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Abstract We settle an open problem of several years standing by showing that the
least squares mean for positive definite matrices is monotone for the usual (Loewner)
order. Indeed we show this is a special case of its appropriate generalization to par-
tially ordered complete metric spaces of nonpositive curvature. Our techniques extend
to establish other basic properties of the least squares mean such as continuity and
joint concavity. Moreover, we introduce a weighted least squares mean and derive our
results in this more general setting.

Mathematics Subject Classification (2000) 15A48

1 Introduction

Not only does the study of positive definite matrices remain a flourishing area of
mathematical investigation (see e.g., the recent monograph of Bhatia [6] and refer-
ences therein), but positive definite matrices have become fundamental computational
objects in many applied areas. They appear as covariance matrices in statistics, as
elements of the search space in convex and semidefinite programming, as kernels in
machine learning, as density matrices in quantum information, and as diffusion tensors
in medical imaging, to cite a few. A variety of metric-based computational algorithms
for positive definite matrices have arisen for approximations, interpolation, filtering,
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268 J. Lawson, Y. Lim

estimation, and averaging, the last being the concern of this paper. In recent years,
it has been increasingly recognized that the Euclidean distance is often not the most
suitable for the space P of positive definite matrices and that working with the appro-
priate geometry does matter in computational problems. It is thus not surprising that
there has been increasing interest in the trace metric, the distance metric arising from
the natural Riemannian structure on P making it a Riemannian manifold, indeed a
symmetric space, of negative curvature. (Recall the trace metric distance between

two positive definite matrices is given by δ(A, B) = (
∑k

i=1 log2 λi (A−1 B))
1
2 , where

λi (X) denotes the i th eigenvalue of X in non-decreasing order.) Recent contributions
that have advocated the use of this metric in applications include [12,24,28] for tensor
computation in medical imaging and [4] for radar processing.

Since the pioneering paper of Kubo and Ando [16], an extensive theory of two-
variable means has sprung up for positive matrices and operators, but the n-variable
case for n > 2 has remained problematic. Once one realizes, however, that the matrix
geometric mean G2(A, B) = A#B := A1/2(A−1/2 B A−1/2)1/2 A1/2 is the metric mid-
point of A and B for the trace metric (see, e.g., [6,18]), it is natural to use an averaging
technique over this metric to extend this mean to a larger number of variables. First
Moakher [23] and then Bhatia and Holbrook [7,8] suggested extending the geometric
mean to n-points by taking the mean to be the unique minimizer of the sum of the
squares of the distances:

Gn(A1, . . . , An) = arg min
X∈P

n∑

i=1

δ2(X, Ai ).

This idea had been anticipated by Élie Cartan (see, for example, section 6.1.5 of [5]),
who showed among other things such a unique minimizer exists if the points all lie in
a convex ball in a Riemannian manifold, which is enough to deduce the existence of
the least squares mean globally for P.

Another approach, independent of metric notions, was suggested by Ando, Li, and
Mathias [2] via a “symmetrization procedure” and induction. The Ando–Li–Mathias
paper was also important for listing, and deriving for their mean, ten desirable prop-
erties for extended geometric means g : P

n → P that one might anticipate from prop-
erties of the two-variable geometric mean, where P = Pm denotes the convex cone
of m × m positive definite Hermitian matrices equipped with the Loewner order ≤.
The Ando–Li–Mathias mean proved to be computationally cumbersome, and Bini,
Meini, and Poloni [9] suggested an alternative with more rapid convergence proper-
ties, which also satisfies the ten axioms. One notes in particular that while the axioms
characterize the two-variable case, this is no longer true in the n-variable case, n > 2.

The ten properties may be generalized to the setting of weighted geometric means.
We recall that the two-variable weighted geometric mean is given by

t �→ G2(1 − t, t; A, B) = A#t B :=: A1/2(A−1/2 B A−1/2)t A1/2,

which is a geodesic parametrization of the unique geodesic passing through A and
B for A �= B. A weighted geometric mean of n-positive definite matrices should
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Monotonic properties of the least squares mean 269

be defined for each weight, where the weights w = (w1, . . . , wn) vary over Δn, the
simplex of positive probability vectors convexly spanned by the unit coordinate vec-
tors. We define a weighted geometric mean of n positive definite matrices to be a map
g : Δn × P

n → P satisfying the following properties:

(P1) (Consistency with scalars) g(w; A) = Aw1
1 . . . Awn

n if the Ai ’s commute;
(P2) (Joint homogeneity) g(w; a1 A1, . . . , an An) = aw1

1 . . . awn
n g(w; A);

(P3) (Permutation invariance) g(wσ ; Aσ ) = g(w; A), where wσ = (wσ(1), . . . ,

wσ(n));
(P4) (Monotonicity) If Bi ≤ Ai for all 1 ≤ i ≤ n, then g(w; B) ≤ g(w; A);
(P5) (Continuity) The map g(w; ·) is continuous;
(P6) (Congruence invariance) g(w; M∗

AM) = M∗g(w; A)M for any invertible M;
(P7) (Joint concavity) g(w; λA + (1 − λ)B) ≥ λg(w; A) + (1 − λ)g(w; B) for

0 ≤ λ ≤ 1;
(P8) (Self-duality) g(w; A−1

1 , . . . , A−1
n )−1 = g(w; A1, . . . , An);

(P9) (Determinant identity) Detg(w; A) = ∏n
i=1(Det Ai )

wi ; and
(P10) (AGH weighted mean inequalities) (

∑n
i=1 wi A−1

i )−1 ≤ g(w; A)≤∑n
i=1 wi Ai .

We note that the two-variable weighted geometric mean G2(1 − t, t; A, B) = A#t B,

t ∈[0, 1], satisfies (P1)−(P10), and that the original ten properties for the unweighted
case arise by specializing to the weight (1/n, . . . , 1/n).

In their study of the unweighted least squares mean, Moakher [23] and Bhatia and
Holbrook [7,8] have derived some of the axiomatic properties (P1)–(P10) satisfied by
the Ando–Li–Mathias geometric mean: consistency with scalars, joint homogeneity,
permutation invariance, congruence invariance, and self-duality (the last two being
true since congruence transformations and inversion are isometries). Further, based
on computational experimentation, Bhatia and Holbrook conjectured monotonicity
for the least squares mean (problem 19 in “Open problems in matrix theory” by Zhan
[29]). Providing a positive solution (Corollary 2) to this conjecture was the original
motivation for this paper.

In this paper we introduce the weighted least squares mean Gn(w; A1, . . . , An) of
(A1, . . . , An) with the weight w = (w1, . . . , wn) ∈ Δn , which is defined to be

Gn(w; A1, . . . , An) = arg min
X∈P

n∑

i=1

wiδ
2(X, Ai ). (1)

Computing appropriate derivatives as in [6,23] yields that the weighted least squares
mean coincides with the unique positive definite solution of the equation

n∑

i=1

wi log
(

X A−1
i

)
= 0. (2)

It is not difficult to see from (1) and (2) and some elementary facts about matrices and
the trace metric that the weighted least squares mean satisfies (P1)−(P3), (P6), (P8)

and (P9). In this paper we show that the weighted least squares mean satisfies all the
properties (P1)−(P10) by verifying all the additional properties (P4), (P5), (P7),
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and (P10). As far as we know, this is the first verification of properties (P4) and
(P7) in both the weighted and unweighted cases and of (P10) in the weighted case,
the unweighted case having been shown by Yamazaki [27]. We thus see that the
(weighted) least squares mean provides another important example of a (weighted)
geometric mean. We further show that the weighted least squares mean is non-expan-
sive: δ(Gn(w; A1, . . . , An),Gn(w; B1, . . . , Bn)) ≤ ∑n

i=1 wiδ(Ai , Bi ).

The main tools of the paper involve the theory of nonpositively curved metric spaces
and techniques from probability and random variable theory and the recent combina-
tion of the two, particularly by Sturm [26]. Not only are these tools crucial for our
developments, but also, we believe, significantly enhance the potential usefulness of
the least squares mean.

2 Metric spaces and means

The setting appropriate for our considerations is that of globally nonpositively curved
metric spaces, which we call NPC spaces for short (since we do not consider the
locally nonpositively curved spaces). These are complete metric spaces M such that
for each x, y ∈ M , there exists an m ∈ M satisfying

d2(m, z) ≤ 1

2
d2(x, z) + 1

2
d2(y, z) − 1

4
d2(x, y) (3)

for all z ∈ M . Such spaces are also called (global) CAT(0)-spaces or Hadamard
spaces. The theory of such spaces is quite extensive; see, e.g., [3,10,14,26]. In par-
ticular the m appearing in (3) is the unique metric midpoint between x and y. By
inductively choosing midpoints for dyadic rationals and extending by continuity, one
obtains for each x �= y a unique metric minimal geodesic γ : [0, 1] → M satisfying
d(γ (t), γ (s)) = |t − s|d(x, y). We denote γ (t) by x#ty and call it the t-weighted
mean of x and y. The midpoint x#1/2y we denote simply as x#y. We remark that by
uniqueness x#ty = y#1−tx; in particular, x#y = y#x.

Remark 1 Equation (3) is sometimes referred to as the semiparallelogram law, since
it can derived from the parallelogram law in Hilbert spaces by replacing the equal-
ity with an inequality (see [18]). It is satisfied by the length metric in any simply
connected nonpositively curved Riemannian manifold [17]. Hence the metric defini-
tion represents a metric generalization of nonpositive curvature. The trace metric on
the Riemannian symmetric space of positive definite matrices is a particular example
[17,18].

Equation (3) admits a more general formulation in terms of the weighted mean (see
e.g. [26, Proposition 2.3]). For all 0 ≤ t ≤ 1 we have

d2(x#ty, z) ≤ (1 − t)d2(x, z) + td2(y, z) − t (1 − t)d2(x, y). (4)

An n-mean on a set X is a function μ : Xn → X satisfying the idempotency
law μ(x,x, . . . ,x) = x. It is symmetric if it is invariant under all permutations σ
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Monotonic properties of the least squares mean 271

of {1, . . . , n}, i.e., μ(x1, . . . ,xn) = μ(xσ(1), . . . ,xσ(n)). For a metric space X with
weighted mean, the operation x#ty is a 2-mean for each t . A special case is the midpoint
mean x#y for t = 1/2, which is symmetric.

The problem of extending the geometric mean of two positive definite matrices to an
n-variable mean for n ≥ 3 generalizes to the setting of metric spaces with unique mid-
points. Under appropriate metric hypotheses, all of which are implied by the NPC con-
dition, the symmetrization procedure applies and inductively yields n-means extending
μ(x, y) = x#y for each n ≥ 3; see Es-Sahib and Heinich [11] and the authors [19].
(Recall that the symmetrization procedure extends a k-variable mean μk to a k+1-var-
iable mean μk+1 defined by μk+1(x1, . . . ,xk+1) = y if y = limn→∞ xn

i for each 1 ≤
i ≤ k + 1, where inductively xn+1

i = μk(x
n
1, . . . ,x

n
i−1,x

n
i+1, . . . ,x

n
k ), x0

i = xi .)
Extension methods for weighted 2-means and for the mean of Bini, Meini, and Poloni
[9] also generalize to NPC-spaces, and even weaker metric settings [21].

The weighted least squares mean can be immediately formulated in any metric space
(M, d). Given (a1, . . . , an) ∈ Mn , and positive real numbers w1, . . . , wn summing
to 1, we define

Gn(w1, . . . , wn; a1, . . . , an) := arg min
z∈M

n∑

i=1

wi d
2(z, ai ), (5)

provided the minimizer exists and is unique. In general the minimizer may fail to exist
or fail to be unique, but existence and uniqueness always holds for NPC spaces as can
be readily deduced from the uniform convexity of the metric; see [26, Propositions
1.7, 4.3]. Note that the mean in (5) is permutation invariant in the sense of property
(P3) for weighted means given in the Introduction. By taking wi = 1/n for each
i = 1, . . . , n, we see that the unweighted least squares mean is a special case of the
weighted one, so we work with the weighted case in what follows. Although this mean
is sometimes referred to as the Karcher mean in light of its appearance in his work on
Riemannian manifolds [15], we will refer to it as the weighted least squares mean, or
simply as the least squares mean.

One other mean will play an important role in what follows, one that we shall
call the inductive mean following the terminology of [26], although it appeared ear-
lier in [1,25]. It is defined inductively for NPC spaces (or more generally for metric
spaces with weighed means x#ty) for each k ≥ 2 by S2(x, y) = x#y and for k ≥ 3,
Sk(x1, . . . ,xk) = Sk−1(x1, . . . ,xk−1)# 1

k
xk .

3 Random variables and barycenters

In recent years significant portions of the classical theory of real-valued random vari-
ables on a probability space have been successfully generalized to the setting in which
the random variables take values in a metric space M . We quickly recall some of this
theory as worked out, for example, by Es-Sahib and Heinich [11] and particularly by
Sturm [26].
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Let (Ω,A, P) be a probability space: a set Ω equipped with a σ -algebra A of
subsets, and a σ -additive probability measure P on A. We write the measure or prob-
ability of A ∈ A by P(A). For a metric space (M, d), an M-valued random variable
is a function X : Ω → M which is measurable in the sense that X−1(B) ∈ A for
every Borel subset B of M . We further impose the technically useful assumption that
the image X (Ω) is a separable subset of M .

The push-forward of the measure P by X is denoted and defined by qX (B) =
P(X−1(B)) for each Borel subset B of M . It is a probability measure on the Borel
sets of M and is called the distribution of X . A sequence of random variables {Xn}
is identically distributed (i.d.) if all have the same distribution. For any qX -integrable
function φ : M → R, one has the basic formula

∫
M φ dqX = ∫

Ω
φX d P .

A collection of random variables {Xi : i ∈ I } is independent if for every finite
F ⊆ I , P(

⋂
i∈F X−1

i (Bi )) = ∏
i∈F P(X−1

i (Bi )), where {Bi : i ∈ I } is any collec-
tion of Borel subsets of M . A sequence {Xn} is i.i.d. if it is both independent and
identically distributed.

Assume henceforth that M is an NPC-space. Let P(M) denote the set of probability
measures with separable support on (M,B(M)), where B(M) is the collection of Borel
sets. We define the collection P1(M), resp. P2(M), of probability measures q ∈ P(M)

to be those satisfying
∫

M d(z,x)q(dx) < ∞, resp.
∫

M d2(z,x)q(dx) < ∞, for some
(hence all) z ∈ M . Members of P1(M) are called integrable and those in P2(M) are
called square integrable. We define a random variable X : Ω → M to be in L1, resp.
L2, if its distribution is integrable resp. square integrable. In particular, it is integrable
if

∫
Ω

d(z, X (ω))P(dω) = ∫
M d(z,x)qX (dx) < ∞ for z ∈ M .

Following Sturm [26], we define the barycenter b(q) of q ∈ P1(M) by

b(q) = arg min
z∈M

∫

M

[d2(z,x) − d2(y,x)]q(dx). (6)

Sturm uses the uniform convexity of z �→ d2(z,x) to show that independently of y
there is a unique z = b(q), the barycenter (by definition), at which this minimum
is obtained [26, Proposition 4.3], and that for the case that q is square integrable the
barycenter can be alternatively characterized by

b(q) = arg min
z∈M

∫

M

d2(z,x)q(dx). (7)

Remark 2 For the case that q = ∑n
i=1 wiδxi , where (w1, . . . , wn) is a weight and δxi

is the point mass at xi , we have

b(q) = arg min
z∈M

∫

M

d2(z,x)q(dx)

= arg min
z∈M

n∑

i=1

wi d
2(z,xi ) = Gn(w1, . . . , wn;x1, . . . ,xn).
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Monotonic properties of the least squares mean 273

Thus in this case q is square integrable and its barycenter b(q) agrees with the weighted
least squares mean of (x1, . . . ,xn).

For X : Ω → M integrable, we define its expected value E X by

E X = arg min
z∈M

∫

Ω

[
d2(z, X (ω)) − d2(y, X (ω))

]
P(dω)

= arg min
z∈M

∫

M

[d2(z,x) − d2(y,x)]qX (dx) = b(qX ). (8)

From this definition it is clear that integrable i.d. random variables have the same
expectation.

It is also possible to define and prove notions of a Law of Large Numbers for a
sequence of i.i.d. random variables into a metric space M . Let {Xk : k ∈ N} be
a sequence of i.i.d. random variables on some probability space (Ω,A, P) into M .
Let μk be an k-mean on M for each k, for example the inductive mean or one obtained
by the symmetrization procedure. We use these means to form the “average” Yk of the
given random variables according to the rule Yk(ω) := μk(X1(ω), . . . , Xk(ω)). Now
under suitable hypotheses Sturm [26] and Es-Sahib and Heinich [11] showed that a
strong law of large numbers is satisfied, that is, the Yk converge pointwise a.e. to a
common point b. The principal result of Sturm [26, Theorem 4.7] is crucial for our
purposes.

Theorem 1 Let {Xk}k∈N be a sequence of bounded i.i.d. random variables from a
probability space (Ω,A, P) into an NPC space M. Let Sk denote the inductive mean
for each k ≥ 2, and set Yk(ω) = Sk(X1(ω), . . . , Xk(ω)). Then Yk(ω) → E X1 as
k → ∞ for almost all ω ∈ Ω .

Theorem 1 provides an essential tool for our study of the least squares mean. Many
properties of the weighted 2-means of an NPC space can be shown to extend to their
finite iterations Sn , and then shown to be preserved in passing to the limit, the expecta-
tion. By Remark 2 and the equation following it, the expectation is the weighted least
squares mean if the push-forward measure qX1 agrees with a given weighted finitely
supported measure. In this way we are able to deduce properties of the weighted least
squares mean from properties of the weighted 2-mean.

4 A basic construction

In this section we specialize Theorem 1 to the case of finitely supported probability
measures, the case of interest to us. We first recall a standard construction in proba-
bility theory. Let (Ω, P) = ∏∞

k=1(Ωk, Pk) be the infinite product probability space,
where Ωk = {ξ1, . . . , ξn} and Pk = ∑n

i=1 wiδξi for all k. Define a sequence of random
variables Xk : Ω → M by Xk(ω) = xi if the kth component of ω ∈ Ω is ξi . Then
{Xk} is i.i.d. and the distribution of Xk is

∑n
i=1 wiδxi .
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We define Yk : Ω → M for each k by Yk(ω) = Sk(X1(ω), . . . , Xk(ω)), where Sk

is the inductive mean. By Theorem 1 we have that limk→∞ Yk(ω) = E X1 = b(qX1)

a.e. From Remark 2 it follows that that limk→∞ Yk(ω) = Gn(w;x1, . . . ,xn) a.e. We
summarize this special case of Theorem 1.

Corollary 1 Let (M, d) be an NPC space, let {x1, . . . ,xn} ⊆ M, and let w =
(w1, . . . , wn) be a weight. Then limk→∞ Yk(ω) = Gn(w;x1, . . . ,xn) a.e. for the
{Yk} given in the preceding construction.

We consider a basic example, which will be used in Sect. 6.

Proposition 1 Let H be a Hilbert space endowed with the metric induced by the inner
product. Then

(i) H is an NPC space.
(ii) The binary t-weighted mean of x and y is given by (1 − t)x + ty.

(iii) The inductive mean is given by Sk(x1, . . . ,xk) = ∑k
i=1(1/k)xi .

(iv) The weighted least squares mean for weight w = (w1, . . . , wn) is given by
Gn(w;x1, . . . ,xn) = ∑n

i=1 wixi .
(v) For {Xk}k∈N and a weight w = (w1, . . . , wn) as given in the preceding

construction, we have

lim
k→∞

k∑

i=1

(1/k)Xi (ω) → Gn(w;x1, . . . ,xn) =
n∑

i=1

wixi a.e.

Proof (i) It is standard that Hilbert spaces satisfy the parallelogram law, hence the
semiparallelogram law (3), and hence are NPC spaces (see e.g. [26, Proposition
3.5]).

(ii) The map on [0, 1] given by t �→ (1 − t)x + ty is a metric geodesic taking 0 to
x and 1 to y. Since such geodesics are unique in NPC spaces, it must give the
t-weighted mean.

(iii) By definition and induction

Sk(x1, . . . ,xk) = k − 1

k
Sk−1(x1, . . . ,xk−1) + 1

k
xk

= k − 1

k

k−1∑

i=1

1

k − 1
xi + 1

k
xk =

k∑

i=1

1

k
xi .

(iv) Consider the measure q = ∑n
i=1 wiδxi . Then for any y ∈ H,

〈Gn(w;x1, . . . ,xn), y〉 = 〈b(q), y〉 =
∫

H
〈x, y〉q(dx)

=
n∑

i=1

wi 〈xi , y〉 =
〈

n∑

i=1

wixi , y

〉

,
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Monotonic properties of the least squares mean 275

where the first equality follows from Remark 2 and the second is the content of
[26, Proposition 5.4]. The conclusion of (iv) is now immediate.

(v) In the earlier construction of this section we have Yk(ω) = ∑k
i=1

1
k Xi (ω) by

part (iii). The conclusion of (v) then follows from Corollary 1 and (iv).

5 Monotonicity and Loewner–Heinz NPC spaces

The fundamental Loewner–Heinz inequality for positive definite matrices asserts that
A1/2 ≤ B1/2 whenever A ≤ B. This can be written alternatively as A#I ≤ B#I
whenever A ≤ B and extends to the equivalent monotonicity property that A1# A2 ≤
B1#B2 whenever A1 ≤ B1 and A2 ≤ B2. These considerations motivate the next
definition.

Definition 1 A Loewner–Heinz NPC space is an NPC space equipped with a closed
partial order ≤ satisfying x1#x2 ≤ y1#y2 whenever xi ≤ yi for i = 1, 2. (Recall that
a partial order on a topological space X is closed if {(x, y) : x ≤ y} is closed in X × X
equipped with the product topology.)

A mean μ : Mn → M on a partially ordered metric space is called order-preserving
or monotonic if xi ≤ yi for i = 1, . . . , n implies μ(x1, . . . ,xn) ≤ μ(y1, . . . , yn).

Lemma 1 The inductive mean Sk on a Loewner–Heinz NPC space is monotonic for
every k ≥ 2.

Proof We first observe that x1#tx2 ≤ y1#ty2 whenever xi ≤ yi for i = 1, 2 by
the standard argument of extending the inequality to the dyadic weighted means by
induction for the case of the dyadic rationals, and then extending to general t ∈ [0, 1]
by continuity in t and the closedness of the relation ≤. Assuming that the inductive k-
mean Sk is monotonic, it follows that Sk+1(x1, . . . ,xk+1) = Sk(x1, . . . ,xk)# 1

k+1
xk+1

is monotonic since Sk and the t-weighted mean both are.

Theorem 2 Let (M, d,≤) be a Loewner–Heinz NPC space. Then for a fixed weight
w = (w1, . . . , wn) the weighted least squares mean Gn is monotonic for n ≥ 2.

Proof Assuming xi ≤ yi for 1 ≤ i ≤ n, we show Gn(w;x1, . . . ,xn) ≤ Gn(w; y1,

. . . , yn), where Gn is the least squares mean on Mn . Let Ωk be a copy of the n-ele-
ment set {ξ1, . . . , ξn} equipped with the measure Pk = ∑n

i=1 wiδξi . Let (Ω, P) =∏∞
k=1(Ωk, Pk) and Xk be as defined in the beginning of Sect. 4. Similarly we define

X̃k : Ω → M by X̃k(ω) = yi if πk(ω) = ξi . As we have seen in the previous sec-
tion {Xk} is i.i.d. with distribution

∑n
i=1 wiδxi , while {X̃k} is i.i.d. with distribution∑n

i=1 wiδyi . Finally we note that (X1(ω), . . . , Xk(ω)) is coordinatewise less than or
equal to (X̃1(ω), . . . , X̃k(ω)) since xi ≤ yi for each i = 1, . . . , n.

We define Yk, Ỹk : Ω → M by Yk(ω) = Sk(X1(ω), . . . , Xk(ω)) and Ỹk(ω) =
Sk(X̃1(ω), . . . , X̃k(ω)). It follows from Lemma 1 that Yk(ω) ≤ Ỹk(ω) for each
ω ∈ Ω . By Corollary 1 we have that limk→∞ Yk(ω) = Gn(w;x1, . . . ,xn) a.e.
and limk→∞ Ỹk(ω) = Gn(w; y1, . . . , yn) a.e. By the closedness of the partial order
(and the fact that the intersection of two sets of measure 1 still has measure 1), we
conclude that Gn(w;x1, . . . ,xn) ≤ Gn(w; y1, . . . , yn).
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Since the trace metric on the space P of m × m positive definite (real or complex)
matrices makes it a Loewner–Heinz NPC space with respect to the Loewner order (see
e.g. [18]), we have the following corollary.

Corollary 2 The weighted least squares mean on the set P of positive definite matrices
is monotonic.

Remark 3 Loewner [22] proved that a function defined on an open interval is operator
monotone if and only if it allows an analytic continuation into the complex upper
half-plane with nonnegative imaginary part. The function f (t) = tα, α ∈ [0, 1] is
operator monotone on the positive reals, that is, X ≤ Y implies Xα ≤ Y α for positive
definite matrices X and Y. The inequality was independently proved by Heinz [13].
It is equivalent to the extended monotonicity property of the weighted geometric mean:
B1#t B2 ≤ A1#t A2, t ∈ [0, 1], whenever B1 ≤ A1 and B2 ≤ A2. It is natural to consider
the monotonicity of the least squares mean Gn(ω; B) ≤ Gn(ω; A) whenever Bi ≤ Ai

for each i as an n-variable Loewner-Heinz inequality for positive definite matrices.

A function F : P
n → P is jointly concave if for any (A1, . . . , An), (B1, . . . , Bn) ∈

P
n and 0 ≤ t ≤ 1, we have

t F(A1, . . . , An)+(1−t)F(B1, . . . , Bn)≤ F(t A1+(1−t)B1, . . . , t An +(1−t)Bn).

Proposition 2 The least squares mean Gn : P
n → P for the trace metric is jointly

concave for each n ≥ 2.

Proof It is a standard result that the two-variable weighted geometric mean on P is
jointly concave. It follows directly by induction that the inductive mean Sn of positive
definite matrices is jointly concave for n ≥ 2 (see the proof of Lemma 1).

Fix (A1, . . . , Ak), (B1, . . . , Bk) ∈ P
k and a weight w = (w1, . . . , wk). Construct

random variables {Xk}, {X̃k} as in the proof of Theorem 2 with Ai replacing xi and
Bi replacing yi for each i . For Yk = Sk(X1, . . . , Xk) and Ỹk = Sk(X̃1, . . . , X̃k}, we
conclude from the concavity of Sk that

tYk + (1 − t)Ỹk ≤ Sk(t X1 + (1 − t)X̃1, . . . , t Xk + (1 − t)X̃k) = Sk(Z1, . . . , Zk),

where Zi = t Xi + (1 − t)X̃i for 1 ≤ i ≤ k. Note that the Zk are i.i.d. with each Zk

having distribution that assigns mass wi to each t Ai + (1 − t)Bi , 1 ≤ i ≤ n. From
Corollary 1 the limit of both sides exists a.e. and is given by the appropriate least
squares mean, and from the closedness of the order we conclude

tGn(w; A1, . . . , An) + (1 − t)Gn(w; B1, . . . , Bm) ≤ Gn(w; C1, . . . , Cn),

where Ci = t Ai + (1 − t)Bi for each i .

6 Other properties of the least squares mean

The fact that the unweighted least squares mean is bounded above by the arith-
metic mean, and hence below by the harmonic mean has been recently shown by
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Yamazaki [27]. We give an alternative approach via probabilistic methods and derive
the result for the weighted least squares mean.

Proposition 3 For (A1, . . . , An) ∈ P
n and a weight w = (w1, . . . , wn), we have

(
n∑

i=1

wi A−1
i

)−1

≤ Gn(w; A1, . . . , An) ≤
n∑

i=1

wi Ai .

Proof It is a standard result that the two-variable weighted geometric mean on P

is below the corresponding weighted arithmetic mean: A#t B ≤ (1 − t)A + t B for
0 ≤ t ≤ 1. It follows by induction that the inductive mean satisfies for each k

Sk(B1, . . . , Bk) = Sk−1(B1, . . . , Bk−1)#1/k Bk

≤ k − 1

k

k−1∑

i=1

1

k − 1
Bi + 1

k
Bk = 1

k

k∑

i=1

Bi .

Construct a sequence of i.i.d. random variables {Xk} as in Sect. 4 such that the
distribution is

∑n
i=1 wiδAi for each Xk . Set Yk = Sk(X1, . . . , Xk) for each k. From

Corollary 1 limk→∞ Yk(ω) = Gn(w; A1, . . . , An) a.e.
Endow the space of Hermitian matrices H including P with the Hilbert space

structure with inner product 〈A, B〉 = trA∗ B. Then P is an open subset of H. Set
Zk = ∑k

i=1(1/k)Xi , where {Xk} are the random variables of the previous para-
graph. By Proposition 1(v), limk→∞ Zk(ω) → ∑n

i=1 wi Ai a.e. By the first para-
graph Yk(ω) ≤ Zk(ω) for all k, ω. From the closure of the order, we conclude that
Gn(w; A1, . . . , An) ≤ ∑n

i=1 wi Ai .
The first inequality in the conclusion of the proposition follows from the second and

the fact that inversion is an isometry for the trace metric and hence the least squares
mean is self-dual, i.e., Gn(w; A−1

1 , . . . , A−1
n )−1 = Gn(w; A1, . . . , An).

Let M be an NPC space. Given probability measures p, q ∈ P(M), we say that a
probability measure μ ∈ P(M2) is a coupling of p and q if the marginals of μ are p
and q, that is, if for all Borel sets B ∈ B(M)

μ(B × M) = p(B) and μ(M × B) = q(B). (9)

Definition 2 The (L1)-Wasserstein distance ρ on P1(M) is given by

W (p, q) = inf

⎧
⎨

⎩

∫

M×M

d(x, y)μ(dx dy) : μ is a coupling of p and q

⎫
⎬

⎭
.
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We adopt the most common name for the metric, the Wasserstein distance, although
it also appears under a variety of other names such as the Kantorovich–Rubinstein
distance.

Proposition 4 For (x1, . . . ,xn), (y1, . . . , yn) ∈ Mn, a weight w = (w1, . . . , wn),
and the corresponding finitely supported probability measures q1 =∑n

k=1 wiδxi and
q2 = ∑n

k=1 wiδyi on M,

d(Gn(w;x1, . . . ,xn),Gn(w; y1, . . . , yn)) ≤ W (q1, q2) ≤
n∑

i=1

wi d(xi , yi ).

Hence, in particular, the least squares mean Gn is continuous for each w.

Proof Define μ on M × M by μ = ∑n
i=1 wiδ(xi ,yi ). One sees readily that μ is a cou-

pling of q1 and q2, and thus W (q1, q2)≤
∫

M×M d(x, y)μ(dxdy) = ∑n
i=1 wi d(xi , yi ).

By Theorem 6.3 of [26], the barycentric map b : P1(M) → M satisfies, for all
p, q, the fundamental contraction property d(b(p), b(q)) ≤ W (p, q). By Remark 2
b(q1) = Gn(w;x1, . . . ,xn) and similarly b(q2) = Gn(w; y1, . . . , yn). Thus

d(Gn(w;x1, . . . ,xn),Gn(w; y1, . . . , yn)) = d(b(q1), b(q2)) ≤ W (q1, q2)

≤
n∑

i=1

wi d(xi , yi ).

The fact that the right-hand of the preceding is larger than the left-hand directly estab-
lishes the continuity of Gn .

From this result together with Corollary 2 and Propositions 2 and 3 we conclude that
the least squares mean of positive definite matrices satisfies the continuity, monoto-
nicity, joint concavity, and AGM inequality properties, and hence all the fundamental
properties of the geometric means of positive definite matrices defined for and sat-
isfied by the Ando–Li–Mathias and Bini–Meini–Poloni constructions [2,9]; see [27]
for other properties.

We note in closing that Corollary 2 and Propositions 2, 3 and 4 extend to the positive
symmetric cones of finite-dimensional Euclidean Jordan algebras; see [20].

Acknowledgments This paper has benefited from the careful reading, editing, and thoughtful suggestions
of the referee.
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