs above, we could then extend Theorems 7.6 and
1.5 to any f that is not a compositional power of another polynomial. It would then
be easy to extend those results to all polynomials f ∈ C[t] (with no periodic super-
attracting points other than exceptional points); indeed, if f = gk is a compositional
power, then we may simply replace the action of f with the action of g.
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Council, and that of T. T. by NSA Grant 06G-067, NSF Grants 0801072 and 0854839.

8 Appendix by Umberto Zannier

As anticipated in the Introduction, in the present Appendix we shall prove a result
similar to but stronger than Proposition 4.2 above. This appeared in a weaker form in
a previous version of this paper (replacing the present Proposition 4.2) and was sub-
sequently sharpened. For the purposes of the present paper such result has been later
found not to be strictly necessary; however it is still relevant in the context, in that it
relates the strategy of this paper to questions about integral points, indicating another
possible approach to the present issues, which shall be discussed in detail elsewhere.

As above, we let K be a number field and, for a finite place v of K with residue
field K (v), we let rv : P

1(K ) → P
1(K (v)) be the reduction map. For a finite set

S of places of K (including the infinite ones) we let as usual OS denote the ring of
S-integers of K .

We shall meet derivatives of rational functions; we shall denote by ϕ(h) the h-th
derivative of ϕ whereas ϕn shall denote as above the n-th iterate.

Theorem 8.1 Let ϕ : P
1 → P

1 be a morphism defined over K , of degree d ≥ 2 and
not conjugate to a map of the shape t 	→ td . Let α, β ∈ P

1(K ) be points not prepe-
riodic for ϕ and suppose that there is an irreducible curve C ⊂ P

1 × P
1 containing

infinitely many points (ϕk(α), ϕk(β)).
Then there are infinitely many finite places v of K such that ϕ has good reduction

at v and such that for some integer n ≥ 1 the points ϕn(α), ϕn(β) are in the same
residue class modulo v, i.e. rv(ϕn(α)) = rv(ϕn(β)).

Further, if we assume that ϕ is conjugate to a polynomial, the conclusion holds
also on dropping the assumption of the existence of the curve C.

Proof In a first part we show that either the conclusion holds or ϕ is totally branched
above some point, and actually it is conjugate to a polynomial. Then we shall consider
the polynomial case. For clarity, we subdivide the proof in several steps.
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1. Let us suppose that the conclusion is not true so there exists a finite set S of
places such that for all v �∈ S and all n> n0, we have rv(ϕn(α)) �= rv(ϕn(β)), i.e.
ϕn(α)− ϕn(β) has a numerator not divisible by v, hence (ϕn(α)− ϕn(β))−1 ∈
OS . (If one of ϕn(α), ϕn(β) = ∞, then the condition implies that the other
cannot be ∞ and the thing again holds.)
Let λ ∈ PGL2(Q̄) = Aut(P1) be any fixed homography. Then, by enlarging K
and S we may assume that λ is defined over K and has good reduction outside S,
so it induces an automorphism of P

1(K (v)). Hence the same holds if we replace
ϕn with λ ◦ ϕn ; namely, (λ(ϕn(α))− λ(ϕn(β)))−1 ∈ OS . This also allows us to
replace ϕ by λ ◦ ϕ ◦ λ−1 and α, β with λ(α), λ(β) respectively.

2. Let u, v be the projections from the curve C ⊂ P
1 × P

1 to the factors (none
is constant by the assumptions that α, β are not preperiodic). For n ∈ N and a
λ ∈ PGL2 put

ψn = ψn,λ := (λ(ϕn(u))− λ(ϕn(v)))−1.

This is a rational function on C ; it is well defined because if ϕn(u) = ϕn(v) then
ϕN (α) = ϕN (β) for infinitely many N , contrary to 1.
By 1.,ψn takes S-integer values at infinitely many rational points (ϕk(α), ϕk(β))

on C .
3. By Siegel’s theorem [30] (see [19, Theorem 8.5.2] for the exact form used here)

on integral points on curves we conclude that the union � of all zeros of all
the functions λ(ϕn(u)) − λ(ϕn(v)) (for varying λ and n) satisfies |�| ≤ 2, and
moreover we conclude that C is a rational curve (over some number field).

4. To simplify some of the coming calculations we now choose λ with the property
that none among λ(ϕn(u)), λ(ϕn(v)), any n ∈ N, has a pole at any point of �.
It suffices to choose λ(x) = 1/(x − a) where a is different from all the values
ϕn(u(P)), ϕn(v(P)), for P ∈ �. For instance, any algebraic number a outside
a number field of definition for ϕ, u, v,� shall do.
Then, we may replace ϕ by λ ◦ ϕ ◦ λ−1, and replace u, v by λ(u), λ(v), and
suppose directly that ϕn(u), ϕn(v) have no pole in �. The previous conclusions
continue to hold, whence in particular the functions ϕn(u) − ϕn(v) have zeros
in �.
With these normalizations, we put un := ϕn(u), vn := ϕn(v), δn := vn − un , so
δn has zeros in � whereas un, vn have no pole in �.
Also, we choose any point P0 ∈ � and we put ω( f ) := ordP0( f − f (P0)), for
a rational function f ∈ Q̄(C). We use the usual convention that 1/ f stands for
f − ∞ when f has a pole at P0, so ω( f ) > 0 always.

5. Suppose δr (P0) = 0. Then ur (P0) = vr (P0) (recall that ur , vr have no pole in
�) whence for all n ≥ r we have un(P0) = vn(P0), i.e. δn(P0) = 0 (recall that
in the present normalization no un has a pole at P0). We want to estimate some
multiplicities.
Fix n ≥ r and write μ := un(P0); this μ is not a pole of ϕ, for otherwise P0
would be a pole of ϕn+1; then write ϕ(t) = ϕ(μ)+ (t − μ)mϕ1(t), where ϕ1 is
regular and does not vanish at μ. We have m = m(μ) > 0; note that μ and m
depend on n (not only on P0). We have the Taylor expansion
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δn+1 = ϕ(vn)− ϕ(un) = ϕ(un + δn)− ϕ(un) = δnϕ
′(un)+ δ2

n
ϕ′′(un)

2
+ · · · .

The terms δh
nϕ

(h)(un)/h! are rational functions on C whose orders at P0 tends
to infinity, so we may consider this expansion in the topology of local series at
P0. Observe that ordP0 ϕ

(h)(un) = (m − h)ω(un) for 1 ≤ h ≤ m. Hence

ω(δh
nϕ

(h)(un)) = hω(δn)+ (m − h)ω(un), 1 ≤ h ≤ m.

Also, it is immediately checked that ω(un+1) = mω(un).
6. If ω(δn) > ω(un) then by the last displayed formula at 5. we find that the mini-

mum order in the Taylor expansion at 5. is attained strictly at the first term (i.e.
for h = 1), whence ω(δn+1) = ω(δn)+ (m − 1)ω(un) and, by the last equality
at 5.,

ω(δn+1)− ω(un+1) = ω(δn)− ω(un).

We also deduce that ω(un+1) < ω(δn+1), so we fall in this same case, with n +1
in place of n.

7. If ω(δn) < ω(un) then similarly to 6. we find that ω(δn+1) = mω(δn); from 5.
we have ω(un+1) = mω(un), so ω(δn+1) < ω(un+1).

8. Similarly, if ω(δn)=ω(un) we see from the Taylor expansion that certainly
ω(δn+1) ≥ mω(δn) = mω(un) = ω(un+1).

9. So, if ω(δs) > ω(us) for some s we are in case 6. for all n ≥ s. Otherwise
ω(δn) ≤ ω(un) for all n.

10. In all cases we easily see from the above that ω(δn)−ω(un) ≤ O(1) as n → ∞,
whence, by iterating the last equality of 5. and recalling the definition of ω, we
find in particular that

ω(δn) � m0(P0)
n,

where m0(P0) is the maximum ramification ofϕ at some point in {un(P0) :n ∈N}.
11. Note now that any common pole of un and vn is a zero of (1/vn)−(1/un). Hence

by 3. (using this time λ(x) = 1/x) we conclude that such a pole lies in�. But in
the present normalization (see 4) no element of� is a pole of un ; hence there are
no common poles at all of un and vn . In particular, there is no pole cancellation
in vn − un , whence deg(δn) ≥ deg(un) + deg(vn). Also, putting d := deg(ϕ),
we have deg(un) = dn deg(u), deg(vn) = dn deg(v), so

deg(δn) � dn .

12. Putting m0 := maxP0∈� m0(P0), by 10. we have

max
P0∈�

ordP0 δn � mn
0 .
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Comparing with 11. and using that the degree is the number of zeros with mul-
tiplicity, we find deg(δn) � |�| · mn

0, whence m0 ≥ d, so actually m0 = d. In
particular, ϕ is totally branched over some finite point. But the deductions from 3.
onwards hold also by replacing ϕ by ϕr (any fixed integer r ), so any ϕr is totally
branched above a finite point P = Pr . Then ϕ−r (P) consists of a single point
and ϕ is totally branched above ϕ−(r−1)(P). But ϕ can be totally branched above
at most two points, and if it is such, it is conjugate to a cyclic polynomial, against
the assumptions of the Theorem. Thus we can assume that ϕ is totally branched
above exactly a single point. Then this Pr must be a fixed point of ϕ.

By conjugating ϕ in PGL2 we may thus assume that ϕ has ∞ as a totally ramified
fixed point. This means that ϕ is conjugate to a polynomial. All the conclusions of 3.
continue to hold (on changing suitably u, v according to the conjugation).

The polynomial case

The various steps in our argument will be denoted now by Pn for various positive
integers n in order to distinguish them from the previous steps in our proof.

P1. Before continuing our deductions, let us start by noting that if we assume from the
beginning that ϕ is a polynomial, then either the first conclusion of the Theorem is
true or anyway infinitely many (ϕk(α), ϕk(β)) lie on a curve. Hence in the polynomial
case we can dispense with the assumptions that infinitely many (ϕk(α), ϕk(β)) lie on
a curve. After the coming arguments, this shall eventually justify the final assertion of
the Theorem.

To justify this claim, suppose that the first conclusion of the Theorem is not true.
Note that for large enough S the numbers ϕn(α)−ϕn(β) are S-integers, for all n ∈ N:
in fact, since ϕ is a polynomial, it suffices that α, β and the coefficients of ϕ are S-
integers. Then, as in 1. above we find that ϕn(α)− ϕn(β) are actually S-units for all
n ∈ N.

Now suppose by contradiction that the points (ϕk(α), ϕk(β)), k ∈ N, are Zariski-
dense in A

2, and denote now by x, y coordinates on A
2. Then the rational functions

x − y, ϕ(x) − ϕ(y), ϕ2(x) − ϕ2(y) assume S-unit values on a Zariski-dense set
(i.e. the set {(ϕk(α), ϕk(β)) : k ∈ N}). Then by Laurent’s theorem [20] (see also
[8, Theorem 7.4.7]) on the structure of S-unit points on subvarieties of multiplicative
tori the closure in G

3
m of the image of A

2 by these functions must be a translate of a
torus in G

3
m . Since the image has anyway dimension ≤ 2, we have thus an identical

equation

(x − y)a(ϕ(x)− ϕ(y))b(ϕ2(x)− ϕ2(y))c = c0,

for integers a, b, c not all zero and a nonzero constant c0. However this is easily checked
to be impossible for d ≥ 2 (it suffices to note that the zero divisor of ϕ(x)−ϕ(y) has at
least a component not containing the line x = y). This contradiction proves the claim.

Let us now go on by proving the conclusion of the Theorem, assuming that ϕ is a
polynomial (and that infinitely many (ϕk(α), ϕk(β)), k ∈ N, lie on the curve C).

P2. As in P1. we find that ϕn(α), ϕn(β) are S-units. Hence, again by Siegel’s theorem,
we conclude as in 3. that all the maps δn := ϕn(u)− ϕn(v) have zeros AND poles in
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�. (Note however that now that we are assuming that ϕ is a polynomial, we shall not
change anymore normalization as in 4. above.)

Recall also that by Siegel’s theorem our curve must be rational, and we may take
it equal to P

1 and we may take � = {0,∞}.
We contend that the poles of un and of vn are in �: in fact, a pole of un is either

a pole of δn or a pole of vn ; in this last case it is a zero of (1/un)− (1/vn), so in any
case it is in�. (This also follows directly from Siegel’s theorem: un, vn take infinitely
many S-integer values on C(K ).)

With these normalizations, we may also write δn = γ tgn with integer gn , whereas
un, vn are Laurent polynomials in t .

P3. Suppose first that u1 has precisely two poles. Then un = ϕn(u1) has also two poles.
We then write un = αtan + · · · + β/tbn , where an, bn are the pole orders, so > 0.

On replacing t by 1/t if necessary, we may assume gn ≥ 0 for a given n.
Write as in 5. the Taylor expansion (now it has only finitely many terms)

δn+1 = ϕ(vn)− ϕ(un) = ϕ(un + δn)− ϕ(un) = δnϕ
′(un)+ δ2

n
ϕ′′(un)

2
+ · · · .

and note that δn+1 contains a term t A with A = gn − (d − 1)bn (look at δnϕ
′(un) in

the Taylor expansion). We conclude that

gn+1 = gn − (d − 1)bn .

P4. If gn > an then we must have gn+1 = dgn (look now at terms of highest degree
in the Taylor series or observe that ϕ(un + δn) has order dgn at ∞), a contradiction.

If gn < an , then (look again at highest degree terms) we have gn+1 = gn + (d − 1)
an > gn , a contradiction.

Then gn = an , and moreover there must be cancellation in the highest terms in the
Taylor series (because gn+1 < gn by P3). Now, if gn+1 ≥ 0, we may apply the same
argument and deduce gn+1 = an+1 = dan = dgn , a contradiction.

Hence gn+1< 0. But then the argument applies after changing t into 1/t , i.e.
exchanging an+1, bn+1. This gives (d − 1)bn − gn = bn+1 = dbn , which is also
impossible.

We conclude that un cannot have two poles, and therefore we may assume it is a
polynomial.

P5. Write an = deg un , βn = un(0). In this doubly polynomial case we easily see as
above that:

if gn �= an then gn+1 = gn+(d−1)an �= an+1, so we deduce that gn−an is constant.
The same holds if gn = an , except if some cancellation occurs. But this cancellation

produces gn+1 < an+1 and we fall in the previous case.
Hence eventually we have that gn −an is constant in all cases. Note that an = dna0.

P6. Using once more the Taylor series in the form δnϕ
′(un) = δn+1 − δ2

n
ϕ′′(un)

2 − · · ·,
we deduce that ord0 ϕ

′(un) ≥ min(gn, gn+1 − gn), so ϕ′(un) eventually vanishes at 0.
Then βn is a zero of ϕ′, say of multiplicity μn . Put also ωn = ord0(un − βn) > 0. We
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have

ord0(δ
h
nϕ

(h)(un)) = hgn + (μn + 1 − h)ωn, 1 ≤ h ≤ μn + 1,

and ord0(δ
h
nϕ

(h)(un)) ≥ hgn for all h > 0.

P7. We want to show that μn = d − 1 = degϕ′.
Suppose that ωn < gn . Then by P6., the minimum order

ord0(δ
h
nϕ

(h)(un)),

for varying h ≥ 1, is attained uniquely for h = 1 and hence (by the Taylor series
again) must be gn+1. In other words, gn + μnωn = gn+1 (≥ in place of = suffices
here) whence (by P5.) μnωn ≥ (d − 1)an , which in turn implies μngn > (d − 1)an ,
whence μn ≥ d − 1, as required.

Hence assumeωn ≥ gn for all large n. Write un = βn +tωnρn . Note that ρn does not
vanish at 0 and has bounded degree because an = deg un and ωn ≥ gn ≥ an − O(1).
Now, un+1 = ϕ(un), hence

βn+1 + tωn+1ρn+1 = ϕ(βn)+ tωnρnϕ
′(βn)+ (tωnρn)

2 ϕ
′′(βn)

2
+ · · · .

Taking into account that ωn+1 = gn+1 + O(1) we deduce ωn+1 = dωn + O(1),
whence we find ϕ(βn) = βn+1 and ϕ(h)(βn) = 0 for 1 ≤ h ≤ d − 1, as required.

All of this also implies βn+1 = βn , since βn is unique with such a property.

P8. The opening assertion of P7. and the closing one together say that ϕ is conjugate
to a power td , against the assumptions, which concludes the argument. ��
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