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Abstract An upper bound of the expected order of magnitude is established for the
number of Q-rational points of bounded height on Châtelet surfaces defined over Q.
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1 Introduction

A Châtelet surface X over Q is a proper smooth model of an affine surface in A3 of
the form

y2 − az2 = f (x), (1)

where a ∈ Z is not a square and f ∈ Z[x] is a polynomial without repeated roots
and degree 3 or 4. In the birational classification of rational surfaces summarised by
Iskovskikh [8], Châtelet surfaces appear as some of the simplest non-trivial surfaces.
They are conic bundle surfaces of degree 4, being equipped with a dominant morphism

π : X → P1,

all of whose geometric fibres are conics. If −K X denotes the anticanonical divisor,
then the linear system | − K X | has no base point and gives a morphism ψ : X → P4

whose image is a singular del Pezzo surface of degree 4.
Writing H = H4 ◦ψ , where H4 : P4(Q) → R>0 is the exponential height metrized

by an arbitrary choice of norm, the primary goal of this paper is to study the asymptotic
behaviour of

N (B) = #{x ∈ X (Q) : H(x) ≤ B},
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42 T. D. Browning

as B → ∞. We will assume that X (Q) �= ∅ for all of the Châtelet surfaces under con-
sideration here. The problem of determining when X (Q) �= ∅ is completely handled
by the work of Colliot-Thélène et al. [3,4]. Our investigation of the counting function
N (B) is guided by a well-known conjecture of Manin [6], which predicts the existence
of a constant cX > 0 such that N (B) ∼ cX B(log B)ρX −1, as B → ∞, where ρX is
the rank of the Picard group of X . With this in mind, the following is our main result.

Theorem Let X be a Châtelet surface defined over Q, arising as a proper smooth
model of the affine surface (1). Assume that a < 0. Then we have

N (B) = O(B(log B)ρX −1),

where ρX is the rank of the Picard group of X.

Here, as throughout our work, the implied constant is allowed to depend upon the
surface. Although we will not present any details, it transpires that similar, but more
intricate, arguments also permit one to handle the case a > 0 in the theorem.

Let

βX = lim
B→∞

log N (B)

log B

be the growth rate of X (Q). As a crude corollary of our theorem it follows that
βX ≤ 1 for Châtelet surfaces. The question of obtaining lower bounds has recently
been addressed by Iwaniec and Munshi [9], with an analysis of the case in which
f is taken to be an irreducible cubic polynomial in (1). Their lower bound is dif-
ficult to compare with our work, however, since they work with a different height
function. In forthcoming work of la Bretèche, Browning and Peyre, a resolution of
the Manin conjecture is achieved for a family of Châtelet surfaces that corresponds
to taking a = −1 and f a polynomial that is totally reducible into linear factors
over Q.

According to the investigation of Iskovskikh [8, Proposition 1] a conic bundle sur-
face X/P1 of degree 4 arises in two possible ways. Either the anticanonical divisor
−K X is not ample, in which case X is a Châtelet surface, or else −K X is ample,
in which case X is a non-singular quartic del Pezzo surface. Our proof of the the-
orem makes essential use of the conic bundle structure of Châtelet surfaces. It is
inspired by an approach adopted by Salberger, as communicated at the conference
“Higher-dimensional varieties and rational points” in Budapest in 2001, for the class
of non-singular quartic del Pezzo surfaces with a conic bundle structure. For such sur-
faces an upper bound Oε(B1+ε) is achieved for the corresponding counting function
by taking advantage of the morphism π : X → P1 in order to count rational points
of bounded height on the conics π−1(p), uniformly for points p ∈ P1(Q) of small
height. In subsequent work Leung [10] has refined this argument, replacing Bε by
(log B)A for a certain integer A ≤ 5. However, the value of A is often bigger than
the exponent predicted by Manin. A pedestrian translation of these arguments from
del Pezzo surfaces to Châtelet surfaces would lead to a similar deficiency. To over-
come this, we will gain significant extra leverage by restricting the summation to only
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Linear growth for Châtelet surfaces 43

those p ∈ P1(Q) of small height that produce isotropic conics π−1(p). It seems likely
that this innovation could also be put to use in the analogous situation studied by
Leung [10].

2 Geometric preliminaries

Let F(u, v) = v4 f ( u
v
), a binary quartic form with integer coefficients. We denote by

X1 ⊂ P2 × A1 the hypersurface

y2
1 − az2

1 = t2
1 F(u, 1),

and by X2 ⊂ P2 × A1 the hypersurface

y2
2 − az2

2 = t2
2 F(1, v).

The Châtelet surface associated with (1) is the geometrically integral smooth projective
surface obtained by patching together X1, X2 via the isomorphism

X1\{u = 0} −→ X2\{v = 0},
([y1, z1, t1]; u) 
−→ ([y1, z1, u2t1]; u−1).

Since f has non-zero discriminant, we have a factorisation

F(u, v) = (β1u − α1v)(β2u − α2v)(β3u − α3v)(β4u − α4v),

over Q, with [α1, β1], . . . , [α4, β4] ∈ P1(Q) distinct. The morphisms X1 → P1 and
X2 → P1 given by ([y1, z1, t1]; u) 
→ [u, 1] and ([y2, z2, t2]; v) 
→ [1, v], respec-
tively, glue together to give a conic fibration π : X → P1. It has four degenerate
geometric fibres over the points pi = [αi , βi ] ∈ P1(Q), for 1 ≤ i ≤ 4. The geometric
fibre above pi is the subvariety of X defined by u = αi and y1 ± √

az1 = 0. This
defines a union of two geometrically integral divisors that intersect transversally and
are both isomorphic to P1 over Q.

Let Pic(X) be the Picard group of X . Then Pic(X) is a torsion-free Z-module with
finite rank ρX , say. An explicit description of ρX is given in the following result.

Lemma 1 Suppose that f = f1 · · · fr is the factorisation into irreducibles of f over
Q. For each 1 ≤ i ≤ r let Q fi = Q[x]/( fi ) denote the field obtained by adjoining a
root of fi to Q. Then we have

ρX = 2 + #{1 ≤ i ≤ r : √
a ∈ Q fi }.

Proof There is a homomorphism Pic(X) → Z, which to a divisor class in Pic(X)
associates its intersection number with the fibre of the morphism π : X → P1 above
a closed point of P1. The image of this map has finite index in Z. Moreover, the kernel
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is generated by the “vertical” divisors, namely those which are supported in finitely
many fibres of π .

We now choose an irreducible fibre of the morphism π : X → P1. Furthermore, in
each reducible fibre, we choose one of the two components. Let D be the free abelian
group generated by all of these divisors. It plainly follows that

rank(D) = 1 + #{1 ≤ i ≤ r : √
a ∈ Q fi },

since the residue field of the closed point corresponding to fi is just Q fi .
Finally, we note that the natural map from D to Pic(X) is injective and it identifies

D with the kernel of Pic(X) → Z. Therefore we have

ρX = 1 + rank(D),

as required to complete the proof of the lemma. �

3 Proof of the theorem

In what follows it will be convenient to use the notation Zm for the set of primitive
vectors in Zm . The following result translates the problem to one involving a family
of conics.

Lemma 2 Suppose that the exponential height H4 on P4(Q) is metrized by a norm
‖ · ‖ on R5. Then we have N (B) = 1

4 T (B), where

T (B) = #

{
(y, z, t; u, v) ∈ Z3 × Z2 : ‖(v2t, uvt, u2t, y, z)‖ ≤ B

y2 − az2 = t2 F(u, v)

}
.

Proof Suppose that f (x) = c0x4 + · · · + c4 in (1) for ci ∈ Z. Consider the maps
ψi : Xi → P4 given by

ψ1 : ([y1, z1, t1]; u) 
−→ [t1, ut1, u2t1, y1, z1],
ψ2 : ([y2, z2, t2]; v) 
−→ [v2t2, vt2, t2, y2, z2].

These induce a morphism ψ : X → P4 whose image is the del Pezzo surface

{
x0x2 = x2

1 ,

x2
3 − ax2

4 = c4x2
0 + c3x0x1 + c2x0x2 + c1x1x2 + c0x2

2 ,

which we denote by Y . Let us write Q(x0, x1, x2) for the quadratic form appearing on
the right hand side of the second equation.
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Linear growth for Châtelet surfaces 45

Let H = H4◦ψ , where H4 is the exponential height on P4(Q) defined by H4([x]) =
‖x‖ if x ∈ Z5. Then we have

N (B) = 1

2
#{x ∈ Z5 : [x] ∈ Y, ‖x‖ ≤ B}.

There is a 1 : 2 correspondence between integer solutions of the equation x0x2 =
x2

1 and vectors (t, u, v) ∈ Z3 such that u, v are coprime, given by (x0, x1, x2) =
t (v2, uv, u2). Furthermore, the primitivity of x is equivalent to the vector (t, x3, x4)

being primitive. Substituting this into the second equation, with Q(v2, uv, u2) =
F(u, v), we therefore arrive at the statement of Lemma 2. �

In our work we are only interested in an upper bound for N (B). By equivalence of
norms it will suffice to work with the norm ‖x‖ = max0≤i≤4 |xi | on R5. Since a is not a
square we must have |t | ≥ 1 in each solution to be counted, whence max{u2, v2} ≤ B.
There will be no loss of generality in fixing attention on the contribution from u, v
such that |u| ≤ |v|. Let A denote the set of (u, v) ∈ Z2 for which |u| ≤ |v| ≤ √

B
and F(u, v) �= 0. Then it follows from Lemma 2 that

N (B) �
∑

(u,v)∈A
Mu,v(B),

where

Mu,v(B) = #

{
(y, z, t) ∈ Z3 : max{v2|t |, |y|, |z|} ≤ B

y2 − az2 = t2 F(u, v)

}
.

We would now like to thin down the outer summation by restricting attention to those
(u, v) ∈ A for which the conic y2 − az2 = t2 F(u, v) has a non-trivial rational point.

For our purposes it will suffice to restrict attention to those (u, v) ∈ A for which the
Legendre symbol ( a

p ) is distinct from −1 for each odd prime p such that p‖F(u, v).

Here we write p‖n for n ∈ Z if p | n but p2 � n. To see that this is satisfac-
tory one merely notes that if p‖F(u, v) then the equation for the conic implies that
y2 ≡ az2 mod p and p � gcd(y, z), since gcd(y, z, t) = 1 in each solution counted.

Define the arithmetic function

ϑ(n) =
∏
p‖n

2−1
(

1 +
(

a

p

))
, (2)

where we have extended the Legendre symbol to all primes by setting ( a
2 ) = 0. The

function ϑ is multiplicative, non-negative and satisfies

ϑ(p�) =

⎧⎪⎨
⎪⎩

1
2 , if � = 1 and p | 2a,

0, if � = 1 and ( a
p ) = −1,

1, otherwise,
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for any prime power p�. We will use ϑ as a characteristic function to weed out values
of (u, v) ∈ A that produce anisotropic conics. In this way we obtain

N (B) �
∑

(u,v)∈A
ϑ(|F(u, v)|)Mu,v(B).

The task of estimating Mu,v(B) boils down to counting rational points on a
geometrically integral plane conic, with the points constrained to lie in a lop-sided
region. For this we can take advantage of work of Browning and Heath-Brown
[2, Corollary 2], a key feature of which being its uniformity with respect to the height
of the conic. Since a < 0 it follows that we may replace the height restrictions on
y, z, t in Mu,v(B) by

y, z � B|F(u, v)| 1
2

v2 , |t | ≤ B

v2 ,

as follows from the equation for the conic. Our conic is defined by a ternary quadratic
form xT Mx, where x = (y, z, t) and M = Diag(1,−a,−F(u, v)). In particular the
greatest common divisor of the 2 × 2 minors of M is O(1) and its determinant is
aF(u, v). The inequalities satisfied by y, z, t above define a box in R3 with volume
O(v−6 B3|F(u, v)|). It now follows from [2, Corollary 2] that

Mu,v(B) � 2ω(F(u,v))
(

1 + B

v2

)
� B

2ω(F(u,v))

v2 ,

since |v| ≤ √
B. Note that we have replaced the divisor function by the function 2ω(·)

in our application of this result, where ω(n) denotes the number of distinct prime
divisors of n. An inspection of the proof reveals that is permissible.

Let
(n) = 2ω(n)ϑ(n), where ϑ is given by (2). Then our analysis so far has shown
that

N (B) � B
∑

(u,v)∈A


(|F(u, v)|)
v2 . (3)

In view of the trivial bound 
(n) = Oε(nε) for any ε > 0, it would be easy to con-
clude at this point that N (B) = Oε(B1+ε). To get the correct power of log B emerging
we must work somewhat harder. For given U, V ≥ 1 it will be convenient to introduce
the sum

S(U, V ) =
∑

|u|≤U

∑
|v|≤V


(|F(u, v)|).

The estimation of S(U, V ) is the subject of the following result, whose proof we will
defer to the next section.
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Lemma 3 Let V ≥ U ≥ 1. Then for all ε > 0 we have

S(U, V ) �ε U V (log V )ρX −2 + V 1+ε.

We now have everything in place to complete the proof of the theorem. Returning
to (3) we see that there is an overall contribution of O(B) from those (u, v) ∈ A
with u = 0. Breaking the summation of the remaining u, v into dyadic intervals we
therefore find

N (B) � B + B
∑

i, j∈Z

−1≤i< j≤ 1
2 log 2 log B

∑
2i<|u|≤2i+1

∑
2 j<|v|≤2 j+1


(|F(u, v)|)
v2

� B + B
∑

i, j∈Z

−1≤i< j≤ 1
2 log 2 log B

S(2i+1, 2 j+1)

22 j
.

Here we have dropped the conditions that F(u, v) �= 0 and gcd(u, v) = 1, as permit-
ted by the fact that the summand is non-negative. Applying Lemma 3 we therefore
deduce that

N (B) � B + B(log B)ρX −2
∑

i, j∈Z

−1≤i< j≤ 1
2 log 2 log B

2i

2 j
� B(log B)ρX −1,

as required to complete the proof of the theorem.

4 Proof of Lemma 3

Determining the average order of arithmetic functions as they range over the values
of polynomials has a substantial pedigree in analytic number theory. For the proof of
Lemma 3 we will need to analyse the average order of the arithmetic function


(n) = 2ω(n)
∏
p‖n

2−1
(

1 +
(

a

p

))
,

as it ranges over the values of the binary quartic form F .
The key technical tool for this argument is supplied by work of la Bretèche and

Browning [1]. We recall that F has non-zero discriminant and observe that
 is a non-
negative multiplicative arithmetic function satisfying the estimates 
(n) = Oε(nε)
and 
(p�) ≤ 2 for n ∈ N and prime powers p�. In view of the fact that 
(p) =
1 + ( a

p ), we may therefore conclude from [1, Corollary 1] that

S(U, V ) �ε U V E f (U )+ V 1+ε,
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for any ε > 0, where

E f (U ) =
∏

1�p≤U

(
1 + ρ f (p)(

a
p )

p

)
.

Here f (x) = F(x, 1) is the polynomial appearing in (1) and ρ f (m) is the number of
solutions to the congruence f (x) ≡ 0 mod m in Z/mZ.

Suppose that f = f1 · · · fr is the factorisation into irreducibles of f over Q, with∑r
i=1 deg fi ∈ {3, 4}. Then we have

E f (U ) � E f1(U ) · · · E fr (U ).

Our attention now shifts to estimating E f (U ) for any U ≥ 2 and any irreducible
polynomial f ∈ Z[x] of degree d with non-zero discriminant. We will show that

E f (U ) �
{

1, if
√

a �∈ Q f ,

log U, if
√

a ∈ Q f ,
(4)

where Q f = Q[x]/( f ) denotes the field obtained by adjoining a root of f to Q. In
view of Lemma 1 this will suffice for the statement of Lemma 3.

In order to understand the asymptotic behaviour of E f (U ) we must investigate the
analytic properties of the L-function

H(s) =
∏

p

(
1 + ρ f (p)(

a
p )

ps

)
, (�(s) > 1).

We will do so by relating H(s) to a certain Hecke L-function and analysing it in the
neighbourhood of s = 1. The necessary facts are classical and can be found in the
work of Heilbronn [7] and Neukirch [12, Chap. VII].

Let K = Q f and and let dK denote its discriminant. We write a = (2adK ) for the
ideal generated by 2adK in oK . Furthermore, let N (n) = |oK /n| denote the norm of
any ideal n in oK . For a prime ideal p in oK which is coprime to a we define

χ(p) =
(

a

N (p)

)
=

(
a

p

)�
,

if N (p) = p�, where ( a
p ) is the ordinary Legendre symbol. One extends χ to all frac-

tional ideals coprime to a by multiplicativity. Then χ is a group homomorphism from
the ray class group Ja/Pa to {±1}. Here Ja is the group of ideals coprime to a and Pa

is the subgroup of fractional principal ideals (α) for which α ≡ 1 mod a and σ(α) > 0
for every real embedding σ : K → R. Thus χ is a generalised Dirichlet character
modulo a. A principal character modulo a is any character χ0 such that χ0(n) = 1 for
all n ∈ Ja. Finally, we extend χ to all integral ideals by setting χ(n) = 0 if n has a
factor in common with a.
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The Hecke L-function associated to the number field K and the quadratic character
χ is defined to be

L K (s, χ) =
∑
n

χ(n)

N (n)s
=

∞∑
n=1

b(n)

ns
, (�(s) > 1),

where the first sum is over integral ideals and b(n) = ∑
N (n)=n χ(n). For a rational

prime p one notes that

b(p) =
∑

N (p)=p

χ(p) =
(

a

p

)
#{p : N (p) = p}.

Now for p � dK there is a well-known principle due to Dedekind [5, p. 212] which
ensures that ρ f (p) = #{p : N (p) = p}. A modern account of this fact can be found in
the work of Narkiewicz [11, §4.3]. Employing a standard calculation based on partial
summation and the prime ideal theorem, we therefore conclude that

E f (U ) � exp

⎛
⎝ ∑

N (p)≤U

χ(p)

N (p)

⎞
⎠ �

{
1, if χ �= χ0,

log U, if χ = χ0.

In order to complete the proof of (4) it therefore remains to show that χ is principal
if and only if

√
a ∈ K . For any finite extension N/M of number fields, let P(N/M)

denote the set of all unramified prime ideals of M which admit in N a prime divisor
of residue class degree 1 over M .

Suppose first that
√

a ∈ K and write J = Q(
√

a). Then we have a tower of sep-
arable extensions Q ⊆ J ⊆ K . If χ is not principal then there is a prime ideal p
above a rational prime p � 2adK with odd residue class degree, such that ( a

p ) = −1.
In particular p is inert in J , with residue class degree 2. But then the transitivity of
norms implies that the residue class degree of p is even, which is a contradiction.

We now argue in the reverse direction, taking for our hypothesis the assumption
that χ is principal. This is equivalent to χ(p) = 1 for all prime ideals p coprime to
a. Any unramified rational prime p factorises as (p) = p1 . . . pr with distinct primes
pi such that N (pi ) = p�i and

∑r
i=1 �i = [K : Q]. It follows that ( a

p ) = 1 for any
prime p � 2adK such that (p) ∈ P(K/Q). But then any such p splits completely in
J = Q(

√
a) since ( a

p ) = 1, whence (p) ∈ P(J/Q). We have therefore shown that
P(K/Q) is contained in P(J/Q), up to finitely many exceptional elements. It now
follows from Bauer’s theorem [12, §VII.13] that J ⊆ K , so that

√
a ∈ K .
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