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Abstract We study the dimension spectrum for Lyapunov exponents for rational
maps on the Riemann sphere.
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1 Introduction

Let f : C → C be a rational function of degree ≥ 2 on the Riemann sphere and let
J = J ( f ) be its Julia set. Our goal is to study the spectrum for Lyapunov exponents
of f |J . Given x ∈ J we denote by χ(x) and χ(x) the lower and upper Lyapunov
exponent at x , respectively, where

χ(x) := lim inf
n→∞

1

n
log |( f n)′(x)|, χ(x) := lim sup

n→∞
1

n
log |( f n)′(x)|.

K. Gelfert (B)
IMPA, Estrada Dona Castorina 110, Rio de Janeiro, Brazil
e-mail: katrin.gelfert@googlemail.com

F. Przytycki · M. Rams
Institute of Mathematics, Polish Academy of Sciences,
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966 K. Gelfert et al.

If both values coincide then we call the common value the Lyapunov exponent at x
and denote it by χ(x). For given numbers 0 ≤ α ≤ β we consider also the following
level sets

L(α, β) :=
{

x ∈ J : χ(x) = α, χ(x) = β
}

.

We denote by L(α) := L(α, α) the set of Lyapunov regular points with exponent α.
If α < β then L(α, β) is contained in the set of so-called irregular points

Lirr :=
{

x ∈ J : χ(x) < χ(x)
}

.

Recall that it follows from the Birkhoff ergodic theorem that μ(Lirr) = 0 for any
f -invariant probability measure μ.

While the first results on the multifractal formalism go already back to Besicovitch
[3], its systematic study has been initiated by work of Collet et al. [4]. The case of
spectra for Lyapunov exponents for conformal uniformly expanding repellers has been
covered for the first time in Ref. [1] building also on work by Weiss [25] (see Ref. [12]
for more details and references). To our best knowledge, the first results on irregular
parts of a spectrum were obtained in Ref. [3]. Its first complete description (for digit
expansions) was given by Barreira et al. [2].

In this work we will formulate our results on the spectrum for Lyapunov exponents
in terms of the topological pressure P . For any α > 0 let us first define

F(α) := 1

α
inf
d∈R

(
Pf |J (−d log | f ′|) + dα

)
.

and

F(0) := lim
α→0+ F(α).

Let [α−, α+] be the interval on which F �= −∞ (a more formal and equivalent
definition is given in (4) below, see also Ref. [18]).

Before stating our main results, we recall what is already known in the case that J
is a uniformly expanding repeller with respect to f , that is, J is a compact f -forward
invariant (i.e., f (J ) = J ) isolated set such that f |J is uniformly expanding. Recall
that f is said to be uniformly expanding or uniformly hyperbolic on a set � if there exist
c > 0 and λ > 1 such that for every n ≥ 1 and every x ∈ � we have |( f n)′| ≥ cλn .
Recall that a set � is said to be isolated if there exists an open neighborhood U ⊂ C

of � such that f n(x) ∈ U for every n ≥ 0 implies x ∈ �. In our setting the Julia set J
is a uniformly expanding repeller if it does not contain any critical point nor parabolic
point. Here a point x is said to be critical if f ′(x) = 0 and to be parabolic if x is
periodic and its multiplier ( f per(x))′(x) is a root of 1. If J is a uniformly expanding
repeller then for every α ∈ [α−, α+] we have

dimH L(α) = F(α)
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On the Lyapunov spectrum for rational maps 967

(see Refs. [1,25]) and L(α) = ∅ if and only if α /∈ [α−, α+] [22]. This gives the full
description of the regular part of the Lyapunov spectrum. Moreover, in this setting of
a uniformly expanding repeller J , the interval [α−, α+] coincides with the closure of
the range of the function α(d) = − d

ds Pf |J (−s log | f ′|)|s=d and the spectrum can be
written as

F(α(d)) = 1

α(d)

(
Pf |J (−d log | f ′|) + dα(d)

) = hμd ( f )

α(d)
,

where α(d) is the unique number satisfying

− d

ds
Pf |J (−s log | f ′|)|s=d =

∫
log | f ′| dμd = α(d)

and whereμd is the unique equilibrium state corresponding to the potential−d log | f ′|.
If log | f ′| is not cohomologous to a constant then we have α− < α+, and α �→ αF(α)

and d �→ Pf |J (−d log | f ′|) are real analytic strictly convex functions that form a
Legendre pair.

We now state our first main result.

Theorem 1 Let f be a rational function of degree ≥ 2 with no critical points in its
Julia set J . For any α− ≤ α ≤ β ≤ α+, β > 0, we have

dimH L(α, β) = min{F(α), F(β)}.

In particular, for any α ∈ [α−, α+]\{0} we have

dimH L(α) = F(α).

If there exists a parabolic point in J (and hence F(0) > −∞) then

dimH L(0) = dimH J = F(0).

Moreover,

{
x ∈ J : χ(x) < α−} = {x ∈ J : χ(x) > α+} = ∅.

We denote by Crit the set of all critical points of f . Following Makarov and Smirnov
[9, Sect. 1.3], we will say that f is exceptional if there exists a finite, nonempty set
� f ⊂ C such that

f −1(� f )\Crit = � f .

This set need not be unique. We will further denote by � the largest of such sets (notice
that it has no more than 4 points).
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968 K. Gelfert et al.

Theorem 2 Let f be a rational function of degree ≥ 2. Assume that f is non-excep-
tional or that f is exceptional but � ∩ J = ∅. For any 0 < α ≤ β ≤ α+ we
have

min{F(α), F(β)} ≤ dimH L(α, β) ≤ max
α≤q≤β

F(q).

In particular, for any α ∈ [α−, α+]\{0} we have

dimH L(α) = F(α)

and

dimH L(0) ≥ F(0).

Moreover,

{
x ∈ J : − ∞ < χ(x) < α−} = {x ∈ J : χ(x) > α+} = ∅

and

dimH
{

x ∈ J : 0 < χ(x) < α−} = 0.

If f is exceptional and � ∩ J �= ∅ (this happens, for example, for Chebyshev
polynomials and Lattès maps) then the situation can be much different from the above-
mentioned cases. For example, the map f (x) = x2 − 2 possesses countably many
points with Lyapunov exponent −∞, two points with Lyapunov exponent 2 log 2, a
set of dimension 1 of points with Lyapunov exponent log 2, and no other Lyapunov
regular points. Hence, for this map the Lyapunov spectrum is not complete in the
interval [α−, α+] = [log 2, 2 log 2].

The present paper does not provide a complete description of the irregular part of
the Lyapunov spectrum even in the case � ∩ J = ∅. We do not know how big the
set L(−∞) is except in the case when f has only one critical point in J (in which
case L(−∞) consists only of the backward orbit of this critical point). Moreover, we
do not know whether the set {x ∈ J : χ(x) < α−} contains any points other than the
backward orbits of critical points contained in J and we only have some estimation
for the Hausdorff dimension of the set L(α, β) even for values α, β ∈ [α−, α+].

The paper is organized as follows. In Sect. 2 we introduce the tools we are going to
use in this paper. In particular, we construct a family of uniformly expanding Cantor
repellers with pressures pointwise converging to the pressure on J (Proposition 1).
Section 3 discusses general properties of the spectrum of exponents. In Sect. 4 we
obtain upper bounds for the Hausdorff dimension. Here we use conformal measures
to deal with conical points (Proposition 2) and we prove that the set of non-conical
points with positive upper Lyapunov exponent is very small using the pullback con-
struction (Proposition 3). In Sect. 5 we derive lower bounds for the dimension. To
do so, we first consider the interior of the spectrum and we will use the sequence of
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On the Lyapunov spectrum for rational maps 969

Cantor repellers from Sect. 2 to obtain for any α ∈ (α−, α+) a big uniformly expand-
ing subset of points with Lyapunov exponent α from which we derive our estimates.
We finally study the boundary of the spectrum and the irregular part of the spectrum
using a construction, that generalizes the w-measure construction from Ref. [7].

2 Tools: pressure and hyperbolic approximation

2.1 Topological pressure

Given a compact f -invariant set � ⊂ J , we denote by M(�) the family of f -invari-
ant Borel probability measures supported on �. We denote by ME(�) the subset of
ergodic measures. Given μ ∈ ME(�), we denote by

χ(μ) :=
∫

�

log | f ′| dμ

the Lyapunov exponent of μ. Notice that we have χ(μ) ≥ 0 for any μ ∈ M(J ) [16].
Given d ∈ R, we define the function ϕd : J\Crit → R by

ϕd(x) := −d log | f ′(x)|. (1)

Given a compact f -invariant uniformly expanding set � ⊂ J , the topological pressure
of ϕd (with respect to f |�) is defined by

Pf |�(ϕd) := max
μ∈M(�)

⎛
⎝hμ( f ) +

∫

�

ϕd dμ

⎞
⎠ , (2)

where hμ( f ) denotes the entropy of f with respect to μ. We simply write M = M(J ),
ME = ME(J ), and P(ϕd) = Pf |J (ϕd) if we consider the full Julia set J and if there
is no confusion about the system. A measure μ ∈ M is called equilibrium state for
the potential ϕd (with respect to f |J ) if

P(ϕd) = hμ( f ) +
∫

J

ϕd dμ.

For every d ∈ R we have the following equivalent characterizations of the pressure
function (see Ref. [20], where further equivalences are shown). We have

P(ϕd) = sup
μ∈M+

E

⎛
⎝hμ( f ) +

∫

J

ϕd dμ

⎞
⎠

= sup
�

Pf |�(ϕd). (3)
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970 K. Gelfert et al.

Here in the first equality the supremum is taken over the set M+
E of all ergodic

f -invariant Borel probability measures on J that have a positive Lyapunov expo-
nent and are supported on some f -invariant uniformly expanding subset of J . In the
second equality the supremum is taken over all uniformly expanding repellers � ⊂ J .
In fact, in the second equality it suffices to take the supremum over all uniformly
expanding Cantor repellers, that is, uniformly expanding repellers that are limit sets
of finite graph directed systems satisfying the strong separation condition with respect
to f , see Sect. 2.2.

Let us introduce some further notation. Let

α− := lim
d→∞ − 1

d
P(ϕd) = inf

μ∈ME

χ(μ),

(4)
α+ := lim

d→−∞ − 1

d
P(ϕd) = sup

μ∈ME

χ(μ),

where the given characterizations follow easily from the variational principle, see Ref.
[20].

Recall that, given α > 0, we define

F(α) := 1

α
inf
d∈R

(P(ϕd) + αd) (5)

and

F(0) := lim
α→0+ F(α). (6)

Note that

F(0) = d0 := inf{d : P(ϕd) = 0}.

2.2 Building bridges between unstable islands

We describe a construction of connecting two given hyperbolic subsets of the Julia set
by “building bridges” between the sets.1

We call a point x ⊂ J non-immediately post-critical if there exists some preimage
branch x0 = x = f (x1), x1 = f (x2), . . . that is dense in J and disjoint from Crit.
If f is non-exceptional or if it is exceptional but � ∩ J = ∅ then for every hyper-
bolic set all except possibly finitely many points (in particular, all periodic points) are
non-immediately post-critical.

We will now consider a set � that is an f -uniformly expanding Cantor repeller
(ECR for short), that is, a uniformly expanding repeller and a limit set of a finite graph
directed system (GDS) satisfying the strong separation condition (SSC) with respect

1 This is a precise realization of an idea of Prado [14].
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On the Lyapunov spectrum for rational maps 971

to f . Recall that by a GDS satisfying the SSC with respect to f we mean a family of
domains and maps satisfying the following conditions (compare [11, pp. 3, 58]):

(i) There exists a finite family U = {Uk : k = 1, . . . , K } of open connected (not
necessarily simply connected) domains in the Riemann sphere with pairwise
disjoint closures.

(ii) There exists a family G = {gk	 : k, 	 ∈ {1, . . . , K }} of branches of f −1 map-
ping U	 into Uk with bounded distortion (not all pairs k, 	 must appear here).
Note that a general definition of GDS allows many maps g from each U	 to
each Uk . Here however there can be at most one, since we assume that f -critical
points are far away from � and that the maps g are branches of f −1.

(iii) We have

� =
∞⋂

n=1

⋃
k1,...,kn

gk1k2 ◦ gk2k3 ◦ . . . ◦ gkn−1kn .

We assume that we have f (�) = � and hence that for each k there exists 	 and
for each 	 there exists k such that gk	 ∈ G.

We can view k = 1, . . ., K as vertices and gk	 as edges from 	 to k of a directed graph

 = 
(U, G).

This definition easily implies that f is uniformly expanding on the limit set � of
such a GDS, and that � is a repeller for f . Clearly � is a Cantor set. In fact a sort
of converse is true (though we shall not use this fact in this paper, but it clears up the
definitions). Namely we observe the following fact.

Lemma 1 If � ⊂ J is an f -invariant compact uniformly expanding set that is a
Cantor set, then � is contained in the limit set of a GDS satisfying the SSC (this limit
set can be chosen to be contained in an arbitrarily small neighborhood of �). Hence,
� is contained in an f -ECR set.

Proof We can multiply the standard sphere Riemann metric by a positive smooth
function such that with respect to this new metric ρ� we have | f ′| ≥ λ > 1 on �.
It is easy to show that one can find an arbitrarily small number r > 0 such that the
neighborhood B(�, r) = {z ∈ C : ρ�(z,�) < r} consists of a finite number of con-
nected open domains Uk with pairwise disjoint closures. We account for our GDS the
branches of g = f −1 on the sets Uk such that each g(Uk) intersects �. Then g maps
each Uk into some U	 because it is a contraction (by the factor λ−1). Hence the family
of maps g|Uk satisfies the assumptions of a GDS with the SSC. ��

In the proof of the following lemma we will “build bridges” between two ECR’s.

Lemma 2 For any two disjoint f -ECR sets �1, �2 ⊂ J that both contain non-imme-
diately postcritical points there exists an f -ECR set � ⊂ J containing the set �1∪�2.
If f is topologically transitive on each �i , i = 1, 2, then f is topologically transitive
on �.
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972 K. Gelfert et al.

Proof Let �1, �2 ⊂ J be two sets satisfying the assumptions of the lemma and let
p1 ∈ �1 and p2 ∈ �2 be two non-immediately postcritical points. Consider a family
Ui = {Ui,k}Ki

k=1 of open connected domains and a family Gi = {gi,k	} of branches of
f −1 mapping Ui,	 to Ui,k that define the DGS’s satisfying the SSC that have �i as
their limit sets, for i = 1, 2, respectively. Let

Di :=
Ki⋃

k=1

Ui,k .

We can assume that each Di is an arbitrarily small neighborhood of �i , by replacing
Ui by Gm(Ui ), where by Gm we denote the family of all compositions

Gm = {gi,k1k2 ◦ gi,k2k3 ◦ · · · ◦ gi,km−1km : gi,knkn+1 ∈ Gi , n = 1, . . . , m − 1
}
.

For each i = 1, 2 let us choose a backward trajectory yi,t of the point pi (the “bridge”)
such that

yi,0 = pi , f (yi,t ) = yi,t−1 for t = 1, . . . , ti ,

yi,t /∈ D1 ∪ D2 for all t = 1, . . . , ti − 1 and y1,t1 ∈ D2, y2,t2 ∈ D1. Let us denote by
hi,t the branch of f −t that maps pi to yi,t , that is, let

hi,t := f −t
yi,t

.

Let Vi be an open disc centered at pi that is contained in Di and satisfies hi,t (Vi )∩
(D1 ∪ D2) = ∅ for all t = 1, . . . , ti − 1 (note that this is possible provided we choose
Vi small enough) and

h1,t1(V1) ⊂ D2 and h2,t2(V2) ⊂ D1.

Let us consider an integer N ≥ 0 such that the component of f −N (Di ) containing
pi is contained in Vi , that is, that

f −N
pi

(Di ) ⊂ Vi

for i = 1, 2. Now let us replace Ui by Ûi := G N (Ui ), let us replace each map gi,k	

by the family of its restrictions to Û ∈ Ûi contained in U	 and and let us denote by
Ĝi the union of those families. This defines a GDS with graph 
i = 
i (Ûi , Ĝi ), for
i = 1, 2. Now we restrict each bridge hi,t to the element V̂i of Ûi that contains pi . As
the next step we consider

V̂i,t := hi,t (V̂i ) for t = 1, . . . , ti + N − 1,

where for t > ti we choose an arbitrary prolongation of the bridge yi,t by maps
g j,kt kt+1 . Finally, we consecutively thicken slightly V̂i,t along the bridges such that
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On the Lyapunov spectrum for rational maps 973

f (V̂i,t ) ⊃ V̂i,t−1. For each t let us denote by gi,t the branch of f −1 from V̂i,t to V̂i,t+1
for t = 0, . . ., ti + N − 1. Let us denote by Hi the family of all these branches. By
construction the family of domains

U := Û1 ∪ Û2 ∪
⋃

i=1,2

⋃
t=1,...,ti +N−1

V̂i,t

and the family of maps G := Ĝ1 ∪ Ĝ2 ∪ H1 ∪ H2 form our desired GDS with a
graph 
 = 
(U, G) satisfying the SSC and hence define an f -ECR set � ⊂ J that
containes �1 ∪ �2.

Finally notice that this system has topologically transitive limit set � since its tran-
sition graph 
 is transitive. This follows from the assumption that due to topological
transitivity of f |�i the graphs 
i are transitive and from the construction of the bridges.

��

2.3 Hyperbolic subsystems and approximation of pressure

Our approach is to “exhaust” the Julia set J by some family of subsets �m ⊂ J and
to show that the corresponding pressure functions converge towards the pressure of
f |J . In particular, in order to be able to conclude convergence of associated spectral
quantities, it is crucial that each such �m is an invariant uniformly expanding and
topologically transitive set.

We start by stating a classical result from Pesin-Katok theory. It follows for example
from Ref. [21, Theorems 11.6.1 and 12.2.3]. Recall that an iterated function system
(IFS) is a GDS that is given by a complete graph.

Lemma 3 For every ergodic f -invariant measure μ that is supported on J and has a
positive Lyapunov exponent, for every continuous function φ : J → R and for every
ε > 0, there exist an integer n > 0 and an f n-ECR set � ⊂ J that is topologically
transitive and a limit set of an IFS, such that dimH � ≥ dimH μ − ε

Pf n |�(Snφ) ≥ hμ( f n) + n
∫

φ dμ − nε, (7)

where we use the notation Snφ(x) := φ(x) + φ( f (x)) + · · · + φ( f n−1(x)), and in
particular

Pf |⋃n−1
k=0 f k (�)

(φ) ≥ hμ( f ) +
∫

φ dμ − ε. (8)

Our aim is to apply Lemma 3 to potentials φ = ϕd and to use the resulting ECR
sets to construct a sequence of f am -ECR sets �m on which the pressure function
1

am
Pf am |�m (Sam ϕd) converges pointwise to P(ϕd). If the ECR sets generated by

Lemma 3 are pairwise disjoint, we can simply build bridges between such sets applying
Lemma 2. In the general situation we start with the following lemma.
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974 K. Gelfert et al.

Lemma 4 Let � be a topologically transitive f n-ECR set. Let φi : � → R be a finite
number of Hölder continuous functions. Then for any open disc D intersecting � and
for any ε > 0 one can find a set �′ ⊂ D ∩ � and a natural number 	 > 0 such that
�′ is an f 	-ECR set and for every φi satisfies

1

	
Pf 	|�′(S	φi ) ≥ 1

n
Pf n |�(Snφi ) − ε.

Proof Without weakening of the assumptions, we might assume that n = 1. Consider
in � a clopen set C contained in D. Let x ∈ C . Let us choose N large enough such
that in the case that 	 ≥ N and f −	

x (C) ∩ C �= ∅ the pullback satisfies f −	
x (C) ⊂ C .

Note that it is enough to take

N >
log diam �

ρ�(C,�\C) log λ
,

where λ is the expanding constant on � in the metric ρ� defined as in the proof of
Lemma 1. Note that the topological transitivity of f |� implies that every pullback of
C can be continued by a bounded number of consecutive pullbacks until it hits C , say
this number is bounded by a constant N ′. This way we obtain an IFS for f 	|�, where
N ≤ 	 ≤ N + N ′, with its limit set �′ contained in C . By Ref. [21, Proposition 4.4.3],
for any φi

∣∣∣∣
1

	
Pf 	|�′(S	φi ) − Pf |�(φi )

∣∣∣∣ ≤ O

(
N ′

N

)
.

As N can be chosen arbitrarily big, this proves the lemma. ��
The following approximation results are fundamental for our approach.

Proposition 1 Assume that f is non-exceptional or that f is exceptional but � ∩ J =
∅. Then there exists a sequence {am}m of positive integers and a sequence �m ⊂ J
of f am -invariant uniformly expanding topologically transitive sets such that for every
d ∈ R, we have

P(ϕd) = lim
m→∞

1

am
Pf am |�m (Sam ϕd) = sup

m≥1

1

am
Pf am |�m (Sam ϕd). (9)

For every α ∈ (α−, α+) we have

F(α) = lim
m→∞ Fm(α) = sup

m≥1
Fm(α) (10)

and

lim
m→∞ α−

m = inf
m≥1

α−
m = α−, lim

m→∞ α+
m = sup

m≥1
α+

m = α+, (11)
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On the Lyapunov spectrum for rational maps 975

where Fm and α±
m are defined as in (5) and (4) but with 1

am
Pf am |�m (Sam φ) instead of

Pf |J (φ).

Proof To prove (9) it is enough to construct an f am -ECR set �m ⊂ J such that

1

am
Pf am |�m (Sam ϕd) ≥ P(ϕd) − 1

m
(12)

for all d ∈ [−m, m]. Recall that we have (3). As d �→ P(ϕd) is uniformly Lip-
schitz continuous, we only need to check (12) for a finite number of potentials
φi = ϕdi . Given m, we apply Lemma 3 to potentials φi , obtaining a family of f ni -ECR
sets �m,i on which the pressure 1

ni
P f ni |�m,i (Sni φi ) ≥ P(φi ) − 1

2m . We then apply

Lemma 4 to construct a family of pairwise disjoint f 	i -ECR sets �′
m,i that satisfy

1
	i

P f 	i |�′
m,i

(S	i φi ) ≥ P(φi ) − 1
m . Those sets �′

m,i are also disjoint f am -ECR sets

for am = ∏i 	i and by our assumption contain non-immediately post-critical points.
Hence we can consecutively apply Lemma 2 to them. We obtain an f am -ECR set
satisfying (12) for all φi . This proves (9).

As d �→ P(ϕd) and α �→ αF(α) form a Legendre pair, (10) and (11) follow from
(9) by a result of Wijsman [26]. ��
Remark 1 It is enough for us to work with hyperbolic sets for some iterations of f
instead of hyperbolic sets for f [in other words, to use (7) instead of (8)]. However,
notice that we could instead extend the set

⋃am−1
i=0 f i (�m) to an f -ECR set using

Lemma 1.

2.4 Conformal measures

The dynamical properties of any measure ν with respect to f |J are captured through
its Jacobian. The Jacobian of ν with respect to f |J is the (essentially) unique function
Jacν f determined through

ν( f (A)) =
∫

A

Jacν f dν (13)

for every Borel subset A of J such that f |A is injective. In particular, its existence
yields the absolute continuity ν ◦ T ≺ ν.

A probability measure ν that satisfies

Jacν f = eP(ϕd )−ϕd

is called eP(ϕd )−ϕd -conformal measure. If d ≥ 0 then one can always find a eP(ϕd )−ϕd -
conformal measure νd that is positive on each open set intersecting J , see Ref. [20].
When d < 0 such a measure can always be found if f is not an exceptional map or if
f is exceptional but � ∩ J = ∅ (see Ref. [20, Appendix A.2]).
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976 K. Gelfert et al.

2.5 Hyperbolic times and conical limit points

When f |J is not uniformly expanding, we can still observe a slightly weaker form of
non-uniform hyperbolicity. We recall two concepts that have been introduced.

A number n ∈ N is called a hyperbolic time for a point x with exponent σ if

|( f k)′( f n−k(x))| ≥ ekσ for every 1 ≤ k ≤ n.

It is an immediate consequence of the Pliss lemma (see, for example [13]) that for a
given point x ∈ J , for any σ < χ(x) there exist infinitely many hyperbolic times for
x with exponent σ .

We denote by

Distg|Z := sup
x,y∈Z

|g′(x)|
|g′(y)|

the maximal distortion of a map g on a set Z . After [5], we will call a point x ∈ J
conical if there exist a number r > 0, a sequence of numbers ni ↗ ∞ and a sequence
{Ui }i of neighborhoods of x such that f ni (Ui ) ⊃ B( f ni (x), r) and that Dist f ni |Ui is
bounded uniformly in i .

3 On the completeness of the spectrum

In the following two lemmas we will investigate which numbers can occur at all as
upper/lower Lyapunov exponents.

Lemma 5 We have

{
x ∈ J : χ(x) > α+} = Ø.

If J does not contain any critical point of f then we have

{
x ∈ J : χ(x) < α−} = Ø.

Proof Consider an arbitrary x ∈ J and a sequence ni ↗ ∞ such that

lim
i→∞

1

ni

ni −1∑
j=0

log | f ′( f j (x))| = χ(x)

and

μi := 1

ni

ni −1∑
j=0

δ f j (x) → μ
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in the weak∗ topology. The limit measure μ is f -invariant, [24, Theorem 6.9]. Define

gN := max{log | f ′|,−N }.

Notice that {gN }N is a monotonically decreasing sequence of continuous functions
that converge pointwise to log | f ′|. Hence we obtain

χ(x) ≤ lim
N→∞

∫
gN dμ =

∫
log | f ′| dμ = χ(μ) ≤ α+,

where the equality follows from the Lebesgue monotone convergence theorem. This
proves the first statement.

The second statement follows simply from the fact that log | f ′| is continuous on J
if f has no critical points in J . ��
Remark 2 We remark that the same method of proof gives a slightly stronger result
than the fact that χ(x) ≤ α+ for every x . Namely we have

lim
n→∞ sup

z∈C

1

n
log |( f n)′(z)| ≤ α+,

see Ref. [18, Proposition 2.3. item 2].
Recall that on a set of total probability we have χ(x) ≥ 0 [16]. In fact, a better

estimate can be given for any Lyapunov regular point x (compare the proof of Ref.
[19, Proposition 4.1]).

Lemma 6 If x ∈ J has a finite Lyapunov exponent χ(x) then χ(x) ≥ α−, that is, we
have

{
x ∈ J : − ∞ < χ(x) < α−} = ∅.

If there are no critical points in J then L(−∞) is empty. If there is only one critical
point in J then L(−∞) consists only of this critical point and its preimages.

Proof Let x ∈ J be a Lyapunov regular point with exponent χ(x) and assume that
χ(x) < α−. It is enough for us to prove that there exists a periodic point with Lyapu-
nov exponent arbitrarily close to χ(x), the contradiction will then follow from the
definition of α−.

Note first that if χ(x) exists and is finite then 1
n log |( f n)′(x)| must be a Cauchy

sequence and hence satisfies

lim inf
n→∞

1

n
log ρ( f n(x), Crit) = 0. (14)

By Ref. [16, Corollary to Lemma 6], we then can conclude that χ(x) ≥ 0. Choose
now a small number δ > 0. Let n be a hyperbolic time for x with exponent −δ/2
(recall that x has infinitely many hyperbolic times with that exponent, and hence that
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n can be chosen arbitrarily big). Because of (14), there exists an integer n0 > 0 such
that for all k ≥ n0 we have

ρ( f k(x), Crit) > exp(−kδ) (15)

and we can assume that n > n0.
We start with a construction that is standard in Pesin theory. For each k = 0, . . . ,

n − n0 − 1 we define

Bk := B
(

f n−k(x), e(−(dc+1)n+k)δ
)

,

where dc is the greatest degree of a critical point of f . This way we define a sequence
of balls that are centered at points of the backward trajectory of f n(x) and that have
diameters shrinking slower than the derivative of f −k along this branch and at the
same time have diameters much smaller than their distance from any critical point. As
we have f n−k(x) ∈ Bk (15), implies that for n big enough for any k < n − n0 the set
f −1

f n−k−1(x)
(Bk) does not contain any critical point and that

log Dist f −1
f n−k−1(x)

|Bk ≤ K1
diam Bk

ρ( f n−k(x), Crit)
, (16)

where K1 is some constant that depends only on f .

Claim If n is sufficiently big then for any k = 0, . . . , n the map f k is univalent and
has bounded distortion ≤ exp(δ/2) on the set f −k

f n−k (x)
(B0) and satisfies f k(Bk) ⊃ B0.

To prove the above claim, note that the balls Bn−k shrink as n increases. Hence, it
is enough to prove the statement for k < n − n0. The statement for the initial finitely
many steps k = n − n0, . . . , n is then automatically provided n is big enough. Let us
assume that n is sufficiently big such that also

K1(n − n0)e
−dc nδ <

δ

2
.

By construction of the family {Bk}k and by (15), for each 	 ≥ 1 we have

	−1∑
k=0

diam Bk

ρ( f n−k(x), Crit)
<

	−1∑
k=0

e(−(dc+1)n+k)δ

e(−n+k)δ
= 	e−dc nδ.

Hence, if for 	 ≤ n − n0 we have f k(Bk) ⊃ B0 for every k = 1, . . . , 	 − 1 then (16)
implies

log Dist f −	

f n−	(x)
|B0 ≤ K1	e−dc nδ <

δ

2
.
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On the other hand, recall that n is a hyperbolic time for x with exponent −δ/2. Hence,
if

log Dist f −	

f n−	(x)
|B0 <

δ

2

then f 	(B	) ⊃ B0. The above claim now follows by induction over 	.
Let us consider the set

E :=
⋂
k≥1

⋃
	>k

E	, where E	 :=
	⋃

j=1

B
(

f j (Crit), e−2dc 	δ
)

.

Notice that B0\En is nonempty whenever the hyperbolic time n is big enough. For
such n, let y ∈ B0\En . From our distortion estimations for f −n

x |B0 in the Claim we
obtain

log

∣∣( f −n
x )′( f n(x))

∣∣
∣∣( f −n

x )′(y)
∣∣ <

δ

2
. (17)

In the remaining proof we will follow closely techniques in Ref. [19, Section 3]. Let
us fix some arbitrary f -invariant uniformly expanding set � ⊂ J that has positive
Hausdorff dimension (the existence of such a set follows for example from Lemma 3).
As Crit is a finite set, we have dim� E = 0 and we can find a point z ∈ �\E . In
particular z ∈ �\En for n large. Note that in particular for every n large enough we
have

ρ(z, f n(Crit)) > e−2dc nδ. (18)

and hence on the disk B(z, e−2dc nδ) any pull-back f −n is univalent.
By Ref. [17, Lemma 3.1], there exists a number K2 > 0 depending only on f and

a sequence of disks {Di }i=1,...,K such that
⋃K

i=1 Di is connected, y is the center of
disk D1, z is the center of disk DK ,

ρ

⎛
⎝Di ,

n⋃
j=1

f j (Crit)

⎞
⎠ ≥ diam Di ,

and the number of disks is bounded by K ≤ K2(nδ)1/2. By the Koebe distortion
lemma, for each branch of f −n and for every Di we have

Dist f −n|Di < K3,

where K3 > 0 is some constant. Hence, in particular

∣∣log |( f −n
w )′(z)| − log |( f −n

x )′(y)|∣∣ ≤ K log K3
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for some w ∈ f −n(z). Together with (17), this implies that

1

n

∣∣∣ log |( f n)′(x)| − log |( f n)′(w)|
∣∣∣ ≤ 1

n

(
δ

2
+ K log K3

)

≤ 1

n

(
δ

2
+ K2(nδ)1/2 log K3

)
<

δ

2
, (19)

whenever n has been chosen large enough.
By hyperbolicity of f |�, there exist positive constants � and K4 such that for all

	 ≥ 0 the map f −	 is univalent and has bounded distortion ≤ K4 on B( f 	(z),�).
Recall that the Julia set J has the property that there exists m = m(�) > 0 such that
the image f m(B( f 	(z),�) ∩ J ) is equal to J .

Let 	 be the smallest positive integer such that

|( f 	)′(z)| ≥ K4 � e2dc(n+m)δ.

Hence f −	
z (B( f 	(z),�)) ⊂ B(z, e−2dc(n+m)δ) and it is easy to show that 	 ≤

K5 + K6(n + m)δ for some constants K5, K6. So in particular, one of the preimages
f −(n+m)(z) is in B( f 	(z),�) and the corresponding pull-back W := f −(n+m)(B(z,
e−2dc(n+m)δ)) satisfies W ⊂ B( f 	(z),�). It follows from (18) that f −(n+m+	) : W →
B(z, e−2(n+m)δ) is univalent and thus that there is a repelling fixed point p =
f n+m+	(p) in B(z, e−(n+m+	)).

Using the above, the Lyapunov exponent of p can be estimated by

χ(p) = 1

n + m + 	
log |( f n+m+	)′(p)|

≤ 1

n
log
∣∣( f n)′(w)

∣∣ 1

1 + (m + 	)/n
+ m + 	

n + m + 	
sup log | f ′|

≤
(

χ(x) + δ

2

)
1

1 + (m + 	)/n
+ m + 	

n + m + 	
sup log | f ′|.

Now recall that the hyperbolic time n can be chosen arbitrarily large and that δ was
chosen arbitrarily small. This proves the first claim of the lemma.

If there are no critical points in J then log | f ′| (and hence χ ) is bounded from
below. The remaining claim of the lemma follows from Ref. [6, Lemmas 2.1 and 2.3].

��

4 Upper bounds for the dimension

In this section we will derive upper bounds for the Hausdorff dimension of the level
sets. We begin with a particular case.
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4.1 No critical points in J

We study the particular case that there is no critical point in the Julia set J (though,
parabolic points in J are allowed).

We start by taking a more general point of view and investigate those points that
have some least degree of hyperbolicity. In terms of Lyapunov exponents, this con-
cerns points x with χ(x) > 0. We begin our analysis by presenting a simple lemma,
that will be useful shortly after.

Lemma 7 Let {an}n be a sequence of real numbers such that {an+1 − an}n converges
to zero but {an}n does not have a limit. Then for any natural number r and for any
number q ∈ [lim infn→∞ an, lim supn→∞ an] there exists a subsequence nk ↗ ∞
such that

lim
k→∞ ank = q

and for every k we have

ank < ank+r .

Proof We will restrict our hypothesis to the case that r = 1. The general case then
follows from considering the subsequence {arn}n .

First note that every number q ∈ [lim inf an, lim sup an] is the limit of some sub-
sequence of {an}n . Hence, if q �= lim inf an then for every ε > 0 there must exist
infinitely many numbers m = m(ε) such that

am < q − ε < am+1.

Similarly, if q �= lim sup an then for every ε > 0 there must exist infinitely many
numbers m = m(ε) such that

am < q + ε < am+1.

Since we assume that the sequence {an}n does not have a limit, q must satisfy one of
the abovementioned properties. Hence, if we choose a decreasing family {εk}k and for
each εk one of the corresponding numbers nk = m(εk), we obtain

|ank − q| ≤ εk + |ank − ank−1| → 0.

The second part of the assertion is immediately satisfied. ��
Lemma 7 will help us to establish some bounded distortion properties. The follow-

ing result implies in particular that every point x with χ(x) > 0 is conical (recall the
definition of a conical point in Sect. 2.5).
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Lemma 8 Assume that J does not contain any critical points of f . Let x ∈ J be
a point with χ(x) > 0. Then there exists a number K > 0 such that for every
q ∈ [χ(x), χ(x)]\{0} there exists a number δ > 0 and a sequence nk → ∞ such that

i) limk→∞ 1
nk

log |( f nk )′(x)| = q,
ii) Dist f nk |

f
−nk
x (B( f nk (x),δ))

< K .

Here K is a universal constant, while δ depends on the number q but not on the
point x.

Proof As J does not contain any critical point, the only accumulation points in J of
the orbit of some critical point can be parabolic points. Let r be the least common
multiplier of the periods of all parabolic points in J .

Given a number q ∈ [χ(x), χ(x)]\{0}, there exists a number δ0 > 0 such that if
y ∈ J is δ0-close to some parabolic point then

1

r
log |( f r )′(y)| ≤ q

2
.

Further, there exists a number δ1 > 0 such that if z ∈ J is δ0-away from any parabolic
point then no orbit of a critical point passes through B(z, 2δ1).

To prove the claimed property, it will suffice to find a sequence {nk}k for which (1)
is satisfied and for which f nk (x) is in distance at least δ0 from any parabolic point.
Indeed, in such a situation the backward branch of f −nk

x (B( f nk (x), 2δ1)) will not
catch any critical point and the distortion estimations, (2) will follow from the Koebe
distortion lemma.

If x is a Lyapunov regular point and q = limn→∞ 1
n log |( f n)′(x)| is its Lyapunov

exponent (which, by our assumptions, must be positive) then the claim (1) is automati-
cally satisfied. In this case we just need to choose nk such that f nk (x) is far away from
any parabolic point. Note that there must be infinitely many such times nk because
otherwise the Lyapunov exponent at x would be no greater than q/2.

If x is not a Lyapunov regular point, then we apply Lemma 7 to the sequence

an = 1

n
log |( f n)′(x)|.

Notice that limn→∞(an+1 − an) = 0 is satisfied, because there are no critical points
in J and hence | f ′| is uniformly bounded. Hence, from the first assertion of Lemma 7
we obtain a sequence {nk}k that satisfies (1). Notice that we have

ank+r = nk

nk + r
ank + 1

nk + r
log |( f r )′( f nk (x))| ≤ nk

nk + r
ank + r

nk + r

q

2

whenever f nk (x) is δ0-close to some parabolic point. This inequality cannot be true
for big nk (when ank is already close to q) because of the second part of assertion of
Lemma 7. This proves that for any time nk large enough the point f nk (x) is δ0-away
from any parabolic point. ��
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We are now prepared to prove an upper bound for the Hausdorff dimension of the
level sets under consideration. To start with the most general approach that will be
needed in the subsequent analysis, we first study a set of points x for which χ(x) > 0
and for which additionally the Lyapunov exponent (possibly with respect to some
subsequence of times) is guaranteed to be within a given interval [α, β]. Let us first
introduce some notation. Given 0 ≤ α ≤ β, β > 0, let

L̂(α, β) := {x ∈ J : χ(x) ≤ β, χ(x) ≥ α, χ(x) > 0}. (20)

Proposition 2 Assume that J does not contain any critical points of f . For every
β > 0 and 0 ≤ α ≤ β we have

dimH L̂(α, β) ≤ max
α≤q≤β

F(q).

If α > α+ or β < α− then L̂(α, β) = Ø.

Proof By Lemma 8, for every point x ∈ L̂(α, β) there exist a number q = q(x) ∈
[α, β]\{0}, a number δ > 0, and a sequence {nk}k of numbers such that

lim
k→∞

1

nk
log |( f nk )′(x)| = q. (21)

and

2δ |( f nk )′(x)|−1 K −1 ≤ diam f −nk
x (B( f nk (x), δ)) ≤ 2δ |( f nk )′(x)|−1 K . (22)

Recall that for every d ∈ R there exists a exp(P(ϕd) − ϕd)-conformal measure νd

that gives positive measure to any open set (see Section 2.4). Hence there exists
c = c(δ) > 0 such that for every nk we have c ≤ νd(B( f nk (x), δ)) ≤ 1. Using again
the distortion estimates, we can conclude that

cK −de−nk P(ϕd )|( f nk )′(x)|−d

≤ νd
(

f −nk
x

(
B( f nk (x), δ)

)) ≤ K de−nk P(ϕd )|( f nk )′(x)|−d , (23)

which implies that

lim
k→∞

1

nk
log νd

(
f −nk
x

(
B( f nk (x), δ)

)) = −P(ϕd) − d q

and in particular that this limit exists. Hence, there exists N > 0 such that for every
nk ≥ N we have

νd
(

f −nk
x

(
B( f nk (x), δ)

)) ≥ e−nk (P(ϕd )+dq+dδ)

≥ e−nk P(ϕd )|( f nk )′(x)|−d

≥ K −2de−nk P(ϕd )
(
diam f −nk

x

(
B( f nk (x), δ)

))d ( 1

2δ

)d

.
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Here we used Lemma 8 to obtain the last inequality. Applying (21) and (22) we yield

dνd
(x) ≤ P(ϕd)

q
+ d. (24)

For any q0 ∈ [α, β], q0 > 0, and ε > 0 there exist a small interval (q1, q2), q1 > 0,
containing q0 and a number d ∈ R such that for all q ∈ (q1, q2)

1

q
P(ϕd) + d <

{
F(q) + ε if F(q) �= −∞,

−100 if F(q) = −∞.
(25)

We can choose a countable family of intervals {(q(i)
1 , q(i)

2 )}i covering [α, β]\{0} and
a sequence of corresponding numbers {di }i . Defining the measure

ν :=
∑

i

2−iνdi

we obtain

dν(x) ≤ inf
i≥1

dνdi
(x) ≤ max

α≤q≤β
F(q) + ε,

where the second inequality follows from (25). Applying the Frostman lemma we
obtain that

dimH L̂(α, β) ≤ max
α≤q≤β

F(q) + ε

Since ε can be chosen arbitrarily small, this finishes the proof of the first claim. The
second claim was already proved in Lemma 5. ��

Note that for every q ∈ [α, β], q > 0, we have L(α, β) ⊂ L̂(q, q), which readily
proves the following result.

Corollary 1 Under the hypotheses of Proposition 2, we have

dimH L(α, β) ≤ min
α≤q≤β

F(q) = min{F(α), F(β)}.

In particular, for every α > 0, we have

dimH L(α) ≤ F(α).

4.2 The general case

We now consider the general case that there are critical points inside the Julia set.
We need two technical results from the literature. The first one is the following

telescope lemma from Ref. [15]. Recall the definition of hyperbolic times given in
Sect. 2.5.
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Lemma 9 Given ε > 0 and σ > 0, there exist constants K1 > 0 and R1 > 0 such
that the following is true. Given x ∈ J with upper Lyapunov exponent χ(x) > σ , for
every number r < R1, for every n ≥ 1 being a hyperbolic time for x with exponent σ ,
and for every 0 ≤ k ≤ n − 1 we have

diam f −n+k
f k (x)

(
B( f n(x), r)

) ≤ r K1e−(n−k)(σ−ε).

To formulate our second preliminary technical result we need the following con-
struction, see [8,19,20].
Pullback construction: Fix some n > 0 and let y ∈ J\⋃n

i=1 f i (Crit). Fix some R >

0 and let {yi }n
i=1 be some backward trajectory of y, i.e. y0 = y and yi+1 ∈ f −1(yi )

for every i = 1, . . ., n − 1. Let k1 be the smallest integer for which f −k1
yk1

(B(y, R))

contains a critical point. For every 	 ≥ 1 let then k	+1 be the smallest integer greater
than k	 such that f −(k	+1−k	)

yk	+1
(B(yk	

, R)) contains a critical point and so on. In this
way, for each backward branch {yi }i we construct a sequence {k	}	 that must have
a maximal element not greater than n. Let this element be k and consider the set Z
of all pairs (yk, k) built from all the backward branches of f that start from y. Let
N (y, n, R) := #Z . We have the following estimate, see Refs. [20, Lemma 3.7] and
[19, Appendix A].

Lemma 10 Given ε > 0, there exist K2 > 0 and R2 > 0 such that for all R ≤ R2
we have

N (y, n, R) < K2enε

uniformly in y and n.

Recall the definition of conical points in Sect. 2.5. Using the above two lemmas we
can now show the following result.

Proposition 3 The set of points x ∈ J that are not conical and satisfy χ(x) > 0 has
Hausdorff dimension zero.

Proof Let us choose some numbers σ > 0 and ε > 0. Let

r := 1

2K1 + 4
min{R1, R2},

where K1 and R1 are constants given by Lemma 9 and where R2 is given by Lemma 10.
We can choose a finite family of balls {Bi }L

i=1 of radius 3r such that any ball of
radius 2r intersecting J must be contained in one of the balls Bi . In the case that we
can prove existence of a sequence {ni }i such that f −(ni −k)

f k (x)
(B( f ni (x), 2r)) does not

contain critical points for any 0 ≤ k ≤ ni − 1, the Koebe distortion lemma will imply
that x is a conical point for r , {ni }i , and Ui = f −ni

x (B( f ni (x), r)).
Let G(m, σ ) be the set of points x ∈ J with upper Lyapunov exponent greater than

σ for which with r chosen above for all n > m the backward branch of f −n from ball
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Fig. 1 Pullback construction
starting from the point y
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B( f n(x), 2r) onto a neighborhood of x will necessarily meet a critical point, that is,
for some 0 ≤ k ≤ n − 1 we have

f −(n−k)

f k (x)

(
B( f n(x), 2r)

) ∩ Crit �= Ø.

First we claim that dimH G(m, σ ) = 0. Let us denote by G(m, σ, n) the subset of
G(m, σ ) for which n > m is a hyperbolic time with exponent σ . Recall that χ(x) >

σ > 0 implies that there exist infinitely many hyperbolic times for x with exponent
σ . Hence, we have

G(m, σ ) =
⋂

m0≥m

⋃
n>m0

G(m, σ, n). (26)

Let x ∈ G(m, σ, n). Let B j = B(y, 3r) be the ball that contains B( f n(x), 2r). We
will apply the “pullback construction” from Lemma 10 to the point y, the numbers n,
R = 1

2 min{R1, R2}, and to the backward branch f −n
x . And let k = max	 k	 and yk

be given by the pullback construction (compare Fig. 1).
We first note that Lemma 9 and ρ( f n(x), y) ≤ r imply that

ρ( f n−k(x), yk) ≤ r K1.
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This implies B( f n−k(x), 2r) ⊂ B(yk, R) and hence k ≥ n−m because x ∈ G(m, σ ).
Thus, with fixed n and B j , by Lemma 10 the point x must belong to one of at most
K2enε(deg f )m preimages of B j . As B(y, 3r) ⊂ B(x, 4r) and 4r < R1, by Lemma 9
this pre-image of B j has diameter not greater than 8r K1e−n(σ−ε).

Hence, we showed that every point in G(m, σ, n) belongs to the nth pre-image of
some ball B j along a backward branch for that k ≥ m − n (where k = max	 k	 is as
in the pullback construction). Thus, by Lemma 9 the set G(m, σ, n) is contained in
a union of at most L K2enε(deg f )m sets of diameter not greater than 8r K1e−n(σ−ε).
Using those sets to cover G(m, σ, n) and applying (26), we obtain

dimH G(m, σ ) ≤ ε

σ − ε
.

As ε can be chosen arbitrarily small, the claim follows.
Finally note that the set of points that we want to estimate in the proposition is

contained in the union

∞⋃
m=1

∞⋃
n=1

G

(
m,

1

n

)
.

Since for any set in this union its Hausdorff dimension is zero, the assertion follows.
��

Note that in the above proof we were able to show something more. Namely notice
that the choice of r depended on σ alone (and not directly on the point x).

We are now prepared to prove the following estimate.

Proposition 4 Let 0 < α ≤ β ≤ α+. We have

dimH L(α, β) ≤ max

{
0, max

α≤q≤β
F(q)

}
.

Proof Let α and β be like in the assumptions and let x ∈ L(α, β). By Proposition 3 we
can restrict our considerations to the case that x is a conical point with corresponding
number r > 0, sequence {nk}k , and family of neighborhoods {Uk}k . Hence, there exist
numbers δ > 0 and K > 1 such that

2δ |( f nk )′(x)|−1 K −1 ≤ diam f −nk
x (B( f nk (x), δ)) ≤ 2δ |( f nk )′(x)|−1 K . (27)

Choosing, if necessary, a subsequence of {nk}k , we can find q = q(x) ∈ [α, β] for
which we have

lim
k→∞

1

nk
log |( f nk )′(x)| = q. (28)

Recall that for any d ∈ R there exists a exp(P(ϕd)−ϕd)-conformal measure νd that
gives positive measure to any open set that intersects J (see Sect. 2.4). Hence, there
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exists a number cδ > 0 for which for every nk we have cδ ≤ νd(B( f nk (x), δ)) ≤ 1.
Using again distortion estimates, we can conclude that

c e−nk P(ϕd )K −1|( f nk )′(x)|−d

≤ νd
(

f −nk
x

(
B( f nk (x), δ)

)) ≤ e−nk P(ϕd )K |( f nk )′(x)|−d . (29)

The rest of the proof is similar to the proof of Proposition 2. First we obtain that for
every d ∈ R we have

dνd
(x) ≤ P(ϕd)

q
+ d.

Choosing the right number d, we then conclude that dνd
(x) ≤ F(q). We finish the

proof by constructing a measure such that for an arbitrarily small chosen number ε

and some number q ∈ [α, β] the lower pointwise dimension of that measure at every
x ∈ L(α, β) is not greater than F(q) + ε. ��
Remark 3 Notice that in the general case, in which we do have critical points in J , for
a point x ∈ J with χ(x) < χ(x) we cannot apply the same techniques as in Sect. 4.1.
In particular, in the above proof for each point x ∈ L(α, β) we only know that there
exists some number q = q(x) ∈ [χ(x), χ(x)] to which the Lyapunov exponents over
some subsequence of times {nk}k will converge, while in Proposition 2 we were able
to choose an arbitrary number q in that interval. Hence, to show the following result
we can only consider the set L(α) = L(α, α) and not L̂(q, q) for an arbitrary number
q ∈ [α, β], and the following corollary is weaker than Corollary 1. However, the
implications for the regular part of the spectrum remain the same.

Proposition 4 and L(α) = L(α, α) readily imply the following result.

Corollary 2 For α ∈ [α−, α+]\{0} we have

dimH L(α) ≤ F(α).

5 Lower bounds for the dimension

In this section we will derive lower bounds for the Hausdorff dimension. We will
either assume that f is a non-exceptional map or that f is exceptional but � ∩ J = Ø.
Recall that under those assumptions Proposition 1 is valid, so we can approximate the
pressure with respect to f |J with pressures that are defined with respect to a sequence
of Cantor repellers f am |�m that were constructed in Sect. 2.3.

One more case we would like to exclude is α− = α+ = α. It is not very interest-
ing because in this case any measure supported on any hyperbolic set �m ⊂ J has
Lyapunov exponent α. Hence, we automatically have

dimH L(α) ≥ sup
m≥1

Fm(α)
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and the supremum on the right hand side is in this case equal to F(α). Therefore, in
the following considerations we will assume that α− < α+.

5.1 The interior of the spectrum

We use the sequence of Cantor repellers to obtain for any exponent from the interior
of the spectrum a big uniformly expanding subset of points with Lyapunov exponent
α that provides us with an estimate from below.

Proposition 5 For α ∈ (α−, α+) we have dimH L(α) ≥ F(α).

Proof Let us consider the sequence of Cantor repellers f am |�m from Proposition 1.
By (11), for each number α+ > α > α− there exists m0 ≥ 1 such that α+

m > α > α−
m

for every m ≥ m0. Obviously we have

dimH L(α) ≥ sup
m≥1

dimH L(α) ∩ �m .

Since �m is a uniformly expanding repeller with respect to f am , for any expo-
nent α ∈ (α−

m , α+
m ) there exists a unique number q = q(α) ∈ R such that α =

− 1
am

d
ds Pf am |�m (ϕs)|s=q(α) and an equilibrium state μq for the potential ϕq (with

respect to f am |�m ) such that the Lyapunov exponent of μq with respect to f am is
equal to amα (compare the classical results in Sect. 1). For the measure

νm =
am−1∑
i=0

μm ◦ f i

we have χ(νm) = α. Hence, the variational principle implies

max

{
hν( f ) : ν ∈ ME

(⋃
i

f i (�m)

)
, χ(ν) = α

}

≥ 1

am
Pf am |�m (Sam ϕq) + qα

≥ inf
d∈R

(
1

am
Pf am |�m (Sam ϕd) + dα

)
= Fm(α).

We obtain that dimH ν = hν ( f )
χ(ν)

whenever ν is an f -invariant ergodic Borel probability
measure with positive Lyapunov exponent [10]. This implies that for every m ≥ m0

dimH L(α) ∩
⋃

i

f i (�m) ≥ max

{
hν( f )

α
: ν ∈ ME

(⋃
i

f i (�m)

)
, χ(ν) = α

}
.

From here the we can conclude that dimH L(α) ≥ supm≥1 Fm(α). Together with
Proposition 1 the statement is proved. ��
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5.2 The boundary of the spectrum

Unfortunately, the above approach does not suffice to analyze the level sets for expo-
nents from the boundary of the spectrum. Our main goal in this section is to prove the
following result. It will not only enable us to describe the boundary of the spectrum
but also provide us with dimension lower bounds for level sets of irregular points.

Theorem 3 Let {�i }i be a sequence of subsets of J . We assume that each �i is a
uniformly expanding repeller for some iteration f ai and contains non-immediately
postcritical points. Let {φi }i be a sequence of Hölder continuous potentials and let
{μi }i be a sequence of equilibrium states for φi with respect to f ai |�i . Then

dimH

{
x ∈ J : χ(x) = lim inf

i→∞ χ(μi ), χ(x) = lim sup
i→∞

χ(μi )

}
≥ lim inf

i→∞ dimH μi

and

dimP

{
x ∈ J : χ(x) = lim inf

i→∞ χ(μi ), χ(x) = lim sup
i→∞

χ(μi )

}
≥ lim sup

i→∞
dimH μi .

We derive the following estimates for level sets that include exponents at the bound-
ary of the spectrum.

Proposition 6 For α− ≤ α < β ≤ α+ we have

dimH L̂(α, β) ≥ max
α≤q≤β

F(q).

Proof The claimed estimate follows from Theorem 3.
We can also observe that for every q ∈ (α, β) we have L̂(α, β) ⊃ L(q, q) = L(q).

Hence we can apply Proposition 5 to derive dimH L(q) ≥ F(q) and prove the claimed
estimate. ��
Proposition 7 For α− ≤ α ≤ β ≤ α+ we have

dimH L(α, β) ≥ min{F(α), F(β)}.

Proof Since we assume α− < α+, there exists a sequence {�i }i of uniformly expand-
ing repellers and a sequence {μi }i of equilibrium states for the potential − log | f ′|
with respect to f |�i such that dimH μi = F(χ(μi )) and α = limi→∞ χ(μ2i ) and
β = limi→∞ χ(μ2i+1). Theorem 3 then implies that

L(α, β) =
{

x ∈ J : χ(x) = α, χ(x) = β
}

≥ lim inf
i→∞ F(χ(μi )).

Since lim inf i→∞ F(χ(μi )) ≥ min{F(α), F(β)}, this proves the claimed estimate.
��
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Recall that a point x is said to be recurrent if f ni (x) → x for some sequence
ni ↗ ∞.

Corollary 3 Assume that J does not contain any recurrent critical points of f , that
f is non-exceptional, and that F(0) �= −∞. Then we have

dimH L(0) = dimH J = F(0).

Proof Proposition 7 implies that dimH L(0) ≥ F(0). As F(0) �= −∞, the pressure
function d �→ P(ϕd) is nonnegative and F(0) = inf{d : P(ϕd) = 0}. Since J does
not contain any recurrent critical points of f , we can apply [23, Theorem 4.5] and
conclude that inf{d : P(ϕd) = 0} = dimH J . ��

To prove Theorem 3, we will construct a sufficiently large set of points that have
precisely the given lower/upper Lyapunov exponent. Note that such a set will not “be
seen” by any invariant measure in the non-trivial case that lower and upper exponents
do not coincide. Also points with Lyapunov exponent zero, though Lyapunov regular,
will not “be seen” by any interesting invariant measure. Our approach is to show that
such a set is large with respect to some necessarily non-invariant probability measure.
It is generalizing the construction of so-called w-measures introduced in Ref. [7] for
which we strongly made use of the Markov structure that is not available to us here.

A technical lemma In preparation for the proof of Theorem 3 we start with some
technical result that will be usefull shortly after.

Lemma 11 Let g : C → C be a conformal map and � ⊂ C be a compact g-invari-
ant hyperbolic topologically transitive set, μ a g-invariant ergodic measure on �

with Lyapunov exponent χ = χ(μ), entropy h = hμ(g), and Hausdorff dimension
d = d(μ). Let V be an open set of positive measure μ. If γ is small enough then for
any ε > 0 for μ-almost every point v ∈ � there exist a number K > 0 and a sequence
{ni }i such that for each ni there is a set Fni ⊂ V ∩ � such that for all y j ∈ Fni

i) gni (y j ) = v,
ii) K −1 exp(m(χ − ε)) < |(gm)′(y j )| < K exp(m(χ + ε)) for all m ≤ ni ,

iii) the branch g−ni
y j mapping v onto y j extends to all B(v, γ ) and the distortion of

the resulting map is bounded by K ,
iv) we have

μ

⎛
⎝ ⋃

y j ∈Fni

g−ni
y j

(B(v, γ ))

⎞
⎠ ≥ K −1,

v) for j �= k we have

ρ
(

g−ni
y j

(B(v, γ )), g−ni
yk

(B(v, γ ))
)

> K −1diam g−ni
y j

(B(v, γ )),
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992 K. Gelfert et al.

vi) for any x ∈ V and r > 0 we have

μ

⎛
⎝B(x, r) ∩

⋃
y j ∈Fni

g−ni
y j

(B(v, γ ))

⎞
⎠ ≤ Krd−ε,

vii) we have

K −1e−n(h+ε) ≤ μ
(

g−ni
y j

(B(v, γ ))
)

≤ e−n(h−ε).

Proof As g|� is uniformly expanding, there exist numbers γ > 0 and c1 > 0 such
that for every n ≥ 1, y ∈ �, v = f n(y) ∈ �, and a backward branch g−n

y mapping v

onto y for every x1, x2 ∈ B(v, γ ) we have

|(g−n
y )′(x1)|

|(g−n
y )′(x2)|

≤ c1, (30)

and in particular the mapping g−n
y extends to all of B(v, γ ). Moreover, there is some

constant c2 > 0 not depending on n or y such that

diam g−n
y (B(v, γ )) ≤ c2γ.

We assume that γ is so small that for any two points x , y with distance from �

and mutual distance < c2γ , for any point x ′ ∈ g−1(x) there is at most one point
y′ ∈ g−1(y) such that ρ(x ′, y′) ≤ c2γ . This is true for any small enough number γ

because � is in positive distance from any critical point of g. Let Ṽ ⊂ V be such that
B(Ṽ , c2γ ) ⊂ V and that Ṽ is nonempty and of positive measure, which is possible
whenever γ is small enough.

Notice that B(v, 1
c2+1γ ) has positive μ-measure for μ-almost every v. Choose such

point v and let

Ũ := B

(
v,

1

c2 + 1
γ

)
, U := B(v, γ ),

compare Fig. 2. Let

δ := 1

2
min
{
μ(Ũ ), μ(Ṽ )

}
.

Let ε > 0. There is a set of points �′ ⊂ � with μ(�′) > 1 − δ (actually, it can
be chosen to have arbitrarily large measure) and a number N > 1 such that: for every
n ≥ N and for every x ∈ �′ we have

(C1)
∣∣ 1

n #
{
k ∈ {0, . . . , n − 1} : gk(x) ∈ Ũ ∩ �

}− μ(Ũ )
∣∣ ≤ ε,

(C2)
∣∣log |(gn)′(x)| − nχ

∣∣ ≤ nε,
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Fig. 2 Construction in the proof
of Lemma 11

(C3)
∣∣log Jacμgn(x) − nh

∣∣ ≤ nε,
(C4) for r ≤ diam � we have

μ(B(x, r)) < c3rd−ε.

Here (C1), (C2) simply follow from ergodicity, (C3) is a consequence of the Rokhlin
formula and ergodicity, and (C4) follows from the definition of the dimension d(μ).

We choose now a family {En}n≥N of subsets of �′ such that for every n ≥ N the set
En is a maximal (n, c2

c2+1γ )-separated subset of �′. Given n ≥ N , let Vn := En ∩ Ṽ .
For each n ≥ N let

Fn := {x ∈ Vn : g−n
x (U ) ⊂ V

}
.

For every z j ∈ Fn let Vn, j := g−n
z j

(Ũ ). Obviously, all the sets Vn, j are pairwise
disjoint.

By (C1) the trajectory of every point from Ṽ ∩ �′ visits Ũ at some time n ≥ N
(in fact, at infinitely many times). Let x be such a point and n be such a time, that
is, gn(x) ∈ Ũ . Because En is maximal, x must be (n, c2

c2+1γ )-close to some point
z j ∈ En . Hence we have

gn(z j ) ∈ B

(
gn(x),

c2

c2 + 1
γ

)
⊂ U

and

x ∈ Vn, j ⊂ g−n
z j

(U ) ⊂ B(x, c2γ ) ⊂ V .
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Fig. 3 Connecting the hyperbolic sets by bridges

This shows that z j ∈ Fn . This together with (C1) implies that

n−1∑
	=0

μ

⎛
⎝⋃

j

V	, j

⎞
⎠ ≥ (μ(Ũ ) − ε) n μ(�′)

and hence, as it is satisfied for all n > N , we obtain

∑
j

μ
(
V	, j
) ≥ 1

2
(μ(Ũ ) − ε)μ(�′)

for infinitely many 	 ≥ N . This gives us a sequence of times ni := 	 and points
y j = g−ni

z j (v) for which the assertion of the lemma is true. Indeed, g−ni
z j (U ) and

g−ni
zk (U ) for j �= k are disjoint because we are in a sufficiently large distance from

Crit. We also know that those maps g−ni
z j |U have uniformly bounded distortion. Recall

that U = B(v, γ ), which implies that g−ni
z j (B(v, γ /2)) and g−ni

zk (B(v, γ /2)) for j �= k
are not only disjoint but in distance that is comparable to the sum of their diameters and
v) follows. Further properties (i) and (iii) are checked directly from the construction.
Moreover, (vi) follows from (C4), (iv) follows from our choices of 	, (ii) from (C2)
and (vii) from (iv) and (C3). ��

Construction of a Cantor set We now continue with some preliminary constructions
that will be needed in the proof of Theorem 3.

As a first step, we are going to construct “bridges” between the repellers �i (com-
pare Fig. 3). This is very similar to the proof of Lemma 2 though here we will not
necessarily require that the repellers are disjoint. To fix some notation, let {(Bi , bi )}i

be a collection of bridges, that is, let

Bi := B(zi , ri ) ⊂ B(�i , γi ),

where the numbers ri , bi , γi and the points zi are appropriately chosen such that f bi |Bi

is a homeomorphism and that

μi+1( f bi (Bi )) > 0, f bi (zi ) ∈ �i+1,
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and

ρ( f k(Bi ), Crit) ≥ δi for every 1 ≤ k ≤ bi .

The particular choice of the numbers and points will be specified in the following so
that we are able to apply Lemma 11 to the each of the sets �i and the maps g = f ai .

Let us outline the following Cantor set construction. Lemma 11 enables us to select
sufficiently many preimages for each of the disks Bi [as we choose Bi ⊂ B(vi , γi )

and then select preimages g−ni (vi ) using the lemma]. The construction of this Cantor
set is easily described in terms of backward branches: at level i we start with the
disk Bi , apply Lemma 11 and find a large number of components of f −ai ni (Bi ) in
f bi−1(Bi−1), then we go backwards through the bridge obtaining the components in
Bi−1. We repeat the procedure in Bi−1, . . ., B1.

Given the sequence of uniformly expanding repellers f ai |�i with equilibrium states
μi with Lyapunov exponent χ(μi ) and entropy hμi ( f ai ) (both with respect to the map
f ai ), let us denote

χi := 1

ai
χ(μi ), hi := 1

ai
hμi ( f ai ), di := d(μi ) = hi

χi
,

and

si := |( f bi )′(zi )|, ti := Dist f bi |Bi .

Let

wi := inf
x : ρ(x,Crit)>δi

| f ′(x)|, W := sup
x∈J

| f ′(x)|.

The constants γi can be chosen to be arbitrarily small (at the cost of decreasing ri and
increasing bi , thus changing ti and si accordingly). In particular we can choose each γi

sufficiently small such that Lemma 11 applies to the map g = f ai and the set �i . Let

V1 := B(�1, γ1) and Vi+1 := f bi (Bi ).

We choose a fast decreasing sequence {εi }i . We will denote by Ki the numbers
Ki = K (�i , μi , Vi , εi , vi ) as given by Lemma 11 (for g = f ai ) where we choose
each point vi ∈ �i such that Bi ⊂ B(vi , γi ). Let A1 := f −a1n1

y j (B1) for one point y j

and n1 as provided by Lemma 11. We have Dist f a1n1 |A1 ≤ K1 and for every x ∈ A1
and m ≤ n1 we have

K −1
1 ea1m(χ1−ε1) < |( f a1m)′(x)| < K1ea1m(χ1+ε1)

(note that n1 can be chosen to be arbitrarily big, as guaranteed by Lemma 11).
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We apply Lemma 11 now to �2, μ2, V2, ε2, v2, g = f a2 , which provides us with
a family F2 ∈ f −a2n2(v2). Let Â2 j = f −a2n2

y j (B(v2, γ2)) for y j ∈ F2. Those sets are
contained in the set V2 = f b1(B1). We also have Dist f a2n2 | Â2 j

≤ K2 and for every

x ∈ Â2 j and m ≤ n2 we have

K −1
2 ea2m(χ2−ε2) < |( f a2m)′(x)| < K2ea2m(χ2+ε2).

Such sets will be used later to distribute the w-measure accordingly. It provides us
also with a family of sets Ã2 j ⊂ Â2 j such that f a2n2( Ã2 j ) = B2. Such sets will be
used later to define our Cantor set on which the w-measure is supported.

We repeat this procedure for every i , using Lemma 11 repeatedly: for every i > 1
we find a family Fi ⊂ f −ai ni (vi ) and the corresponding components Âi j of f −ai ni

(B(vi , γi )) contained in Vi that satisfy

ρ( Âi j , Âik) ≥ K −1
i diam Âi j , j �= k,

and for every x ∈ Âi j and m ≤ ni

K −1
i eai m(χi −εi ) < |( f ai m)′(x)| < Ki e

ai m(χi +εi )

and

Dist f ai ni | Âi j
≤ Ki .

In addition, by Lemma 11 (iv) we have

μi

⎛
⎝⋃

j

Âi j

⎞
⎠ ≥ K −1

i ,

and by Lemma 11 (vi) for any x ∈ Vi and r > 0 we have

μi

⎛
⎝B(x, r) ∩

⋃
j

Âi j

⎞
⎠ ≤ Ki rdi −εi .

Note here that for every i ≥ 1 we have

ri si t−1
i ≤ diam Vi+1 ≤ ri si ti .

Let

mi :=
i∑

k=1

(aknk + bk) .
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Fig. 4 Local structure of the Cantor set A

Let A2 j be the component of A1 ∩ f −m1( Ã2 j ) for which f a1n1(A2 j ) ⊂ B1. Sim-

ilarly, let Ai j1... ji−1 be the component of A(i−1) j1... ji−2 ∩ f −mi−1( Ãi ji−1) for which
f ai−1ni−1+mi−2(Ai j1... ji−1) ⊂ Bi−1.

The sets

Ai :=
⋃

j1... ji−1

Ai j1... ji−1

form a decreasing sequence of unions of topological balls. Moreover, the pair
(A(i−1) j1... ji−2 , {Ai j1... ji−2 k}k) is an image of (Vi , { Ãi k}k) under a branch of the map
f −mi−1 , the distortion of that branch is bounded by

K̃i−1 :=
i−1∏
k=1

Kktk,

and the absolute value of its derivative is between

Li−1 :=
i−1∏
k=1

s−1
k t−1

k e−ak nk(χk+εk ) and L̂i−1 :=
i−1∏
k=1

s−1
k tke−ak nk (χk−εk ) (31)

(K̃i , Li , L̂i depend on i only). We can now define the Cantor set

A :=
⋂
i≥1

Ai (32)

(compare Fig. 4). We will summarize its geometric and dynamic properties in the
following lemma.

Lemma 12 The above defined set A possesses the following properties:
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i) (Lyapunov exponents on the islands) for x ∈ Ai and k ≤ ni we have

K −1
i eai k(χi −εi ) < |( f ai k)′( f mi−1(x))| < Ki e

ai k(χi +εi ),

ii) (Lyapunov exponents on the bridges) for x ∈ Ai and k ≤ bi we have

wk
i < |( f k)′( f mi−1+ai ni (x))| < W k,

iii) we have

K −1
i K̃ −1

i−1Li−1ri e−ai ni (χi +εi ) ≤ diam Ai j1... ji−1

≤ Ki K̃i−1 L̂i−1ri e−ai ni (χi −εi ), (33)

iv) there are at least exp(ai ni (hi − εi )) sets Ai j1... ji−1 contained in every set
A(i−1) j1... ji−2 ,

v) for any ki−1 �= ji−1 and any i, j1, . . . , ji−2 we have

ρ(Ai j1... ji−1 , Ai j1... ji−2ki−1) ≥ K̃ −1
i−1 K −1

i diam Ai j1... ji−1

vi) we have

μi

⎛
⎝⋃

j

Âi j

⎞
⎠ ≥ K −1

i ,

vii) for any x ∈ Vi and r > 0 we have

μi

⎛
⎝B(x, r) ∩

⋃
j

Âi j

⎞
⎠ ≤ Ki rdi −εi ,

viii) we have

K −1
i e−ai ni (hi +εi ) ≤ μi

(
Âi j
) ≤ e−ai ni (hi −εi ).

Additional assumptions on {ni }i and properties that are guaranteed by Lemma 11
will enable us to estimate the Hausdorff and packing dimensions of the constructed
set and describe the upper and lower Lyapunov exponents at each point. This will be
done in the following.

Construction of a w-measure on the Cantor set We continue to consider the Cantor
set A constructed in (32). Let μ be the probability measure which on each level i is
distributed on the cylinder sets Ai j1... ji−1 of level i in the following way

μ(Ai j1... ji−1) := μ(Ai−1 j1... ji−2)
μi ( Âi ji−1)∑
k

μi ( Âi k)
. (34)

123



On the Lyapunov spectrum for rational maps 999

We extend the measure μ arbitrarily to the Borel σ -algebra of A. We call the probability
measure a w-measure with respect to the sequence { f |�i , φi , μi }i .

After these preparations, we are now able to prove Theorem 3. We will continue to
use the notations in the above construction of the set A.

Proof of Theorem 3 In the course of the following proof we will choose some sequence
{εk}k and then construct a sequence of positive integers {ni }i . Here each of those num-
bers ni has to satisfy several conditions that depend on {εk}k , the parameters of the
hyperbolic sets {�k}k and the measures {μk}k , and the previously chosen numbers n j ,
j = 1, 2, . . . , i − 1. Naturally, it is always possible to satisfy all those conditions at
the same time.

We will first check that the Cantor set defined in (32) satisfies

A ⊂ L (lim inf χ(μi ), lim sup χ(μi ))

(under some appropriate assumptions about {ni }i ). Then we will estimate the Haus-
dorff and packing dimensions of A using the w-measure μ defined in (34).

Let us first consider the Lyapunov exponent at a point in the set A. Let

	n(x) := 1

n
log |( f n)′(x)|.

For n ≤ a1n1 we have

	n(x) ∈
(

χ1 − ε1 − 1

n
log K1 − O

(a1

n

)
, χ1 + ε1 + 1

n
log K1 + O

(a1

n

))
.

We know that f n1+k(x) stays in distance at least δ1 from the critical points for every
k ≤ b1. Hence, for a1n1 < n ≤ a1n1 + b1 we have

	n(x) = a1n1

n
	a1n1(x) + n − a1n1

n
O(| log w1|) (35)

and for n1 big enough (in comparison with log K1 and b1| log w1|) the right hand side
of (35) is between χ1 − 2ε1 and χ1 + 2ε1. For mi−1 < n ≤ mi−1 + ai ni we have

	n(x) = mi−1

n
	mi−1(x) + 1

n
log |( f n−mi−1)′( f mi−1(x))| + O

(ai

n

)

while for mi−1 + ai ni < n ≤ mi we have

	n(x) = mi−1

n
	mi−1(x) + 1

n
log |( f ai ni )′( f mi−1(x))|

+n − mi−1 − ai ni

n
O(| log wi |). (36)

Estimating the second summand using Lemma 12 i) and the third one using Lemma 12
ii) and assuming that ni is big enough (in comparison with ni−1, bi | log wi |, ai+1, and
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log Ki ), we can first prove that

∣∣	mi (x) − χi
∣∣ < 2εi

(by induction) and then prove that for all mi < n < mi+1 we have

∣∣∣∣	n(x) −
(

mi

n
χi + n − mi

n
χi+1

)∣∣∣∣ < 2(εi + εi+1).

As the upper (the lower) Lyapunov exponent of x equals the upper (the lower) limit
of 	n(x) as n → ∞, we have shown that every point x ∈ A satisfies

χ(x) = lim inf
i→∞ χ(μi ), χ(x) = lim sup

i→∞
χ(μi ).

Let us now estimate the Hausdorff and packing dimensions of the set A. To do so,
we will apply the Frostman lemma. Let us calculate the pointwise dimension of the
measure μ defined in (34) at an arbitrary point x ∈ A. Notice that we can write

{x} =
∞⋂

i=1

Ai j1... ji−1

for some appropriate symbolic sequence ( j1 j2 . . .). By Lemma 12 v), the ball B(x, r)

does not intersect any of the sets Ai k1...ki−1 if k1 . . . ki−1 �= j1 . . . ji−1 whenever we
have

r ≤ Ri (x) := K̃ −1
i−1 K −1

i diam Ai j1... ji−1 .

Consider Ri+1(x) < r ≤ Ri (x). We have

μ(B(x, r)) ≤
∑

Ai+1 j1... ji−1k∩B(x,r) �=∅
μ(Ai+1 j1... ji−1k)

≤
∑

Ai+1 j1... ji−1k⊂B
(

x,r+max	 diam Ai+1 j1... ji−1	

)
μ(Ai+1 j1... ji−1k).

Let Di := max	 diam Ai+1 j1... ji−1	. We continue with

μ(B(x, r)) ≤ μ(Ai j1... ji−1)∑
	 μi+1( Âi+1 	)

∑

k : Âi+1 k⊂ f mi (B(x,r+Di ))

μi+1( Âi+1 k)

≤ μ(Ai j1... ji−1)∑
	 μi+1( Âi+1 	)

μi+1

(
B
(

f mi (x), L−1
i (r + Di )

))
.
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Using Lemma 12 vi) and vii) we can estimate

μ(B(x, r)) ≤ μ(Ai j1... ji−1)Ki+1 μi+1

(
B
(

f mi (x), L−1
i (r + Di )

))
(37)

≤ μ(Ai j1... ji−1)
K 2

i+1

Ldi+1−εi+1
i

(r + Di )
di+1−εi+1 . (38)

Let

� := μ(Ai j1... ji−1)
K 2

i+1

Ldi+1−εi+1
i

. (39)

Using Lemma 12 vi) and viii), we can now estimate the first factor in (39) and we
obtain

log μ(Ai j1... ji−1) ≤
i∑

k=2

log
μ(Ak j1... jk−1)

μ(Ak−1 j1... jk−2)

≤
i∑

k=2

(
log μk

(
Âk jk−1

)+ log Kk
)

≤ −
i∑

k=2

(aknk(hk − εk) + log Kk) ≤ −ai ni (hi − 2εi )

provided that we assume that ni has been chosen big enough (in comparison with ak ,
nk , log Kk , k < i). For the second factor in (39) we yield

− log Li =
i∑

k=1

log sk + log tk + aknk(χk + εk) ≤ ai ni (χi + 2εi ).

provided that ni has been chosen big enough (in comparison with ak , nk , log Kk , and
sk , k < i). This implies that

log � = ai niχi (di+1 − di ) + ni O(εi , εi+1).

Further, using (31) and Lemma 12 iii) we obtain

diam Ai+1 j1... ji−1	

Ri+1
≤ K̃ 3

i K 3
i+1

i+1∏
k=1

e2nkεk

and hence

Di ≤ e3ni+1εi+1 Ri+1.
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In addition, by Lemma 12 iii) we have

log Ri+1 = ai+1ni+1(χi+1 + O(εi+1))

and

log Di ≤ −ai+1ni+1(χi+1 + O(εi+1)).

assuming that ni has been chosen big enough. To estimate (38), we consider now the
two cases: a) that r ≤ Di and b) that r > Di . In case a) we have that

μ(B(x, r)) ≤ � (2Di )
di+1−εi+1 .

Note that the the right hand side of this estimate no longer depends on r and hence,

log μ(B(x, r))

log r
≥ log

(
� · (2Di )

di+1−εi+1
)

log Ri+1
= O

(
ni

ni+1

)
+ di+1 + O(εi+1).

(40)

In case b) we have

μ(B(x, r)) ≤ � (2r)di+1−εi+1

and hence

log μ(B(x, r))

log r
≥ log

(
� · (2 r)di+1−εi+1

)

log r
.

We again need to distinguish two cases: If di+1 > di , then

log μ(B(x, r))

log r
≥ log μ(B(x, Ri ))

log Ri
≥ di + O(εi , εi+1), (41)

while in the case di ≥ di+1 we have

log μ(B(x, r))

log r
≥ log μ(B(x, Ri+1))

log Ri+1
≥ di+1 + O

(
ni

ni+1

)
+ O(εi , εi+1). (42)

The estimations (40), (41), and (42) prove that if the sequence {ni }i increases fast
enough then for every x ∈ A we have

dμ(x) ≥ lim inf
i→∞ di and dμ(x) ≥ lim sup

i→∞
di .

Hence, applying the Frostman lemma, we obtain
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dimH A ≥ lim inf
i→∞ di and dimP A ≥ lim sup

i→∞
di ,

and hence the assertion of Theorem 3 follows. ��
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