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Abstract The present paper is concerned with the Cauchy problem

{
∂t u = �um + u p in R

N × (0,∞),

u(x, 0) = u0(x) ≥ 0 in R
N ,

with p,m > 1. A solution u with bounded initial data is said to blow up at a finite
time T if lim supt↗T ‖u(t)‖L∞(RN ) = ∞. For N ≥ 3 we obtain, in a certain range
of values of p, weak solutions which blow up at several times and become bounded
in intervals between these blow-up times. We also prove a result of a more technical
nature: proper solutions are weak solutions up to the complete blow-up time.
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802 N. Mizoguchi et al.

1 Introduction and main results

This paper is concerned with the existence of solutions having multiple blow-up times
for the Cauchy problem

{
∂t u = �um + u p in R

N × (0,∞),

u(x, 0) = u0(x) ≥ 0 in R
N ,

(1.1)

where p,m > 1. The equation is chosen as a simple and representative example of
quasilinear reaction-diffusion equation where the diffusion operator is nonlinear and
degenerate parabolic [14]. We assume bounded, integrable and nonnegative initial
data, u0 ∈ L∞(RN ) ∩ L1(RN ), u0 ≥ 0. There is no lack of generality in assuming
that u0 is also continuous [7,43].

The semilinear case, ∂t u = �u + u p, p > 1, is a typical blow-up prototype that
has been treated in a large number of publications, see for example [39] and the ref-
erences therein. One of the aspects which has received attention only more recently
is the possibility of having multiple blow-up [32–34]. However, the techniques do not
extend naturally to quasilinear equations. Nevertheless, the property of finite propa-
gation associated with porous medium diffusion (i.e., the exponent m > 1) implies
the existence of solutions with compact support with respect to the space variable.
This offers interesting possibilities for the construction of different types of blow-up
solutions. Such constructions are not easy in the more standard case of linear diffusion,
m = 1.

Before stating our results, we introduce the relevant definitions and review some
of the known main results. The porous medium operator is degenerate parabolic at the
level u = 0. Hence, there exists in general no classical solution of the equation for just
nonnegative initial data. This means that a suitable concept of weak or generalized
solution has to be introduced to ensure existence and uniqueness of solutions of the
Cauchy problem [43]. The same happens for reaction-diffusion equations of the form

∂t u = �um + f (u), (1.2)

where f is a Lipschitz continuous real function [14,41]. The presence of a locally
Lipschitz but not globally Lipschitz f creates the problem of blow-up, and this adds
further difficulties in the suitable definition of solution.
Weak solutions A standard way of starting the study of these questions is introducing
a class of data and solutions with reasonable regularity properties. We define a weak
solution1 of Eq. 1.2 in QT = R

N × (0, T ) as a function u ∈ L1
loc(QT ) such that

um, f (u) ∈ L1
loc(QT ), and

∫∫
QT

(u∂tφ + um�φ + f (u)φ) dx dt = 0

1 In order to be more precise we could call this an L1
loc-weak solution.
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Multiple blow-up for a porous medium equation with reaction 803

is satisfied for any φ ∈ C2(QT ) compactly supported in QT . Given u0 ∈ L1
loc(R

N ),
a weak solution of the Cauchy problem for Eq. 1.2 with initial data u0 will be a weak
solution in the previous sense that satisfies

u ∈ C([0, T ) : L1
loc(R

N )), lim
t→0+ u(t) = u0 in L1

loc(R
N ).

For initial data u0 in L∞(RN ) ∩ L1(RN ) and Lipschitz continuous functions f there
exists a unique solution of the Cauchy problem in QT for all T > 0 [4,40] (see also
[37] for initial data which are not in L1(RN ), but do not grow too much at infinity).
This solution turns out to be bounded for all t > 0. Moreover, the regularity theory
for quasilinear parabolic equations, which includes these degenerate models, implies
that bounded solutions are locally Hölder continuous with a Hölder uniform exponent
[7,43]. Finally, when u0 is positive and f is smooth for u > 0, the weak solution
becomes a smooth classical solution.

When f is superlinear the situation is quite different. If the initial data belong to
L1(RN ) ∩ L∞(RN ), a weak solution exists and is bounded at least for a small time
interval 0 < t < t1. However, it may become unbounded in a finite time, T ,

lim sup
t↗T

‖u(t)‖L∞(RN ) = ∞.

In this case we say that u blows up at t = T .
Once solutions become unbounded, things become more involved. A first possible

difficulty arises when limt→T − u(t) does not belong to L1
loc(R

N ). If this happens (this
is expected to be the case when f (u) = u p with p ∈ (1,m], though a proof is only
available with some restrictions on the initial data [35]), there is no weak solution
in QT1 for T1 > T . Even when the previous limit is in L1

loc(R
N ), we have to face

serious problems, since uniqueness is not guaranteed for unbounded weak solutions
[14]. Therefore, in order to tackle blow-up problems after the blow-up time we need
a different concept of solution.
Proper solutions We concentrate on Eq. 1.1. We recall the concept of proper solu-
tion, which was introduced as a suitable generalized solution in [14], based on the
pioneering work [3]. Given n > 0, let un be the weak solution of

{
∂t u = �um + min{u p, n p} in R

N × (0,∞),

u(x, 0) = χBn(0)
(x)min{u0(x), n} in R

N .
(1.3)

Then u(x, t) ≡ limn→∞ un(x, t) is the proper solution of (1.1). In the sequel we will
work by default with this concept of solution.

Remark In the definition of un we may take as initial data Pnu0, where {Pn}n>0 is
any family of ordered approximation operators,

Pn : L1
loc(R

N ) 
→ L1(RN ) ∩ L∞(RN ),

Pnu ≥ Pmu if n ≥ m,

lim
n→∞ Pnu0 = u0 in L1

loc(R
N ).
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804 N. Mizoguchi et al.

The limit (the proper solution) does not depend on the particular family of ordered
approximation operators being used [14].

Complete blow-up As long as there exists a weak solution, the proper solution is a
weak solution, which is minimal in the sense that it is below any other weak solution.
Moreover, as long as there is a unique weak solution, as is the case while solutions
remain bounded, the concepts of proper and weak solution coincide. Thus, the proper
solution provides a way of defining a unique continuation of a weak solution past the
blow-up time.

Let u be the proper solution of (1.1) and let C = {t ≥ 0 : u(x, t) = ∞ for all x ∈
R

N }. We define

T c = T c(u0) =
{

inf C if C �= ∅,
∞ if C = ∅.

Hence T c is the maximal time for which there is a nontrivial continuation. If T c(u0) <

∞, we say that u blows up completely at T c(u0). If u blows up at a finite time T and
T < T c(u0), blow-up is said to be incomplete.

Let moreover

pS =
{+∞ if N ≤ 2,

m(N + 2)/(N − 2) if N ≥ 3,

denote the Sobolev exponent. Baras and Cohen [3] proved, in the case of a bounded
domain with homogeneous Dirichlet boundary data, that blow-up is always complete
if m = 1 and p ∈ (1, pS ). Further results with more general reaction non-linearities
can be found, for example, in [23,26]. As for the problem posed in the whole space,
we have [14], where the authors prove that blow-up is always complete if m ≥ 1
and p ∈ (1, pS ] (the fast diffusion case, m < 1, is also considered). However, this
result is restricted to radially symmetric solutions. Non-radial solutions have been
treated in [42], for m > 1 and a special class of initial data that include the important
case of measurable, bounded, compactly supported functions: blow-up is complete if
p ∈ (m, pS ) (the critical case p = pS is not covered). For the same class of initial
data and p ∈ (1,m], the blow-up set (the set where the solution becomes infinite
as t approaches the blow-up time T ) is known to have positive Lebesgue measure
[35]. Hence, limt→T − u(t) does not belong to L1

loc(R
N ). We will see in Sect. 2 that

this implies that blow-up is complete. Summarizing, it seems that in order to look for
incomplete blow-up phenomena we should take N ≥ 3, p > pS (an excellent review
of recent results in the critical and supercritical cases, p ≥ pS , when m = 1 can be
found in [8]).
Proper solutions are weak solutions up to T c A natural question is whether the proper
solution is a weak solution up to the complete blow-up time, T c (after T c there is no
possibility of having a weak solution). The answer is obviously yes in those cases
for which blow-up is always complete, for example, when 1 < p ≤ m if the ini-
tial data satisfy certain conditions (see the previous paragraph). On the contrary, if
1 < p < 2 − m, which is only possible if m < 1, there are proper solutions which
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are not weak solutions up to T c [14]. In our first theorem, which will be proved in
Sect. 2, we extend the study of this question to the range 1 ≤ m < p, including all
nonnegative initial data in L∞(RN ) ∩ L1(RN ).

Theorem 1 Let 1 ≤ m < p. Let u be the proper solution of (1.1) and T c its complete
blow-up time. Then u is a weak solution in QT c .

This result is in some sense independent of the rest of the paper. However, it will
be useful to simplify some other proofs.
Peaking and multiple blow-up solutions In the case of incomplete blow-up, it may
happen that the proper solution becomes bounded and continuous immediately after
blow-up for some time. As time proceeds, it may continue to be bounded for all later
times, or it may blow up again. In the former case, we have a peaking solution. In the
latter, we have multiple blow-up. Our main aim is to construct solutions of both kinds.
Notice that, since proper solutions are “small” (they are minimal), this seems to be the
right class in which to look for solutions with incomplete blow-up.

A peaking solution for (1.1) was constructed in [14] for all m ≥ 1 and p ∈ (pS , pL )

by connecting a backward self-similar blow-up solution with a forward self-similar
solution (the idea of using such connection stems from Lacey and Tzanetis [24], who
followed this approach to construct formally a peaking solution for the semilinear
equation ut = �u + eu in R

3). This solution goes to zero as t → ∞. The value of the
new critical exponent (due to Lepin [25] in the semilinear case) is given by

pL =
⎧⎨
⎩

+∞ if N ≤ 10,

1 + 3m + α(m, N )1/2

N − 10
if N ≥ 11,

where α(m, N ) = {(m − 1)2(N − 10)2 + 2(m − 1)(5m − 4)(N − 10)+ 9m2}. There
seems to be no other known results concerning this topic for (1.1) when m > 1.
For m = 1, peaking solutions with various behaviors as t → ∞ have been obtained
in [31].

Up to now, multiple blow-up solutions have only been obtained for the semilinear
case. The first example, a proper solution blowing up twice, was constructed in [32].
This result was improved in [33], where global weak solutions (that is, defined in QT

for all T > 0) with an arbitrary finite number of blow-up times were given. These
two papers are restricted to p > pJ L , where the critical exponent pJ L (introduced by
Joseph and Lundgren in the semilinear case [20]) stands for

pJ L =
⎧⎨
⎩

+∞ if N ≤ 10,

m

(
1 + 4

N − 4 − 2(N − 1)1/2

)
if N ≥ 11.

As for the whole range p > pS , we have [34], where the authors construct proper solu-
tions blowing up twice, with blow-up times as close as desired to any two prescribed
times. The second blow-up is complete.
Peaking and multiple blow-up new results While the self-similar peaking solution con-
structed in [14] is positive everywhere, we construct here a peaking solution which
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has compact support for all times. However, we are not able to go as far as [14] in the
range of exponents (notice that pS < pJ L < pL ).

Theorem 2 Let p ∈ (pS , pJ L ). Given T > 0, there exists a radially symmetric peak-
ing solution of (1.1) that blows up at the origin at t = T and has compact support in
x for all t . It goes to zero as t → ∞.

We will construct multiple blow-up solutions gluing peaking solutions with com-
pact support centered at different points. We just have to control the supports of the
different peaking solutions so that they do not intersect before the last blow-up time.
In order to achieve this, the blow-up points have to fall apart enough one from each
other.

Theorem 3 Let p ∈ (pS , pJ L ). Given any bounded sequence of times {Ti }k
i=0, k ∈ N

or k = ∞, such that T0 = 0, Ti−1 < Ti for 1 ≤ i ≤ k (i ≥ 1 if k = ∞), there exists a
proper solution u of (1.1) such that u blows up incompletely at t = Ti and is bounded
for t ∈ (Ti−1, Ti ), 1 ≤ i ≤ k (i ≥ 1 if k = ∞).

Notice that we are able to choose the blow-up times. This is in contrast with what
is known for the semilinear case, where, up to now, the blow-up times can only be
prescribed in an approximate manner, and only for solutions blowing up twice [34].

Observe also that we are able to construct solutions with infinitely many blow-up
times. Fila, Matano and Poláčik proved recently [9] that this is not possible in the case
of the heat equation posed in a ball with radial initial data, both for power-like and for
exponential reaction nonlinearities. In this respect let us notice that our construction
does not work in a ball: the blow-up points escape to infinity. Let us also mention that
there is a previous example of a solution having infinitely many blow-up times due to
Michel Pierre.2 He observed that

u(x, t) = 1

|x |2 + ψ(t)

is an L1-weak solution of the equation

∂t u = �u + g(|x |, t)u2, g(r, t) = 2N − ψ ′(t)− 8r2

r2 + ψ(t)
,

provided ψ is a nonnegative C1 function and N > 4. Obviously, u blows up at each
time such that ψ(t) = 0. However, in contrast with our problem, Pierre’s equation is
not autonomous.

If we choose the blow-up times as in Theorem 3, we are not able to fix the blow-up
points. However, we have a kind of dual result. We may choose the blow-up points
at the cost of not being able to decide completely the blow-up times: they have to be
small enough.

2 It appears, cited as a private communication, in [9].
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Theorem 4 Let p ∈ (pS , pJ L ) and let {xi }k
i=0, k ∈ N or k = ∞, be any sequence

of points such that |xi − x j | ≥ δ, i �= j , for some δ > 0. Then, there exists a con-
stant 	 = 	(δ) > 0 such that for any sequence of times {Ti }k

i=0, satisfying T0 = 0,
Ti−1 ≤ Ti , 0 < Ti < 	(δ), for 1 ≤ i ≤ k (i ≥ 1 if k = ∞), there is a proper solution
u of (1.1) that blows up incompletely at the point xi at time t = Ti . This solution is
bounded for t ∈ (Ti−1, Ti ) for all 1 ≤ i ≤ k (i ≥ 1 if k = ∞) such that Ti−1 �= Ti .

Difference with the semilinear case Let us explain a bit the difference between the
theory for Eq. 1.1 and the semilinear case when trying to get multiple blow-up solu-
tions. Let N ≥ 3. Given any m ≥ 1 and p > pST = m N/(N − 2), there is a radially
symmetric singular steady state of (1.1) given by

ϕ∞(r) = c∞r− 2
p−m for r = |x | > 0, (1.4)

with c∞ =
{

2m

p − m

(
N − 2 − 2m

p − m

)} 1
p−m

.

Remark The restriction p > pST guarantees that c∞ is well defined and also that
ϕ∞, ϕm∞, ϕ

p∞ ∈ L1
loc(QT ). Hence ϕ∞ is a weak solution. This is an example of incom-

plete blow-up of a special kind: it has a single-point, stationary blow-up set. Notice
that m < pST < pS . In particular, the range of existence of such incomplete blow-up
solutions goes down beyond Sobolev exponent.

Since the pioneering work of Giga and Kohn [15–17], many features of blow-up
are known to be best seen by passing to self-similar variables. Thus, given a solution
u of (1.1) blowing up at time T > 0 at the point a ∈ R

N , we put

w(y, s) = (T − t)1/(p−1)u(a + (T − t)β y, t)

with β = (p − m)/2(p − 1), and s = − log(T − t), so that s → ∞ as t → T −. Then
w satisfies

{
ws = �(wm)− βy · ∇w − 1

p−1w + w p in R
N × (sT ,∞),

w(y, sT ) = T 1/(p−1)u0(T β y) in R
N ,

(1.5)

where sT = − log T . It is immediate that ϕ∞ is also the singular steady state of (1.5).
A solution that blows up at time T is said to have type I blow-up if

(T − t)
1

p−1 ‖u(·, t)‖L∞(RN ) remains bounded as t ↗ T .

Note that (T − t)
1

p−1 is the blow-up rate of solutions of the ordinary differential equa-
tion ut = u p. If u has type I blow-up, the corresponding w will approach a bounded
stationary state of (1.5). Blow-up solutions which are not of type I, which were first

123
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considered by Herrero and Velázquez in [19]3 for m = 1, are said to be of type II.
A very complete characterization of Type I and II blow-up is done by Matano and
Merle [29].

The method followed in [32] and [33] to construct multiple blow-up solutions for
the semilinear case makes use of an argument to construct a type II blow-up solution
which is based on the linearization of (1.5) around ϕ∞. However, to apply the manner
of the above mentioned papers for m > 1, we should linearize the diffusion term�wm

in addition to w p. Surely, this would need extremely heavy calculations.
A different approach, based on the use of an energy functional has been recently

used in [34]. If m = 1, then β = 1/2 and, after multiplication of (1.5) by the integrat-
ing factor e−|y|2/4, we may get rid of the term involving y · ∇w. It turns out that there
is an energy functional

E[w] =
∫

RN

{
1

2
|∇w|2 + 1

2(p − 1)
w2 − 1

p + 1
w p+1

}
exp

(
−|y|2

4

)
dy

which is nonincreasing with respect to s and has other useful properties. It seems
difficult to construct the energy functional in a suitable function space as above for
m > 1, and we have been unable to overcome the technical difficulties. On the other
hand, it is not clear whether the known Lyapunov functional is enough or not to get
our desired properties.
Sketch of the proof of Theorem 2 We follow an idea that was used in [30] to obtain a
solution with incomplete blow-up for the semilinear case.

Given any compactly supported bounded function h �≡ 0, and any μ > 0, we
consider the proper solution uμ to (1.1) with initial data μh. Since p > pS , we are
above the so-called Fujita exponent, pF = m + 2

N . Therefore, there is a critical value
μ∗ such that uμ blows up in finite time if μ > μ∗ and remains bounded for all times
if μ < μ∗. Indeed, for p > pF solutions with large initial data blow up, while they
are bounded for all times if they are initially small. On the contrary, if p ∈ (1, pF ] all
notrivial solutions blow up in finite time, see [10,18,22] for the semilinear problem,
m = 1, and [11,13] for m > 1.

Incomplete blow-up solutions are expected to belong to the threshold case,μ = μ∗.
However, to ensure that u∗ = uμ∗ is a peaking solution, we will need to impose addi-
tional assumptions on the function h.

Thus, if h is radially symmetric and non-increasing in r = |x |, then u∗ is a global
weak solution. This is an immediate consequence of a pointwise estimate for radially
symmetric, non-increasing in r = |x |, proper solutions of (1.1) with T c = ∞, that
will be proved in Sect. 3.

It is not very difficult to show that u∗ has to blow up in a finite time T ∗. Otherwise,
a continuous dependence argument would allow to pushμ∗ a bit further, contradicting
its definition.

3 The unpublished preprint A blow up result for semilinear heat equations in the supercritical case, by the
same authors, which contains a detailed proof of the result, has widely circulated among the specialists in
the field of blow-up.
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If, moreover, h is such that μh has at most two intersections (see the beginning of
Sect. 4 for a precise definition) with ϕ∞ for all μ > 0, then u∗ is a peaking solution.
This follows from a result of immediate regularization for solutions of (1.1) which
will be proved in Sect. 4. Unfortunately, it is restricted to p ∈ (pS , pJ L ). A similar
(and, in fact, more general) regularization result for m = 1 was given in [9], see also
[29]. In the course of the proof, which is based on the theory of dynamical systems,
the authors used in an essential way the convergence along a subsequence {sn} of
the rescaled variable w(·, s) to a stationary solution. However, as mentioned above,
the transformation through backward self-similar variables is not useful for m > 1.
Therefore, the proof of our regularization result, Theorem 6, is different, though it
also applies to the semilinear case, see [34].

Since h is compactly supported, a comparison argument will show that u∗ has com-
pact support in x for all times, Finally, to fix the blow-up time at a prescribed value,
we just use a scaling argument.

Remark The first authors that noticed (for m = 1, in a bounded domain with homoge-
neous Dirichlet boundary data) that threshold solutions like u∗ have special features
were Ni, Sacks, and Tavantzis [36], who showed that u∗ is a global unbounded solution
for any p > pS . At that time it was not known whether those unbounded solutions
blow up in finite time or only tend to infinity as t → ∞. Galaktionov and Vázquez
[14] later showed that those solutions indeed blow up in finite time if p ∈ (pS , pL ),
provided the domain is a ball and the solutions are radially symmetric.

2 Proper solutions are weak solutions before the complete blow-up

We start with two technical results and some notation. We denote by γR and φR the first
eigenvalue and eigenfunction of the problem

{−�φ = γφ in BR(0) = {x ∈ R
N : |x | < R},

φ = 0 on ∂BR(0),

normalized by ‖φR ‖L1(BR(0))
= 1. It is immediate that

γR = γ1 R−2, φR (r) = R−Nφ1(R
−1r) for 0 ≤ r ≤ R.

Lemma 1 Let u be a weak solution of (1.2) in QT , R > 0 and I = [τ, t], 0 < τ <

t < T . Then,

∫
BR(0)

u(x, t)φR(|x |) dx −
∫

BR(0)

u(x, τ )φR(|x |) dx

≥ −γR

∫∫
BR(0)×I

um(x, t)φR (|x |) dxdt +
∫∫

BR(0)×I

f (u(x, t))φR(|x |) dxdt. (2.1)
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810 N. Mizoguchi et al.

Proof For ε > 0 we define

ζε(x) =
{

e
− ε
φR (|x |) , |x | < R,

0, |x | ≥ R,

Notice that

�(ζεφR ) =
⎧⎨
⎩

e
− ε
φR

(
�φR − εγR + ε2 |∇φR |2

φ3
R

)
, |x | < R,

0, |x | ≥ R,

so that for |x | < R we have �(ζεφR ) ≥ e
− ε
φR
(
�φR − εγR

)
.

Let now θε ∈ C∞([0,∞)) be such that 0 ≤ θε(s) ≤ 1 for all s ≥ 0, θε(s) = 1 for
s ∈ [τ, t], θε(s) = 0 if s �∈ (τ − ε, t + ε). Using the weak formulation for (1.2) with
test function φR (x)ζε(x)θε(s), we have

−
∫∫

BR(0)×(τ−ε,t+ε)
uφR ζεθ

′
ε dxds

≥
∫∫

BR(0)×(τ−ε,t+ε)

(
umθεe

− ε
φR
(
�φR − εγR

)+ f (u)φRζεθε

)
dxds,

from where we get, after letting ε → 0, the inequality

∫
BR(0)

u(x, t)φR(|x |) dx −
∫

BR(0)

u(x, τ )φR(|x |) dx

≥
∫∫

BR(0)×I

um(x, t)�φR(|x |) dxdt +
∫∫

BR(0)×I

f (u(x, t))φR(|x |) dxdt.

Using the equation �φR = −γRφR, we get the result. ��
Proposition 1 Let p,m > 1 and let u be a proper solution of (1.2). If u(·, T ) �∈
L1

loc(R
N ), then u is identically infinite for all t > T .

Proof This follows immediately from the following inequality due to Aronson and
Caffarelli [2], valid for weak solutions of the porous medium equation,

∫
Br (x0)

u(x, T ) dx ≤ C
(

rλ/(m−1)(t − T )−1/(m−1) + (t − T )N/2uλ/2(x0, (t − T ))
)
,

with λ = N (m − 1)+ 2, x0 ∈ R
N , r, t > T arbitrary. Indeed, the inequality implies

that solutions u of the porous medium equation such that u(·, T ) �∈ L1
loc(R

N ) are
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Multiple blow-up for a porous medium equation with reaction 811

identically infinite for all t > T . Since solutions to (1.1) are supersolutions to the
porous medium equation, the same is true for them by the Maximum Principle. ��

We now have the tools to prove that, for our type of equation, the proper solution
is a weak solution up to the complete blow-up time T c.

Proof of Theorem 1 Let W = {T > 0 : u is a weak solution in QT }, and

Tw = Tw(u0) =
{

max W if W �= (0,∞),

∞ if W = (0,∞),

Hence, Tw is the maximal time for which the proper solution is a weak solution. It is
obvious that Tw(u0) ≤ T c(u0).

In order to prove the converse inequality we first observe that if u ∈ L p
loc(QT ), then

u ∈ Lm
loc(QT ), u ∈ L1

loc(QT ). Hence, we can pass to the limit in the Eq. (1.3) satisfied
by the approximate solutions to obtain that u is a weak solution in QT . Therefore, if
Tw < T c, then u �∈ L p

loc(QT c ).
Suppose next that Tw < T c. In this case we claim that there is a value T ∈(Tw, T c),

such that u(·, T ) �∈ L1
loc(R

N ). By the previous proposition, this would imply that u
is identically infinite after T . Hence T c ≤ T , a contradiction which would end the
proof.

Let us prove our claim. We consider two cases.
(i) If u ∈ Lm

loc(QT c ), we consider Eq. 2.1 with reaction term f (u) = min{u p, n p}.
For any T ∈ (Tw, T c) we have

γR

∫∫
BR(0)×I

um
n (x, t)φR (|x |) dxdt +

∫
BR(0)

un(x, T )φR(|x |) dx

≥
∫∫

BR(0)×I

min{u p
n (x, t), n p}φR(|x |) dxdt.

Since un ≤ u < ∞ almost everywhere, limn→∞ min{u p
n , n p} = u p almost every-

where. Passing to the limit as n → ∞ (remember that un converges monotonically),
we get

γR

∫∫
BR(0)×I

um(x, t)φR (|x |) dxdt +
∫

BR(0)

u(x, T )φR(|x |) dx

≥
∫∫

BR(0)×I

u p(x, t)φR(|x |) dxdt.

Hence, if u �∈ L p
loc(QT c ), we have that u(·, T ) �∈ L1

loc(R
N ).

(ii) Let us assume now that u �∈ Lm
loc(QT c ). In this case the argument is not so

direct, and a double limit is involved. Given k, n > 0, let vk,n be the weak solution of

vt = �vm + fk,n(v), v(x, 0) = χBk(0)
(x)min{u0(x), k},
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812 N. Mizoguchi et al.

where fk,n(v) = min{v p, kvm, n p}. In the weak formulation for this problem we use
as test function ζθε, where ζ and θε, ε > 0, are defined as follows:

• ζ is a C∞, nonnegative function such that for some constants 0 < R1 < R (R as
large as desired), c > 0:

(i) ζ = 0 for x ∈ R
N \BR(0);

(ii) −c ≤ �ζ ≤ 0, ζ ≥ 1, for x ∈ BR1
(0);

(iii) �ζ ≥ 0 for x ∈ R
N \BR1

(0).
• θε is a C∞ function such that:

(i) 0 ≤ θε(s) ≤ 1 for all s ≥ 0;
(ii) θε(s) = 1 for s ∈ [τ, T ]; θε(s) = 0 if s �∈ (τ − ε, T + ε).

We get

−
∫∫

BR(0)×(τ−ε,T +ε)
vk,nζθ

′
ε =

∫∫
BR(0)×(τ−ε,T +ε)

(
vm

k,nθε�ζ + fk,n(vk,n)ζ θε
)

≥ −c
∫∫

BR1
(0)×(τ−ε,T +ε)

vm
k,nθε

+
∫∫

BR(0)×(τ−ε,T +ε)
fk,n(u)ζ θε,

which, letting ε → 0, yields

∫
BR(0)

vk,n(x, T )ζ(x) dx −
∫

BR(0)

vk,n(x, τ )ζ(x) dx

≥ −c
∫∫

BR1
(0)×(τ,T )

vm
k,n(x, t) dxdt

+
∫∫

BR(0)×(τ,T )
fk,n(vk,n(x, t))ζ(x) dx .

Moreover, fk,n(v) ≥ fk0,n(v) ≥ min{k0v
m, n p} − C , for all k ≥ k0 for some C =

C(k0,m, p). Hence,

∫
BR(0)×(τ,T )

vk,n(x, T )ζ(x) dx + C
∫∫

BR(0)×(τ,T )
dxdt

≥
∫∫

BR1
(0)×(τ,T )

(
min{k0v

m
k,n(x, t), n p} − cvm

k,n(x, t)
)

dxdt. (2.2)
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Multiple blow-up for a porous medium equation with reaction 813

Comparison yields that vk,n ≤ un if n ≥ k. Hence, vk,n ≤ u if n ≥ k. Therefore,
the proper solution of

vt = �vm + min{v p, kvm}, v(x, 0) = χBk(0)
(x)min{u0(x), k}, (2.3)

which is given by vk = limn→∞ vk,n , satisfies vk ≤ u. Thus, vk(·, t) �≡ ∞ for
t < T c(u0). On the other hand, it is known that solutions of (2.3) cannot blow up
incompletely. Indeed, if m = 1 they do not blow up at all, while if m > 1 the blow-
up set has positive Lebesgue measure according to [35] (see also [6] for a different
approach). In any case, vk is bounded in R

N ×[0, T ] for all T < T c(u0). This provides
a uniform bound for the integrals

∫∫
BR1

(0)×(τ,T )
min{k0v

m
k,n(x, t), n p} dxdt,

∫∫
BR1

(0)×(τ,T )
vm

k,n(x, t) dxdt.

Hence, we may pass to the limit n → ∞, to obtain

∫
BR(0)

vk(x, T )(x, t)ζ(x) dx + Ĉ ≥ (k0 − c)
∫∫

BR1
(0)×(τ,T )

vm
k (x, t) dxdt.

It is easily checked that vk ≥ uk1/(p−m) . Hence, limk→∞ vk = u. Since the limit is
monotone, we get

∫
BR(0)

u(x, T )ζ(x) dx + Ĉ ≥ (k0 − c)
∫∫

BR1
(0)×(τ,T )

um(x, t) dxdt.

Taking k0 ≥ c, the claim is proved also in this case. ��

3 A pointwise Kaplan-type estimate

The aim of this section is to obtain an upper bound for global proper solutions of
(1.1). The upper bound will follow from an integral estimate that will be proved using
a technique which can be traced back to Kaplan’s classical paper [21]. An analogous
upper bound for the semilinear case was obtained in [30]; it was later improved in [28],
where the authors remove the monotonicity restriction (see also [9] for more general
reaction non-linearities).

Lemma 2 Let p > m > 1 and let u be the proper solution of (1.1) and T c > 0 its
complete blow-up time. If there is a value t ∈ [0, T c) such that

∫
BR(0)

u(t)φR dx ≥ {(1 + δ)γR } 1
p−m (3.1)
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814 N. Mizoguchi et al.

for some δ, R > 0, then

T c − t ≤ γ
− p−1

p−m
R

(p − 1)δ(1 + δ)
m−1
p−m

. (3.2)

Proof The idea is to obtain a differential inequality for g(t) = ∫
BR(0)

u(t)φR dx . Since

m > 1, we need to take care of the lack of regularity of weak solutions.
Using Jensen’s inequality in Eq. 2.1, we get

∫
BR(0)

u(t)φR dx −
∫

BR(0)

u(τ )φR dx ≥
t∫
τ

F(s(t)) dt, (3.3)

where F(s) = −γR s + s p/m and s(t) = ∫
BR(0)

um(t)φR dx . Using again Jensen’s

inequality, together with (3.1), we get

s( t ) ≥
⎛
⎜⎝

∫
BR(0)

u(t)φR dx

⎞
⎟⎠

m

≥ {(1 + δ)γR } m
p−m .

Hence, F(s(t)) > 0. Let us show that F(s(t)) > 0 for all t ≥ t .
Notice that g(t) is monotone increasing while F(s(t)) stays positive, see (3.3).

Assume that F(s(t)) is not positive for all t ≥ t . Let t̄ be the first time such that
F(s(t)) = 0. Thanks to the monotonicity of g(t) up to t̄ we have that

s(t̄) ≥ gm(t̄) ≥ gm(t) = {(1 + δ)γR } m
p−m ,

which implies that F(s(t̄)) > 0, a contradiction.

As a consequence, g is monotone increasing, and hence g(t) ≥ {(1 + δ)γR } 1
p−m ,

for all t ≥ t . Moreover, since s(t) ≥ gm(t) ≥ {(1 + δ)γR } m
p−m , we have, using that F

is monotone increasing above the level
(

m
p γR

) m
p−m

, that

F(s(t)) ≥ F(gm(t)) = g p(t)(1 − γR gm−p(t)) ≥ δ

1 + δ
g p(t).

Thus, we arrive to

g(t) ≥ g(t)+ δ

1 + δ

t∫
t

g p(t) dt ≡ ψ(t).
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Multiple blow-up for a porous medium equation with reaction 815

Therefore,

ψ ′(t) ≥ δ

1 + δ
ψ p(t).

Hence, ψ approaches infinity monotonically in a finite time T1 ≥ T c. Integrating this
differential inequality in (t, T1), we get

δ

1 + δ
(T1 − t) ≤ 1

p − 1
ψ1−p(t) = 1

p − 1
g1−p(t),

from where the result follows. ��

Remark This lemma shows that all nontrivial solutions blow up completely in finite
time if p ∈ (m, pF ). Notice that pF < pST < pS .

As a by-product we obtain a result about the stability of complete blow-up. A similar
result for the case m = 1 has been obtained in [34].

Proposition 2 Let p > m > 1 and let u and ũ be proper solutions of (1.1) with initial
data u0 and ũ0 respectively. If T c(u0) < ∞, then, for each ε > 0 there exists a value
δ > 0 such that |T c (̃u0)− T c(u0)| < ε if ‖ũ0 − u0‖∞ < δ.

Proof Let un be a solution of (1.3). Since u blows up completely at t = T c(u0),

lim
n→∞ un(x, t) = +∞ for (x, t) ∈ R

N × (T c(u0),∞). (3.4)

Hence, given values ε,M > 0 and x ∈ B1(0), there exists nx = nx (ε,M) such that
unx (x, T c(u0)+ ε) > 3M . Since the functions un are continuous, there exists δx > 0
such that unx (y, T c(u0) + ε) > 2M if |y − x | < δx . Thanks to the compactness
of B1(0), we can take x1, x2, . . . , xk ∈ B1(0) such that B1(0) ⊂ ∪k

i=1 Bδxi
(xi ). Putting

n̄ = max{nx1, nx2 , . . . , nxk }, we have

un̄(x, T c(u0)+ ε) > 2M for x ∈ B1(0),

since the functions un are nondecreasing with respect to n in R
N × (0,∞). Now we

use the continuous dependence of solutions of (1.3) with respect to the initial data, to
obtain that there exists δ > 0 such that if ‖ũ0 − u0‖∞ < δ, then

ũn̄(x, T c(u0)+ ε) > M for x ∈ B1(0),

where ũn is a solution of (1.3) with initial data ũ0. By comparison, we get that

ũ(x, T c(u0)+ ε) ≥ ũn̄(x, T c(u0)+ ε) > M for x ∈ B1(0).
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816 N. Mizoguchi et al.

Then, if M p−m ≥ γ1 ,

∫
B1(0)

ũ(T c(u0)+ ε)φ1dx ≥ M = {
(1 + δ)γ1

} 1
p−m .

for δ =
(

M p−m

γ1
− 1

)
. Assume that T c (̃u0)− (T c(u0)+ ε) = ν > 0. Then Lemma 2

implies that

ν = T c (̃u0)− (T c(u0)+ ε) ≤ γ
− p−1

p−m
1

(p − 1)δ(1 + δ)
m−1
p−m

.

But the right hand side can be made smaller than ν just be taking M large enough, a
contradiction. ��
Remark The time of incomplete blow-up is not stable under perturbation of the data.
It may even jump to infinity.

We can now give a local version of the pointwise Kaplan-type estimate.

Proposition 3 Let u be a radially symmetric proper solution of (1.1) and T c > 0
its complete blow-up time. If u(r, t) is nonincreasing with respect to r for r ≤ R∗,
t ∈ [T̂ , T∗], for some R∗ > 0, 0 ≤ T̂ < T∗ < T c, then, there exist values C1,C2 > 0
depending only on N, m and p such that

u(r, t)≤C1r− 2
p−m for 0<r<

1

2
min{R∗,C2(T

c−T∗)
p−m

2(p−1) } and t ∈ [T̂ , T∗].
(3.5)

Proof Suppose that there exist t ≤ T∗ and R > 0 such that

∫
BR(0)

u(t)φR dx ≥ (2γR )
1

p−m .

From Lemma 2 with δ = 1, we have

T c − T∗ ≤ T c − t ≤ 2γ
− p−1

p−m
1

(p − 1)2
m−1
p−m

R
2(p−1)

p−m ,

which is a contradiction if R < C2(T c − T∗)
p−m

2(p−1) , C2 = γ
1
2

1

(
(p − 1)2

m−1
p−m −1

) p−m
2(p−1)

.

Thus, for R < C2(T c − T∗)
p−m

2(p−1) , t ≤ T∗, we have
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Multiple blow-up for a porous medium equation with reaction 817

R∫
0

u(r, t)φ1(R
−1r)r N−1 dr <

(2γ1)
1

p−m

ωN
RN− 2

p−m ,

where ωN is the surface area of (N − 1)-dimensional unit sphere. Since u(r, t) is
nonincreasing with respect to r ≤ R∗ for t ∈ [T̂ , T∗], and φ1(r) is nonincreasing with
respect to r ≤ 1, it follows that

R∫
0

u(r, t)φ1(R
−1r)r N−1 dr ≥ u(R/2, t)φ1(1/2)

R/2∫
0

r N−1 dr,

for 0 < R < min{R∗,C2(T c − T∗)
p−m

2(p−1) } and t ∈ [T̂ , T∗]. Putting r = R/2, we get

(3.5) with C1 = Nk
N− 1

p−m γ

1
p−m

1
ωNφ1(1/2)

. ��

The global version of the pointwise Kaplan-type estimate is just a corollary of the
local one.

Corollary 1 Let u be a radially symmetric, nonincreasing with respect to r = |x |,
proper solution of (1.1) with T c = ∞. There exists C > 0 depending only on N, m
and p such that

u(r, t) ≤ Cr− 2
p−m for r > 0 and t ≥ 0. (3.6)

Remark If (3.6) holds for a proper solution u and p > pST , then u ∈ L p
loc(QT ) for

all T . Hence, u is a global weak solution.

4 Immediate regularization after blow-up

For a radially symmetric function h with h �≡ 0, the number of sign changes of h,
z(h), is defined as the supremum over all j such that there exist 0 ≤ r1 < r2 < · · · <
r j+1 < +∞ with

h(ri ) · h(ri+1) < 0 for i = 1, 2, . . . , j.

Let u1, u2 be bounded radially symmetric solutions of (1.1). Then z(u1(·, t)−u2(·, t))
is nonincreasing, see, for example, [1,5,12,27].

The purpose of the present section is to prove, for p ∈ (pS , pJ L ), that if u is a radially
symmetric proper solution of (1.1) with z(u0 − ϕ∞) ≤ 2 that blows up incompletely
at some time T , then u(·, t) is bounded for all t > T . The key point is to show that
u has to lose at least two intersections with ϕ∞ at a time of incomplete blow-up: if it
does not lose any, then it will not blow up, while if it loses exactly one, then it will
blow up completely. Hence, if z(u0 − ϕ∞) ≤ 2, we have that u(x, T ) ≤ ϕ∞(x), from
where a comparison argument with a self-similar solution will give the result.
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818 N. Mizoguchi et al.

The proofs depends strongly on the behaviour of bounded stationary radial solu-
tions of�um +u p = 0. Let us review the facts that we need, which were first analyzed
in [20] (the change of variable w = um reduces our elliptic problem to the semilinear
one considered in that paper).

For a > 0, let ϕa be the solution of

(ϕm)′′ + N − 1

r
(ϕm)′ + ϕ p = 0, r > 0, ϕ(0) = a, ϕ′(0) = 0. (4.1)

These functions satisfy ϕa(r) = aϕ1(a(p−m)/2r) for r ≥ 0.
For p > pS the functions ϕa are positive and

ϕa(r)

ϕ∞(r)
→ 1,

ϕ′
a(r)

ϕ′∞(r)
→ 1 as a → ∞

uniformly on [ν,∞), ν > 0. Moreover, for pS < p < pJ L all the solutions ϕa inter-
sect each other and also intersect ϕ∞ infinitely many times. For p ≥ pJ L the functions
ϕa are strictly monotone increasing in a and ϕa(r) → ϕ∞(r) as a → ∞ from below
uniformly for r ∈ [ν,∞), ν > 0.

In all the cases there exists the envelope, �(r) = sup
a>0

ϕa(r) for r ≥ 0, which is

given by

�(r) = Kr−2/(p−m), K = K (p,m, N ) > 0.

It is immediate that

K > c∞ if p ∈ (pS , pJ L ), K = c∞ if p ≥ pJ L .

We start by proving that at least one intersection has to be lost at any time where
there is incomplete blow-up. Otherwise, the solution would not blow up.

Proposition 4 Let p ∈ (pS , pJ L ). Let u be a radially symmetric proper solution of
(1.1). If u blows up incompletely at t = T , then it loses at least one intersection with
ϕ∞ at r = 0 at t = T .

Proof Since u is radial and blow-up is incomplete, u only blows up at the origin [14].
Suppose that no intersection between u(t) and ϕ∞ disappears at r = 0 and t = T ,
that is, there exist R, δ > 0 such that

u(r, t) < ϕ∞(r) for 0 < r < R and T − δ ≤ t ≤ T .

Hence, there is a value a such that the solution ϕa of (4.1) satisfies u(r, T −δ) ≤ ϕa(r)
for 0 ≤ r ≤ R and ϕa(R) > u(R, t) for T − δ ≤ t ≤ T . Therefore, by comparison
we get
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Multiple blow-up for a porous medium equation with reaction 819

u(r, t) ≤ ϕa(r) for 0 ≤ r ≤ R and T − δ ≤ t ≤ T,

and u would not blow up, a contradiction. ��
To prove that at least two intersections with ϕ∞ are lost at any incomplete blow-up

time, we first have to show that if u loses exactly one intersection with ϕ∞, then there
are constants K > c∞, C, r∗, δ > 0, such that

Kr− 2
p−m ≤ u(r, t) ≤ Cr− 2

p−m , 0 < r ≤ r∗, T ≤ t ≤ T + δ. (4.2)

The lower bound, which is only valid for p ∈ (pS , pJ L ), will follow from an
intersection comparison argument which requires that z(u0 − ϕ∞) < ∞.

Lemma 3 Let p ∈ (pS , pJ L ). Let u be a radially symmetric proper solution of (1.1)
with initial data satisfying z(u0 −ϕ∞) < ∞ and such that u blows up incompletely at
time T . If u loses exactly one intersection with ϕ∞ at the origin at t = T , then there
exist constants r̄ , δ̄ > 0, K > c∞ such that

u(r, t) ≥ Kr− 2
p−m , 0 < r ≤ r̄ , T ≤ t ≤ T + δ̄. (4.3)

Proof As u loses exactly one intersection at the origin with ϕ∞ at t = T , there exists
a small value δ > 0 such that u(x, T − δ) has at least one intersection with ϕ∞, the
first of them moving to the origin separately from the rest. Since ϕa → ϕ∞ locally
uniformly as a → ∞, we can take 0 < r1 < r2 ≤ R1, a1 > 0 so that for all a ≥ a1
there exist ra ∈ [r1, r2] and δ̄ > 0 such that:

(i) u(T − δ) and ϕa have exactly one intersection in [0, ra];
(ii) u(ra, t) > ϕ∞(ra) > ϕa(ra) for T − δ ≤ t ≤ T + δ̄;

(iii) u(0, T − δ) < ϕa(0).

As u blows up at t = T , there exists a time ta ∈ (T − δ, T ) such that a = ϕa(0) <
u(0, ta). Since the number of intersections in [0, ra] does not increase with time, we
have

u(r, t) > ϕa(r), 0 ≤ r ≤ ra, T ≤ t ≤ T + δ̄,

from where we get the result just observing that for some radius r̄ = r̄(a1) we have

sup
a≥a1

ϕa(r) = sup
a>0

ϕa(r) = �(r) for 0 ≤ r ≤ r̄ .

��
The upper bound will now follow from the local version of the pointwise

Kaplan-type estimate given in Proposition 3 together with the following size estimate
at local (spatial) minima.
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Lemma 4 Let u be a radially symmetric proper solution of (1.1), and let T c > 0 be
its complete blow-up time. If there exists a curve r(t) of local minimizers of u(t) for
all t ∈ [0, T ), T ≤ T c, then,

u(r(t), t) ≤ κ(T − t)−
1

p−1 for t ∈ [0, T ), (4.4)

where κ = (p − 1)−1/(p−1).

Proof We assume without loss of generality that u > 0 at the curve of local minimizers.

Let m(t) = u(r(t), t). Suppose that there is a time t̂ such that m(t̂) > κ(T − t̂)−
1

p−1 .
For ε > 0 sufficiently small, let mε be the solution of the initial value problem

m′(t) = m p(t)− ε, m(t̂) = m(t̂)− ε ≥ 0.

At the first time τ > t̂ for which m(τ ) = mε(τ ) we have

0 ≥ ∂t u(r(τ ), τ )− m′
ε(τ ) = �um(r(τ ), τ )+ u p(r(τ ), τ )− m p

ε (τ )+ ε ≥ ε,

a contradiction. Therefore, m(t) ≥ mε(t) for all t ≥ t̂ . Letting ε to 0, we have in

particular that m(t) ≥ m0(t) for t ≥ t̂ . But m0(t) = κ(T̂ − t)−
1

p−1 for some blow-up
time T̂ . Since m0(t̂) = m(t̂), we conclude that T̂ < T , a contradiction. ��
Lemma 5 Let p ∈ (pS , pJ L ). Let u be a radially symmetric proper solution of (1.1)
with initial data satisfying z(u0 −ϕ∞) < ∞ and such that u blows up incompletely at
time T . If u loses exactly one intersection with ϕ∞ at the origin at t = T , then there
exist constants r , δ,C > 0, such that

u(r, t) ≤ Cr− 2
p−m , 0 < r ≤ r , T ≤ t ≤ T + δ.

Proof Notice that under our assumptions (4.3) holds. Assume that u has still some
spatial local minimum at time T . If no spatial minima are lost in the time interval
[T, T + δ̄], set T = T + δ̄. Otherwise, let T > T be the first time when one of these
minima is lost. We know from Lemma 4 that at any local minimum point we have

u ≤ κ(T − t)−
1

p−1 for t ∈ [0, T ). Combining this with (4.3) we get that there is no
minimum for

r < min

⎧⎨
⎩r ,

(
K

κ

) p−m
2
(

T − T

2

) p−m
2(p−1)

⎫⎬
⎭ , t ∈

[
T,

T + T

2

]
.

The result now follows from Proposition 3. ��
Now we are ready to prove that at least two intersections are lost at any time where

there is incomplete blow-up. The proof uses the following scaling property: if u is a
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weak solution of the equation in (1.1), so is Tλu given by

(Tλu)(x, t) = λαu(λβx, λt), α = 1

p − 1
, β = p − m

2(p − 1)
, (4.5)

for all λ > 0.

Proposition 5 Let p ∈ (pS , pJ L ). Let u be a radially symmetric proper solution of
(1.1) with z(u0 −ϕ∞) < ∞. If u blows up incompletely at t = T , then it loses at least
two intersections with ϕ∞ at r = 0 at t = T .

Proof We have already seen that u has to lose at least one intersection with ϕ∞ at
the origin at t = T . If it loses exactly one intersection, then (4.2) holds for some
C, r∗, δ > 0, K > c∞. Hence, if uT (r, t) = u(r, t + T ), the rescaled function TλuT ,
which solves (1.1) for some time interval, satisfies

Kr− 2
p−m ≤ (TλuT )(r, t) ≤ Cr− 2

p−m for 0 < r < λ−1r∗, 0 ≤ t ≤ δλ
− 2(p−1)

p−m .

Passing to the limit in the weak formulation we get that limλ→0 TλuT is a weak solution
of (1.1) defined for all t > 0, which satisfies the estimate

Kr− 2
p−m ≤ lim

λ→0
(TλuT )(r, t) ≤ Cr− 2

p−m for all r > 0, t ≥ 0.

Such a solution does not exist, a contradiction. Indeed, if p > pST , the only solution
to (1.1) in the class {u ≥ ϕ∞} is ϕ∞ [14]. ��
Proposition 6 Let p ∈ (pS , pJ L ). Let u be a proper solution of (1.1) with z(u0 −
ϕ∞) < ∞. If u blows up incompletely at t = T losing exactly two intersections with
ϕ∞ at r = 0 at that time, then there is a value T > T such that u(t) is bounded for
t ∈ (T, T ). If, moreover, z(u0 − ϕ∞) = 2, then we may take T = ∞.

Proof We recall once more that, since u is radial and blow-up is incomplete, u only
blows up at the origin [14]. Since u loses exactly two intersections with ϕ∞ at the
origin a t = T , there exist values R1, δ1 > 0 such that

u(r, t) < ϕ∞(r) for 0 < r < R1 and T ≤ t ≤ T + δ1,

Let u be the proper solution for t > T with u(r, T ) = c∞r−2/(p−m). Such solu-
tion is forward self-similar, and, in the range of values of p that we are considering,
u(t) ∈ L∞(RN ) for all t > T , see [14]. Then, there exists values R2, δ2 > 0, R2 ≤ R1,
δ2 ≤ δ1, such that u(R2, t) ≤ u(R2, t) for t ∈ [T, T + δ2]. Hence, by the maximum
principle,

u(r, t) ≤ u(r, t) for 0 ≤ r ≤ R2 and t ∈ [T, T + δ2],

which means that u(t) is bounded for t ∈ (T, T + δ2].
If z(u0 − ϕ∞) = 2, then u(r, T ) < ϕ∞(r) for r > 0. Hence, comparison with u

gives that u(t) is bounded for all t > T . ��
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Remark The proper forward self-similar solution u that we have used in the proof is
different from ϕ∞. This shows that there is not uniqueness of L1

loc-weak solutions in
the range pS < p < pJ L . On the contrary, if p ≥ pJ L , then u ≡ ϕ∞. These facts were
proved in [14].

5 Peaking and multiple blow-up solutions

We devote this section to the proofs of Theorems 2, 3 and 4, dealing with the con-
struction of peaking solutions which have compact support in space for all time, and
of solutions with multiple blow-up.

Proof of Theorem 2 We arrange the proof in three steps. First we construct a peak-
ing solution with compactly supported initial data. Next we show that this solution
remains compactly supported in space for all times. Finally, using a scaling argument,
we show that we can choose the blow-up time.

(i) Fix a radially symmetric nonnegative function h �≡ 0 which is nonincreasing
with respect to r , has compact support, and is such thatμh intersects ϕ∞ at most twice
for all μ > 0. For μ > 0, let uμ be the proper solution of (1.1) with initial data μh.
Since p > pF in the range of exponents we are considering, it is immediate that uμ
exists globally in time as a bounded weak solution for sufficiently small μ and that
uμ blows up in finite time for sufficiently large μ. Putting

μ∗ = sup{μ > 0 : uμis bounded for all t > 0},

we have 0 < μ∗ < ∞. Corollary 1 implies that the functions uμ, μ < μ∗, satisfy
(3.6) for some constant C > 0 depending only on N , m and p. Hence, passing to the
limit as μ ↗ μ∗, we get that u∗ ≡ uμ∗ satisfies

u∗(r, t) ≤ Cr− 2
p−m for r > 0 and t > 0. (5.1)

Therefore u∗ is a weak solution for all times, Tw = ∞.
We next assume that u∗ is bounded for each t > 0. If pS < p < pL , then for

all c < c∞ and every T > 0 there exists a radially symmetric backward self-similar
solution

ũ(r, t) = (T − t)−
1

p−1 f (ξ), ξ = r(T − t)−
p−m

2(p−1) ,

of (1.1) blowing up at t = T whose blow-up profile is precisely cr−2/(p−m), see
[14]. The profile f = f (ξ), which does not depend on T , is nonincreasing with ξ .
Hence, we can choose T large enough such that the initial data ũ0 is so flat that it
has exactly one intersection with μh for μ∗ ≤ μ ≤ μ∗ + δ1 for some δ1 > 0. Then,
using the continuous dependence on μ of the solutions in bounded time intervals, and
the assumed boundedness of u∗, we can conclude that there exist 0 < t1 < T and
0 < δ2 < δ1 such that uμ(0, t1) < ũ(0, t1) and Tμ > 2T forμ∗ ≤ μ ≤ μ∗+δ2, where
Tμ is the first blow-up time of uμ. Since the number of intersections cannot increase,
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we see that uμ(r, t1) < ũ(r, t1) for r ≥ 0 and μ∗ ≤ μ ≤ μ∗ + δ2. We extend ũ as a
forward self-similar solution for t > T . Then Tμ = ∞ for μ∗ ≤ μ ≤ μ∗ + δ2, which
contradicts the definition ofμ∗. Consequently u∗ blows up incompletely at some finite
time t = T ∗. Now Proposition 6 guarantees that u∗ is bounded for t > T ∗.
(ii) We get from estimate (5.1) that u∗ is a subsolution of

ut = �um + Mu (5.2)

in the complement of the ball of radius R > 0 if we take M = C p−1 R−2(p−1)/(p−m).
If we perform the change of variables

w(r, τ ) = e−Mt u∗(r, t), τ = eM(m−1)t

M(m − 1)
,

we get that w is a subsolution of the following problem,

⎧⎪⎨
⎪⎩
wτ = �wm, R > 0, τ > 1

M(m−1) ,

w(R, τ ) = τ−1/(m−1)(M(m − 1))−1/(m−1)C R− 2
p−m , τ > 1

M(m−1) ,

w(r, 1
M(m−1) ) = u∗(r, 0), 0 < r < R.

(5.3)

As a supersolution for this problem we will use a solution UK of

{
Uτ = �Um + K δ(x) in D′(RN × (0,∞)),

U(x, 0) = 0 for x ∈ R
N , x �= 0.

Such solutions, which were studied in [38], exist for every K > 0, and are known to
have a self-similar structure,

UK (x, τ ) = τ
− n−2

n(m−1)+2�K (|ξ |), ξ = xτ− m
n(m−1)+2 ,

where �K is a compactly supported function which has a singular behaviour at the
origin, �K (x) ∼ c|x |(2−N )/m , where c is related to K through

K =
{

N (N − 2)ωn cm if N ≥ 3,
2πcm if N = 2.

Moreover, UK (x, τ ) → cR(2−N )/m as τ → ∞ if |x | = R. Thus, there are big enough
values K > 0, L > 0, such that ŵ(x, τ ) = UK (x, t + L) is a supersolution to (5.3).
Since ŵ has compact support for all times, so does w, and hence u∗.

Notice, for future reference, that the above comparison argument provides a bound
for the radius of the support at time t , R∗(t), of the peaking solution u∗: there are
constants ξ0, L > 0 such that

R∗(t) ≤ ξ0(t + L)m/(n(m−1)+2). (5.4)
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(iii) If u∗ blows up at t = T ∗, then Tλu∗ given by (4.5) blows up at Tλ = T ∗/λ.
Choosing λ = T ∗/T , we get that Tλu∗ is a peaking solution that blows up at time T
which is compactly supported in space for all times. ��
Proof of Theorem 3 Let u∗, R∗, T ∗ have the same meaning as in the proof of Theo-
rem 2. For each i , 1 ≤ i ≤ k (i ≥ 1 if k = ∞), we consider the scaled function u∗

i =
TT ∗/Ti u

∗. Then u∗
i is a peaking solution with compact support in space for all times that

blows up at time Ti . The radius of its support at time t is Ri (t) =
(

Ti
T ∗
)β

R∗
(

T ∗
Ti

t
)

.

Let 	 be a bound for the sequence {Ti }k
i=0. Then |Ri (	)| ≤ R = (

	
T ∗
)β

R∗
(

T ∗
T1
	
)

,

1 ≤ i ≤ k (i ≥ 1 if k = ∞). Take a sequence of points {xi }k
i=0, such that |xi − x j | >

2R, i �= j . Then,

u(x, t) =
k∑

j=1

u∗
j (x − x j , t)

is the required solution. ��
Proof of Theorem 4 Let u∗, R∗, T ∗ have the same meaning as in the proof of The-
orem 2. The scaled function TT ∗/T u∗ is a peaking solution that blows up at time T

which has compact support of radius RT (t) = ( T
T ∗
)β

R∗
(

T ∗
T t

)
at time t . Using the

upper bound (5.4), we get that RT (1) → 0 as T → 0 if p > pST (as is our case).
Hence, there is a certain time 	 = 	(δ) such that the radius of the support or the
function TT ∗/T u∗ at time	 is smaller than δ/2 if T < 	. Therefore, for any sequence
of times {Ti }k

i=0 satisfying T0 = 0, Ti−1 < Ti , Ti < 	, for 1 ≤ i ≤ k (i ≥ 1 if
k = ∞), the supports of the functions u∗

i = TT ∗/Ti u
∗ do no intersect for t ≤ 	.

Again,

u(x, t) =
k∑

i=1

u∗
i (x − xi , t)

is the required solution. ��

6 Open problems

Fast diffusion The main idea of this paper is to take profit of the finite speed of propaga-
tion of solutions of the equation. This does not apply to the fast diffusion case m < 1.
Hence, a new idea is needed if we want to construct multiple blow-up solutions in this
range of values of m.
Big exponents, p ≥ pJ L A peaking solution which is positive everywhere exists for all
p ∈ (pS , pL ) [14]. We have constructed a peaking solution with compact support for
p ∈ (pS , pJ L ). Does a compactly supported peaking solution exist for p ∈ [pJ L , pL )?
The existence of such solutions would allow to construct multiple blow-up solutions in
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this extended range. Is there any peaking solution (with or without compact support)
for p ≥ pL ?
Blow-up type The peaking solutions constructed in [14] for p ∈ (pS , pL ) have type
I blow-up. For the heat equation and p ∈ (pS , pJ L ), blow-up is always of type I for
radial solutions which have a finite number of intersections with ϕ∞ [28]. Such a result
is not known for the porous medium case, m > 1. If it were true, it would imply that
the solution we have constructed also has type I blow-up.

On the other hand, the multiple blow-up solutions constructed in [33] in the case
of the heat equation for p ≥ pJ L are of type II. No blow-up solution of any kind with
type II blow-up has been constructed yet for m �= 1.
Exponential Instead of u p, one may consider other reaction non-linearities, for exam-
ple eu . Peaking solutions have been constructed for this kind of reaction non-line-
arity when m = 1, both for the problem posed in the whole space, with N = 3
[24], and for the problem posed in a ball with homogenous Dirichlet boundary data,
3 ≤ N ≤ 9 [9]. Multiple blow-up solutions have not been constructed yet for this
kind of reaction nonlinearity, not even for m = 1. If m �= 1, no results are avail-
able.
Other diffusion operators Very little is known about solutions with incomplete blow-up
if we substitute the diffusion operator�um by other diffusion operators like, for exam-
ple, the p-laplacian,�pu = ∇ · (|∇u|p−2∇u), or the fractional laplacian, (−�u)α/2,
0 < α < 2.
Kaplan-type estimate without monotonicity An estimate like (3.6) has been obtained
for radial global, proper solutions in the semilinear case, without any monotonicity
assumption [28]. On the contrary, in the proof that we give for the case m > 1 we
impose that the solutions are non-increasing in r = |x |. Is it possible to remove this
restriction when m �= 1?
Behaviour as t → ∞ Both the peaking solution with compact support that we have
constructed and the positive one given in [14] go to zero as t → ∞. Peaking solutions
with other behaviours as t → ∞ are available in the semilinear case [31]. Are such
different behaviours also possible when m �= 1?

Regarding the large time behaviour of multiple blow-up solutions, let us mention
that the ones that we have constructed are expected to blow up completely in finite
time. However, a proof is still needed. Another interesting question is whether there
are multiple blow-up solutions with T c = ∞, and, if this is the case, whether there
are such solutions that go to zero as t → ∞.
Threshold solutions Let h ≥ 0, h �≡ 0, with some decay at infinity. For all μ > 0, let
uμ be the proper solution of (1.1) with initial data μh. If p > pF , there is a critical
value μ∗ such that uμ blows up in finite time when μ > μ∗ and remains bounded for
all times when μ < μ∗. If p ∈ (pS , pJ L ) and h is as in the proof of Theorem 2, then
we have seen that uμ∗ is a peaking solution.

Moreover, ifμ > μ∗, then uμ blows up completely at its first blow-up time. Indeed,
if μ > μ∗, then there is λ > 1 such that Tλuμ∗(r, 0) ≤ μh(r) for all r ≥ 0. By the
comparison theorem, λ−1Tμ∗ ≥ Tμ and hence Tμ < Tμ∗ . If blow-up were not com-
plete, then by our immediate regularization result, Proposition 6, uμ(·, t) would be
finite for all t > Tμ. But then uμ∗ would not blow up, a contradiction.
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A similar dependence on μ of the blow-up behaviour of uμ is expected to be true
for more general initial data and all p > pF . However, a proof is only available for
m = 1, p ∈ (pS , pL ) [30].
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