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Abstract This is an account of the algebraic geometry of Witt vectors and arithmetic
jet spaces. The usual, “p-typical” Witt vectors of p-adic schemes of finite type are
already reasonably well understood. The main point here is to generalize this theory in
two ways. We allow not just p-typical Witt vectors but those taken with respect to any
set of primes in any ring of integers in any global field, for example. This includes the
“big” Witt vectors. We also allow not just p-adic schemes of finite type but arbitrary
algebraic spaces over the ring of integers in the global field. We give similar gener-
alizations of Buium’s formal arithmetic jet functor, which is dual to the Witt functor.
We also give concrete geometric descriptions of Witt spaces and arithmetic jet spaces
and investigate whether a number of standard geometric properties are preserved by
these functors.
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Introduction

Let p be a prime number. For any integer n ≥ 0 and any (commutative) ring A, let
Wn(A) denote the ring of p-typical Witt vectors of length n with entries in A. This
construction gives a functor Wn from the category of rings to itself. It is an important
tool in number theory, especially in the cohomology of varieties over p-adic fields.
For example, it is used in the definition of Fontaine’s period rings [18] and in the
definition of the de Rham–Witt complex, which is an explicit complex that computes
crystalline cohomology [31].

The functor Wn has a left adjoint, which we denote by A �→ �n � A:

Hom(�n � A, B) ∼= Hom(A,Wn(B)). (0.0.1)

This adjunction was first considered by Greenberg [20,21], but he restricted himself
to the case where B is an Fp-algebra, and so he only constructed the special fiber
Fp ⊗Z (�n � A). The construction of the full functor had to wait until Joyal [32] and,
independently, Buium [9]. It also has applications in number theory, most notably in
the study of p-adic points on varieties. For example, see Buium [9] and Buium–Poonen
[11] (as well as Buium’s earlier work [8] for applications of analogous constructions
in complex algebraic geometry). These two adjoint constructions see different sides
of the arithmetic of A—the ring Wn(A) sees certain maps into A, and the ring�n � A
sees certain maps out of it.

This paper is part of a general program to analyze varieties over global fields using
global analogues of these functors, such as the “big” Witt functors. The first issue
one faces is that, even in the p-typical case above, the schemes Spec Wn(A) and
Spec�n � A are not familiar geometric constructions, and it is important that we be
able to handle them with ease. The purpose of this paper is to demonstrate that this
is possible. The first part [5] developed the affine theory, and this part extends it to
arbitrary schemes and algebraic spaces.

Let us go over the contents in more detail. We will work throughout with certain
generalizations of the classical p-typical and big Witt functors. These are the E-typical
Witt functors WR,E,n defined in [5]. These functors depend on a ring R, a set E of
finitely presented maximal ideals m of R with the property that each localization Rm

is discrete valuation ring with finite residue field, and an element n ∈ N(E) = ⊕
E N.

Then WR,E,n is a functor from the category of R-algebras to itself. We recover the
p-typical Witt functor when E consists of the single maximal ideal pZ of Z, and we
recover the big Witt functor when E consists of all the maximal ideals of Z. When
E consists of the maximal ideal of the valuation ring of a local field, we recover a
variant of the p-typical Witt functor due to Drinfeld [14] and to Hazewinkel [29],
(18.6.13). While the general E-typical functors are necessary for future applications,
all phenomena in this paper occur already in the p-typical case. This is because for
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foundational questions, the general methods of [5] usually allow one to reduce matters
to the case where E consists of a single principal ideal, and in this case, the classical
p-typical functor is a representative example.

As in the p-typical case above, the functor WR,E,n has a left adjoint, which in
general we will denote by A �→ �R,E,n � A. But let us write�n � A = �R,E,n � A
and Wn = WR,E,n , for short. The first concern of this paper is to extend both of
these functors to the category of algebraic spaces over R, including for example all
R-schemes. In fact, as explained in Grothendieck–Verdier (SGA 4, exp. III [1]), there
is a general way of doing this—we only need to verify that Wn satisfies certain prop-
erties. The method is as follows. Let AffS denote the category of affine schemes over
S = Spec R. Then Wn induces a functor AffS → AffS , which we also denote by Wn .
So we have Wn(Spec A) = Spec Wn(A). This functor has two important properties.
First, if U → X and V → X are étale maps in AffS , then the induced map

Wn(U ×X V )−→ Wn(U )×Wn(X) Wn(V )

is an isomorphism. Second, if (Ui → X)i∈I is a covering family of étale maps, then
so is the induced family

(
Wn(Ui ) → Wn(X)

)
i∈I . Both of these are consequences of

van der Kallen’s theorem for E-typical Witt functors, which says that Wn preserves
étale maps of R-algebras [5, theorem B].

It then follows from general sheaf theory that if X is a sheaf of sets on AffS in the
étale topology, then so is the functor Wn∗(X) = X ◦ Wn , thus giving a functor Wn∗
from the category SpS of sheaves of sets on AffS to itself. By another general theorem,
this functor Wn∗ : SpS → SpS has a left adjoint W ∗

n satisfying

W ∗
n (X) = colim

U
Wn(U ),

where U runs over the category of affine schemes equipped with a map to X and
where we identify the affine scheme Wn(U ) with the object of SpS it represents.
These functors extend the affine functors Wn and �n � − to SpS :

W ∗
n (Spec A) = Spec Wn(A), Wn∗(Spec A) = Spec�n � A. (0.0.2)

They are the extensions we will consider. In fact, by the discussion above, they are the
unique extensions satisfying certain natural properties.

Theorem A If X ∈ SpS is an algebraic space, then so are W ∗
n (X) and Wn∗(X). If X

is a scheme, then so are W ∗
n (X) and Wn∗(X).

We call W ∗
n (X) the E-typical Witt space of X of length n, and we call Wn∗(X)

the E-typical arithmetic jet space of X of length n. In certain cases, they have been
constructed before. In their appendix, Langer and Zink [35] constructed the p-typical
Witt space of a general Zp-scheme X . For earlier work see Bloch [4], Lubkin [36],
and Illusie [30]. Buium [9] has constructed the p-typical arithmetic jet space of a
formal Zp-scheme, extending Greenberg’s construction of the special fiber [20,21].
When R is Z and E is arbitrary, Buium and Simanca have constructed the arithmetic
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jet spaces for affine schemes and have constructed certain approximations to it for
general schemes [12, Defintion 2.16].

For the reader who does not have a mind for abstract sheaf theory, let us reinterpret
theorem A in the language of covers. The most obvious way of defining the Witt space
of a separated scheme X is to choose an affine open cover (Ui )i∈I of X and to define
W ∗

n (X) to be the result of gluing the affine schemes Wn(Ui ) along the affine schemes
Wn(Ui ×X U j ). It is not hard to check that this gives a scheme which is independent of
the cover. (If X is arbitrary, then Ui ×X U j is separated, and so we can define W ∗

n (X)
in general by doing this procedure twice.) This is in Langer–Zink [35] in the p-typical
case, and the general E-typical case is no harder. When X is an algebraic space and
(Ui )i∈I is an étale cover, we need to know that

∐
i, j Wn(Ui ×X U j ) is an étale equiv-

alence relation on
∐

i Wn(Ui ). This requires van der Kallen’s theorem and a more
sophisticated gluing argument, but the principle is the same. Instead the approach of
this paper is to define W ∗

n (X) as an object of SpS and to prove later that it is a scheme
or an algebraic space. If one cares about W ∗

n only for schemes and algebraic spaces,
then the difference is mostly a matter of organization.

This method does not work as well with Wn∗, because it is rarely the case that the
Wn∗(Ui ) cover Wn∗(X). Indeed, generically over Spec R, the space Wn∗(X) agrees
with a certain cartesian power X N , and of course one cannot usually construct X N

by gluing the U N
i together. For p-adic formal schemes in the p-typical case, the

generic fiber is empty and this method does actually work, but in general it does not.
Instead we must use the total space U = ∐

i Ui of the cover. We will prove below
that Wn∗(U ×X U ) is an étale equivalence relation on Wn∗(U ), and the quotient is
Wn∗(X). If X is quasi-compact and separated, we can assume U and U ×X U are
affine, and then Wn∗(X) becomes the quotient of a known affine scheme by a known
affine étale equivalence relation. And so we could avoid abstract sheaf theory for such
X by taking this to be the definition of Wn∗(X), although it would still take a small
argument to prove that Wn∗ is the right adjoint of W ∗

n and that it sends schemes to
schemes, rather than just algebraic spaces. It would also take some work to remove
the assumption that X is quasi-compact and separated, but of course it could be done.
Instead we will define Wn∗(X) in one stroke as an object of SpS and then prove the
representability properties later.

Another benefit to working with the whole category SpS is that is allows us to make
the infinite-length constructions

W ∗(X) = colim
n

W ∗
n (X), W∗(X) = lim

n
Wn∗(X). (0.0.3)

These constructions are ind-algebraic spaces (resp. pro-algebraic spaces) but are gen-
erally not algebraic spaces. While it would be possible to remain in the category of
schemes or algebraic spaces by treating them as inductive systems (resp. projective
systems), it is convenient to be able to pass to the limit in SpS . We will only consider
the finite-length constructions in this paper, but it is in fact the infinite-length ones
that are of ultimate interest. Further, we will eventually want to consider iterated con-
structions, such as W ∗W ∗(X), and so it is convenient to have W ∗(X) defined when
X ind-algebraic, and to have W∗(X) defined when X is pro-algebraic. At this point,
it becomes easier just to let X be any object of SpS .
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The basic geometry of Witt vectors 881

Table 1 This table indicates whether the given property of algebraic spaces X over S is preserved by W∗
n

in general

Property of algebraic spaces Preserved Reference or
by W∗

n ? counterexample

Quasi-compact Yes 16.1

Quasi-separated Yes 16.8

Affine Yes 10.7

A scheme Yes 15.6

Of Krull dimension d Yes 16.5

Separated Yes 16.8

Reduced and flat over S Yes 16.5

Reduced No W1(Fp)

Regular, normal No W1(Z)

(locally) Noetherian Yesb 16.6 + 16.5

Sk (Serre’s property) Yesb 16.19

Cohen–Macaulay Yesb 16.19

Gorenstein No W2(Z)

Local complete intersection No W2(Z)

The superscript b means that X is assumed to be locally of finite type over S and that S is assumed to be
noetherian. In the counterexamples, Wn denotes the p-typical Witt vectors over Z of length n (traditionally
denoted Wn+1)

Preservation of properties by W ∗
n

We will spend some time looking at whether common properties of algebraic spaces
and maps are preserved by W ∗

n . Rather than state the results formally, I have arranged
them into Tables 1 and 2. (Note that we use normalized indexing throughout. So our
p-typical Witt functor Wn is what is traditionally denoted Wn+1. The reasons for this
are explained in [5, 2.5].)

Several results in the p-typical case are folklore or have appeared elsewhere. See,
for example, Bloch [4], Illusie [30], or Langer–Zink [35]. Perhaps the most inter-
esting of them is that while smoothness over S and regularity are essentially never
preserved by W ∗

n , being Cohen–Macaulay always is. As with the work of Ekedahl and
Illusie on p-typical Witt vectors of Fp-schemes [16,17,31], this has implications for
Grothendieck duality and de Rham–Witt theory, but we will not consider them here.

Preservation of properties by Wn∗

Preservation results for Wn∗ are typically easier to establish. This is because many
common properties of morphisms are naturally expressed in terms of the functor of
points, and the functor of points of Wn∗(X) is described simply in terms of that of X .
For the same reason, many of these results extend readily beyond algebraic spaces to
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Table 2 This table indicates whether the given property P of morphisms of algebraic spaces over S is
preserved by W∗

n in general

Property P of maps Must W∗
n ( f ) have When Y = S, must

f : X → Y of algebraic property P? W∗
n (X) → S have

spaces property P?

étale Yes 15.2 No Z

An open immersion Yes 15.6 No Z

Quasi-compact Yes 16.11 Yes 16.7

Quasi-separated Yes 16.11 Yes 16.8

Affine Yes 16.4 Yes +16.10

Integral Yes 16.4 Yes +16.10

A closed immersion Yes 16.4 No Z

Finite étale Yes 16.4 No Z

Separated Yes 16.11 Yes 16.8

Surjective Yes 16.11 Yes +16.10

Universally closed Yes 16.11 Yes +16.10

Locally of finite type Yesa 16.13 +16.6 Yes 16.5

Of finite type Yesa 16.13 +16.6 Yes 16.7

Finite Yesa 16.13 +16.6 Yes 16.9

Proper Yesa 16.13 +16.14 Yes +16.10

Flat No Z[x] Yes 16.5

Faithfully flat No Z[x] Yes 16.9

Cohen–Macaulay No Z[x] Yesb 16.19

Sk (Serre’s property) No Z[x] Yesb 16.19

Smooth No Z[x] No Z

Finite flat No Z[√p] Yes 16.9

The central two columns indicate whether P is preserved by W∗
n and give either a reference to the main

text or a counterexample. The right columns indicate whether the structure map W∗
n (X) → S must satisfy

P when the structure map X → S does. The superscript a means that X and Y are assumed to be locally of
finite type over S; and b means that also S is assumed to be noetherian. The counterexamples are for W∗

1 ,
the p-typical Witt functor of length 1, with X the spectrum of the given ring and Y = Spec Z

the category SpS ; this is unlike with W ∗
n , where we usually need to make represent-

ability assumptions.
A number of the results are displayed in Table 3. Because we have Wn∗(S) = S,

the preservation of properties relative to S is a special case of the preservation of prop-
erties of morphisms. This is unlike the case with W ∗

n , where we have the right-hand
pair of columns in Table 2. I have mostly ignored whether absolute properties, such
as regularity, are preserved by Wn∗. This is because such properties are usually not
preserved by products over S, and in that case they would fail to be preserved by Wn∗
for the trivial reason that Wn∗ is a product functor away from the ideals of E . This
is like the case with W ∗

n : properties that are not preserved by disjoint unions, such as
connectedness, are not listed in Table 1.
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The basic geometry of Witt vectors 883

Table 3 This table indicates whether the given property of maps of algebraic spaces over S is preserved
by Wn∗ in general

Property of maps of Preserved Reference or
algebraic spaces by Wn∗? counterexample

(formally) étale, smooth, unram. Yes 11.1

A monomorphism Yes 11.4

An open immersion Yes 11.1+11.4

Quasi-compact Yes 11.10

Quasi-separated Yes 11.10

Epimorphism in SpS Yes 11.4

Affine Yes 13.3

A closed immersion Yes 13.3

Integral, finite No Z × Z

Finite étale, finite flat No Z × Z

(locally) of finite type/pres. Yes 13.3

Separated Yes 13.3

Smooth and surjective Yes 13.3

Surjective No Z[√p]
Proper, universally closed No Z × Z

Smooth and proper No Z × Z

Flat No Z[x]/(x2 − px)

Faithfully flat No Z[x]/(x2 − px)

Cohen–Macaulay No Z[x]/(x2 − px)

Sk (Serre’s property) No Z[x]/(x2 − px)

The counterexamples are for the p-typical jet functor W1∗ applied to the map Spec A → Spec Z, where
A is the given ring. See 13.4

Geometric descriptions

As explained above, both W ∗
n (X) and Wn∗(X) can be described in terms of the case

where X is affine by using charts. But under some flatness restrictions on X , it is
possible to construct W ∗

n (X) and Wn∗(X) in purely geometric terms without mention-
ing Witt vectors or arithmetic jet spaces at all. I will give the descriptions here in the
p-typical case when n = 1; the general case is in the body of the paper.

Let us first consider the Witt space W ∗
1 (X). Assume that X is flat over Z locally

at p. Let X0 denote the special fiber X ×Spec Z Spec Fp. Then the theorem is that
W ∗

1 (X) is the coequalizer in the category of algebraic spaces of the two maps

X0

i1◦F
��

i2

�� X � X,

where i j : X0 → X � X denotes the canonical closed immersion into the j-th com-
ponent of X � X and where F is the absolute Frobenius endomorphism of X0. For
general n, the space W ∗

n (X) can be constructed by gluing n + 1 copies of X together
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884 J. Borger

in a similar but more complicated way along their fibers modulo p, . . . , pn . See
17.3.

For the arithmetic jet space W1∗(X), we need to assume that X is smooth over Z
locally at p. Let I denote the ideal sheaf on X × X defining the graph of the Frobenius
map on the special fiber X0, and let B denote the sub-OX×X -algebra of OX×X [1/p]
generated by the subsheaf p−1 I . Then the theorem is that W1∗(X) is naturally isomor-
phic to the relative spectrum Spec(B) over X × X . (One might hope that it is also worth
studying the full blow up of X ×X along I .) In particular, the map W1∗(X) → X ×X is
affine and is an isomorphism outside the fiber over p. For general n, the space Wn∗(X)
can be constructed by taking a similar but more complicated affine modification of
Xn+1. See 18.3.

Absolute algebraic geometry

Let us end with a few words on how the Witt and jet functors relate to the philosophy
of absolute algebraic geometry. The first hope of this philosophy is that there exists
a category whose relationship to the category of schemes over Z is analogous to the
relationship of Fp to Fp[t]. It is sometimes called the category of absolute schemes,
or schemes over F1. The second hope is that this category would suggest ways of
transporting results in algebraic geometry over Fp(t) to Q.

There are a number of proposed definitions of this category. One of the general
themes is that an absolute scheme could be defined to be a scheme together with some
additional structure, which should be interpreted as descent data from Z to F1. One
precise proposal for this structure is a so-called �-structure [6]. If X is a flat scheme
over Z, then a�-structure is equivalent to a commuting family of maps ψp : X → X ,
where p runs over the prime numbers, such that each ψp agrees with the Frobenius
map on the fiber of X over p. And if X is affine, then a �-structure is equivalent to
a (special) λ-ring structure on the corresponding ring, in the sense of Grothendieck’s
Riemann–Roch theory [22].

From this point of view, the functor that forgets the �-structure should be thought
of as base change from F1 to Z. Therefore its left adjoint should be thought of as the
base-forgetting functor, and its right adjoint the Weil restriction of scalars. In fact, it is
possible to say explicitly what these adjoints are. Let E be the set of all maximal ide-
als of Z. Then for any space X ∈ SpZ, the infinite-length Witt and jet spaces W ∗(X)
and W∗(X) of (0.0.3) carry natural�-structures, and hence give functors from spaces
over Z to those over F1. The first is the left adjoint of base change and the second
is the right adjoint. Thus it is natural to interpret the Witt space W ∗(X) ∈ SpS as
X ×F1 Spec Z and the arithmetic jet space W∗(X) ∈ SpS as the base change to Z of
the Weil restriction of scalars of X to F1. One would interpret the truncated versions
W ∗

n (X) and Wn∗(X) as approximations.
This theme is discussed in more detail in the preprint [6] and will developed in

forthcoming work.

Conventions

This paper is a continuation of [5]. When we need to refer to results in [5], we will
generally not mention the paper itself and instead simply refer to the subsection or
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Fig. 1 Dependence between sections

equation number. There is no risk of confusion because the numbering of this paper
is a continuation of the numbering of [5] (see Fig. 1). We will also keep the general
conventions of [5].

10 Sheaf-theoretic foundations

The purpose of this section is to set up the basic global definitions. The approach is
purely sheaf theoretic in the style of SGA 4 [1].

10.1 Spaces

Let Aff denote the category of affine schemes equipped with the étale topology: a fam-
ily (Xi → X) is a covering family if each Xi → X is étale and their images cover X .
Let Sp denote the category of sheaves of sets on Aff. We will call its objects spaces.1

Any scheme represents a contravariant set-valued functor on Aff, and this functor is a
sheaf. In this way, the category of schemes can be identified with a full subcategory
of Sp.

For any object S ∈ Sp, let SpS denote the subcategory of objects over S and let AffS

denote the full subcategory of SpS consisting of objects X over S, where X is affine.
When S is a scheme, define AffRelS to be the full subcategory of AffS consisting of
objects X whose structure map X → S factors through an affine open subscheme of
S. Observe that the inclusion AffRelS → SpS induces an equivalence between SpS
and the category of sheaves of sets on AffRelS , and for convenience, we will typically
identify the two. (The reason for using the site AffRelS , rather than the more common
one AffS , is that the E-typical Witt functors WR,E,n are defined in terms of the base
R; so it is more convenient to use a generating site in which the objects have an affine
base available.) In the important special case where S itself is affine, S = Spec R,
we will often write AffRelR and SpR , and of course we have AffRelS = AffS .

1 As always with large sites, there are set-theoretic subtleties. So, precisely, let ϒ be a universe containing
the universe of discourse. The term presheaf will mean a functor from AffRelS to the category of ϒ-small
sets, and the term sheaf will mean a presheaf satisfying the sheaf condition. Because AffRelS is anϒ-small
category, we can sheafify presheaves. On the other hand, the categories of sheaves and presheaves are not
true categories because their hom-sets are not necessarily true sets, but only ϒ-small sets. A possible way
of avoiding set-theoretic issues would be to consider only sheaves subject to certain set-theoretic smallness
conditions, but to my knowledge, no one has pursued this.
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10.2 Supramaximal ideals

For the rest of this paper, S will denote a separated scheme. (In all applications, S
will be an arithmetic curve. The extra generality we work in will not create any more
work.) Define a supramaximal ideal on S to be a finitely presented ([23], 0 (5.3.1))
ideal sheaf m in OS corresponding to either

(a) a closed point whose local ring OS,m is a discrete valuation ring with finite residue
field, or

(b) the empty subscheme.

When S is affine, this agrees with the earlier definition in 1.2.
We will generally fix the following notation: Let (mα)α∈E denote a family of supra-

maximal ideals of S which are pairwise coprime, that is, for all α, β ∈ E with α = β,
we have mα + mβ = OS . For each α, let qα be the cardinality of the ring OS,mα /mα .
Finally, n will be an element of N(E) = ⊕

E N.

10.3 Definition of W ∗
S,E,n(X) and WS,E,n∗(X)

Let X = Spec A be an object of AffRelS , and let Spec R be an affine open subscheme
of S which contains the image of the structure map X → S. Then WR,E,n(A) is inde-
pendent of R, up to a coherent family of canonical isomorphisms. (Here we abusively
conflate E and n with their restrictions to R.) Indeed, let Spec R′ be another such
subscheme of S. Since S is separated, we can assume Spec R′ ⊆ Spec R and can then
apply (2.6.2). Thus we can safely define

WS,E,n(X) = Spec WR,E,n(A).

Now we will pass from X ∈ AffRelS to X ∈ SpS . The functor WS,E,n preserves
étale fiber products. Indeed, let f : Spec A′ → Spec A and g : Spec A′′ → Spec A
be étale maps in AffRelS , and let Spec R be an affine open subscheme of S containing
the image of Spec A, and hence those of Spec A′ and Spec A′′; then by 9.4, we have

WR,E,n(A
′ ⊗A A′′) = WR,E,n(A

′)⊗WR,E,n(A) WR,E,n(A
′′).

Similarly, WS,E,n preserves covering families, by 9.2 and 6.9. It follows from general
sheaf theory (see the footnote to SGA 4 III 1.6 [1], say) that for any sheaf X , the
presheaf X ◦ WS,E,n is a sheaf. Let us write

WS,E,n∗ : SpS −→ SpS

for the functor X �→ X ◦ WS,E,n . Again by general sheaf theory (SGA 4 III 1.2 [1]),
the functor WS,E,n∗ has a left adjoint

W ∗
S,E,n : SpS −→ SpS
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constructed in the usual way. For any affine open subscheme Spec R of S and any
R-algebra A, it satisfies

W ∗
S,E,n(Spec A) = WS,E,n(Spec A) = Spec WR,E,n(A). (10.3.1)

By the adjunction between Wn and �n � −, we further have

WS,E,n∗(Spec A) = Spec(�R,E,n � A), (10.3.2)

for R and A as above.
We call W ∗

S,E,n(X) the E-typical Witt space of X of length n and WS,E,n∗(X) the
E-typical (arithmetic) jet space of X of length n. We will often use shortened forms
such as W ∗

S,n , W ∗
n , and so on.

(Note that W ∗
S,E,n does not generally commute with finite products. For example,

see 9.5. So, despite the notation, W ∗
S,E,n is essentially never the inverse-image functor

in a map of toposes.)

10.4 Restriction of S

Let j : S′ → S be a flat monomorphism of schemes (especially an open immersion or
a localization at a point). There are certain isomorphisms of functors

W ∗
S′,n ◦ j∗ ∼−→ j∗ ◦ W ∗

S,n (10.4.1)

WS,n∗ ◦ j∗
∼−→ j∗ ◦ WS′,n∗ (10.4.2)

W ∗
S,n ◦ j!

∼−→ j! ◦ W ∗
S′,n (10.4.3)

WS′,n∗ ◦ j∗ ∼−→ j∗ ◦ WS,n∗ (10.4.4)

j! ◦ WS′,n∗
∼−→ WS,n∗ ◦ j! (10.4.5)

which we will find useful. The map (10.4.1) restricted to the site AffRelS was con-
structed in (2.6.3); and it was shown to be an isomorphism in 6.1. It therefore induces
an isomorphism (10.4.2) on the whole sheaf category SpS′ and, by adjunction, (10.4.1)
on SpS . Similarly, (10.4.3) was constructed on AffRelS′ in (2.6.2); and this induces
(10.4.4) on the sheaf category SpS and, by adjunction, (10.4.3) on SpS′ .

Finally (10.4.5) is defined to be the composition

j! ◦ WS′,n∗
∼−→ j! ◦ WS′,n∗ ◦ j∗ ◦ j!

(10.4.1)−−−−−−→ j! ◦ j∗ ◦ WS,n∗ ◦ j! −→ WS,n∗ ◦ j!

where the first map is induced by the unit of the adjunction j! � j∗ and the last by
the counit. Let us show the last map isomorphism. It is enough to show that, for any
X ′ ∈ SpS′ , the structure map WS,n∗( j!(X ′)) → S factors through S′. To do this, it is
enough to assume X ′ = S′, and in this case, we will show WS,n∗(S′) = j!(WS′,n∗(S′)).
It suffices to show this locally on S, by (10.4.4), and so we can assume S is affine.
Since S is separated, S′ is also affine, in which case we can apply (2.6.4).
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It will be convenient to refer to the following simplified expressions of the isomor-
phisms above:

W ∗
S′,n(S

′ ×S X) = S′ ×S W ∗
S,n(X) (10.4.6)

WS,n∗
(

j∗(X ′)
) = j∗

(
WS′,n∗(X ′)) (10.4.7)

W ∗
S,n(X

′) = W ∗
S′,n(X

′) (10.4.8)

WS′,n∗(S′ ×S X) = S′ ×S WS,n∗(X) (10.4.9)

WS′,n∗(X ′) = WS,n∗(X ′) (10.4.10)

for X ∈ SpS , X ′ ∈ SpS′ .

10.5 Restriction of E

Observe that if we let E ′ denote the support in E of n ∈ N(E), then we have WS,E ′,n =
WS,E,n , and hence W ∗

S,E ′,n = W ∗
S,E,n and WS,E ′,n∗ = WS,E,n∗. So without loss of

generality, we can assume that E equals the support of n and hence that E is finite.
(This is no longer true in the infinite-length case, but that does not appear in this paper.)

10.6 Natural maps

Natural transformations between Witt vector functors for rings extend naturally to
natural transformations of their sheaf-theoretic variants and, by adjunction, of the
arithmetic jet spaces.

For example, for any partition E = E ′ � E ′′, the natural isomorphism (5.4.2) induces
natural isomorphisms

W ∗
S,E ′′,n′′(W ∗

S,E ′,n′(X))
∼−→ W ∗

S,E,n(X), (10.6.1)

WS,E,n∗(X)
∼−→ WS,E ′,n′∗(WS,E ′′,n′′∗(X)), (10.6.2)

for any X ∈ SpS .
Similarly, the natural projections Wn+i (A) → Wn(A), induced by the inclusion

�n ⊆ �n+i , induce natural maps

W ∗
n (X)

rn,i−−→ W ∗
n+i (X), (10.6.3)

Wn+i∗(X)
sn,i−−→ Wn∗(X), (10.6.4)

which we usually just call the natural inclusion and projection; and the natural trans-
formations ψi of (2.4.8) induce natural maps

Wn+i∗(X)
ψi−−→ Wn∗(X), (10.6.5)

W ∗
n (X)

ψi−−→ W ∗
n+i (X). (10.6.6)
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The affine ghost maps wi : Wn(A) → A (for i = 0, . . . , n) and w≤n : Wn(A) →
A[0,n] of (2.4.3) and (2.4.4) induce general ghost maps

X
wi−−→ W ∗

n (X), (10.6.7)
∐

[0,n]
X

w≤n−−−→ W ∗
n (X), (10.6.8)

and, by adjunction, the co-ghost maps

Wn∗(X)
κi−→ X, (10.6.9)

Wn∗(X)
κ≤n−−→ X [0,n]. (10.6.10)

Observe that if every ideal in E is the unit ideal, then w≤n and κ≤n are isomorphisms,
simply because they are induced by isomorphisms between the site maps, by for
example 2.7.

When E consists of a single ideal m, the reduced affine ghost maps w̄n : Wn(A) →
A/mn+1 A of (4.6.1) extend similarly to natural maps

Sn ×S X
w̄n−−→ W ∗

n (X), (10.6.11)

where Sn = Spec OS/m
n+1. Indeed, both sides commute with colimits in X , and so,

since every X ∈ SpS is the colimit of the objects of AffRelS mapping to it, the maps
in the affine case naturally induce maps in general.

Let κ̄n denote the reduced co-ghost map

κ̄n : Sn ×S Wn∗(X)
w̄n−−→ W ∗

n Wn∗(X)
ε−→ X, (10.6.12)

where ε is the counit of the evident adjunction.
Finally, we have natural plethysm and co-plethysm maps

W ∗
m W ∗

n (X)
μX−−→ W ∗

m+n(X), (10.6.13)

Wm+n∗(X) −→ Wn∗Wm∗(X), (10.6.14)

which are induced by (2.4.5).

10.7 Proposition If X is affine, then so is W ∗
n (X).

Proof First observe that when S is affine, this was established already in (10.3.1).
For general S, we will apply Chevalley’s theorem (in the final form, due to Rydh [38],

Theorem (8.1)), to the ghost map w≤n of (10.6.8). To apply it, it is enough to verify
that

∐
[0,n] X is affine, that W ∗

n (X) is a scheme, and thatw≤n is integral and surjective.
The first statement is clear. Let us check the second. Let (Si )i∈I be an open affine

cover of S. Since W ∗
n (X) is the quotient of

∐
i Si ×S W ∗

n (X) by the equivalence rela-
tion

∐
j,k S j ×S Sk ×S W ∗

n (X), it is enough to show that each of the summands in
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each expression is affine. And since S is separated, it is enough to show the single
statement that, for any affine open subscheme S′ of S, the space S′ ×S W ∗

n (X) is affine.
By (10.4.6), we have S′ ×S W ∗

n (X) = W ∗
S′,n(S

′ ×S X). Further, because X and S′ are
affine and S is separated, S′ ×S X is affine. Therefore W ∗

S′,n(S
′ ×S X) is affine, by the

case mentioned in the beginning, and hence so is S′ ×S W ∗
n (X).

Now let us check that w≤n is integral and surjective. It is enough to show this for
each base-change map Si ×S w≤n . By (10.4.6) again, this map can be identified with
the ghost map

∐
[0,n](Si ×S X) → W ∗

Si ,n
(Si ×S X). In other words, we may assume

S is affine, in which case we can conclude by applying 10.8 below. ��
10.8 Lemma Suppose S is affine, S = Spec R. For any R-algebra A, the map w≤n :
WR,n(A) → A[0,n] is integral, and its kernel I satisfies I 2N = 0, where N = ∑

m nm.

Proof We may assume that E equals the support of n, which is finite, and then reason
by induction on the cardinality of E . When E is empty, w≤n is an isomorphism. Now
suppose E contains an element m. Write E ′ = E −{m} and let n′ denote the restriction
of n to E ′. Then the map w≤n factors as follows:

WE,n(A)

∼(5.4.2)

��

w≤n
��
(

A[0,nm ])[0,n′]

Wm,nm (WE ′,n′(A))
w≤nm �� WE ′,n′(A)[0,nm ] ∼ �� WE ′,n′(A[0,nm ]).

w≤n′
��

So it is enough to show w≤nm and w≤n′ are integral and their kernels are nilpotent of
the appropriate degree. For w≤n′ , it follows by induction on E . For a, it follows by
induction on the integer nm, using 8.1(a)–(b). ��

10.9 Algebraic spaces

We will define the category of algebraic spaces to be the smallest full subcategory
of SpZ which contains AffZ and which is closed under arbitrary (set indexed) dis-
joint unions and quotients by étale equivalence relations. This obviously exists. It also
agrees with the category of algebraic spaces as defined in Toën–Vaquié [39], sect. 2.
This follows from Toën–Vezzosi [40], Corollary 1.3.3.5, as does the fact that this
category is closed under finite limits. (Note that [40] is written in the homotopical
language of higher stacks, but it is possible to translate the arguments by substituting
the word space for stack and so on.) Indeed, as mentioned in their Remark 2.6, their
category has the defining closure property of ours.

It will be convenient to use their concept of an algebraic space X being m-geometric,
m ∈ Z. For m ≤ −1, the space X is m-geometric if and only if it is affine, it is 0-geo-
metric if and only if its diagonal map is affine, and every algebraic space is m-geometric
for m ≥ 1. (Again, see [39], Remark 2.6. Note that they require m ≥ −1, but it will
be convenient for us to allow m < −1.) In particular, for m ≥ 0, every m-geometric
algebraic space is the quotient of a disjoint union of affine schemes by an étale equiv-
alence relation which is a disjoint union of (m − 1)-geometric algebraic spaces. (Note
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however that the converse is not true: over a field of characteristic 0, the quotient group
Ga/Z is 1-geometric but not 0-geometric.) Let AlgSpm denote the full subcategory of
SpZ consisting of all disjoint unions of m-geometric algebraic spaces. A map X → Y
of spaces is said to be m-representable if for every affine scheme T and every map
T → Y , the pull back X ×Y T is an m-geometric algebraic space.

This definition of algebraic space also agrees with that of Raynaud–Gruson [37].
Indeed, the category of Raynaud–Gruson algebraic spaces contains affine schemes
and is closed under disjoint unions and quotients by étale equivalence relations. (See
Conrad–Lieblich–Olsson [13], A.1.2.) And conversely, any algebraic space in the
sense of Raynaud–Gruson is the quotient of a disjoint union of affine schemes by
an étale equivalence relation which is a scheme, necessarily separated; therefore it is
1-geometric.

The difference between these two approaches is that Raynaud–Gruson [37] use
schemes as the intermediate class of algebraic spaces, and Toën–Vaquié use algebraic
spaces with affine diagonal. The advantage of the second approach is that the two
steps—going from affine schemes to the intermediate category, and going from that
to general algebraic spaces—are two instances of a single procedure. Thus we can
prove results by induction on the geometricity m, and so we do not need to consider
the intermediate case separately. Note however that the induction is rather meager in
that it terminates after two steps.

Finally, a space is algebraic in the sense of Knutson [33] if and only if it is quasi-
separated and algebraic in the sense above.

10.10 Smoothness properties of maps

Let us say a map f : X → Y in Sp is formally étale (resp. formally unramified, resp.
formally smooth) if the usual nilpotent lifting properties (EGA IV 17.1.2 (iii) [28])
hold: for all nilpotent closed immersions T̄ → T of affine schemes, the induced map

X (T )−→ X (T̄ )×Y (T̄ ) Y (T ) (10.10.1)

is a bijection (resp. injection, resp. surjection).
Also, let us say that f is locally of finite presentation if for any cofiltered system

(Ti )i∈I of Y -schemes, each of which is affine, the induced map

colim
i

HomY (Ti , X)−→ HomY (lim
i

Ti , X) (10.10.2)

is a bijection. This definition agrees with the usual one if X and Y are schemes (EGA
IV 8.14.2.c [27]).

We call a map étale (resp. unramified, resp. smooth) if it is locally of finite presen-
tation and formally étale (resp. formally unramified, resp. formally smooth). When X
and Y are schemes, all these definitions agree with the usual ones.
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10.11 E-flat and E-smooth algebraic spaces

Let us say that an algebraic space X over S is E-flat (resp. E-smooth) if, for all
maximal ideals m ∈ E , the algebraic space X ×S Spec OS,m is flat (resp. smooth)
over Spec OS,m, where OS,m is the local ring of S at m. If E = {m}, we will often
write m-flat instead of E-flat.

11 Sheaf-theoretic properties of Wn∗

We continue with the notation of 10.2.

11.1 Proposition The functor Wn∗ : SpS → SpS preserves the following properties
of maps:

(a) locally of finite presentation,
(b) formally étale, formally unramified, formally smooth,
(c) étale, unramified, smooth.

Proof (a): Let (Ti )i∈I be a cofiltered system in AffS mapping to Wn∗(Y ), as in (10.10.2).
The following chain of equalities, which we will justify below, constitutes the proof:

HomWn∗(Y )(limi Ti ,Wn∗(X)) = HomY (W
∗
n (limi Ti ), X)

1= HomY (limi W ∗
n (Ti ), X)

2= colimi HomY (W
∗
n (Ti ), X)

= colimi HomWn∗(Y )(Ti ,Wn∗(X)).

Equality 2 holds because each W ∗
n (Ti ) is affine (10.7) and because f : X → Y is

locally of finite presentation.
To show equality 1, it is enough to show

W ∗
n (limi Ti ) = limi W ∗

n (Ti ). (11.1.1)

Let (S j ) j∈J be an affine open cover of S. Then it is enough to show (11.1.1) after
applying each functor S j ×S −. We can then reduce to the case S = S j , by using
(10.4.6), the fact that S j ×S − commutes with limits, and the fact that each S j ×S Ti is
affine (S being separated). In other words, we may assume S is affine, in which case
(11.1.1) follows from 6.10 and (10.3.1).

(b): By definition, the map Wn∗(X) → Wn∗(Y ) is formally étale (resp. formally
unramified, resp. formally smooth) if for any closed immersion T̄ → T of affine
schemes defined by a nilpotent ideal sheaf, the induced map

Wn∗(X)(T )−→ Wn∗(X)(T̄ )×Wn∗(Y )(T̄ ) Wn∗(Y )(T ).
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is bijective (resp. injective, resp. surjective). But this map is the same, by adjunction,
as the map

X (W ∗
n (T ))−→ X (W ∗

n (T̄ ))×Y (W ∗
n (T̄ ))

Y (W ∗
n (T )).

Because f : X → Y is formally étale (resp. . . .), to show this map is bijective (resp.
. . .), it is enough to check that the induced map Wn(T̄ ) → Wn(T ) is also a nilpotent
immersion of affine schemes. Affineness follows from 10.7. On the other hand, to
show nilpotence, we may work locally. So by (10.4.6), we may assume S and T are
affine (since S is separated). We can then apply 6.4.

(c): This follows from (a) and (b) by definition. ��

11.2 Proposition Suppose E consists of one ideal m, and set S0 = Spec OS/m. Let
f : X → Y be a map in SpS which is formally étale (resp. formally unramified, resp.
formally smooth). Then the map

S0 ×S Wn∗(X)
idS0 ×(Wn∗( f ),κ0)

�� S0 ×S Wn∗(Y )×κ0,Y X (11.2.1)

is an isomorphism (resp. monomorphism, resp. presheaf epimorphism).

Proof Let Z be an affine S0-scheme. Then Z is an object of AffRelS . We have the
following commutative diagram:

HomS(Z ,Wn∗(X))

∼c
��

a �� HomS(Z ,Wn∗(Y )×Y X)

∼d
��

HomS(W ∗
n (Z), X) b �� HomS(W ∗

n (Z), Y )×HomS(Z ,Y ) HomS(Z , X),

where a is induced by (11.2.1), and c and d are given by the evident universal prop-
erties. The map w0 : Z → Wn(Z) is a closed immersion defined by a nilpotent ideal,
by 6.8 and (10.3.1). Therefore, since f is formally étale (resp. formally unramified,
resp. formally smooth), b is bijective (resp. injective, resp. surjective), and hence so
is a. In other words, the map in question is an isomorphism (resp. monomorphism,
resp. presheaf epimorphism). ��

11.3 Corollary Let E and S0 be as in 11.2. Let (Ui → X)i∈I be an epimorphic family
of étale maps in SpS. Then the induced family

(
S0 ×S Wn∗(Ui )−→ S0 ×S Wn∗(X)

)

i∈I

is an epimorphic family of étale maps.
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Proof By 11.1, we only need to show the family is epimorphic. By 11.2, each square

S0 ×S Wn∗(Ui ) ��

κ0◦pr2

��

S0 ×S Wn∗(X)
κ0◦pr2

��

Ui �� X

is cartesian. The lower arrows are assumed to form a covering family indexed by i ∈ I ,
and hence so do the upper arrows. ��

11.4 Proposition The functor Wn∗ : SpS → SpS preserves epimorphisms and mono-
morphisms.

Proof The statement about monomorphisms follows for general reasons from the fact
that Wn∗ has a left adjoint.

Let us now consider the statement about epimorphisms. By (10.6.2), it suffices to
assume E consists of one maximal ideal m. Let f : X → Y be an epimorphism in
SpS .

First consider the case where X and Y lie in AffRelS and f is étale. The map
Wn∗( f ) : Wn∗(X) → Wn∗(Y ) is also an étale map between objects of AffRelS , by 11.1
and (10.3.2). Being epimorphic is then equivalent to being surjective, which can be
checked after base change to s = Spec OS/m and to S − s. For S − s, the base change
of Wn∗(X) → Wn∗(Y ) agrees, by (10.4.9), with that of X [0,n] → Y [0,n], which is
surjective. On the other hand, over s the map Wn∗( f ) : Wn∗(X) → Wn∗(Y ) is a base
change of the map f : X → Y , by 11.2, which is also surjective.

Now consider the general case, where f : X → Y is any epimorphism of spaces.
It is enough to show that for any object V ∈ AffRelS , any given map a : V → Wn∗(Y )
lifts locally on V to Wn∗(X). Since f is an epimorphism and W ∗

n (V ) is affine, and
hence quasi-compact, there exists a commutative diagram

X

f

��

Z
b��

c
����

Y W ∗
n (V ),

a��

(11.4.1)

where Z ∈ AffRelS , c is an étale cover, and b is some map. Consider the commutative
diagram

Wn∗(X)

Wn∗( f )

��

Wn∗(Z)
Wn∗(b)��

Wn∗(c)
��

Wn∗(Z)×Wn∗W ∗
n (V ) V

pr1��

pr2

��

Wn∗(Y ) Wn∗W ∗
n (V )

Wn∗(a)�� V,
η

��

(11.4.2)
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where η is the unit of the evident adjunction. By the argument above, Wn∗(c) is an
étale epimorphism between objects of AffRelS . Therefore pr2 is the same, and hence
the map V → Wn∗(Y ) lifts locally to Wn∗(X). ��
11.5 Corollary Let (π1, π2) : � → X ×S X be an equivalence relation on a space
X ∈ SpS. Then the map

(Wn∗(π1),Wn∗(π2)) : Wn∗(�) → Wn∗(X)× Wn∗(X)

is an equivalence relation on Wn∗(X), and the induced map

Wn∗(X)/Wn∗(�)−→ Wn∗(X/�)

is an isomorphism.

Proof By 11.4, the map Wn∗(X) → Wn∗(X/�) is an epimorphism of spaces. On the
other hand, since Wn∗ has a left adjoint, we have

Wn∗(X)×Wn∗(X/�) Wn∗(�) = Wn∗(X ×X/� X) = Wn∗(�),

and so the equivalence relation inducing the quotient Wn∗(X/�) is Wn∗(�). ��
11.6 Remark These results allow us to present Wn∗(X) using charts, but not in the
sense that might first come to mind. For while Wn∗ preserves covering maps (by 11.4),
it does not generally preserve covering families. That is, if (Ui )i∈I is an étale covering
family of X , then the space Wn∗(

∐
i Ui ) covers Wn∗(X), but it is usually not true that∐

i Wn∗(Ui ) covers it. For example, consider the p-typical case with n = 1. On the
generic fiber, W1∗(X) is just X × X ; and of course

∐
i Ui × Ui does not generally

cover X × X . In particular, Wn∗(X) cannot be constructed using charts by gluing the
spaces Wn∗(Ui ) together along the overlaps Wn∗(U j ×X Uk). This is just a general
property of products and not a particular property of Frobenius lifts.

On the other hand, if X is an algebraic space over Spec OS/m
j , for some integer

j ≥ 0, this naive gluing method does work. This is because for any étale cover (Ui )i∈I

of X , the family
(
Wn∗(Ui )

)
i∈I is an étale cover of Wn∗(X). This is true by 11.1 and

11.3. See 12.8 for the implications this has for Buium’s p-jet spaces.

11.7 Proposition The functor Wn∗ : SpS → SpS commutes with filtered colimits.

Proof By adjunction, this is equivalent to the statement that for any filtered system
(Xi )i∈I and any T ∈ AffRelS the map

colimi Hom
(
W ∗

n (T ), Xi
)−→ Hom

(
W ∗

n (T ), colimi Xi
)

is an isomorphism. Because W ∗
n (T ) is affine (10.3.1), it is quasi-compact and quasi-

separated, and so the proposition follows from SGA 4 VI 1.23(ii) [2]. ��

123



896 J. Borger

11.8 Lemma Let (St )t∈T be an open cover of S, let X be an object of SpS, and let
(Ui )i∈I be a cover of X by objects of SpS. Let J denote the set of finite subsets of I ,
and for each j ∈ J , write Vj = ∐

i∈ j Ui . Then (St ×S Vj )(t, j)∈T ×J is a cover of X

with the property that
(
Wn∗(St ×S Vj )

)
(t, j)∈T ×J is a cover of Wn∗(X).

Proof It is clear that (St ×S Vj )t, j is a cover of X . Let us show that
(
Wn∗(St ×S Vj )

)
t, j

is a cover of Wn∗(X). By (10.4.9) and (10.4.10), it is enough to consider the case
where (St )t∈T is the trivial cover consisting of S itself. Thus it is enough to show that(
Wn∗(Vj )

)
j is a cover of Wn∗(X).

Observe that we have a natural isomorphism
∐

i∈I

Ui = colim j∈J Vj ; (11.8.1)

indeed, both sides have the same universal property. Now consider the commutative
diagram

∐

j∈J

Wn∗(Vj )
a ��

����

Wn∗(X)

colim j∈J Wn∗(Vj )
∼

(11.7)
�� Wn∗

(
colim j∈J Vj

) ∼
(11.8.1)

�� Wn∗
( ∐

i∈I

Ui

)
,

b

��

where a and b are the maps induced by the covering maps Vj → X and Ui → X .
Then a is an epimorphism because b is, which is true by 11.4. ��

11.9 Wn∗-stable covers

It is useful to have covers (Xk)k∈K of X that are Wn∗-stable, meaning that
(Wn∗(Xk))k∈K is a cover of Wn∗(X). While general covers are not Wn∗-stable (see
11.6), some are. Any singleton cover is, by 11.4, but it is not always enough to have this
because there can fail to be singleton covers with desirable properties. For instance,
if X is not quasi-compact, it cannot be covered by a single affine scheme. But it often
suffices to know only that Wn∗-stable covers with certain desirable properties exist,
and we can sometimes use 11.8 to make them. For instance, we can produce a Wn∗-
stable cover with each Xk affine by taking K = T × J and X(t, j) = St ×S Vj in 11.8,
where the Ui and St are affine. If we refine the cover (St )t∈T so that each ideal in the
support of n is principal on each St , then we further have that the image of each Xk

in S is contained in an affine open subscheme of S on which each ideal in the support
of n is principal. If X is an algebraic space, we can even further arrange for each Xk

to be étale over X by taking (Ui )i∈I to be an étale cover of X .

11.10 Proposition The functor Wn∗ : SpS → SpS preserves

(a) quasi-compactness of objects,
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(b) quasi-separatedness of objects,
(c) quasi-compactness of maps,
(d) quasi-separatedness of maps.

Proof Let X be an object in SpS .
(a): Suppose X is quasi-compact. Let (Ui )i∈I be a finite family in AffRelS which

covers X . (Such a family exists, because the large family of all morphisms from
objects of AffRelS to X covers to X , and therefore has a finite subcover, because X is
quasi-compact.) Then the space U = ∐

i∈I Ui is affine. By 11.4, the map Wn∗(U ) →
Wn∗(X) is an epimorphism. Since Wn∗(U ) is affine, it is quasi-compact. It follows
that Wn∗(X) is quasi-compact (SGA 4 VI 1.3 [2]).

(b): Suppose X is quasi-separated. Then for any cover (Ui )i∈I of X , with each
Ui ∈ AffRelS , each space Ui ×X U j is quasi-compact. Therefore, by (a), each space
Wn∗(Ui )×Wn∗(X)Wn∗(U j ) = Wn∗(Ui ×X U j ) is quasi-compact. By SGA 4 VI 1.17 [2],
this implies that Wn∗(X) is quasi-separated as long as we can choose the cover (Ui )i∈I

such that (Wn∗(Ui ))i∈I is a cover of Wn∗(X). This is possible by 11.9.
(c): Let f : X → Y be a quasi-compact map of spaces. As above, by 11.9, there

exists a cover (Ui )i∈I of Y , with each Ui ∈ AffRelS , such that (Wn∗(Ui ))i∈I is an
affine cover of Wn∗(Y ). It is then enough to show that each Wn∗(Ui )×Wn∗(Y )Wn∗(X) is
quasi-compact (SGA 4 VI 1.16 [2]), but this agrees with Wn∗(Ui ×Y X). Now apply (a).

(d): Let f : X → Y be a quasi-separated map of spaces. By definition, its diagonal
map  f is quasi-compact. By (c), so is the map Wn∗( f ), and this agrees with the
diagonal map of Wn∗( f ). ��

12 Wn∗ and algebraic spaces

We continue with the notation of 10.2.

12.1 Theorem Let X be an algebraic space over S. Then Wn∗(X) is an algebraic
space. If X is a scheme, then so is Wn∗(X).

For the proof, see 12 below. Observe that when X is quasi-compact and has affine
diagonal (e.g. is separated), as is often the case in applications, the algebraicity of
Wn∗(X) follows immediately from 11.5 and 11.1. Thus, for the part of the theorem
asserting that Wn∗(X) is an algebraic space, all the work below is in removing these
assumptions.

12.2 Proposition For any spaces X,Y ∈ SpS, the diagram

Wn∗(X)
Wn∗( j)

��

κ≤n

��

Wn∗(X � Y )

κ≤n

��

X [0,n] j [0,n]
�� (X � Y )[0,n],

where j : X → X � Y denotes the canonical summand inclusion, is cartesian.
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Proof It is enough to show that for any object T ∈ AffRelS , the functor Hom(T,−)
takes the diagram above to a cartesian diagram. By adjunction, this is equivalent to
the existence of a unique dashed arrow making the diagram

∐

[0,n]
T

w≤n
��

��

W ∗
n (T )

��

∃!?

��� � � � � � �

X
j

�� X � Y

commute, for any given vertical arrows making the square commute. It is therefore
enough to show W ∗

n (T )×X � Y Y = ∅.
To do this, we will show that if there exists a map U → W ∗

n (T )×X � Y Y , where U
is an affine scheme, then U is empty. Pulling back such a map by w≤n , we get a map

( ∐

[0,n]
T

)
×W ∗

n (T ) U −→
( ∐

[0,n]
T

)
×W ∗

n (T ) W ∗
n (T )×(X � Y ) Y.

By the commutativity of the square above, the right-hand side is empty. Therefore the
left-hand side is empty. But sincew≤n is a surjective map of (affine) schemes (by 10.8
and (10.3.2)), U must be empty. ��
12.3 Remark It follows from 12.2 that

∐
i Wn∗(Xi ) is a summand of Wn∗(

∐
i Xi ). In

all but the most trivial cases, the two will not be equal. See 11.6, for example.

12.4 Lemma If X is a disjoint union in SpS of objects in AffRelS, then so is Wn∗(X).

Proof Let (Xi )i∈I be a family of objects in AffRelS such that X ∼= ∐
i∈I Xi . For any

function h : [0, n] → I , write

Xh =
∏

m∈[0,n]
Xh(m).

Then we have

X [0,n] =
∐

h

Xh,

where h runs over all maps [0, n] → I . Therefore it is enough to show that the pre-
image of each Xh under the map κ≤n : Wn∗(X) → X [0,n] is a disjoint union in SpS
of objects in AffRelS .

Since this preimage lies over Xh , and hence over Xh(0), it lies over an affine open
subscheme S′ of S. Therefore it is enough to show that this preimage is affine.

Let us first do this when I is finite. Because Xh lies over S′, we have

Xh ×X [0,n] Wn∗(X) = Xh ×X [0,n]
(
Wn∗(X)×S S′). (12.4.1)
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Since I is finite, X is affine, and hence so is Xh . On the other hand, Wn∗(X)×S S′ is
affine, by (10.4.9) and (10.3.2). Therefore the left-hand side of (12.4.1) is affine.

Now suppose I is arbitrary. Let J denote the image of h, and write Y = ∐
i∈J Xi .

Then the map Xh → X [0,n] factors through the map j [0,n] : Y [0,n] → X [0,n] induced
by the summand inclusion j : Y → X . Therefore by 12.2, the right-hand square in the
diagram

Xh ×Y [0,n] Wn∗(Y )
pr2 ��

pr1

��

Wn∗(Y )
Wn∗( j)

��

κ≤n

��

Wn∗(X)

κ≤n

��

Xh �� Y [0,n] j [0,n]
�� X [0,n]

is cartesian. Thus Xh ×X [0,n] Wn∗(X) agrees with Xh ×Y [0,n] Wn∗(Y ), which is affine
by the case proved above and the fact that Y is affine. ��
12.5 Proof of 12.1 It is enough to show that S′ ×S Wn∗(X) is an algebraic space, or a
scheme when X is, for all sufficiently small affine open subschemes S′ of S. Therefore
by (10.4.9), we may assume that S = Spec R for some ring R, and that the ideal m of
R is generated by a single element π .

Let us first show that Wn∗(X) is an algebraic space. We will show by induction on
m that if X is m-geometric, then Wn∗(X) is an algebraic space. If m = −1, then X is
affine and so we can apply (10.3.1). Now assume m ≥ 0.

Let (Ui → X)i∈I be an affine étale cover for which each map Ui → X is (m − 1)-
representable. Write U = ∐

i∈I Ui . Consider the diagrams

U ×X U
��
�� U �� X.

and

Wn∗(U ×X U )
��
�� Wn∗(U ) �� Wn∗(X).

By 11.5 and 11.1, the space Wn∗(U ×X U ) is an étale equivalence relation on Wn∗(U )
with quotient Wn∗(X). Since the category of algebraic spaces is closed under quotients
by étale equivalence relations, it is sufficient to show that Wn∗(U ) and Wn∗(U ×X U )
are algebraic spaces. This holds because of two facts. First, U (resp. U ×X U ) is a
disjoint union of −1-geometric (resp. (m − 1)-geometric) algebraic spaces. Second,
for k ≤ m − 1, the functor Wn∗ applied to a disjoint union of k-geometric algebraic
spaces is an algebraic space. Indeed, if k = −1, this follows from 12.4; if k ≥ 0,
then a disjoint union of k-geometric algebraic spaces is itself a k-geometric algebraic
space, and so it follows by induction.

Now suppose X is a scheme. To show that Wn∗(X) is a scheme, we may assume,
by (10.6.2), that E consists of a single ideal m. Since Wn∗(X) is an algebraic space,
it is enough to show it has an affine open cover.

Let (Vi )i∈I be an affine open cover of X . For any S-space Y , write Y ′ = Y ×S

Spec R[1/π ]. Then each V ′
i is an affine open subscheme of X . Further, the schemes

123



900 J. Borger

V ′
i0

×S · · · ×S V ′
in

cover the product (X ′)[0,n] = X ′ ×S . . .×S X ′, which agrees with
Wn∗(X ′) and hence Wn∗(X)′ (by (10.4.9)–(10.4.10)). So all that remains is to show
the fiber of Wn∗(X) over m can be covered by open subspaces that are affine schemes.

Since each Vi is affine, each Wn∗(Vi ) is affine, by 10.3.2. Since each map Vi → X
is an étale monomorphism, each map Wn∗(Vi ) → Wn∗(X) is an étale monomorphism,
by 11.1 and 11.4. Therefore these maps are open immersions, and by 11.3 they cover
the fiber of Wn∗(X) over m. ��
12.6 Corollary Let X be an E-smooth (10.11) algebraic space over S. Then Wn∗(X)
is an E-smooth algebraic space over S. In particular, it is E-flat.

Proof By 12.1, we know Wn∗(X) is an algebraic space. Now let us show it is smooth
locally at all maximal ideals of E . By (10.4.9), we may assume that X is smooth over
S. Then apply 11.1 and the fact that smoothness for a map of algebraic spaces implies
flatness. ��

12.7 Wn∗ does not generally preserve flatness

For example, consider the p-typical jets of length 1. Let A = Z[x]/(x2 − px), which
is flat over Z (and happens to be isomorphic to W1(Z)). Then

Z[1/p] ⊗Z (�1 � A) = �1 � (Z[1/p] ⊗ A) = (Z[1/p] ⊗ A)⊗2 = Z[1/p]2×2.

But a short computation using 3.4 shows

�1 � A = Z[x, δ]/(x2 − px, 2x pδ + pδ2 − x p − pδ + p p−1x p),

and hence

Fp ⊗Z (�1 � A) = Fp[x, δ]/(x2).

So Spec(�1 � A) has one irreducible component lying over Spec Fp. In particular, it
is not flat locally at p.

It would be interesting to find a reasonable condition on X that is weaker than
smoothness over S but still implies flatness of Wn∗(X) over S.

12.8 Relation to Greenberg’s and Buium’s spaces

In the case S = Spec Zp and E = {pZp}, our arithmetic jet space is closely related
to previously defined spaces, the Greenberg transform and Buium’s p-jet space.

Let X be a scheme locally of finite type over Z/pn+1Z. Then the Greenberg trans-
form Grn+1(X) is a scheme over Fp. (See [20,21], or for a summary in modern
language, [7, p. 276].) It is related to Wn∗(X) by the formula

Grn+1(Y ) = Wn∗(Y )×Spec Zp Spec Fp. (12.8.1)
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This is simply because they represent, almost by definition, the same functor.
On the other hand, for smooth schemes Y over the completion R̃ of the maximal

unramified extension of Zp, Buium has defined p-jet spaces J n(Y ), which are formal
schemes over R̃. (See [9, section 2], or [10, section 3.1].) His jet space is related to
ours by the formula

J n(Y ) = Wn∗(Ŷ ), (12.8.2)

where Ŷ denotes the colimit of the schemes Y ×Spec Z Spec Z/pmZ, taken over m and
in the category SpS . Indeed it is true when Y is affine, by 3.4, and it holds when Y is
any smooth scheme over R̃ by gluing. As mentioned in 11.6, the gluing methods used
to define Wn∗ and J n are not the same in general, but here Ŷ is p-adically formal; so
they agree by the discussion in 11.6.

The following consequence of (12.8.2) is also worth recording: if X is a smooth
scheme over Zp, then we have

J n(X ×Spec Zp Spec R̃) = Wn∗(X̂)×Spf Zp Spf R̃. (12.8.3)

13 Preservation of geometric properties by Wn∗

We continue with the notation of 10.2.

13.1 Étale-local properties

Recall that a property P of algebraic spaces over S is said to be étale-local if the
following hold: whenever X satisfies P , then so does any algebraic space Y which
admits an étale map to X ; and if (Ui )i∈I is an étale cover of X such that each Ui

satisfies P , then so does X .
A property P of maps of algebraic spaces is said to be étale-local on the target if

for any map f : X → Y the following hold: whenever f satisfies P , then so does any
base change fV : X ×Y V → V with V → Y étale; and if (Vj ) j∈J is an étale cover
of Y such that each base change fVj satisfies P , then so does f .

Such a property is said to be étale-local on the source if, in addition, the following
hold: whenever f satisfies P , then so does any composition U → X → Y with
U → X étale; and if (Ui )i∈I is an étale cover of X such that each composition
Ui → X → Y satisfies P , then so does f .

13.2 Proposition Let P be a property of maps f : X → Y of algebraic spaces which
is étale-local on the target. For Wn∗ to preserve property P, it is sufficient that it do
so when E consists of one principal ideal, S is affine, and Y is affine.

If property P is also étale-local on the source, then we may further restrict to the
case where X is affine.

The argument is the same as the one given below for 16.3, except that one takes
affine étale covering families of the kind given by 11.9, and one uses the easy fact that

123



902 J. Borger

Wn∗ preserves fiber products instead of the more difficult 15.2(c). Since the details
are given in 16.3, let us omit them here.

13.3 Proposition The following properties of maps (étale-local on the target) are
preserved by Wn∗:

(a) affine,
(b) a closed immersion,
(c) locally of finite type,
(d) locally of finite presentation,
(e) of finite type,
(f) of finite presentation,
(g) separated,
(h) smooth and surjective.

Proof Let f : X → Y be such a map. By 13.2, we may assume S = Spec R, Y =
Spec A.

(a)–(b): These are affine properties; so we have X = Spec B, for some A-algebra B.
By (10.3.2), we have Wn∗(X) = Spec�n � B, which is affine. This proves (a). If the
structure map A → B is surjective, then so is the induced map �n � A → �n � B,
which proves (b).

(c)–(d): These properties are étale-local on the source, and so we may assume
X = Spec B, where B is a finitely generated A-algebra. Take an integer m ≥ 0 such
that there exists a surjection A[x]⊗m → B. Then the induced map

(�n � A)⊗R (�
⊗m
n ) = �n � (A ⊗R R[x1, . . . , xm])−→�n � B

is surjective. Therefore it is enough to show that�n is finitely generated as an R-alge-
bra. This was proved in 6.10.

Now suppose that B is finitely presented. Then there exist finitely generated A-
algebras A′ and A′′ and a coequalizer diagram

A′′ ��
�� A′ �� B.

This then induces a coequalizer diagram

�n � A′′ ��
�� �n � A′ �� �n � B.

By (c), the first two terms are finitely generated A-algebras; therefore the last term is
finitely presented. This proves (d).

(e)–(f): These follow from (c)–(d) and 11.10(c), by definition.
(g): Since the diagonal map f : X → X ×Y X is a closed immersion, (b) implies

Wn∗( f ) is a closed immersion. This map can be identified with the diagonal map
Wn∗(X) → Wn∗(X)×Wn∗(Y ) Wn∗(X), and so the result follows.

(h): By 11.1, the map Wn∗( f ) is smooth. By 11.2, it is surjective over S0 =
Spec O/m, and by (10.4.8), it can be identified away from S0 with the product map
X [0,n] → Y [0,n], which is surjective. Therefore Wn∗( f ) is, too. ��
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13.4 Counterexamples

Consider the p-typical case: R = Z, E = {pZ}, where p is a prime number. Then a
short computation using 3.4 shows

�1 � (Z × Z) ∼= Z × Z × Z[1/p] × Z[1/p].

So Wn∗ does not generally preserve any property which the map Z → Z × Z has and
which is at least as strong as integrality: integral, finite, finite flat, finite étale,. . . .

Also, Wn∗ does not generally preserve surjectivity (of schemes), because we have

�1 � Zp[x]/(x2 − p) = Zp[x, δ]/(x2 − p, pδ2 + 2x pδ + p p−1 − 1)
∼= Qp(

√
p)× Qp(

√
p)

(by 3.4 again) but also �1 � Zp = Zp.
Finally, as shown in 12.7, the map Z → Z[x]/(x2 − px) becomes non-flat after

the application of �1 � −. So Wn∗ does not generally preserve any property which
the map Z → Z[x]/(x2 − px) has and which is at least as strong as flatness: flat,
faithfully flat, Cohen–Macaulay, Sk, . . . .

14 The inductive lemma for W∗
n

We continue with the notation of 10.2, but we restrict to the case where E consists of
only one ideal m. The purpose of this section is to establish the following lemma:

14.1 Lemma Let X be an object of AlgSpm, with m ∈ Z.

(a) W ∗
n (X) is an algebraic space; and for any (m − 1)-representable étale surjection

g : U → X, where U is a disjoint union of affine schemes, the space W ∗
n (U ×X U )

is an étale equivalence relation on W ∗
n (U ) with respect to the map

(W ∗
n (pr1),W ∗

n (pr2)) : W ∗
n (U ×X U )−→ W ∗

n (U )×W ∗
n (X) W ∗

n (U ), (14.1.1)

and the induced map

W ∗
n (U )/W ∗

n (U ×X U )−→ W ∗
n (X)

is an isomorphism. In particular, (14.1.1) is an isomorphism.
(b) For any map g as in (a), the diagram

U
g

��

w0

��

X

w0

��

W ∗
n (U )

W ∗
n (g) �� W ∗

n (X)

is cartesian.
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(c) The map

X ×S S0
w0×id

�� W ∗
n (X)×S S0 (14.1.2)

is a closed immersion defined by a square-zero ideal sheaf, where S0 denotes
Spec OS/m.

(d) For any object X ′ ∈ AlgSpm and any étale map f : X ′ → X, the map

W ∗
n ( f ) : W ∗

n (X
′) → W ∗

n (X)

is étale; and for any algebraic space Y over X, the map

(W ∗
n (pr1),W ∗

n (pr2)) : W ∗
n (X

′ ×X Y )−→ W ∗
n (X

′)×W ∗
n (X) W ∗

n (Y ) (14.1.3)

is an isomorphism.

Proof We will prove all parts at once by induction on m. For clarity, write (a)m for
the statement (a) above, and so on.

First consider the case where m ≤ −1. Here we use the fact that W ∗
n preserves

coproducts together with the analogous affine results: (a)m follows from (10.3.1), 9.2,
6.9, and 9.4; (c)m follows from 6.8; and (d)m follows from 9.2 and 9.4.

It remains to prove (b)m . It is enough to assume U and X are affine. Consider the
map

a = (g, w0) : U −→ X ×W ∗
n (X) W ∗

n (U ).

By assumption, the source is étale over X , and by 9.2 so is the target. Therefore a
itself is étale, and so to show it is an isomorphism, it is enough by 14.3 below to show
that the maps (S′ ×S a)red and (S0 ×S a)red are isomorphisms, where S′ = S − S0.
On the one hand, S′ ×S a agrees, by (10.4.6), with S′ ×S − applied to the evident map

U −→ X ×(∐
[0,n] X

)
∐

[0,n]
U,

which is an isomorphism. On the other hand, by 6.8, the map (S0 × a)red agrees
with bred, where b is the evident map S0 ×S U → S0 ×S (X ×X U ). Since b is an
isomorphism, so is (S0 × a)red. This proves (b)m and hence the lemma for m ≤ −1.

From now on, assume m ≥ 0.
(a)m : First, observe that it follows from the rest of (a) that W ∗

n (X) is an algebraic
space. Indeed, because X is in AlgSpm , there exists a map g as in (a). Assuming the
rest of (a), we have

W ∗
n (X) ∼= W ∗

n (U )/W ∗
n (U ×X U ),

and so it is enough to show that W ∗
n (U ) and W ∗

n (U ×X U ) are algebraic spaces. This
follows from (a)m−1 because U,U ×X U ∈ AlgSpm−1.
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The diagram

U ×X U
pr1 ��

pr2
�� U

f
�� X

is a coequalizer diagram and, since W ∗
n commutes with colimits, so is

W ∗
n (U ×X U )

W ∗
n (pr1)��

W ∗
n (pr2)

�� W ∗
n (U )

W ∗
n ( f )

�� W ∗
n (X). (14.1.4)

Thus, all that remains is to show that W ∗
n (U ×X U ) is an étale equivalence relation

on W ∗
n (U ) under the structure map (14.1.1). By (d)m−1, the projections W ∗

n (pri ) in
(14.1.4) are étale. Let us now show that W ∗

n (U ×X U ) is an equivalence relation.
Let t denote the map (14.1.1). Let us first show that t is a monomorphism. We can

view this as a map of algebraic spaces over W ∗
n (U ) by projecting onto the first factor,

say. Then since W ∗
n (U ×X U ) is étale over W ∗

n (U ), it is enough, by 14.2 below, to
show that t ×S S′ and (t ×S S0)red, are monomorphisms. For t ×S S′, we may assume
m is the unit ideal, by (10.4.6); then t agrees with the evident map

∐

[0,n]
U ×X U −→

( ∐

[0,n]
U

)
×S

( ∐

[0,n]
U

)
,

which is a monomorphism. On the other hand, by (c)m−1, the map (t ×S S0)red can
be identified with ured, where u is the evident map

U ×X U ×S S0 −→ U ×S U ×S S0,

which is a monomorphism. This proves t is a monomorphism.
Now let us show that W ∗

n (U ×X U ) is an equivalence relation on W ∗
n (U ). It is

reflexive and symmetric, simply because W ∗
n is a functor and U ×X U is reflexive and

symmetric relation on U . Let us show transitivity.
Write

�1 = U ×X U and �2 = W ∗
n (U )×S W ∗

n (U ).

Then by definition, W ∗
n (�1) is transitive if and only if there exists a map c′ making

the right-hand square in the diagram

W ∗
n (�1 ×U �1)

t ′ ��

W ∗
n (c1)

������������������
W ∗

n (�1)×W ∗
n (U ) W ∗

n (�1)
t×t

��

c′
��
�
�
�

�2 ×W ∗
n (U ) �2

c2

��

W ∗
n (�1) �� t �� �2
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commute, where each ci is the transitivity map for the equivalence relation �i . If we
define t ′ = (W ∗

n (pr1),W ∗
n (pr2)), then the perimeter commutes. Therefore it is enough

to show that t ′ is an isomorphism. This follows from (d)(m−1), which we can apply
because we have �1,U ∈ AlgSpm−1, as discussed above.

(b)m : To show that the map

(g, w0) : U −→ X ×W ∗
n (X) W ∗

n (U )

is an isomorphism, it suffices to do so after applying U ×X −. We can do that as
follows:

U ×X U
1= U ×W ∗

n (U ) W ∗
n (U ×X U )

2= U ×W ∗
n (U ) W ∗

n (U )×W ∗
n (X) W ∗

n (U )

= U ×W ∗
n (X) W ∗

n (U ).

Equality 2 follows from (a)m . Thus it suffices to show equality 1.
Let h : V → U ×X U be an (m−2)-representable étale cover, where V ∈ AlgSp−1;

this exists because U ×X U ∈ AlgSpm−1. Consider the following diagram:

V
h ��

w0

��

U ×X U
pr1 ��

w0

��

U

w0

��

W ∗
n (V )

W ∗
n (h) �� W ∗

n (U ×X U )
pr1 �� W ∗

n (U ).

By (b)m−1, the left-hand square is cartesian, since U ×X U ∈ AlgSpm−1. Further, the
perimeter is cartesian; this is because U and V are disjoint unions of affine schemes,
and so we can apply (b)−1 on each component. Therefore the induced map

U ×X U −→ U ×W ∗
n (U ) W ∗

n (U ×X U ) (14.1.5)

becomes an isomorphism when we apply the functor − ×W ∗
n (U×X U ) W ∗

n (V ). But the
map W ∗

n (V ) → W ∗
n (U ×X U ) is an étale cover, by (a)m−1. So this implies (14.1.5) is

an isomorphism.
(c)m : Let g : U → X be an (m−1)-representable étale cover, where U ∈ AlgSp−1.

Then W ∗
n (g) is an étale cover, by (a)m . Therefore it is enough to show that (14.1.2)

becomes a closed immersion defined by a square-zero ideal after base change from
W ∗

n (X) to W ∗
n (U )—indeed, this is an étale-local property. But by (b)m , this map can

be identified with

w0 × idS0 : U ×S S0 −→ W ∗
n (U )×S S0,

which has the required property by (c)−1.
(d)m : Let u′ : U ′ → X ′ and u : U → X be (m − 1)-representable étale covers,

where U ′,U ∈ AlgSp−1, such that the map f : X ′ → X lifts to a map h : U ′ → U ,
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necessarily étale. Then we have a commutative diagram

W ∗
n (U

′)
W ∗

n (u
′)

��

W ∗
n (h)

��

W ∗
n (X

′)

W ∗
n ( f )

��

W ∗
n (U

′)
W ∗

n (u) �� W ∗
n (X).

By (a)m , all the spaces in this diagram are algebraic, and the horizontal maps are étale
covers. By (d)−1, the map W ∗

n (h) is étale. Therefore W ∗
n ( f ) is étale.

Let us now show that (14.1.3) is an isomorphism. The map

pr2 : W ∗
n (X

′)×W ∗
n (X) W ∗

n (Y )−→ W ∗
n (Y )

is étale, because it is a base change of W ∗
n ( f ). The map

W ∗
n (pr2) : W ∗

n (X
′ ×X Y )−→ W ∗

n (Y )

is also étale. Indeed, by the above, we only need to verify X ′ ×X Y ∈ AlgSpm . This
holds because AlgSpm is stable under pull back, by [40], Corollary 1.3.3.5.

Therefore, we can view (14.1.3), which we will denote t , as a map of étale algebraic
spaces over W ∗

n (Y ). So, to show t is an isomorphism, it is enough by 14.3 below to
show (t ×S S′)red and (t ×S S0)red are isomorphisms. This can be done as in the proof
of (b): for t ×S S′, use (10.4.6) to reduce the question to one about ghost components;
for (t ×S S0)red, use (c)m . ��
14.2 Lemma Consider a commutative diagram of algebraic spaces

X
f

��

g

��
��

��
��

� Y

		��
��

��
�

Z ,

where g is étale. Then the following hold:

(a) f is a monomorphism if and only if fred is.
(b) Let Z0 be a closed algebraic subspace of Z, and let Z ′ be its complement. Then

f is a monomorphism if and only if f ×Z Z0 and f ×Z Z ′ are.

Proof The only-if parts of both statements follow immediately from the fact that both
closed and open immersions are monomorphisms.

(a): It is enough to show that for any affine scheme T and any maps a, b : T → X
such that f ◦ a = f ◦ b, we have a = b. Then we have fred ◦ ared = fred ◦ bred. Since
fred is assumed to be a monomorphism, we have ared = bred. Since X is étale over Z ,
we have a = b (EGA IV 18.1.3 [28]).
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(b): Again, let T be an affine scheme with maps a, b : T → X such that f ◦a = f ◦b.
Let T̄ denote the equalizer of a and b. It is an algebraic subspace of T . By the assump-
tions on f , we have T̄ ×Z Z0 = T ×Z Z0 and T̄ ×Z Z ′ = T ×Z Z ′. Therefore T̄ is a
closed subscheme of T defined by a nil ideal. As above, since X is étale over Z , there
is at most one extension of the Z -morphism T̄ → X to T . Therefore a = b. ��
14.3 Lemma Let f : X → Y be an étale map of algebraic spaces, and let Y0 be a
closed algebraic subspace of Y with complement Y ′. Then f is an isomorphism if and
only if ( f ×Y Y0)red and ( f ×Y Y ′)red are.

Proof The only-if statement is clear. Now consider the converse. It follows from 14.2
that f is a monomorphism, and so it is enough to show that f is an epimorphism.
To do this, it is enough to show that any étale map V → Y , with V affine, lifts to a
map V → X . Thus, by changing base to V and relabeling Y = V , we may assume
Y is affine. (The property of being an isomorphism after applying (−)red is stable
under base change.) Now let (Ui )i∈I be an étale cover of X , where each Ui is an
affine scheme. Then each composition Ui → X → Y is an étale morphism of affine
schemes, and the union of images of these maps covers Y . Therefore the induced map∐

i Ui → Y is an epimorphism, and hence so is f . ��

15 W∗
n and algebraic spaces

The purpose of this section is to give a number of useful consequences of the inductive
lemma in the previous section. We continue with the notation of 10.2.

15.1 Theorem Let X be an algebraic space over S. Then W ∗
n (X) is an algebraic

space.

Proof By (10.6.1), we may assume E consists of one ideal, in which case we can
apply 14.1(a). ��
15.2 Theorem Let f : X ′ → X be an étale map of algebraic spaces over S. Then the
following hold.

(a) The induced map W ∗
n ( f ) : W ∗

n (X
′) → W ∗

n (X) is étale.
(b) If f is surjective, then so is W ∗

n ( f ).
(c) For any algebraic space Y over X, the map (W ∗

n (pr1),W ∗
n (pr2))

W ∗
n (X

′ ×X Y )−→ W ∗
n (X

′)×W ∗
n (X) W ∗

n (Y )

is an isomorphism.

Proof By (10.6.1), we may assume E consists of one ideal. Then parts (a) and (c)
follow from 14.1(d). For part (b), it is enough, by passing to an étale cover of X ′, to
assume X ′ ∈ AlgSp−1. Then we can apply 14.1(a), because f is 1-representable. ��
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15.3 Corollary Let (Ui )i∈I be an étale cover of an algebraic space X over S. Then(
W ∗

n (Ui )
)

i∈I is an étale cover of W ∗
n (X), and for each pair (i, j) ∈ I 2, the map

W ∗
n (Ui ×X U j )−→ W ∗

n (Ui )×W ∗
n (X) W ∗

n (U j )

given by
(
W ∗

n (pr1),W ∗
n (pr2)

)
is an isomorphism.

In other words, W ∗
n (X) can be constructed by charts in the étale topology.

Proof Because W ∗
n is a left adjoint, it preserves disjoint unions. Then apply 15.1(b)

to the induced map
∐

i Ui → X and 15.1(c) to Ui ×X U j . ��
15.4 Corollary Let f : X → Y be an étale map of algebraic spaces. Then the follow-
ing diagrams are cartesian, where the horizontal maps are the ones defined in 10.6:

(a) for i ∈ N(E),

W ∗
n (X)

ψi ��

��

W ∗
n+i (X)

��

W ∗
n (Y )

ψi �� W ∗
n+i (Y );

(b) for i = N(E),

W ∗
n (X)

��

rn,i
�� W ∗

n+i (X)

��

W ∗
n (Y )

rn,i
�� W ∗

n+i (Y );

(c) for i ∈ [0, n],

X
wi ��

��

W ∗
n (X)

��

Y
wi �� W ∗

n (Y );

(d) when E = {m} and i ∈ N,

X ×S Sn

��

w̄i �� W ∗
n (X)

��

Y ×S Sn
w̄i �� W ∗

n (Y ),

where Sn = Spec OS/m
n+1.
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Proof By (10.6.1), we may assume E consists of one ideal m. All four parts are proved
by the same method. Let us give the details for (a) and leave the rest to the reader.

We want to show that the induced map

g : W ∗
n (X)−→ W ∗

n (Y )×W ∗
n+i (Y )

W ∗
n+i (X)

is an isomorphism. By 15.2, this is a map of étale algebraic spaces over W ∗
n (Y ). There-

fore, to show it is an isomorphism, it is enough by 14.3 to show that (g ×S S0)red and
(g ×S S′)red are isomorphisms, where S0 = Spec OS/m and S′ = S − S0.

It is easy check that g×S S′ is an isomorphism. Write X0 = X ×S S0, Y0 = Y ×S S0,
and let F denote the q-th power Frobenius map. Then the map (g ×S S0)red, can be
identified with hred, where h : X0 → Y0 ×Fi ,Y0

X0 is the map induced by the diagram

X0
Fi

��

��

X0

��

Y0
Fi

�� Y0.

This diagram is cartesian (SGA 5 XV §1, Proposition 2(c) [3]), and so h and hred are
isomorphisms. ��
15.5 Corollary Let X be an algebraic space over S.

(a) Let

U �� Y
��
�� Z

be an equalizer diagram of algebraic spaces over X. If Z is étale over X, then the
induced diagram

W ∗
n (U ) �� W ∗

n (Y )
��
�� W ∗

n (Z)

is also an equalizer diagram.
(b) Let (Yi )i∈I be a finite diagram of étale algebraic X-spaces. Then the following

natural map is an isomorphism:

W ∗
n (limi∈I Yi )

∼−→ limi∈I W ∗
n (Yi ).

Here the limits are taken in the category of X-spaces.

Proof (a): Since the structure map Z → X is étale, so is the diagonal map Z →
Z ×X Z . And since U is Y ×Z×X Z Z , we have by 15.2(c)

W ∗
n (U ) = W ∗

n (Y )×W ∗
n (Z×X Z) W ∗

n (Z)

= W ∗
n (Y )×(W ∗

n (Z)×W∗
n (X)

W ∗
n (Z)) W ∗

n (Z)

Thus W ∗
n (U ) is the equalizer of the two induced maps W ∗

n (Y ) ⇒ W ∗
n (Z).
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(b): To show a functor preserves finite limits, it is sufficient to show it preserves
finite products and equalizers of pairs of arrows. The first follows from 15.2(c), and
the second from part (a) above. ��
15.6 Corollary Let j : U → X be an open immersion of algebraic spaces. Then the
map W ∗

n ( j) : W ∗
n (U ) → W ∗

n (X) is an open immersion. If X is a scheme, then so is
W ∗

n (X).

Proof An open immersion is the same as an étale monomorphism. By 15.2, W ∗
n ( j)

is étale, and so we only need to show it is a monomorphism or, equivalently, that its
diagonal map is an isomorphism. By 15.2(c), the diagonal map of W ∗

n ( j) agrees with
W ∗

n ( j ), where  j is the diagonal map U → U ×X U of j . Because j is a mono-
morphism,  j is an isomorphism, and hence so is W ∗

n ( j ). Therefore the diagonal
map of W ∗

n ( j) is an isomorphism, and so W ∗
n ( j) is a monomorphism.

Now suppose X is a scheme. Let (Ui )i∈I be an open cover of X . By 15.3, W ∗
n (X)

is an algebraic space covered by the W ∗
n (Ui ), and by the above, each map W ∗

n (Ui ) →
W ∗

n (X) is an open immersion. Therefore X is a scheme. ��
15.7 Corollary Let X be an algebraic space over S.

(a) The map w≤n : ∐
[0,n] X → W ∗

n (X) is surjective and integral, and the kernel I
of the induced map

OW ∗
n (X) → w≤n∗

(O∐
[0,n] X

)

satisfies I 2N = 0, where N = ∑
m nm.

(b) The map w0 : X → W ∗
n (X) is a closed immersion.

Proof All the properties in question are étale-local on W ∗
n (X), and hence S. There-

fore, we may assume that S is affine, by (10.4.6), and that X is affine, by 15.4(b).
In this case, (a) was proved in 10.8, and (b) follows from the surjectivity of the map
w0 : Wn(A) → A, which follows from the existence of the Teichmüller section (1.21),
say. ��
15.8 Corollary The functor W ∗

n : AlgSp → AlgSp is faithful.

Proof The map w0 is easily seen to be equal to the composition

X
ε−→ Wn∗W ∗

n X
κ0−→ W ∗

n X,

where ε is the unit of the evident adjunction, and κ0 is as in (10.6.4). Therefore
by 15.7(b), the map ε is a monomorphism. Equivalently, W ∗

n is faithful. ��

15.9 W ∗
n is generally not full

For example, if we consider the usual p-typical Witt vectors over Z of length n, and
if A and B are Z[1/p]-algebras, then we have

HomWn(Z)(Wn(A),Wn(B)) = HomZ[0,n](A[0,n], B[0,n]) = Hom(A, B)[0,n],
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which is usually not the same as Hom(A, B). To be sure, the entire point of the theory
is in applying W to rings where p is not invertible.

15.10 Corollary Let f : X → Y be an étale map of algebraic spaces over S. Then
the diagram

W ∗
m W ∗

n (X)
μX ��

W ∗
m W ∗

n ( f )

��

W ∗
m+n(X)

W ∗
m+n( f )

��

W ∗
m W ∗

n (Y )
μY �� W ∗

m+n(Y )

(15.10.1)

is cartesian, where μX and μY are the plethysm maps of (10.6.13).

Proof We use the usual method, as in 15.4. Let us assume that E consists of one ideal
m. This is sufficient by 15.2, (10.6.1), and a short argument we leave to the reader.

By 15.2, the map

W ∗
m W ∗

n (X)
g−→ W ∗

m+n(X)×W ∗
m+n(Y ) W ∗

m W ∗
n (Y ) (15.10.2)

is étale, and so we only need to show g ×S S′ and (g ×S S0)red are isomorphisms,
where S0 = Spec OS/m and S′ = S − S0.

Consider g×S S′ first. By (10.4.6), we may assume m is the unit ideal. Then diagram
(15.10.1) can be identified with the diagram

∐

[0,m]

∐

[0,n]
X

μX ��

��

∐

[0,m+n]
X

��∐

[0,m]

∐

[0,n]
Y

μY ��
∐

[0,m+n]
Y,

where each map μ sends component (i, j) ∈ [0,m]× [0, n] identically to component
i + j ∈ [0,m + n]. Since this diagram is cartesian, g ×S S′ is an isomorphism.

Now consider (g ×S S0)red. Write (−)′ for the functor T �→ (S0 ×S T )red; thus we
want to show g′ is an isomorphism. Consider the commutative diagram

W ∗
m W ∗

n (X)
′ g′

��

b

������������������

(
W ∗

m+n(X)×W ∗
m+n(Y ) W ∗

m W ∗
n (Y )

)′

c

��

W ∗
m+n(X)

′ ×W ∗
m+n(Y )

′ W ∗
m W ∗

n (Y )
′,

where c is the evident map induced by the universal property of products. Since the
functor (−)′ sends étale maps to étale maps, c is étale; also cred is an isomorphism,
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and so c is an isomorphism. Therefore it is enough to show that b is isomorphism—in
other words, that diagram (15.10.1) becomes cartesian after applying (−)′.

To do this, it is enough to show that for T = X,Y (or any algebraic space over S), the
map μ′

T : W ∗
m W ∗

n (T )
′ → W ∗

m+n(T )
′ is an isomorphism. Consider the commutative

diagram

T
w0



������������
w0

��											

W ∗
n (T ) w0

�� W ∗
m W ∗

n (T ) μT
�� W ∗

m+n(T ).

If we apply S0 × − to this diagram, all maps labeled w0 become closed immersions
defined by square-zero ideals, by 14.1(c). Thus they all become isomorphisms after
applying (−)′, and therefore so does μT . ��

16 Preservation of geometric properties by W∗
n

We continue with the notation of 10.2.

Sheaf-theoretic properties

16.1 Proposition Let X be a quasi-compact object of SpS. Then W ∗
n (X) is quasi-

compact.

Proof Since X is quasi-compact, it has a finite cover (Ui )i∈I by affine schemes.
Therefore W ∗

n (
∐

i Ui ) is affine, and since W ∗
n (X) is covered by this space, it must be

quasi-compact. ��

General localization

16.2 Proposition Let P be an étale-local property of algebraic spaces X over S. For
W ∗

n to preserve property P, it is sufficient that it do so when E consists of one principal
ideal and both X and S are affine schemes.

Proof When E is empty, W ∗
n is the identity functor. Therefore by (10.6.1), it is enough

to consider the case where E consists of one ideal m.
Let X be an algebraic space satisfying property P , and let (Ui )i∈I be an étale cover

of X such that each Ui is affine and lies over an affine open subscheme Si of S over
which m is principal. Because P is étale local, each Ui satisfies P; and since we have
W ∗

S,n(Ui ) = W ∗
Si ,n
(Ui ), by (10.4.8), so does each W ∗

n (Ui ). But the spaces W ∗
n (Ui )

form an affine étale cover of W ∗
n (X), by 15.2. Therefore W ∗

n (X) satisfies P . ��
16.3 Proposition Let P be a property of maps f : X → Y of algebraic spaces which
is étale-local on the target. For W ∗

n to preserve property P, it is sufficient that it do so
when E consists of one principal ideal, S is affine, and Y is affine.
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If property P is also étale-local on the source, then we may further restrict to the
case where X is affine.

Proof Let f : X → Y be a map satisfying P . As in the proof of 16.2, it is enough to
consider the case where E consists of one ideal m.

Let us show the first statement. Let (Vj ) j∈J be an étale cover of Y such that each Vj

is affine and lies over an affine open subscheme S j of S on which m is principal. Then(
W ∗

n (Vj )
)

j∈J is an étale cover of W ∗
n (Y ), by 15.2(b). Therefore W ∗

n ( f ) satisfies P if
its base change to each W ∗

n (Vj ) does. By 15.2(c), this base change can be identified
with

W ∗
n ( fVj ) : W ∗

n (Vj ×Y X)−→ W ∗
n (Vj ).

Since fVj satisfies P , so does W ∗
S′,n ( fVj ), by the assumptions of the proposition.

By (10.4.8), we have W ∗
n ( fVj ) = W ∗

S′,n( fVj ), and so W ∗
n ( fVj ) also satisfies P .

Now suppose property P is also étale-local on the source. By what we just proved,
we may assume Y and S are affine. Let (Ui )i∈I be an étale cover of X , with each
Ui affine. Then each composition Ui → X → Y satisfies P . Therefore so does each
composition W ∗

n (Ui ) → W ∗
n (X) → W ∗

n (Y ). But again by 15.2(b), the spaces W ∗
n (Ui )

form an étale cover of W ∗
n (X). Since P is local on the source, W ∗

n ( f ) satisfies P . ��

Affine properties of maps

16.4 Proposition The following (affine) properties of maps of algebraic spaces are
preserved by W ∗

n :

(a) affine,
(b) a closed immersion,
(c) integral,
(d) finite étale.

Proof Let f : X → Y be a map satisfying one of these properties. In particular, f is
affine. Because the properties are local on the target, it is enough, by 16.3, to assume
that both Y and S are affine and that E consists of one ideal m. But because f is affine,
X must also be an affine scheme. In other words, it is enough to show W ∗

n preserves
these properties for maps of affine schemes. For (a), there is nothing to prove, and (b)
is true by 6.5.

Let us prove (c). Write S = Spec R. Let A be an R-algebra, and let B be an integral
A-algebra. Consider the induced diagram

Wn(B)
w≤n

�� B[0,n]

Wn(A)
w≤n

��

��

A[0,n].

��
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Since B is integral over A, we know that B[0,n] is integral over A[0,n]. By 8.2, A[0,n]
is integral over Wn(A), and hence so is B[0,n], and hence so is the image of the ghost
map w≤n . But the kernel of w≤n is nilpotent; so Wn(B) is integral over Wn(A). ��

Absolute properties and properties relative to S

16.5 Proposition The following (étale local) properties of algebraic spaces over S
are preserved by W ∗

n :

(a) locally of finite type over S,
(b) flat over S,
(c) flat over S and reduced,
(d) of Krull dimension d.

Proof Because these are étale-local properties, by 16.2 we can write S = Spec R,
X = Spec A, and E = {πR} with π ∈ R.

(a): Let T be a finite subset of A generating it as an R-algebra, and let B denote the
sub-R-algebra of Wn(A) generated by the set {[t] : t ∈ T } of Teichmüller lifts (3.9).
It is enough to show that Wn(A) is finitely generated as a B-module. By induction,
we may assume Wn−1(A) is finitely generated. Therefore it is enough to show that
V nWn(A) is finitely generated. We will do this by showing that the subset

T =
{

V n
π

[∏

t∈T

tat
]

| 0 ≤ at < qn for all t ∈ T
}

⊆ V nWn(A), (16.5.1)

where [x] denotes the Teichmüller lift of x , generates V nWn(A) as a B-module.
Indeed, for any monomial

∏
t t ct , write ct = bt qn + at with 0 ≤ at < qn . Then we

have by (3.9.1)

V n
π

[∏

t

t ct
]

=
(∏

t

[t]bt
)(

V n
π

[∏

t

tat
])
.

(b): Since A is flat over R, the ghost map w≤n : Wn(A) → A[0,n] is injective (2.7).
Since A[0,n] is m-flat (10.11), so is Wn(A). But R[1/π ]⊗R Wn(A) is also flat, because
it agrees with (A[1/π ])[0,n], by (10.4.6). Therefore Wn(A) is flat over R.

(c): By (b), we only need to show if A is flat and reduced over R, then Wn(A) is
reduced. Since A is flat over R, the ghost map w≤n : Wn(A) → A[0,n] is injective
(2.7). And since A is also reduced, so is Wn(A).

(d): The ghost map w≤n : Wn(A) → A[0,n] is integral and surjective on spectra;
so the Krull dimension of Wn(A) agrees with that of A[0,n], which is d. (See EGA 0,
16.1.5 [25].) ��

16.6 Counterexamples with relative finite conditions and noetherianness

It is not true that W ∗
n preserves relative finite generation or presentation in general.

For example, consider the usual p-typical Witt vectors. Let A = Z[x1, x2, . . .], and
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let B = A[t]. It is then a short exercise to show that W1(B) is not a finitely generated
W1(A)-algebra.

For another, perhaps more extreme example, let C = A[t]/(t2). Then C is finite
free as an A-module, but W1(C) is not finitely generated as a W1(A)-algebra.

Noetherianness is also not preserved. If k is a field of characteristic p, then W1(k)
is a local ring with residue field k and maximal ideal isomorphic to k1/p. Therefore
W1(k) is noetherian if and only if k has a finite p-basis.

16.7 Corollary The following properties of algebraic spaces over S are preserved by
W ∗

n :

(a) quasi-compact over S,
(b) finite type over S.

Proof Because these properties are étale local on S, we can assume S is affine, by
(10.4.6).

(a): Since the structure map X → S is quasi-compact and S is affine, X is quasi-com-
pact. Then W ∗

n (X) is quasi-compact, by 16.1. Therefore the structure map W ∗
n (X) → S

is quasi-compact, since S is affine. (See SGA 4 VI 1.14 [2], say.)
(b): By (a) and 16.5(a). ��

16.8 Proposition The following properties of algebraic spaces over S are preserved
by W ∗

n :

(a) quasi-separated over S,
(b) 0-geometric over S (see 10.9),
(c) separated over S,
(d) separated.

Proof (a): Consider the diagram

∐
[0,n] X a ��

c=w≤n

��

(∐
[0,n] X

) ×S
(∐

[0,n] X
)

b=w≤n×w≤n

��

W ∗
n (X)

d �� W ∗
n (X)×S W ∗

n (X),

(16.8.1)

where the horizontal maps are the diagonal maps. Because X is quasi-separated, a
is quasi-compact, and by 15.7, so is b. Therefore b ◦ a is quasi-compact, and hence
so is d ◦ c. Now let U be an affine scheme mapping to W ∗

n (X) ×S W ∗
n (X), and let

(Vi )i∈I be an étale cover of the pull back d∗(U ). Since d ◦ c is quasi-compact, there
is a finite subset J ⊆ I such that (c∗Vj ) j∈J is a cover of c∗d∗(U ). In other words,
the induced map v : ∐

j∈J Vj → d∗(U ) becomes surjective after base change by the
map c. Because c is surjective (15.7), v must also be.

(b): Recall that a map is 0-geometric if and only if its diagonal map is affine
(10.9). This is equivalent to requiring the existence of an étale cover (Ui )i∈I of X ,
with each Ui affine, such that Ui ×X U j is affine. Fix such a cover of X . By 15.3,
the family

(
W ∗

n (Ui )
)

i∈I is an étale cover of W ∗
n (X). Therefore it is enough to show
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The basic geometry of Witt vectors 917

that W ∗
n (Ui ) ×W ∗

n (X) W ∗
n (U j ) is affine, for all i, j ∈ I . By 15.2(c), this agrees with

W ∗
n (Ui ×X U j ). Because X has affine diagonal, Ui ×X U j is affine. Therefore, by

10.7, so is W ∗
n (Ui ×X U j ).

(c): Let us first assume that X is of finite type over S. Consider diagram (16.8.1)
above. To show that d is a closed immersion, it is enough to show that it is a finite
monomorphism. (It is a general fact the a finite monomorphism of algebraic spaces
is a closed immersion. To prove it, it is enough to work étale locally, which reduces
us to the affine case, where it follows from Nakayama’s lemma.) Since d has a retrac-
tion, it is a monomorphism. Therefore it suffices to show that d is finite. On the other
hand, by 16.7(b), the structure map W ∗

n (X) → S is of finite type, and hence so is d.
Therefore it is enough to show that d is integral.

Since X is separated, a is a closed immersion and, in particular, is integral. Since b is
integral (by 15.7), b◦a is integral and, hence, so is d◦c. By part (b), the map d is affine.
Therefore, by 15.7, the maps c and d can be written étale-locally on W ∗

n (X)×S W ∗
n (X)

as

Spec C
c−→ Spec B

d−→ Spec A,

where the induced ring map B → C has nilpotent kernel. We showed above that C
is integral over A. Therefore B is integral over A. This proves X is separated over S
when it is of finite type.

Now consider the general case. Let us show that we can assume X is quasi-compact.
To prove that d is a closed immersion, it is enough to work étale locally. Therefore, it
is enough (by 15.2(b)) to show that for any affine schemes U, V with étale maps to X ,
the base change

W ∗
n (U )×W ∗

n (X) W ∗
n (V )

d ′−→ W ∗
n (U )×S W ∗

n (V )

of d is a closed immersion. By 15.2(c), the source of d ′ agrees with W ∗
n (U ×X V ).

Therefore, d ′ does not change if we replace X with the union of the images of U
and V . So in particular, we can assume X is quasi-compact.

Then there exists an affine S-map h : X → X0, where X0 is some separated alge-
braic space of finite type over S. Indeed, since X is quasi-compact and separated, by
Conrad–Lieblich–Olsson [13], Theorem 1.2.2, there is an affine map h′ : X → X ′

0,
where X ′

0 is a separated algebraic space of finite type over Z. Put X0 = S ×Z X ′
0.

Then the induced map h : X → X0 factors as

X −→ S ×Z X −→ S ×Z X ′
0.

The first map is a base change of the diagonal map S → S ×Z S, which is a closed
immersion, since S is separated. The second map is a base change of h′, which is
affine. Therefore both maps in the factorization above are affine, and hence so is the
composition h.

Since X0 is of finite type over S, we can apply the argument above to see that W ∗
n (X0)

is separated. But W ∗
n (X) is affine over W ∗

n (X0), by 16.4(a). Therefore W ∗
n (X) is also

separated.
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918 J. Borger

(d): This follows from (c) because S is assumed to be separated. ��
16.9 Proposition The following properties are preserved by W ∗

n :

(a) finite over S,
(b) faithfully flat over S.

Proof These are local properties on the target S. So, by (10.4.6) and (10.6.1), we can
write assume S = Spec R and E = {m}, for some ring R and ideal m. Away from m,
the properties are clearly true. Therefore we only need to work locally near m, and in
particular we can assume m is not the unit ideal. By (10.4.6) again, we may further
assume R agrees with Rm, which is a discrete valuation ring.

Let X be an algebraic space over S having the property in question.
(a): Write X = Spec A. Then Wn(A) is a subring of A[0,n], which is finite over R

because A is. Since R is a discrete valuation ring, this implies that Wn(A) is finite
over R.

(b): The composition

∐

[0,n]
X

w≤n
�� W ∗

n (X) �� S

is surjective because X → S is. Therefore the map W ∗
n (X) → S is surjective. It is flat

by 16.5. ��
16.10 Corollary The structure map W ∗

n (S) → S finite and faithfully flat.

Relative properties

16.11 Proposition The following properties of maps (étale-local on the target) of
algebraic spaces are preserved by W ∗

n .

(a) quasi-compact,
(b) universally closed,
(c) quasi-separated,
(d) separated,
(e) surjective.

Proof Let f : X → Y be the map in question. By 16.3, we may write S = Spec R
and E = {m} and we may assume that Y is affine.

(a): Since f is quasi-compact and Y is affine, X is quasi-compact. Then W ∗
n (X) is

quasi-compact, by 16.1. Since W ∗
n (Y ) is affine (10.7), W ∗

n ( f ) is quasi-compact. (SGA
4 VI 1.14 [2])

(b): Consider the following square:

∐
[0,n] X

wX ��

� f
��

W ∗
n (X)

W ∗
n ( f )

��∐
[0,n] Y

wY �� W ∗
n (Y ),

(16.11.1)
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The basic geometry of Witt vectors 919

where wX and wY denote the ghost maps w≤n for X and Y . To show W ∗
n ( f ) is uni-

versally closed, it is enough to show thatwX is surjective andwY ◦∐
f is universally

closed. (See EGA II 5.4.3(ii) and 5.4.9 [24].)
But we know wX is surjective by 15.7; and wY ◦ f is universally closed because

f is universally closed and because wY is integral, by 15.7, and hence universally
closed. (See EGA II 6.1.10 [24].)

(c)–(d): Because Y is affine, so is W ∗
n (Y ), by (10.3.1). Therefore being separated

or quasi-separated over W ∗
n (Y ) is equivalent to being so over S. Thus the results then

follow from 16.8,
(e): Consider diagram (16.11.1). By 15.7, the map wY is surjective. Since f is too,

so is
∐

f . Therefore wY ◦ ∐
f and hence W ∗

n ( f ). ��

16.12 Flatness properties

With the p-typical Witt vectors, say, W1(Z[x]) is not flat over W1(Z). So if P is a
property of morphisms which is stronger than flatness and which is satisfied by the
map Z → Z[x], then it is not generally preserved by Wn . Examples: flat, faithfully
flat, smooth, Cohen–Macaulay, and so on.

16.13 Proposition Let f : X → Y be a map of algebraic spaces having one of the
following properties:

(a) locally of finite type,
(b) of finite type,
(c) finite,
(d) proper.

Then W ∗
n ( f ) : W ∗

n (X) → W ∗
n (Y ) has the same property, as long as Y is locally of

finite type over S.

Proof (a): The composition X → Y → S is locally of finite type because the factors
are. Therefore, W ∗

n (X) is locally of finite type over S, by 16.5. In particular, it is locally
of finite type over W ∗

n (Y ).
(b): Part (a) above plus 16.11(a).
(c): Part (b) above plus 16.4(c).
(d): Part (b) above plus 16.11(b),(e). ��

16.14 W ∗
n and properness

Some hypotheses on Y are needed in 16.13. For example, let f be the canonical pro-
jection P1

Y → Y , where Y = Spec Z[x1, x2, . . .]. Then f is proper, but W ∗
1 ( f ) (with

p-typical Witt vectors, say) is not, because it is not of finite type. Indeed, the map
W ∗

1 (A
1
Y ) → W ∗

1 (P
1
Y ) is étale (15.2), and hence of finite type, but the map W ∗

1 (A
1
Y ) →

W ∗
1 (Y ) is not (16.6).
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Depth properties

16.15 Proposition Suppose that S = Spec R for some ring R and that E consists
of a single maximal ideal m of R. Let A be a local R-algebra whose maximal ideal
contains m. Then Wn(A) is a local ring with maximal idealw−1

0 (m), wherew0 denotes
the usual projection map Wn(A) → A.

Proof Let I denotew−1
0 (m); it is a maximal ideal becausew0 is surjective (1.21). Let

us show that it is the unique maximal ideal.
Let J be a maximal ideal of Wn(A). By 8.2, the map

w≤n : Wn(A)−→ A[0,n]

is integral and its kernel is nilpotent. Therefore, J is the pre-image of a maximal ideal
of A[0,n]. But every maximal ideal of A[0,n] contains m, because the maximal ideal of
A does. Therefore J contains m. But I is the only maximal ideal of Wn(A) contain-
ing m, because by 6.8, every element of I is nilpotent modulo mWn(A). Therefore
J = I . ��
16.16 Proposition Let S, R, E,m be as in 16.15. Let A be an R-algebra, and let p
be a prime ideal of Wn(A).

(a) If p does not contain m, then there is a unique integer i ∈ [0, n] and a unique
prime ideal q of A such that w−1

i (q) = p. For this i and q, the map

Aq −→ Wn(A)p (16.16.1)

induced by wi is an isomorphism.
(b) If p does contain m, then there is a unique prime ideal q of A such thatw−1

0 (q) = p.
For this q, there is a unique map of Wn(A)-algebras

Wn(A)p −→ Wn(Aq), (16.16.2)

and this map is an isomorphism.

Proof (a): This holds because the map w≤n is an isomorphism away from m, by 6.1.
(b): Any such prime ideal q contains m. Therefore to show such a prime ideal q

exists and is unique, it is enough to show the map

id ⊗ w0 : R/m ⊗R Wn(A)−→ R/m ⊗R A

induces a bijection on prime ideals. This holds because id ⊗ w0 is surjective with
nilpotent kernel, by 8.2.

Now consider the diagram

A �� Aq

Wn(A) ��

w0

��

Wn(Aq).

w0

��
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By 16.15, the ring Wn(Aq) is a local ring. So, to show there is a unique map of Wn(A)-
algebras as in (16.16.2), it is enough to that p is the pre-image in Wn(A) of the maximal
ideal w−1

0 (m) of Wn(Aq). This holds by the commutativity of the diagram above.
Now let us show that (16.16.2) is an isomorphism. By induction, we may assume

that the map

Wn−1(A)p −→ Wn−1(Aq)

is an isomorphism. By 4.4, it is therefore enough to show that the maps

A(n) ⊗Wn(A) Wn(A)p −→ (Aq)(n)

are isomorphisms. Write Tp = Wn(A) − p and Tq = A − q. Then this map can be
identified with the following map of localizations:

wn(Tp)
−1 A −→ T −1

q A. (16.16.3)

Thus it is enough to show that Tq becomes invertible in wn(Tp)
−1 A. It is therefore

enough to show (Tq)
qn
m ⊆ wn(Tp), which holds by the following.

We have [Tq] ⊆ Tp, where [−] denotes the Teichmüller section (of 1.21); indeed,
if [x] ∈ p = w−1

0 (q), then x = w0([x]) ∈ q. Therefore, we have

wn(Tp) ⊇ wn([Tq]) = (Tq)
qn
m .

��
16.17 Remark In either case of 16.16, the prime ideal q is the pre-image of p under the
Teichmüller map t : A → Wn(A), t (a) = [a]. In fact, the induced function “Spec t” :
Spec Wn(A) → Spec A is continuous in the Zariski topology. Even further, if we view
the structure sheaves on these schemes as sheaves of commutative monoids under
multiplication, then the usual Teichmüller map gives “Spec t” the structure of a map
of locally monoided topological spaces. If R is an Fp-algebra, for some prime number
p, then t is a ring map, and “Spec t” agrees with the scheme map Spec t ; but otherwise
“Spec t” will not generally be a scheme map. These statements can in fact be promoted
to the étale topology, but there it is necessary to work with maps of toposes instead of
maps of topological spaces.

16.18 Proposition Let S, R, E,m, A be as in 16.15. Let a1, . . . , ad ∈ mA be a reg-
ular sequence for A. Then [a1], . . . , [ad ] lie in the maximal ideal of Wn(A) and form
a regular sequence for Wn(A).

Proof By 16.15, the maximal ideal of Wn(A) isw−1
0 (mA), which contains the sequence

[a1], . . . , [ad ]. It remains to show that the sequence is regular.
By (10.4.6), we can assume R agrees with Rm, and hence that the ideal m is gener-

ated by an element π . The argument will now go by induction on n. For n = 0, there is
nothing to prove; so assume n ≥ 1. For any Wn(A)-module M , let KWn(A)(M) denote
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922 J. Borger

the Koszul complex of M with respect the sequence [a1], . . . , [ad ] ∈ Wn(A). If this
sequence is regular for M , then Hd−1(KWn(A)(M)) = 0, and the converse holds if M
is finitely generated and nonzero. (See Eisenbud [15], Corollary 17.5 and Theorem
17.6.)

In particular, it is enough to show Hd−1(KWn(A)(Wn(A))) = 0. Considering the
exact sequence (4.4.1) of Wn(A)-modules

0 −→ A(n)
V n
π−→ Wn(A)−→ Wn−1(A)−→ 0,

we see it is even sufficient to show

Hd−1(KWn(A)(A(n))) = Hd−1(KWn(A)(Wn−1(A))) = 0.

Observe that we have

Hd−1(KWn(A)(Wn−1(A))
) = Hd−1(KWn−1(A)(Wn−1(A))

) = 0,

by induction. Therefore, it is enough to prove Hd−1
(
(KWn(A)(A(n)))

) = 0, and hence

that [a1], . . . , [ad ] is regular for A(n). This is equivalent to the sequence aqn

1 , . . . , aqn

d ∈
A being regular for A—indeed, the product [a] · x , where x ∈ A(n), is by definition
wn([a])x , which equals aqn

x . We complete the argument with the general fact that
any power of a regular sequence for a finitely generated module is again regular ([15,
Corollary 17.8]). ��
16.19 Proposition Let k be an integer. Let X be an algebraic space over S such that
both X and W ∗

n (X) are locally noetherian. Suppose X satisfies one of the following
properties:

(a) Cohen–Macaulay,
(b) Cohen–Macaulay over S,
(c) Sk (Serre’s condition),
(d) Sk over S.

Then W ∗
n (X) satisfies the same property.

16.20 Remark See EGA IV (5.7.1), (6.8.1) [26] for the definition of Cohen–Macaulay
and Sk . Typically, these concepts are discussed only for noetherian rings, but because
W ∗

n does not preserve noetherianness, we must assume W ∗
n (X) is noetherian. I do not

know if it is possible to remove this assumption by extending the concept of depth
beyond the noetherian setting. If so, maybe even the noetherian hypotheses on X could
be removed.

Note that, by 16.5(a), the assumptions hold if S is noetherian and X is locally of
finite type over S.

16.21 Proof of 16.19 The properties are all étale-local (EGA IV (6.4.2) [26]). So
by 16.2, we can write S = Spec R, E = {m}, m = πR, and X = Spec A.

(a)–(b): These follow from (c) and (d).
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(c): At a prime ideal of Wn(A) not containing π , the local ring agrees with a local
ring of A (by 16.16), which satisfies Sk by assumption; so there is nothing to prove.
Now let p be a prime ideal of Wn(A) containing π . Let q be the corresponding prime
ideal of A given by 16.16. Then we have Wn(A)p = Wn(Aq), so it suffices to assume
that A is a local ring with maximal ideal q. We can therefore also assume that R is a
discrete valuation ring with maximal ideal

By 16.18 and 16.5, we have

depth Wn(A) ≥ depth A, dim Wn(A) = dim A.

By the definition of Sk , depth A is at least k or dim A. Therefore depth Wn(A) is at
least k or dim Wn(A). In other words, Wn(A) also satisfies Sk .

(d): By 16.5, W ∗
n (A) is flat over R. Away from m, we have W ∗

n (A) = A[0,n], the
fibers over S of which satisfy Sk . So it suffices to consider the fiber over m. Therefore,
by 16.16, we can assume that A is a local R-algebra whose maximal ideal contains
m. By (10.4.6), we can further assume that R is a discrete valuation ring. We need to
show that Wn(A)/πWn(A) satisfies Sk .

Since A and Wn(A) are flat over R, the element π is not a zero divisor in A or
Wn(A). Therefore we have

depth Wn(A)/πWn(A) = depth Wn(A)− 1 ≥ depth A − 1 = depth A/π A,

by 16.18 (and EGA 0 (16.4.6)(ii) [25], say). Further, by 16.5, we have

dim Wn(A)/πWn(A) = dim Wn(A)− 1 = dim A − 1 = dim A/π A.

Because A/π A satisfies Sk , depth A/π A is at least k or dim A/π A. Therefore depth
Wn(A)/πWn(A) is at least k or dim Wn(A)/πWn(A). In other words, the fiber
Wn(A)/πWn(A) satisfies Sk . ��

16.22 Gorenstein, regular, normal

Consider the p-typical Witt vectors. Then we have

Wn(Z) = Z[x1, . . . , xn]/(xi x j − pi x j | 1 ≤ i ≤ j ≤ n), (16.22.1)

with the element xi corresponding to V i
p(1), where Vp denotes the usual Verschiebung

operator. (See 3.8.)
This presentation gives some easy counterexamples. The ring W1(Z) agrees with

Z[x]/(x2 − px), which is not normal. So Wn does not generally preserve regularity
or normality.

The property of being Gorenstein is also not preserved by Wn . Indeed, we have

Fp ⊗Z Wn(Z) = Fp[x1, . . . , xn]/(xi x j | 1 ≤ i ≤ j ≤ n).
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Therefore the socle of Fp ⊗Z Wn(Z) (that is, the annihilator of its maximal ideal) is
the vector space

Fpx1 ⊕ · · · ⊕ Fpxn if n ≥ 1,

and is Fp if n = 0. Since the sequence {p} of length 1 is a system of parameters in
Wn(Z) at the prime ideal p containing p, the ring Wn(Z) is Gorenstein at p if and only
if the dimension of the socle is 1. This holds if and only if n = 0, 1. When n = 1, it is
even a complete intersection, but it is not normal. (A basic treatment of these concepts
is in Kunz’s book [34] (VI 3.18), for example.)

17 Ghost descent and the geometry of Witt spaces

The purpose of this section is to describe the Witt space W ∗
n (X) of a flat algebraic

space X as a certain quotient, in the category of algebraic spaces, of the ghost space∐
[0,n] X . We continue with the notation of 10.2.

17.1 Reduced ghost components

Suppose E consists of one ideal m, consider the diagram

Sn ×S X
i1◦w̄n+1

��

ı̄2

�� W ∗
n (X)� X

αn �� W ∗
n+1(X), (17.1.1)

where

w̄n+1 : Sn ×S X → W ∗
n (X) is as in (10.6.11),

i1 : W ∗
n (X) → W ∗

n (X)� X is the inclusion into the first component,
ı̄2 is the closed immersion of Sn ×S X into the second component, and
αn is rn,1 on W ∗

n (X) and wn+1 on X , in the notation of (10.6.3).

When X is affine, this is the same as the diagram in (8.1.1).

17.2 Proposition Let X be an algebraic space over S. Then the map αn is an effec-
tive descent map for the fibered category of algebraic spaces which are both étale
and affine over their base. In this case, descent data is equivalent to gluing data with
respect to the diagram (17.1.1).

Proof Given an étale map U → X with U affine, consider the following three cat-
egories: the category of affine étale algebraic spaces over W ∗

n+1(U ), that of affine
étale algebraic spaces over W ∗

n (U )�U with descent data with respect to αn , and that
of affine étale algebraic spaces over W ∗

n (U )�U with gluing data with respect to the
diagram (17.1.1). As U varies, there are obvious transition functors, and these give
rise to three fibered categories over the small étale topology of X .

There are also evident morphisms between these fibered categories, and the state-
ment of the corollary is that, for U = X , these morphisms are equivalences.
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By 15.1, all these fibered categories satisfy effective descent in the étale topology.
Thus it is enough (by Giraud [19], II 1.3.6, say) to assume X is affine, in which case
the equivalence follows from 8.3. ��
17.3 Theorem If X is m-flat (10.11), then (17.1.1) is a coequalizer diagram in the
category of algebraic spaces.

Proof For any space Z over S, write Zn = Sn ×S Z .
Let us first reduce to the case where X is affine. Write

X = colim
i∈I

Ui , (17.3.1)

where (Ui )i∈I is a diagram of affine schemes mapping by étale maps to X . Then(
(Ui )n

)
i∈I is a diagram of affine schemes mapping by étale maps to Xn . We also have

Xn = colim
i
(Ui )n, (17.3.2)

because the functor Sn ×S −: SpS → SpSn
has a right adjoint, and hence preserves

colimits. In particular, both colimit formulas (17.3.1) and (17.3.2) hold in the category
of algebraic spaces, as well as in SpS . Therefore, assuming the theorem in the affine
case, we can make the following formal computation in the category of algebraic
spaces:

coeq
[
Xn ⇒ W ∗

n (X)� X
] = coeq

[
colimi (Ui )n ⇒ colimi W ∗

n (Ui )� colimi Ui
]

= coeq
[
colimi (Ui )n ⇒ colimi

(
W ∗

n (Ui )�Ui
)]

= colimi coeq
[
(Ui )n ⇒ W ∗

n (Ui )�Ui
]

= colimi W ∗
n+1(Ui )

= W ∗
n+1(colimi Ui )

= W ∗
n+1(X).

Hence we can assume X is affine.
Let Y be an algebraic space, and let d : W ∗

n−1(X)� X → Y be a map such that the
two compositions in the diagram

Sn ×S X
i1◦w̄n+1

��

ı̄2

�� W ∗
n (X)� X

d �� Y

agree. We want to show that d factors through αn . Because W ∗
n (X)� X is affine,

by 10.7, there is a quasi-compact open algebraic subspace containing the image of d.
Since we can replace Y with it, we may assume Y is quasi-compact.

Take m ≥ −1 such that Y ∈ AlgSpm . We will argue by induction on m. When
m = −1, the space Y is a quasi-compact disjoint union of affine schemes; therefore
it is affine. The result then follows because (17.1.1) is a coequalizer diagram in the
category of affine schemes, by 8.1.
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Fig. 2 A diagram used in the proof of 17.3

Now suppose m ≥ 0. Let e : Y ′ → Y be an étale surjection, where Y ′ is an affine
scheme. Then there is a étale surjection g : X ′ → X , with X ′ affine, such that d lifts
to a map d ′ as follows:

W ∗
n (X

′)� X
d ′

��




W ∗
n (g)� g

����

Y ′

e

��

W ∗
n (X)� X d �� Y.

Indeed, the existence of such a map d ′ is equivalent to the existence of a lift f ′

X ′ f ′
��




g

����

Wn∗(Y ′)×S Y ′

Wn∗(e)×e
��

X
f

�� Wn∗(Y )×S Y,

where f is the left adjunct of d. This exists because Wn∗(e)× e is an epimorphism of
spaces, which is true by 11.4.

Now let us construct the diagram in Fig. 2. The rows are diagrams of the form
(17.1.1); to get d ′′, take the product of d ′ with itself over W ∗

n (X)� X and then apply
15.2(c). The maps a, a′, a′′ have not been constructed yet.

Since X ′ and X are affine, so is X ′ ×X X ′; and since X ′ is étale over X , which is
m-flat, X ′ and X ′ ×X X ′ are also m-flat. Also, since Y ∈ AlgSpm , we have

Y ′,Y ′ ×Y Y ′ ∈ AlgSpm−1.
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So, by induction, there are unique maps a′ and a′′ such that d ′ =a′◦ c′ and d ′′ =a′′◦ c′′.
Now let us show a′ ◦ W ∗

n+1(pri ) = pri ◦ a′′, for i = 1, 2. It is enough to show

a′ ◦ W ∗
n+1(pri ) ◦ c′′ = pri ◦ a′′ ◦ c′′.

Indeed, by induction the coequalizer universal property holds for the top row. Showing
this equality is a straightforward diagram chase.

Therefore we have

e ◦ a′ ◦ W ∗
n+1(pr1) = e ◦ pr1 ◦ a′′ = e ◦ pr2 ◦ a′′ = e ◦ a′ ◦ W ∗

n+1(pr2)

So, by the universal property of coequalizers applied to the rightmost column, there
exists a unique map a such that

a ◦ W ∗
n+1(g) = e ◦ a′. (17.3.3)

Finally, let us verify the equality d = a ◦ c. Because W ∗
n (g)� g is an epimorphism, it

is enough to show

d ◦ (
W ∗

n (g)� g
) = a ◦ c ◦ (

W ∗
n (g)� g

)
.

This follows from (17.3.3) and a diagram chase which is again left to the reader. ��

17.4 Remark It is typically not true that (17.1.1) is a coequalizer diagram in the cate-
gory SpS . For example, if we take X = Spec Zp[√p] and consider the usual, p-typical
Witt vectors, then α1 is not an epimorphism in SpS .

18 The geometry of arithmetic jet spaces

The main purpose of the section is to prove 18.3. We continue with the notation of 10.2.
Let X be an algebraic space over S.

18.1 Single-prime notation

Suppose that E consists of one maximal ideal m. Let

Wn+1∗(X)
f−→ Wn∗(X)×S X

denote the map (sn,1, κn+1) (in the notation of 10.6), and let I denote the ideal sheaf
of OWn∗(X)×S X defining the closed immersion

(pr2, κ̄n) : Sn ×S Wn∗(X)−→ Wn∗(X)×S X. (18.1.1)
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Let B denote the sub-OWn∗(X)×S X -algebra of OS′ ⊗OS OWn∗(X)×S X generated by the
subsheaf m−n−1 ⊗OS I . Observe that B is m-flat and satisfies

mn+1B ⊇ mn+1(m−n−1 ⊗OS I )B = IB. (18.1.2)

When necessary, we will write fX , IX ,BX to be clear.

18.2 Proposition Suppose that E consists of one maximal ideal m. Let T be an m-flat
algebraic space over Wn∗(X)×S X. Then there exists at most one map g̃

T
g

�������������
g̃

��



 Wn+1∗(X)

f
��

Wn∗(X)×S X

lifting the structure map g. Such a lift exists if and only if IOT ⊆ mn+1OT .

Proof Giving a map g̃ : T → Wn+1∗(X) is equivalent to giving a map W ∗
n+1(T ) → X .

Such maps can be described using the diagram

Sn ×S T
��
�� W ∗

n (T )� T �� W ∗
n+1(T ),

because it is a coequalizer diagram in the category of algebraic spaces, by 17.3. There-
fore giving a map T → Wn+1∗(X) is equivalent to giving maps a : T → Wn∗(X) and
b : T → X such that the diagram

Sn ×S T
pr2 ��

w̄n

��

T

b
��

W ∗
n (T )

a′
�� X,

where a′ is the left adjunct of a, commutes. The commutativity of this diagram is
equivalent to that of

Sn ×S T
pr2 ��

id×a
��

T

b
��

Sn ×S Wn∗(X)
κ̄n �� X.

(18.2.1)
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This is because the following diagram commutes:

Sn ×S T
id×a

��

w̄n

��

Sn ×S Wn∗(X)

w̄n

��
κ̄n

��
��

��
��

��
��

��
��

��
��

W ∗
n (T )

W ∗
n (a) ��

a′

 W ∗
n Wn∗(X)

ε



������������

X,

where ε is the counit of the evident adjunction. (And this diagram commutes by the
naturalness of w̄n and the definitions of a′ and κ̄n .)

Let us now apply this in the case where we take (a, b) to be g. Then the map g̃
required by the lemma is unique, and it exists if and only if (18.2.1) commutes. The
commutativity of (18.2.1) is equivalent to that of

Sn ×S T
pr2 ��

id×(pr1◦g)
��

T

g

��

Sn ×S Wn∗(X)
h �� Wn∗(X)×S X,

(18.2.2)

where h denotes the map (pr2, κ̄n) of (18.1.1). Because h is a closed immersion, the
commutativity of (18.2.2) is equivalent to requiring that the ideal I defining h pull back
to the zero ideal on Sn ×S T , which is equivalent to the containment IOT ⊆ mn+1OT .

��
18.3 Theorem Suppose that E consists of one maximal ideal m and that Wn+1∗(X)
is m-flat (10.11). Let B be as in 18.1. Then the unique (Wn∗(X)×S X)-map

Spec B g̃−→ Wn+1∗(X),

of 18.2 is an isomorphism.

18.4 Remark In other words, we have

Wn+1∗(X) = Spec OWn∗(X)×S X [m−n−1 ⊗OS I ], (18.4.1)

which gives a concrete recursive description of Wn+1∗(X)when it is m-flat. Note that,
by 12.6, this flatness condition is satisfied when X is E-smooth.

18.5 Proof of 18.3 Fix, for the moment, an étale algebraic X -space U . Let YU denote
Wn∗(U ) ×S U , and let ZU denote Spec BU . Let CU denote the full subcategory of
algebraic spaces over YU consisting of objects T which are m-flat and satisfy

IU OT ⊆ mn+1OT , (18.5.1)
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where IU is the ideal sheaf defined in 18.1; let Caff
U denote the full subcategory of CU

consisting of objects which are affine over YU .
First, observe that Wn+1∗(U ) is the terminal object of CU . Indeed, by 18.2, it is

enough to show that Wn+1∗(U ) is m-flat; this is true because, by 11.1, it is étale over
Wn+1∗(X), which is m-flat by assumption.

Second, observe that ZU is the terminal object of Caff
U : it is an object of Caff

U
by 18.1.2, and it is terminal by the definition of generated.

Because of these two terminal properties, the theorem is equivalent to the statement
that there exists a map Wn+1∗(X) → Z X of YX -spaces, which is what we will prove.

Let D be a diagram of étale algebraic spaces U over X (as above) such that each
space U in the diagram is an object of AffRelS and such that the induced map

colim
U∈D

Wn+1∗(U )−→ Wn+1∗(X) (18.5.2)

is an isomorphism. The existence of D follows from 11.9. (One can in fact take D to
consist of all such spaces U .) Then, for any map b : V → U of D, the space Wn+1∗(V )
is an object of Caff

U . Indeed, the induced map Wn+1∗(V ) → YU is affine, because both
the source and the target are affine schemes (10.3.2); and (18.5.1) is satisfied because
we have IU OYV ⊆ IV .

Therefore, by the terminal property of ZU , for any such map b : V → U , there
is a unique map F(b) : Wn+1∗(V ) → ZU of YU -spaces. In particular, the induced
diagram

Wn+1∗(V )
F(idV ) ��

Wn+1∗(b)
��

ZV

��

Wn+1∗(U )
F(idU ) �� ZU

commutes. In particular, the compositions

Wn+1∗(U )
F(idU )−−−−→ ZU −→ Z X

form a compatible family of YX -maps, as U runs over D. This induces a YX -map

colim
U∈D

Wn+1∗(U ) → Z X .

On other hand, (18.5.2) is an isomorphism of YX -spaces. Thus there exists a map
Wn+1∗(X) → Z X of YX -spaces, which completes the proof. ��

18.6 Non-smooth counterexample

We cannot remove the assumption above that Wn+1∗(X) is m-flat. Indeed, the example
in 12.7 shows that the locus of Wn∗(X) over the complement of Spec OS/m can fail
to be dense in Wn∗(X).
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18.7 Corollary If X is E-smooth, then the co-ghost map

Wn∗(X)
κ≤n

�� X [0,n]

is affine. It is an isomorphism away from E.

It would be interesting to know whether this is true for arbitrary algebraic spaces
X over S.

Proof If E is empty, then κ≤n is an isomorphism. If not, write E = E ′ � E ′′, where
E ′′ consists of a single element. Let n′ and n′′ denote the projections of n onto N(E

′)

and N(E
′′). Then by (10.6.2), the map κ≤n can be identified with the composition

Wn′′∗
(
Wn′∗(X)

) κ≤n′′
��
(
Wn′∗(X)

)[0,n′′] (κ≤n′ )[0,n′′]
��
(
X [0,n′])[0,n′′]

.

By 11.1 and (10.4.9), the space Wn′∗(X) is E-smooth. Therefore, by induction, the
second map above is affine and is an isomorphism away from E . Thus to show the first
map is affine and is an isomorphism away from E , it is enough to prove the corollary
itself in the case where E consists of a single element.

In that case, κ≤n factors as follows

Wn∗(X)
f−→ Wn−1∗(X)×S X

f ×idX−→ (
Wn−2∗(X)×S X

) ×S X −→ · · · −→ X [0,n].

Since X is E-smooth, each Wi∗(X) is E-smooth and hence E-flat. Thus, by 18.3,
each of these maps is affine and an isomorphism away from E . Therefore so is their
composition κ≤n . ��
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