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Abstract In this work we discuss the problem of smooth and analytic regularity
for hyperfunction solutions to linear partial differential equations with analytic coeffi-
cients. In particular we show that some well known “sum of squares” operators, which
satisfy Hörmander’s condition and consequently are hypoelliptic, admit hyperfunction
solutions that are not smooth (in particular they are not distributions).

Mathematics Subject Classification (2000) Primary 35B60; Secondary 35A20

1 Introduction

At a conference in Pienza, Italy (November 2005), J. M. Bony suggested that when
a “sum of squares operator” with analytic coefficients satisfies Hörmander’s bracket
condition, and is not analytic–hypoelliptic (for distribution solutions), then it should
possess non-smooth hyperfunction solutions. He also suggested that when analytic-
hypoellipticity holds, then all hyperfunction solutions should be real-analytic.

These questions motivated us to write this article with the study of a new con-
cept of (analytic) hypoellipticity for general linear partial differential operators with
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330 P. D. Cordaro, N. Hanges

real-analytic coefficients, where we now test smoothness (real-analyticity) for hyper-
function solutions. We shall call these properties h-(analytic) hypoellipticity.

We study the cases of constant coefficient operators, principal type operators and
“sums of squares” operators satisfying Hörmander’s condition. For this last class we
were able to prove that if such an operator is analytic–hypoelliptic then its transpose
is h-hypoelliptic (Corollary 2). We also determined a subclass of such operators that
are not h-hypoelliptic (Theorem 4) although, of course, they are hypoelliptic thanks to
Hörmander’s theorem [7]. This subclass includes the well known examples of non-ana-
lytic–hypoelliptic operators introduced by Baouendi and Goulaouic [1] and Oleinik
[13].

To conclude, we observe that the result in Corollary 2 provides a new method
of proving non-analytic-hypoellipticity for “sum of squares” operators: it suffices to
construct singular hyperfunction solutions for the transposed equation. We hope, in a
future publication, to return to this question.

2 Definitions and general remarks

Let � be an open subset of R
N and let P = P(x, D) be a linear partial differential

operator with real-analytic coefficients in �. We shall say that P(x, D) is h-hypoel-
liptic (resp. h-analytic–hypoelliptic) in � if for every open subset U of � and if for
every hyperfunction u in U the following is true: if Pu is smooth (resp. real-analytic)
in U then the same is true for u.

Denote by B(U ) the space of hyperfunctions on U . Since D′(U ) ⊂ B(U ) it follows
that h-hypoellipticity (resp. h-analytic-hypoellipticy) implies hypoellipticity (resp.
analytic-hypoellipticy). The converse is in general not true and the study of this con-
verse will be the main subject of this work.

Notice that if P(x, D) is locally smoothly solvable at every point of� then h-ana-
lytic-hypoellipticity implies h-hypoellipticity. In particular it follows that, thanks to
a celebrated result due to Sato ([8], Theorem 9.5.1), if P(x, D) is elliptic in � then
P(x, D) is h-hypoelliptic and h-analytic–hypoelliptic.

3 Infinite order operators

In order to embark in the analysis of these properties we first pause to introduce some
necessary tools.

We recall that a local operator in the sense of Sato is an operator of the form

J (D) =
∑

α∈Z
N+

aαDα, D =
(

1

i

∂

∂x1
, . . . ,

1

i

∂

∂xN

)

where {aα} ⊂ C satisfies the following property: for every ε > 0 there is Cε > 0 such
that

|aα| ≤ Cεε
|α|/α!, α ∈ Z

N+. (1)
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If � is an open subset of R
N then J (D) define endomorphisms

J (D) : Cω(�) −→ Cω(�) (2)

and

J (D) : B(�) −→ B(�). (3)

Indeed (2) follows directly from the definition, whereas (3) follows from duality when
� is bounded and from a standard extension argument in general. In particular it fol-
lows that J (D)u makes sense for u ∈ D′(�) although, in general, J (D)u is not a
distribution.

In fact, J (D) defines a sheaf homomorphism J (D) : B → B, that is, if U ⊂ � is
open and if u ∈ B(�) then

[J (D)u]|U = J (D)[u|U ].

This justifies the terminology local employed by Sato.
We shall make use of a particular class of such operators. If s > 1 we set

Qs(D) =
∑

α∈Z
N+

bαDα .=
∞∏

q=1

(
1 − 1

q2s
�

)
.

Here � is the usual Laplace operator in R
N .

The next result lists the key properties of the operators Qs that will be important
for us. As usual, Gs(�) will denote the class of Gevrey functions of order s defined
on the open subset � of R

N . We shall also set Gs
c(�)

.= Gs(�) ∩ C∞
c (�).

Proposition 1 There are constants A > 0, L > 0 such that

|bα| ≤ AL |α|/α!s . (4)

In particular Qs(D) are local operators in the sense of Sato. Moreover, for every open
subset � of R

N , the following properties also hold:

(a) The operator Qs define continuous endomorphisms of Gs′
(�) and of Gs′

c (�),
for every 1 ≤ s′ < s.

(b) If u ∈ B(�) and Qs(D)u ∈ Cω(�) then u ∈ Cω(�).
(c) If f ∈ C∞(�) and if U ⊂⊂ � is open there is u ∈ Gs(U ) solving Qs(D)u = f

in U.

Proof We note that (4) is due to Komatsu [9]. This property also implies that if
1 ≤ s′ < s and if ε > 0 are given then there is C > 0 such that

|bα| ≤ Cε|α|/α!s′
.
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332 P. D. Cordaro, N. Hanges

This shows that Qs(D) are indeed local in the sense of Sato and also that property (a)
holds. Property (b) is also due to Sato and very well known. We shall proceed to the
proof of property (c).

The symbol of Qs(D) is the entire function

Qs(ζ ) =
∞∏

q=1

(
1 + 1

q2s

(
ζ 2

1 + · · · + ζ 2
N

))
,

which satisfies the following key estimates:

|Qs(ξ)| ≥ |ξ |p p!−s, p ∈ Z+, ξ ∈ R
N. (5)

Indeed, for all p ∈ Z+,

|Qs(ξ)| ≥
p∏

q=1

(
1 + |ξ |2

q2s

)
≥

p∏

q=1

|ξ |
qs

= |ξ |p p!−s .

Let now f ∈ C∞(�). If ψ ∈ C∞
c (�), ψ = 1 in an open neighborhood of U , and

if ε > 0 we form

uε(x) = 1

(2π)N

∫ ∫
1

Qs(ξ)
ei(x−y)·ξ−ε|ξ |2ψ(y) f (y)dy dξ.

It follows from (5) and from the fact that Qs(0) = 1 that uε are well defined (indeed
they extend as entire functions to C

N ). Also

Qs(D)uε → ψ f uniformly in R
N when ε → 0+.

On the other hand we can also write, after an integration by parts,

uε(x) = 1

(2π)N

∫ ∫
1

Qs(ξ)
ei(x−y)·ξ−ε|ξ |2 (1 −�)r [ψ(y) f (y)]

(1 + |ξ |2)r dy dξ.

Here r is any integer > N/2. Now, for any α ∈ Z
N+ we have

Dα
x uε(x) = 1

(2π)N

∫ ∫
ξα

Qs(ξ)
ei(x−y)·ξ−ε|ξ |2 (1 −�)r [ψ(y) f (y)]

(1 + |ξ |2)r dy dξ

and thus, from (5) we obtain

|Dα
x uε(x)| ≤ 1

(2π)N

∫ ∫ |ξ ||α|

|Qs(ξ)|
(1 −�)r [ψ(y) f (y)]

(1 + |ξ |2)r dy dξ ≤ C |α|!s .

Since we can assume, without loss of generality, that U has a regular boundary, we
can apply Ascoli’s theorem: there is a sequence ε j → 0+ such that uε j converges
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Hyperfunctions and (analytic) hypoellipticity 333

in Gs(U ) to some u ∈ Gs(U ). In particular the convergence occurs in D′(U ) and
consequently Qs(D)uε j → Qs(D)u in Gs′

c (U )
∗, where 1 < s′ < s. Since we also

have Qs(D)uε j → f in Gs′
c (U )

∗, it follows that Qs(D)u = f in U . 
�

4 Constant coefficient operators

We now study the constant coefficient case, for which we give a complete answer. The
following theorem follows from known results. For us, the most interesting point is
the fact that (d) implies (a). This can be found in [17], p. 103, Corollary 2. The proof
we give of this fact is new and will be of foremost importance for Sect. 8.1

Theorem 1 Let P(D) be a constant coefficient partial differential operator in R
N .

The following properties are equivalent:

(a) P(D) is elliptic;

(b) P(D) is analytic–hypoelliptic in R
N ;

(c) P(D) is h-analytic–hypoelliptic in R
N ;

(d) P(D) is h-hypoelliptic in R
N .

Proof The equivalence between (a) and (b) is a classical result due to Petrowsky [14]
and, as we have already pointed out in Sect. 2, (a) implies (c) and (c) implies (d). It
then suffices to show that (d) implies (a). For this it suffices to show that if P(D) is
hypoelliptic but not elliptic then P(D) cannot be h-hypoelliptic.

In order to do so we apply standard results on Gevrey hypoellipticity (see for
instance [16], pp. 68–69): given such P(D) there is s > 1 such that, for every� ⊂ R

N

open there is v ∈ C∞(�)\Gs(�) solving P(D)v = 0. Since P(D) and Qs(D) com-
mute we have P(D)u = 0 if u

.= Qs(D)v. If u were a distribution in� it would belong
to C∞(�). Thus, for U ⊂⊂ � arbitrary, Proposition 1(c) would imply the existence
of g ∈ Gs(U ) solving Qs(D)g = u in U . In particular Qs(D)[v − g] = 0 and then
v − g ∈ Cω(U ) (Proposition 1(b)). Thus v|U ∈ Gs(U ), and since U is arbitrary we
conclude that v ∈ Gs(�), which is a contradiction. 
�

5 An abstract result

Let� be an open subset of R
n . We shall denote by S(�) the class of all linear partial

differential operators P = P(x, D), with analytic coefficients in �, which satisfy
the following property: for every U ⊂⊂ � open there is a constant C > 0 such
that

‖φ‖L2 ≤ C‖ t Pφ‖L2 , φ ∈ C∞
c (U ). (6)

1 In [10] it is proved that the heat operator is not h-hypoelliptic.
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334 P. D. Cordaro, N. Hanges

Our main result in this section is the following:

Theorem 2 Let P ∈ S(�) and assume that P is also analytic–hypoelliptic in �.
Then the following property holds:

• ∀U ⊂⊂ �, ∀u ∈ B(U ), t Pu ∈ L2
loc(U ) implies u ∈ L2

loc(U ).

Proof It is well known that (6) implies that for every U ⊂ � open there is a bounded
linear operator KU : L2(U ) → L2(U ) such that

P KU = I in L2(U ). (7)

We now fix U ⊂⊂ � open and take V ⊂⊂ U also open. Since P is analytic–hypoel-
liptic we have a well defined, continuous linear map

TU,V : O(U ) −→ O(V )

defined in the following way: if h ∈ O(U ) then TU,V (h) is equal to the class of the
extension of KU (h|U ) to some complex neighborhood of V . Notice that the continuity
of TU,V follows from the closed graph theorem (cf. [5], p. 136). Notice also that (7)
implies

PTU,V (h) = rU,V (h), h ∈ O(U ), (8)

where rU,V : O(U ) → O(V ) is induced by the natural restriction map. By transposi-
tion we obtain a continuous linear map

t TU,V : O′(V ) −→ O′(U )

such that

t TU,V
t P = ιU,V on O′ (U ), (9)

where ιU,V : O′(V ) → O′(U ) is the natural inclusion map. 
�
Lemma 1 Let β ∈ O′(∂V ) and let v ∈ B(U ) be defined by t TU,Vβ ∈ O′(U ). Then
v|V ∈ L2

loc(V ).

Let us assume this result for a moment and conclude the proof of the theorem. Let
u ∈ B(U ) be such that f

.= t Pu ∈ L2
loc(U ) and let µ ∈ O′(V ) represent u|V . We

have β
.= t Pµ− f |V ∈ O′(∂V ) and (9) gives

t TU,Vβ = µ− t TU,V ( f |V ) (10)

as elements of O′(U ). If v ∈ B(U ) is defined by t TU,Vβ then u −v is defined, modulo
an element in O′(U \V ), by the analytic functional

O(Cn) � h �→ λ(h) =
∫

V

f (x) KU (h|U ) dx .
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Hyperfunctions and (analytic) hypoellipticity 335

We have |λ(h)| ≤ C‖h|U ‖L2(U ) and thus, by Lemma 1, it follows that u|V ∈ L2
loc(V ).

Proof of Lemma 1 Let W ⊂⊂ V be open and letχW denote the characteristic function
of W . If f ∈ L2(U ) then KU (χW f ) extends as an element in O(∂V ) and the closed
graph theorem gives a continuous linear map L2(U ) → O(∂V ) which assigns to
f ∈ Ł2(U ) the class of the extension of KU (χW f ) to a complex neighborhood of
∂V . By the same argument we have a continuous linear map O(U \W ) → O(∂V )
which assigns to h the class of the extension of KU ((1 − χW )h|U ) to a complex
neighborhood of ∂V . It is easily seen that h �→ 〈β, KU ((1 − χW )h|U )〉 defines an
element belonging to O′(U\W ) and consequently t TU,Vβ and the analytic functional
h �→ 〈β, KU (χW h|U )〉 define the same hyperfunction on W . Since the latter is defined
by an element in L2(U ), the result is proved. 
�
Corollary 1 Let P ∈ S(�) be analytic–hypoelliptic in�. If t P is hypoelliptic (resp.
analytic–hypoelliptic) in � then t P is h-hypoelliptic (resp. h-analytic–hypoelliptic)
in �.

6 Okaji’s example

This example shows that hypothesis (6) is crucial for the conclusion of Corollary 1.
According to a result due to Okaji [12], given any positive even integer k and any
non-zero complex number c the operator in R

2

P =
(
∂

∂t
+ i tk ∂

∂x

)2

+ c
∂

∂x
(11)

is analytic–hypoelliptic in an open neighborhood� of the origin but its transpose t P
is not solvable at the origin. On the other hand t P : B(�) → B(�) is surjective [4]
and consequently there is u ∈ B(�) such that t Pu

.= f ∈ C∞(�), but such that u is
not a distribution in any neighborhood of the origin.

7 Principal type operators

For principal type operators we can give a complete answer to the question we are
studying. We recall that P(x, D) (of order m) is said to be subelliptic in� if for every
U ⊂⊂ � open there are constants C > 0, 0 < δ ≤ 1 such that

‖φ‖Hm−1+δ ≤ C‖Pφ‖L2 , φ ∈ C∞
c (U ). (12)

We have

Theorem 3 Let P(x, D) be a principal type linear partial differential operator with
analytic coefficients in an open subset � of R

N . The following properties are equiva-
lent:

(a) P(x, D) is subelliptic in �;
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336 P. D. Cordaro, N. Hanges

(b) P(x, D) is hypoelliptic in �;
(c) P(x, D) is analytic–hypoelliptic in �;
(d) P(x, D) is h-hypoelliptic in �;
(e) P(x, D) is h-analytic–hypoelliptic in �.

Proof We refer to [18], where it is proved the equivalence of (a)–(c). For the other
implications we firstly notice that the characterization of subellipticity for principal
type operators is invariant under transposition and, secondly, that (a) implies that
P(x, D) belongs to S(�). Consequently, by Corollary 1, we conclude that (c) implies
(d) and (e). 
�

8 “Sum of squares” operators

If � is an open subset R
N , we shall denote by X(�) the set of all partial differential

operators of the form

Q =
ν∑

j=1

X2
j + X0 + f, (13)

where X0, X1, . . . , Xν are real-analytic, real vector fields on � satisfying the Hör-
mander condition:

Lx (X0, X1, . . . , Xν) = Tx�, ∀x ∈ �,

and f is a real-analytic, complex-valued function on�. We recall that Lx (X0, X1, . . . ,

Xν) is the Lie algebra generated by the vector fields X0, X1, . . . , Xν at the point x .
It is a result due to Hörmander [7] that every Q ∈ X(�) is C∞-hypoelliptic in

� and also that X(�) ⊂ S(�). Moreover, it is easy to see that X(�) is closed by
transposition. From Corollary 1 we obtain:

Corollary 2 Let Q ∈ X(�). If Q is analytic–hypoelliptic in � then t Q is h-hypoel-
liptic in �.

Example For any p ∈ Z+ the Grushin operator

Q = ∂2

∂t2 + t2p ∂
2

∂x2 ,

is h-hypoelliptic in R
2. This result was already obtained by Matsuzawa [11] for a more

general class of Grushin operators.

Using a similar argument as in the proof of Theorem 1 we can find a class of
operators in the form of “sum of squares” which are not h-hypoelliptic.
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Theorem 4 Write the coordinates in R
N = R

m × R
n as x1, . . . , xm, t1, . . . , tn and

consider the real-analytic vector fields

Y j =
n∑

�=1

a j�(t)
∂

∂t�
+

m∑

k=1

b jk(t)
∂

∂xk
, j = 0, . . . , ν,

where a j�, b jk are real-analytic in an open neighborhood V of the origin in R
n. Let

also

P =
ν∑

j=1

Y 2
j + Y0 + f (t),

where f is also real-analytic on V . Assume that

(a) P ∈ X(Rm × V );
(b) The vector fields

∑n
�=1 a j�(t)∂/∂t�, j = 1, . . . , ν span T V at every point.

(c) There is u ∈ C∞(�) satisfying Pu = 0, � ⊂ R
m × V being an open neighbor-

hood of the origin, but such that, for some s > 1, u is not of Gevrey class s in
any neighborhood of the origin.

Then there is f ∈ B(�) satisfying P f = 0 which is not a distribution on any neigh-
borhood of the origin. In particular P is not h-hypoelliptic in R

m × V .

Proof We start by taking an open neighborhood of the origin of the form U ×� ⊂⊂ �,
where U (resp. �) is an open ball centered at the origin in R

m (resp. R
n).

Define f = Qs(Dx )u (here the action is only in the variables x j ). Since P and
Qs(Dx ) commute we have P f = 0. If f were a distribution then it would belong to
C∞(�). By an elementary extension of Proposition 1(c), where we allow f depending
on parameters there is v ∈ C∞(�,Gs(U )) solving Qs(Dx )v = f in U × V .

Since Qs(Dx )[v − u] = 0 we have v − u ∈ C∞(�,G1(U )) (this also follows
from the arguments in the proof of Proposition 3.2 in [2]) and consequently u ∈
C∞(�,Gs(U )). Thanks to property (b) we conclude that u|U×� ∈ Gs(U × �),
which is a contradiction. 
�
Example The Baouendi–Goulaouic operator in R

3

B = ∂2

∂t2 + t2 ∂
2

∂x2
1

+ ∂2

∂x2
2

(14)

satisfies the hypotheses of Theorem 4, with 1 < s < 2 (cf. [1], and [8], p. 310). In
this case we can present explicitly a hyperfuntion singular solution to the equation
Bu = 0.

Indeed let (w, z1, z2) ∈ C
3 be the complexification of (t, x1, x2). We define an

open cone V ⊂ R
3 as follows:

V = {(�w,�z1,�z2) ∈ R
3 : �z1 > |�w| and |�w| < 1}.
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338 P. D. Cordaro, N. Hanges

Note that in V we have

1

2
(�w)2 − �z1 < 0. (15)

For (w, z1, z2) ∈ R
3 + iV , we define u as follows:

H(w, z1, z2) =
∞∫

0

ei z1ξ+z2
√
ξ− 1

2w
2ξdξ.

A similar formula appears in [8].
Note that H is holomorphic on R

3 + iV . Indeed, if K ⊂ R
3 + iV is compact then

there are ε > 0 and ρ > 0 such that if (w, z1, z2) ∈ K and ξ ≥ ρ then

�
(

i z1ξ + z2
√
ξ − 1

2
w2ξ

)
= −(�z1) ξ + x2

√
ξ − 1

2

(
t2 − (�w)2) ξ

≤
(

1

2
(�w)2 − �z1

)
ξ + x2

√
ξ

≤ −ε ξ.

Such an estimate allows us to apply the Cauchy–Riemann operator under the inte-
gral sign. We conclude that H is holomorphic on R

3 + iV and hence it determines a
hyperfunction u = b(H) ∈ B(R3).

By direct computation we have Bu = 0 on R
3.

Now we claim that u is not a distribution. If it were it would be a smooth function,
which means that H would be a smooth function up to the edge R

3 × {0}. But

H(0, i�z1, 0) =
∞∫

0

e−�z1ξdξ = 1

�z1
,

which proves our claim. 
�
Similar analysis can be made for the Oleinik operators [13]

P = ∂2

∂t2 + t2p ∂
2

∂x2
1

+ t2q ∂
2

∂x2
2

,

where 1 ≤ p < q, as well for the operators

P = ∂2

∂t2 +
(
∂

∂x1
+ tk ∂

∂x2

)2

for k ≥ 2, which where studied in [3,6,15].
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Hyperfunctions and (analytic) hypoellipticity 339

All these operators satisfy the hypotheses of Theorem 4 and consequently are not
h-hypoelliptic. Since, moreover, the proofs of non-analytic-hypoellipticity presented
in these works provide the existence of explicit non-analytic solutions of Pu = 0, a
similar analysis as above produce also explicit hyperfunction solutions which are not
distributions.
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