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Abstract We consider limiting Carleman weights for Dirac operators and prove
corresponding Carleman estimates. In particular, we show that limiting Carleman
weights for the Laplacian also serve as limiting weights for Dirac operators. As an
application we consider the inverse problem of recovering a Lipschitz continuous
magnetic field and electric potential from boundary measurements for the Pauli Dirac
operator.

1 Introduction

In this article we consider Carleman estimates for Dirac operators, with applications to
inverse problems. There is an extensive literature on Carleman estimates and their use
in unique continuation problems (see for instance [19]). However, Carleman estimates
have also become an increasingly useful tool in inverse problems, we refer to [14] for
some developments.

The recent work [17] shows the importance of Carleman estimates in the construc-
tion of complex geometrical optics (CGO) solutions to Schrödinger equations. CGO
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162 M. Salo, L. Tzou

solutions have been central in establishing unique identifiability results for inverse pro-
blems for elliptic equations (starting with [4,29], see surveys [30,31]). The approach
of [17] provides a general method of constructing CGO solutions, and has led to new
results in inverse problems with partial data [7,18], determination of inclusions and
obstacles [13,28,32,33], and also anisotropic inverse problems [6]. All the results lis-
ted are concerned with, or can be reduced to, Schrödinger equations whose principal
part is the Laplacian.

Our aim is to extend the Carleman estimate approach of [17] to Dirac operators
and their perturbations. By a Dirac operator we mean a self-adjoint, homogeneous,
first order N × N matrix operator P0 with constant coefficients in Rn , whose square
is −�. Examples include Dirac operators on differential forms in Rn , and the Pauli
Dirac in R3 given by the 4 × 4 matrix

P0(D) =
(

0 σ · D
σ · D 0

)
, (1)

where D = −i∇ and σ = (σ1, σ2, σ3) is a vector of Pauli matrices with

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The first step is to prove Carleman estimates for Dirac with a special class of
weights, called limiting Carleman weights. These weights were introduced in [17]
for the Laplacian (see Sect. 2 for the definition), and in this case include linear and
logarithmic functions. See [6] for a complete characterization. One may think of a
limiting weight as a function ϕ such that the Carleman estimate is valid both for ϕ and
−ϕ. A typical result for Dirac is as follows. Here and below ‖ · ‖ = ‖ · ‖L2(�), and
A � B means that A ≤ C B where C > 0 is a constant independent of h and u.

Theorem 1.1 Let� ⊆ Rn, n ≥ 2, be a bounded open set, let P0 be a Dirac operator
as above, and let V ∈ L∞(�)N×N . Let ϕ be a smooth real-valued function with
∇ϕ �= 0 near �, and assume that ϕ is a limiting Carleman weight for the Laplacian.
If h > 0 is sufficiently small, then one has the estimate

h‖u‖ + h2‖∇u‖ � ‖eϕ/h(P0(h D)+ hV )e−ϕ/hu‖,

for any u ∈ C∞
c (�)

N .

We give two different proofs of such estimates. The first proof uses the fact that
Dirac squared is the Laplacian, and gives the estimate for any limiting Carleman weight
for the Laplacian. This proof, however, is based on symbol calculus and does not give
Carleman estimates with boundary terms, which were crucial in the partial data result
of [17]. We will present another proof, which uses just integration by parts and gives
a simple Carleman estimate with boundary terms. The second proof is valid for the
linear weight.

The next step is to construct CGO solutions to Dirac equations by using the
Carleman estimate. These solutions are then used to prove unique identifiability of
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the coefficients from boundary measurements. We carry out this program for an inverse
problem for the Pauli Dirac operator with magnetic and electric potentials, which we
set out to define.

Let P0 be as in (1) and consider the operator

LV = P0(D)+ V, (2)

where the potential V has the form

V = P0(A)+ Q, (3)

with Q =
(

q+ I2 0
0 q− I2

)
, A = (a1, a2, a3) ∈ W 1,∞(�; R3), and q± ∈ W 1,∞(�). We

consider LV acting on 4-vectors u = ( u+
u−

)
where u± ∈ L2(�)2. It is shown in [22]

that the boundary value problem

{LV u = 0 in �,
u+ = f on ∂�,

is well posed if � has smooth boundary and 0 is not in the spectrum of LV . There
is a unique solution u ∈ H(�)2 for any f ∈ h(∂�), where H(�) = {u ∈ L2(�)2 ;
σ · Du ∈ L2(�)2} and h(∂�) = H(�)|∂�. We refer to [22] for more details and
a description of the trace space h(∂�).

There is a well-defined Dirichlet-to-Dirichlet map

�V : h(∂�) → h(∂�), f 
→ u−|∂�. (4)

Thus, �V takes u+ to u− on the boundary, where u is the solution of the Dirichlet
problem above. This map is invariant under gauge transformations: if A is replaced
by A + ∇ p where p|∂� = 0, the map �V stays unchanged and so does the magnetic
field ∇ × A.

More generally, if � is any bounded open set in Rn , we define the Cauchy data set

CV = {(u+|∂�, u−|∂�) ; u ∈ H(�)2 and LV u = 0 in �}.

Here the traces are taken in the abstract sense as elements of H(�)/H1
0 (�). If ∂� is

smooth and 0 is outside the spectrum, CV is just the graph of �V . Also here CV is
unchanged in the gauge transformation A 
→ A + ∇ p if p|∂� = 0.

We consider CV as the boundary measurements, and the inverse problem is to
determine the magnetic field ∇ × A and the electric potentials q± from CV . This
inverse problem, and the corresponding inverse scattering problem at fixed energy, have
been studied in [12,15,20,22], with varying assumptions on the potential. The next
uniqueness result was proved for smooth coefficients in [22] by reducing to a second
order equation and using pseudodifferential conjugation. We establish this result for
Lipschitz continuous coefficients by working with the Dirac system directly using
the Carleman estimate approach. In particular, the proof avoids the pseudodifferential
conjugation argument.
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Theorem 1.2 Let� ⊆ R3 be a bounded C1 domain, let A j ∈ W 1,∞(�; R3), and let
q±, j ∈ W 1,∞(�), j = 1, 2. If CV1 = CV2 , then ∇ × A1 = ∇ × A2 and q±,1 = q±,2
in �.

The first step in the proof is a boundary determination result, which again was
proved in [22] for smooth coefficients and domains by pseudodifferential methods but
which is needed here in the nonsmooth case. We use arguments of [2,3] given for
scalar equations, and construct solutions to the Dirac equation which concentrate near
a boundary point and oscillate at the boundary. These solutions can be used to find
the values of the tangential component Atan = A − (A · ν)ν of A and of q± at the
boundary. Here ν is the outer unit normal to ∂�.

Theorem 1.3 Let � ⊆ R3 be a bounded C1 domain and A, q± ∈ W 1,∞(�). Then
CV uniquely determines Atan|∂� and q±|∂�.

Besides their independent interest, a major motivation for studying Dirac operators
comes from inverse problems for other elliptic systems. These problems have often
been treated by reducing the system to a second order Schrödinger equation, such as
with the Maxwell equations [25] or linear elasticity [11,23,24]. These reductions are
however not without problems, and for instance counterparts of the partial data result
in [17] for systems may be difficult to prove in this way. For the Maxwell equations,
there is another useful reduction to a 8×8 Dirac system (see [25]) which may be more
amenable to a partial data result.

Another benefit of working with first order systems directly is that the reduction to
a second order system may require extra derivatives of the coefficients. For instance,
the reduction of Maxwell equations to a Schrödinger equation in [25] requires two
derivatives of the coefficients, while the Dirac system only requires one derivative.
Also, the Carleman estimates are valid for low regularity coefficients. Theorem 1.2,
whose proof uses the first order structure and Carleman estimates, may be thought of
as an example result with improved regularity assumptions.

For other work on Carleman estimates and unique continuation for Dirac opera-
tors, we refer to [1,16,21]. Also, while writing this article, we became aware of the
work of Eller [9], which also considers Carleman estimates for first order systems via
integration by parts arguments.

The structure of the article is as follows. In Sect. 2 we give different proofs of
Carleman estimates for Dirac with limiting weights. Section 3 gives a construction of
CGO solutions for (2) with smooth coefficients, and the case of Lipschitz coefficients
is considered in Sect. 4. The last two sections prove the uniqueness results for the
inverse problem, Theorems 1.2 and 1.3.

2 Carleman estimates

Let P0(ξ) be an N × N matrix depending on ξ ∈ Rn , such that each element of P0(ξ)

is of the form a · ξ where a ∈ Cn . We assume the two conditions

P0(ξ)
2 = ξ2 IN , P0(ξ)

∗ = P0(ξ),
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Carleman estimates for Dirac 165

for all ξ ∈ Rn . These conditions imply that the operator P0(h D), where h > 0 is a
small parameter, is a self-adjoint semiclassical Dirac operator:

P0(h D)2 = (−h2�)IN , P0(h D)∗ = P0(h D).

We may as well define P0(ξ) for ξ ∈ Cn . Then P0(ξ)
∗ = P0(ξ̄ ), but one still has

P0(ξ)
2 = ξ2 IN . This and the linearity of P0 imply

P0(ζ )P0(ξ)+ P0(ξ)P0(ζ ) = 2(ζ · ξ)IN for ζ, ξ ∈ Cn . (5)

In this section� will be a bounded open set in Rn , where n ≥ 2. We wish to prove
a Carleman estimate, which is a bound from below for the conjugated operator

P0,ϕ = eϕ/h P0(h D)e−ϕ/h .

It is well known that such bounds exist if the weight ϕ enjoys some pseudoconvexity
properties. On the other hand, in the applications to inverse problems one needs this
estimate both for ϕ and −ϕ, and the weight can only satisfy a degenerate pseudo-
convexity assumption. This is the case for the limiting Carleman weights introduced
in [17], where also a convexification procedure was given for obtaining Carleman
estimates for these special weights.

We recall that ϕ ∈ C∞(�̃ ; R) is a limiting Carleman weight for the Laplacian in
the open set �̃, where � ⊂⊂ �̃, if ∇ϕ �= 0 and {a, b} = 0 when a = b = 0, where a
and b are the real and imaginary parts, respectively, of the semiclassical Weyl symbol
of the conjugated scalar operator eϕ/h(−h2�)e−ϕ/h . Examples are the linear weight
ϕ(x) = α · x where α ∈ Rn , |α| = 1, and the logarithmic weight ϕ(x) = log |x − x0|
where x0 /∈ �.

One can deduce a Carleman estimate for the perturbed Dirac operator P0(h D)+hV
directly from a corresponding estimate for the Laplacian. We use the semiclassical
Sobolev spaces

‖u‖Hs
scl

= ‖〈h D〉su‖L2

where 〈ξ 〉 = (1 + |ξ |2)1/2.
The estimate for Laplacian is as follows. This was proved in [17] with a gain of

one derivative, i.e. ‖u‖Hs+1
scl

controlled by the right hand side. We will give a slightly

different proof using the Gårding inequality to obtain a gain of two derivatives, which
will give an improved estimate for Dirac. Below, we will use the conventions of
semiclassical calculus. In particular we consider the usual semiclassical symbol classes
Sm , and relate to symbols a ∈ Sm operators A = Oph(a) via Weyl quantization. See
[5] for more details. Also, we write (u|v) = ∫

�
u · v̄ dx and ‖u‖ = (u|u)1/2.

Lemma 2.1 Let ϕ be a limiting Carleman weight for the Laplacian, and let ϕε =
ϕ + h

ε
ϕ2

2 be a convexified weight. Then for h � ε � 1 and s ∈ R,
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h√
ε
‖u‖Hs+2

scl
≤ C‖eϕε/h(−h2�)IN e−ϕε/hu‖Hs

scl
(6)

for all u ∈ C∞
c (�)

N .

Proof First extend ϕ smoothly outside � so that ϕ ≡ 1 outside a large ball. In this
way one can use Weyl symbol calculus in Rn , and the choice of extension does not
affect the final estimates since the differential operators are only applied to functions
supported in �.

Let Pϕ = eϕ/h(−h2�)e−ϕ/h , and write Pϕ = A + i B with A and B self-adjoint,
so A = −h2� − |∇ϕ|2, B = ∇ϕ ◦ h D + h D ◦ ∇ϕ. If v ∈ C∞

c (�) we integrate by
parts to get

‖Pϕv‖2 = ((A + i B)v|(A + i B)v) = ‖Av‖2 + ‖Bv‖2 + (i[A, B]v|v). (7)

Let the semiclassical Weyl symbols of A and B be given by a = ξ2 − |∇ϕ|2 and
b = 2∇ϕ · ξ . We recall the composition formula for semiclassical symbols p and q:
the operator R = P Q has symbol

r ∼
∑
α,β

h|α+β|(−1)|α|

(2i)|α+β|α!β! (∂
α
x ∂

β
ξ p(x, ξ))(∂αξ ∂

β
x q(x, ξ)) = pq + h

2i
{p, q} + O(h2).

The commutator is given by

i[A, B] = Oph(h{a, b}).

We now replace ϕ by ϕε = f (ϕ) where f (λ) = λ + h
ε
λ2

2 . Let Aε and Bε be the
corresponding operators with symbols aε and bε, and let η = f ′(ϕ)ξ . A computation
in [17] implies that whenever aε(x, η) = bε(x, η) = 0 one has

{aε, bε}(x, η) = 4 f ′′(ϕ) f ′(ϕ)2|∇ϕ|4 + f ′(ϕ)3{a, b}(x, ξ).

For the following facts on symbols we assume that x is near�. The limiting Carleman
condition and some algebra (see [17,18]) show that

{aε, bε}(x, η) = 4 f ′′(ϕ) f ′(ϕ)2|∇ϕ|4 + mε(x)aε(x, η)+ lε(x, η)bε(x, η),

where

mε(x) = −4 f ′(ϕ)ϕ
′′∇ϕ · ∇ϕ
|∇ϕ|2 , lε(x, η) =

(
4ϕ′′∇ϕ
|∇ϕ|2 + 2 f ′′(ϕ)∇ϕ

f ′(ϕ)

)
· η.

The symbol of i[Aε, Bε] is then given by

h{aε, bε} = 4h2

ε
f ′(ϕ)2|∇ϕ|4 + hmεaε + hlεbε.

123



Carleman estimates for Dirac 167

The first term is always positive near � since ∇ϕ is nonvanishing. To obtain a H2
scl

bound we introduce the symbol

dε = 4 f ′(ϕ)2|∇ϕ|4 + a2
ε + b2

ε ,

and we write the earlier identity as

h{aε, bε} = h2

ε
dε + hmεaε + hlεbε − h2

ε
(a2
ε + b2

ε ). (8)

Suppose that h � ε � 1. Since aε is elliptic and of order 2, there is a constant
c0 > 0, independent of ε, such that

dε(x, η) ≥ c0〈η〉4, x near �, η ∈ Rn .

The easy Gårding inequality implies that for h small,

(Dεv|v) ≥ c0

2
‖v‖2

H2
scl
, v ∈ C∞

c (�).

On the other hand, we have the quantizations

Oph(a
2
ε ) = A2

ε + h2q1(x),

Oph(b
2
ε ) = B2

ε + h2q2(x),

Oph(mεaε) = 1

2
mε ◦ Aε + 1

2
Aε ◦ mε + h2q3(x),

Oph(lεbε) = 1

2
LεBε + 1

2
BεLε + h2q4(x),

where the q j are smooth functions which, together with their derivatives, are bounded
uniformly with respect to ε near �. It follows from (8) that

(i[Aε, Bε]v|v) = h2

ε
(Dεv|v)+ h

2
[(Aεv|mεv)+ (mεv|Aεv)

+ (Bεv|Lεv)+ (Lεv|Bεv)] −h2

ε
(‖Aεv‖2 + ‖Bεv‖2)−h3(q5v|v)

≥ c0

2

h2

ε
‖v‖2

H2
scl

− Ch‖Aεv‖ ‖v‖ − Ch‖Bεv‖ ‖v‖H1
scl

−h2

ε
(‖Aεv‖2 + ‖Bεv‖2)− Ch3‖v‖2.

Recall that h � ε � 1, where ε is fixed (depending on the constants C). Using the
inequality |αβ| ≤ δ|α|2 + 1

4δ |β|2 we obtain

(i[Aε, Bε]v|v) ≥ c0

4

h2

ε
‖v‖2

H2
scl

− 1

2
‖Aεv‖2 − 1

2
‖Bεv‖2.
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Now (7) shows that

‖Pϕεv‖2 ≥ c0h2

4ε
‖v‖2

H2
scl
. (9)

Finally, we need to shift (9) to a different Sobolev index to prove (6). Let� ⊂⊂ �̃

with ϕ a limiting Carleman weight in �̃, and let χ ∈ C∞
c (�̃) with χ = 1 near �. If

u ∈ C∞
c (�), we have the pseudolocal estimate

‖(1 − χ)〈h D〉t u‖Hα
scl

≤ CM hM‖u‖
Hβ

scl
, for any α, β, t,M.

This and (9) imply

h‖〈h D〉s+2u‖ = h‖〈h D〉su‖H2
scl

≤ h‖χ〈h D〉su‖H2
scl

+ h‖(1 − χ)〈h D〉su‖H2
scl

�
√
ε‖Pϕε (χ〈h D〉su)‖ + h2‖〈h D〉s+2u‖.

By the pseudolocal property we have

‖[Pϕε , χ ]〈h D〉su‖ ≤ CM hM‖〈h D〉s+2u‖, for any M,

and since χ [Pϕε , 〈h D〉s] = hOph(S
s), we have for h � ε � 1 that

‖χ [Pϕε , 〈h D〉s]u‖ � h‖〈h D〉su‖.
One can check that all constants here can be chosen independent of ε. From these
estimates we obtain (6). ��

Our first estimate for Dirac follows immediately.

Lemma 2.2 Let V ∈ L∞(�)N×N and let ϕ be a limiting Carleman weight for the
Laplacian. If −1 ≤ s ≤ 0, then for h small one has

h‖u‖Hs+1
scl

� ‖eϕ/h(P0(h D)+ hV )e−ϕ/hu‖Hs
scl

for all u ∈ C∞
c (�)

N .

Proof Consider first P0,ϕε = eϕε/h P0(h D)e−ϕε/h . Now (6) implies

h√
ε
‖u‖Hs+1

scl
≤C‖P2

0,ϕεu‖Hs−1
scl

=C‖〈h D〉−1 P0,ϕε P0,ϕεu‖Hs
scl

≤C‖P0,ϕεu‖Hs
scl

(10)

since 〈h D〉−1 P0,ϕε is of order 0. We add the perturbation hV and use the estimate
‖V u‖Hs

scl
≤ ‖V u‖ ≤ ‖V ‖L∞‖u‖ ≤ ‖V ‖L∞‖u‖Hs+1

scl
to get

h√
ε
‖u‖Hs+1

scl
≤ C(‖(P0,ϕε + hV )u‖Hs

scl
+ h‖V ‖L∞‖u‖Hs+1

scl
).
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Choosing ε small enough we may absorb the last term to the left hand side. Since
P0,ϕε+hV = eϕ

2/2εeϕ/h(P0(h D)+hV )e−ϕ/he−ϕ2/2ε, we have the desired estimate.��
By using duality and the Hahn–Banach theorem in a standard way, one can convert

this estimate (the case s = −1) into a solvability result.

Proposition 2.3 Let V ∈ L∞(�)N×N and let ϕ be a limiting Carleman weight for
the Laplacian. If h is small, then for any f ∈ L2(�)N there is a solution u ∈ H1(�)N

of the equation

eϕ/h(P0(h D)+ hV )e−ϕ/hu = f in �, (11)

which satisfies h‖u‖H1
scl

� ‖ f ‖.

In [17] the partial data results for inverse problems were based on Carleman esti-
mates with boundary terms, that is, estimates proved for functions whose support
may extend up to the boundary. The above proof of the Carleman estimate for Dirac
involved symbol calculus and estimates shifted to a different Sobolev index, which
are problematic when applied to functions which are not compactly supported.

We will present another proof of a Carleman estimate for Dirac, which involves only
integration by parts and gives an estimate with boundary terms. The estimate is weaker
than the earlier ones, and works for V = 0. Following [17], we try to prove the estimate
with boundary terms by writing the conjugated Dirac P0,ϕ = eϕ/h P0(h D)e−ϕ/h as
A + i B where A and B are self-adjoint, and by computing

‖P0,ϕu‖2 = ((A + i B)u|(A + i B)u)

= ‖Au‖2 + ‖Bu‖2 + (i[A, B]u|u)+ boundary terms.

In [17], which considered scalar operators, it was essential that the principal symbol
i(ab − ba) of i[A, B] vanishes. Here however a = P0(ξ) and b = P0(∇ϕ) are
matrices, and the principal symbol does not vanish. A part of it does vanish however:
if v = ∇ϕ/|∇ϕ| and a = a‖ + a⊥, where a‖ = P0(ξ‖) with ξ‖ = (ξ · v)v, then

a‖b − ba‖ = (ξ · ∇ϕ)(P0(v)
2 − P0(v)

2) = 0.

This idea motivates the following proof. Here let (u|v)∂� = ∫
∂�

u · v̄ d S and ∂�± =
{x ∈ ∂� ; ±∇ϕ(x) · ν(x) > 0}.
Proposition 2.4 Let ϕ(x) = α · x where α ∈ Rn, |α| = 1. Let h be sufficiently small.
Then for any u ∈ C∞(�)N , one has the Carleman estimate

−h((∂νϕ)u|u)∂�− ≤ ‖eϕ/h P0(h D)e−ϕ/hu‖2 + h((∂νϕ)u|u)∂�+
−ih(A‖u|P0(ν⊥)u)∂� − ih(A⊥u|P0(ν‖)u)∂�,

where A‖ = P0(α)α · h D, ν‖ = (α · ν)α, and A⊥ = P0(h D)− A‖, ν⊥ = ν − ν‖.
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Proof Let first ϕ ∈ C∞(�; R) and ∇ϕ �= 0 on �. Let P0,ϕ = A + i B be as above,
so that A = P0(h D) and B = P0(∇ϕ). Let v = ∇ϕ/|∇ϕ| = (v1, . . . , vn). We
decompose A as A = A‖ + A⊥, where

A‖ =
n∑

j=1

P0(v)v j h D j , A⊥ = P0(h D)−
n∑

j=1

P0(v)v j h D j .

It holds that

‖P0,ϕu‖2 = ((A + i B)u|(A + i B)u) = ‖A‖u‖2 + ‖(A⊥ + i B)u‖2

+(A‖u|A⊥u)+ (A⊥u|A‖u)+ i(Bu|A‖u)− i(A‖u|Bu).

Use P0(v)
2 = I and integrate by parts to obtain

i(Bu|A‖u)− i(A‖u|Bu)

=
n∑

j=1

[i(P0(∇ϕ)u|P0(v)v j h D j u)− i(P0(v)v j h D j u|P0(∇ϕ)u)]

=
n∑

j=1

[i(u|ϕx j h D j u)− i(ϕx j h D j u|u)]

= −h((∂νϕ)u|u)∂� + h((�ϕ)u|u).

For the terms involving A‖ and A⊥, one has

(A‖u|A⊥u)+ (A⊥u|A‖u)

= ((A∗⊥ A‖ + A∗‖ A⊥)u|u)+ ih(A‖u|P0(ν⊥)u)∂� + ih(A⊥u|P0(ν‖)u)∂�,

where ν‖ = (ν · v)v and ν⊥ = ν − ν‖. So far we have not used any special properties
of ϕ.

Now assume that ϕ(x) = α · x is the linear weight and choose coordinates so that
ϕ(x) = x1. Then v = e1 is a constant vector, and

A‖ = P0(e1)h D1, A⊥ =
n∑

j=2

P0(e j )h D j .

We have A∗‖ = A‖ and A∗⊥ = A⊥, and

A⊥ A‖ + A‖ A⊥ =
n∑

j=2

(P0(e j )P0(e1)+ P0(e1)P0(e j ))h D1h D j .

This vanishes by (5).
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From the above, we have for u ∈ C∞(�)N the Carleman estimate

‖P0,ϕu‖2 = ‖A‖u‖2 + ‖(A⊥ + i B)u‖2

−h((∂νϕ)u|u)∂� + ih(A‖u|P0(ν⊥)u)∂� + ih(A⊥u|P0(ν‖)u)∂�.

The desired estimate follows. ��
Remark The above proof can be carried out for the convexified linear weight ϕε =
ϕ+ h

ε
ϕ2

2 where ϕ(x) = α · x , since v is a constant vector also in that case. In this way
one can include a L∞ potential in the Carleman estimate for ϕε, as well as the term
h2‖u‖2 on the left. However, due to the boundary terms involving A‖ and A⊥, it is
not clear how to go back from ϕε to ϕ in this case.

Remark In the Proof of proposition 2.4, the quantity�ϕ appears and one might expect
the condition �ϕ = 0 to be related to limiting Carleman weights for Dirac. This can
also be seen by writing P0,ϕ = eϕ/h P0(h D)e−ϕ/h as A + i B where A = P0(h D) and
B = P0(∇ϕ), and by noting that

‖P0,ϕu‖2 = ((A − i B)(A + i B)u|u)

for test functions u, where (A − i B)(A + i B) has full symbol

(a − ib)(a + ib)+ h

2i
{a − ib, a + ib}.

Here {c, d} is the matrix symbol whose ( j, k)th element is
∑n

l=1{c jl , dlk}. A computa-
tion shows that h

2i {a−ib, a+ib} = h(�ϕ)IN , and thus the symbol of (A−i B)(A+i B)
is nonnegative definite if �ϕ = 0. It is not clear to us if one can exploit harmonicity
in proving Carleman estimates for Dirac in Rn . There are interesting recent results
related to this approach and the semiclassical Fefferman–Phong inequality for systems
in the work [26].

3 CGO solutions, smooth case

In this section we wish to construct complex geometrical optics solutions to LV u = 0,
where LV is given in (2), (3). It will be convenient to consider 4 × 4 matrix solutions
(that is, every column of the matrix is a solution) of the form

U = e−ρ/h(C0 + hC1 + · · · + hN−1CN−1 + hN−1 RN ). (12)

This is a WKB Ansatz for the solution, where ρ = ϕ+ iψ is a complex phase function
with ϕ a Carleman weight, C j are matrices which correspond to amplitudes, and RN

is a correction term. These are called complex geometrical optics solutions because
the phase is complex.

We will give a construction for smooth coefficients (Proposition 3.1), in which case
there is an arbitrarily long asymptotic expansion of the form (12) where the successive
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terms have increasing decay in h. This can be achieved if ϕ is a limiting Carleman
weight for the Laplacian. In the next section we consider Lipschitz coefficients (Pro-
position 4.2), in which case ϕ is the linear weight for simplicity. Then the successive
terms in (12) will have only a limited decay in h, but we compute sufficiently many
terms to be able to prove a uniqueness result for the inverse problem.

Suppose that A, q± ∈ C∞(�). Writing Pρ = eρ/h(P0(h D) + hV )e−ρ/h =
i P0(∇ρ) + hLV , inserting the Ansatz (12) in the equation LV U = 0, and collec-
ting like powers of h, results in the equations

i P0(∇ρ)C0 = 0,

i P0(∇ρ)C1 = −LV C0,

...

i P0(∇ρ)CN−1 = −LV CN−2,

PρRN = −hLV CN−1.

We now give a procedure for solving these equations. The first equation implies
that the kernel of P0(∇ρ) should be nontrivial. The same applies to the kernel of
P0(∇ρ)2 = (∇ρ)2 I4, which gives the condition

(∇ρ)2 = 0. (13)

This is an Eikonal equation for the complex phase. If ϕ is given, the equations for ψ
become

|∇ψ |2 = |∇ϕ|2, ∇ϕ · ∇ψ = 0. (14)

Assume for the moment that (14) is solvable. From (13) we get ker P0(∇ρ) =
im P0(∇ρ), since the image is contained in the kernel and rank(P0(∇ρ)) = 2. We
choose C0 = P0(∇ρ)C̃0 where C̃0 is a smooth matrix to be determined.

Moving on to the second equation, we use the commutator identity

LV P0(∇ρ) = MA + P0(∇ρ)(−P0(D + A)+ QI ),

where QI =
(

q− I2 0
0 q+ I2

)
and MA is the transport operator

MA = (2(∇ρ · (D + A))+ 1

i
�ρ)I4.

The equation for C1 then reads

P0(∇ρ)C1 = P0(∇ρ)1

i
(P0(D + A)− QI )C̃0 + i MAC̃0.

A solution is given by C1 = 1
i (P0(D + A)− QI )C̃0 + P0(∇ρ)C̃1, for some C̃1 to be

determined, provided that
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MAC̃0 = 0. (15)

Under certain conditions which are stated below, the transport equation (15) has a
smooth solution C̃0.

For the third equation we use that

(P0(D + A)+ Q)(P0(D + A)− QI ) = HA,W , (16)

where HA,W = (D + A)2 I4 + W is the magnetic Schrödinger operator, with

W =
(
σ · (∇ × A)− q+q− I2 −σ · Dq+

−σ · Dq− σ · (∇ × A)− q+q− I2

)
.

Then the equation for C2 becomes

P0(∇ρ)C2 = HA,W C̃0 + P0(∇ρ)1

i
(P0(D + A)− QI )C̃1 + i MAC̃1.

Choosing C̃1 as a solution of the transport equation MAC̃1 = i HA,W C̃0, we obtain
C2 as

C2 = 1

i
(P0(D + A)− QI )C̃1 + P0(∇ρ)C̃2.

Continuing in this way we obtain smooth matrices C3, …, CN−1. The equation for
hN−1 RN may be solved by Proposition 2.3, which ends the construction of solutions.

We still need to consider the solvability of the Eikonal equation (14) and transport
equation (15). As discussed in [17], these equations can be solved provided that ϕ
is a limiting Carleman weight for the Laplacian, under some geometric assumptions.
Suppose that � ⊂⊂ �̃ and that ϕ is a limiting Carleman weight in �̃. Assume that

� is contained in the union of integral curves of ∇ϕ, all passing through the
smooth hypersurface G = ϕ−1(C0) in �̃.

Then one may solve the Eikonal equation |∇ψ0|2 = |∇ϕ|2 on G by letting ψ0 be
the distance in the metric |∇ϕ|2e0 on G to a point or hypersurface (e0 is the induced
Euclidean metric), chosen so that ψ0 is smooth. The limiting Carleman condition
implies that ψ , obtained from ψ0 by extending it as constant along integral curves of
∇ϕ, will solve the Eikonal equation (14).

Given ψ satisfying (14), one has [∇ϕ,∇ψ] = c∇ϕ + d∇ψ by [17] (see also
[18, Lemma 3.1]). It follows by [8] that transport equations such as (15) are solvable,
provided that the leaves of the foliation generated by ∇ϕ and ∇ψ are not contained
in �.

If ϕ is the linear weight or the logarithmic weight log |x − x0|, with x0 outside the
convex hull of �, then these geometric conditions are satisfied and the Eqs. (14) and
(15) may be solved explicitly (for the logarithmic weight see [7]). Thus, the following
result holds in particular for these choices of the weight ϕ.
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Proposition 3.1 Let ϕ be a limiting Carleman weight for the Laplacian in �̃, where
� ⊂⊂ �̃ and where the above conditions for solving (14) and (15) are satisfied. If
A, q± ∈ C∞(�), then the equation LV U = 0 has a solution of the form (12), where

C0 = P0(∇ρ)C̃0, MAC̃0 = 0,

C1 = 1
i (P0(D + A)− QI )C̃0 + P0(∇ρ)C̃1, MAC̃1 = i HA,W C̃0,

...

CN−1 = 1
i (P0(D + A)− QI )C̃N−2 + P0(∇ρ)C̃N−1, C̃N−1 smooth,

‖C j‖W 1,∞(�) � 1, ‖RN ‖ + h‖∇ RN ‖ � 1.

4 CGO solutions, Lipschitz case

Here we construct solutions in the case of compactly supported Lipschitz continuous
coefficients, A, q± ∈ W 1,∞

c (�). The construction will be carried out for the linear
phase ρ(x) = ζ · x where ζ ∈ C3, ζ 2 = 0, and |Re ζ | = |Im ζ | = 1.

To deal with nonsmooth coefficients, we introduce mollifiers ηε(x) = ε−3η(x/ε)
where η ∈ C∞

c (R
3) is supported in the unit ball and 0 ≤ η ≤ 1,

∫
η dx = 1.

Decompose A = A� + A� and Q = Q� + Q�, where A� = A ∗ ηε and Q� = Q ∗ ηε,
with the special choice

ε = hσ

where σ > 0 is small. Also write V = V � + V � where V � = P0(A�)+ Q�. We find
a solution to LV U = 0 of the form

U = e−ρ/h(C0 + hC1 + R),

where

i P0(ζ )C0 = 0,

i P0(ζ )C1 = −LV �C0,

PρR = −h2LV �C1 − hV �(C0 + hC1).

We make the choices

C0 = P0(ζ )e
iφ�,

C1 = 1

i
(P0(D + A�)− Q�

I )e
iφ� I4,

where φ� is the solution to ζ · (∇φ� + A�) = 0 given by

φ� = (ζ · ∇)−1(−ζ · A�).

Here (ζ · ∇)−1 is the Cauchy transform
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(ζ · ∇)−1 f (x) = 1

2π

∫

R2

1

y1 + iy2
f (x − y1Re ζ − y2Im ζ ) dy1 dy2.

The following result will be used to solve for the error term R. We will need the
additional small parameter h̃ to prove some extra decay for R.

Proposition 4.1 Let � ⊆ Rn be a bounded open set, let P0 be a Dirac operator in
Rn, and assume that V ∈ W 1,n ∩ L∞(�)N×N . Also let ζ ∈ Cn, ζ 2 = 0. If h, h̃ are
small, then for any f ∈ H1(�)N there is a solution u ∈ H1(�)N of the equation

(P0(h D + ζ )+ hV )u = f in �,

which satisfies

h(‖u‖ + h̃‖∇u‖) � ‖ f ‖ + h̃‖∇ f ‖.

Proof We wish to show the Carleman estimate

h‖〈h̃ D〉−1u‖ ≤ C‖〈h̃ D〉−1(P0(h D + ζ )+ hV )u‖. (17)

The result follows from this in a standard way by the Hahn–Banach theorem.

Let ρ(x) = ζ · x and ρε = ρ + h
ε
ρ2

2 . Let u ∈ C∞
c (�), and choose χ ∈ C∞

c (�̃)

where χ = 1 near � ⊂⊂ �̃. Then the pseudolocal estimate

‖(1 − χ)〈h̃ D〉−1v‖ ≤ CM h̃M‖〈h̃ D〉−1v‖, v ∈ C∞
c (�), any M,

and the Carleman estimate (10) imply that when h, h̃ are small,

h‖〈h̃ D〉−1u‖ ≤ h‖χ〈h̃ D〉−1u‖ + h‖(1 − χ)〈h̃ D〉−1u‖
≤ C

√
ε‖P0(h D + ∇ρε)(χ〈h̃ D〉−1u)‖ + h

2
‖〈h̃ D〉−1u‖

≤ C
√
ε‖χ P0(h D + ∇ρε)(〈h̃ D〉−1u)‖ + 3h

4
‖〈h̃ D〉−1u‖.

Since ∇ρε = (1 + h
ε
ζ · x)ζ , we obtain

h‖〈h̃ D〉−1u‖ ≤ C
√
ε‖χ〈h̃ D〉−1 P0(h D + ∇ρε)u‖ + Ch√

ε
‖χ P0(ζ )[ζ · x, 〈h̃ D〉−1]u‖.

Here [ζ · x, 〈h̃ D〉−1] = h̃ R〈h̃ D〉−1 where R is bounded on L2 with norm � 1. If h̃ is
small enough, we obtain

h‖〈h̃ D〉−1u‖ ≤ C
√
ε‖〈h̃ D〉−1 P0(h D + ∇ρε)u‖.
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If ε is small enough, the estimate remains true with P0(h D + ∇ρε) replaced by
P0(h D + ∇ρε)+ hV , since

‖〈h̃ D〉−1V u‖ ≤ C‖〈h̃ D〉−1u‖.

Then (17) follows since eρε/h = meρ/h with ‖m‖W 1,∞(�) bounded. ��

Proposition 4.1, and the fact that V ∈ W 1,∞, gives a correction term R satisfying

‖R‖ + h̃‖∇ R‖ � ‖hL�V C1 + V �(C0 + hC1)‖ + h̃‖∇(hL�V C1 + V �(C0 + hC1))‖
� h1−σ + ‖V �‖L2 + h1−2σ h̃ + h̃‖∇V �‖L2 + h̃‖V �‖L2 .

Choosing h̃ = hσ1 for σ1 > 0 small, one has

‖R‖ = o(1), ‖∇ R‖ = o(1)

as h → 0. Thus we obtain a solution

U = e− ζ ·x
h (P0(ζ )e

iφ� + h

i
(P0(D + A�)− Q�

I )e
iφ� I4 + R),

where ‖R‖ = o(1). Also, since Pρ = i P0(∇ρ)+ hLV , we have

‖P0(ζ )R‖ � h‖R‖H1 + h2‖LV �C1‖ + h‖C0 + hC1‖L∞‖V �‖ = o(h).

Noting that by (15) we may replace eiφ� by eiφ�+ik·x where k · ζ = 0, we have arrived
at the solutions for Lipschitz coefficients.

Proposition 4.2 Let A, q± ∈ W 1,∞
c (�), and let ζ ∈ C3 satisfy ζ 2 = 0 and |Re ζ | =

|Im ζ | = 1. There exists a solution U ∈ H1(�)4×4 to LV U = 0 in �, of the form

U = e− 1
h ζ ·x eiφ�+ik·x (P0(ζ )+ h

i
(P0(∇φ� + k + A�)− Q�

I )+ R),

where k ∈ R3 with k · ζ = 0, and where ‖R‖ = o(1), ‖P0(ζ )R‖ = o(h) as h → 0.

5 Uniqueness result

We will prove Theorem 1.2. The first step is a standard reduction to a larger domain.

Lemma 5.1 Let � ⊂⊂ �′ be two bounded open sets in R3, and let A j , q±, j ∈
W 1,∞(�′) satisfy A1 = A2 and q±,1 = q±,2 in �′

� �. If CV1 = CV2 in �, then
CV1 = CV2 in �′ and
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∫
�′

U∗
2 (V1 − V2)U1 dx = 0 (18)

for any solutions U j ∈ H1(�′)4×4 of LVj U j = 0 in �′.

Proof If LV1 u′ = 0 in �′, then there is v ∈ H(�)2 such that LV2v = 0 in � and
v±|∂� = u′±|∂�. Let v′ = v in � and v′ = u′ in �′

� �. It is easy to see that
v′ ∈ H(�′)2 and LV2v

′ = 0 in�′, showing that CV1 ⊆ CV2 in�′. The same argument
in the other direction gives CV1 = CV2 in �′.

Let U j be as described. Writing (U |V ) = ∫
�′ V ∗U dx , we have

((V1 − V2)U1|U2) = −(P0(D)U1|U2)+ (U1|P0(D)U2).

Since CV1 = CV2 , there is Ũ2 ∈ H(�′)4×4 with LV2Ũ2 = 0 in �′ and also (U1 −
Ũ2)± ∈ H1

0 (�
′)2×4. Thus, writing U1 = (U1 − Ũ2) + Ũ2 and integrating by parts,

we obtain

((V1 − V2)U1|U2) = −(P0(D)Ũ2|U2)+ (Ũ2|P0(D)U2)

= (V2Ũ2|U2)− (Ũ2|V2U2) = 0.

��
Assume the conditions of Theorem 1.2. By a gauge transformation we may assume

that the normal components of A j vanish on ∂�. Then by Theorem 1.3 we know that
A1 = A2 and q±,1 = q±,2 on ∂�. Let �′ be a ball such that � ⊂⊂ �′, and extend
A j and q±, j as compactly supported Lipschitz functions in �′ so that A1 = A2 and
q±,1 = q±,2 outside �.

Lemma 5.1 shows that in the proof of Theorem 1.2, we may assume that� is a ball,
the coefficients are in W 1,∞

c (�), CV1 = CV2 in �, and (18) holds for solutions in �.
The recovery of the coefficients proceeds similarly as in [22], using now the solutions
provided by Proposition 4.2. We will give the details since one needs to ensure that
the estimates for nonsmooth solutions are sufficient for this argument. Theorem 1.2
will follow from the two propositions below.

Proposition 5.2 ∇ × A1 = ∇ × A2 in �.

Proof Choose ζ ∈ C3 with ζ 2 = 0 and |Re ζ | = |Im ζ | = 1. Let k ∈ R3 be orthogonal
to Re ζ and Im ζ . By Proposition 4.2 we may choose solutions to LVj U j = 0 in � of
the form

U1 = e
1
h ζ ·x eik·x (−P0(ζ )e

iφ�1 + R1),

U2 = e− 1
h ζ̄ ·x (P0(ζ̄ )e

i φ̄�2 + R2),

where φ�j = (ζ · ∇)−1(−ζ · A�j ) and ‖R j‖ = o(1) as h → 0. Then

U∗
2 = e− 1

h ζ ·x (P0(ζ )e
−iφ�2 + R∗

2).
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Inserting these in (18) and letting h → 0 gives

∫
eik·x eiφP0(ζ )P0(A1 − A2)P0(ζ ) dx = 0,

where φ = (ζ · ∇)−1(−ζ · (A1 − A2)) and we have used P0(ζ )Q j P0(ζ ) = 0. Using
the commutator identity for P0 one obtains

∫
eik·x eiφ(ζ · (A1 − A2)) dx = 0.

Lemma 6.2 in [27], which is based on [10], implies that the same identity is true with
eiφ replaced by 1. Consequently

∫
eik·x (ζ · (A1 − A2)) dx = 0,

for all k orthogonal to Re ζ , Im ζ . This implies the vanishing of the Fourier transform
of components of ∇ × (A1 − A2). ��

Proposition 5.3 q±,1 = q±,2 in �.

Proof Since ∇ × A1 = ∇ × A2 and A j ∈ W 1,∞
c (�) where � is a ball, one obtains

A1 − A2 = ∇ p for p ∈ W 2,∞(�)where one may choose p|∂� = 0. Thus, by a gauge
transformation we may assume that A1 = A2 = A where A ∈ W 1,∞

c (�). Fix k ∈ R3

and take ζ ∈ C3 with ζ 2 = 0 and k · ζ = 0. By Proposition 4.2, we take solutions to
LVj U j = 0 of the form

U1 = e
1
h ζ ·x eik·x eiφ�(−P0(ζ )+ h

i
(P0(∇φ� + k + A�)− Q�

1,I )+ R1),

U2 = e− 1
h ζ̄ ·x ei φ̄� (P0(ζ̄ )+ h

i
(P0(∇φ̄� + A�)− Q�

2,I )+ R2),

where φ� = (ζ · ∇)−1(−ζ · A�) and ‖R j‖ = o(1), ‖P0(ζ )R1‖ + ‖P0(ζ̄ )R2‖ = o(h)
as h → 0. Also,

U∗
2 = e− 1

h ζ ·x e−iφ�(P0(ζ )− h

i
(P0(∇φ� + A�)− Q�

2,I )+ R∗
2),

with ‖R∗
2 P0(ζ )‖ = o(h). The identity (18) implies

∫
eik·x (P0(ζ )− h

i
(P0(∇φ� + A�)− Q�

2,I )+ R∗
2)(Q1 − Q2)

×(−P0(ζ )+ h

i
(P0(∇φ� + k + A�)− Q�

1,I )+ R1) dx = 0.
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The highest order term in h is P0(ζ )(Q1 − Q2)P0(ζ ), and this vanishes. Also the
terms involving P0(∇φ� + A�) go away, since for Q = Q1 − Q2,

P0(ζ )Q P0(∇φ� + A�)+ P0(∇φ� + A�)Q P0(ζ )

= QI (P0(ζ )P0(∇φ� + A�)+ P0(∇φ� + A�)P0(ζ ))

= 2QI (ζ · (∇φ� + A�)) = 0.

All the terms involving R j are o(h). For the term involving R∗
2 Q R1, this is seen by

using (5) and writing

R1 = 1

4
(P0(ζ )P0(ζ̄ )R1 + P0(ζ̄ )P0(ζ )R1) = P0(ζ )o(1)+ o(h).

Therefore, dividing the integral identity by h and letting h → 0 gives

∫
eik·x [P0(ζ )Q(P0(k)− Q1,I )− Q2,I Q P0(ζ )] dx = 0.

Commuting P0(ζ ) to the left gives

∫
eik·x P0(ζ )(Q P0(k)− Q1 Q1,I + Q2 Q2,I ) dx = 0.

This is true also when ζ is replaced by ζ̄ , and adding the two identities and multiplying
by P0(Re ζ ) on the left implies that

∫
eik·x ((Q1 − Q2)P0(k)− q+,1q−,1 I4 + q+,2q−,2 I4) dx = 0.

Looking at the off-diagonal 2 × 2 blocks shows

∫
eik·x (q±,1 − q±,2)(σ · k) dx = 0.

The claim follows upon multiplying by σ · k. ��

6 Boundary determination

In this section we show that q± and the tangential component of A at the boundary
are uniquely determined by the Cauchy data set CV . More precisely, we have the
following.

Proposition 6.1 Let A j , q±, j be W 1,∞(�) coefficients, j = 1, 2, and let � have C1

boundary. If CV1 = CV2 , then
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(A1 − A2)(x0) · t̂ = 0 ∀x0 ∈ ∂�, ∀t̂ ∈ Tx0(∂�),

q±,1(x0) = q±,2(x0) ∀x0 ∈ ∂�.

Following the idea of [3] we first construct a sequence of solutions which concen-
trate at x0 in the limit. We assume without loss of generality that x0 = 0 and that� is
defined by the function ρ ∈ C1(R3; R) in such a way that � = {x ∈ R3 ; ρ(x) > 0},
∂� = {x ∈ R3 ; ρ(x) = 0}, and the outer unit normal of ∂� at 0 is −e3 = −∇ρ(0).

Let now η(x) be a smooth function supported in B(0, 1/2) such that∫

R2

η(x ′, 0)2 dx ′ = 1.

For all M > 0, define ηM (x) := χ(x)η(M(x ′, ρ(x))), where χ(x) is a cutoff to a
small neighborhood of 0. Define

u0(x) = eN (i t̂ ·x−ρ(x))ηM (x),

where t̂ ∈ T0(∂�) is a unit vector and N is chosen so that

N−1 = M−1ω(M−1),

with ω(·) a modulus of continuity for ∇ρ. We prove the following.

Proposition 6.2 For M large enough, one can find H1(�)4×4 solutions to the equa-
tion

LV U = 0

of the form

U = N P0(t̂ + i∇ρ)u0 + R

with

‖R‖L2 ≤ C N−1/2.

To prove this result, we will use the following two lemmas from [3].

Lemma 6.3 Let η be smooth and supported in B(0, 1/2). If ηM (x) = η(M(x ′, ρ(x)))
and N−1 = M−1ω(M−1), we have

lim
M→∞ M2 N

∫
�

exp(−2Nρ(x))ηM (x) dx = 1/2
∫

R2

η(x ′, 0) dx ′

and ∣∣∣∣∣∣
∫
�

exp(−2Nρ(x))ηM (x) dx

∣∣∣∣∣∣ ≤ C M−2 N−1.
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Lemma 6.4 Let A : � → C3 be a continuous vector field and k : � → C be a
continuous function. If 0 is not an eigenvalue of the operator

−�+ A · D + k : H1
0 (�) → H−1(�),

then there exist solutions to

(−�+ A · D + k)u = 0

of the form

u = u0 + ũ1

with ũ1 ∈ H1
0 (�) and ‖ũ1‖H1(�) ≤ C N−1/2.

At this point we recall some matrix identities used already before. If Q =(
q+ I2 0

0 q− I2

)
and QI =

(
q− I2 0

0 q+ I2

)
and if a, b ∈ C3, we have

P0(a)P0(b)+ P0(b)P0(a) = 2a · b, P0(a)Q = QI P0(a). (19)

Proof (of Proposition 6.2) Recall from (16) that

LV (P0(D + A)− QI ) = −�+ 2A · D + W̃ (20)

where W̃ is a 4 × 4 matrix function with L∞ entries. Choose λ such that 0 is not an
eigenvalue of the scalar operator

−�+ 2A · D + λ : H1
0 (�) → H−1(�).

Apply Lemma 6.4 to get a scalar solution u ∈ H1(�) to

(−�+ 2A · D + λ)u = 0

of the form

u = u0 + ũ1,

with ũ1 ∈ H1
0 (�) and ‖ũ1‖H1 ≤ C N−1/2. We seek solutions to LV U = 0 of the

form U = (P0(D + A)− QI )u + R̃. Plugging this Ansatz into the equation and using
(20) we get that R̃ satisfies

LV R̃ = (λ− W̃ )u.

By Lemmas 6.3 and 6.4 we see that ‖u‖L2 ≤ C N−1/2.
If one had well-posedness for the boundary value problem for LV , we could

solve for R̃ uniquely and obtain the estimate ‖R̃‖L2 ≤ C N−1/2. More generally,
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Proposition 2.3, with the choices ϕ(x) = x1 and h = h0 where h0 = h0(A, q) is the
upper bound for h, gives a solution R̃ = e−x1/h0 R̂ satisfying ‖R̃‖L2 ≤ C‖R̂‖L2 ≤
C‖ex1/h0(λ− W̃ )u‖L2 ≤ C N−1/2. Writing

U = P0(D)u0 + (P0(A)− QI )u0 + (P0(D + A)− QI )ũ1 + R̃

and using the estimates of Lemmas 6.3 and 6.4, we have the desired form for the
solution U . ��

Proof of Proposition 6.1 We may assume, after gauge transformations if necessary,
that the normal components of A j at the boundary are null for j = 1, 2. Let U j

( j = 1, 2) be solutions to LVj U j = 0 constructed in Proposition 6.2. By the assump-
tion that CV1 = CV2 , we have as in Lemma 5.1 the orthogonality condition

0 =
∫
�

U∗
2 (V1 − V2)U1 dx

= N 2
∫
�

P0(t̂ − i∇ρ)(V1 − V2)P0(t̂ + i∇ρ)η2
M e−2Nρ dx + O(M−1).

Multiplying by M2 N−1, taking M → ∞, and using Lemma 6.3 we get that at the
origin

0 = P0(t̂ − i∇ρ)P0(A)P0(t̂ + i∇ρ)+ P0(t̂ − i∇ρ)Q P0(t̂ + i∇ρ) (21)

where A := (A1 − A2)(0) and Q := (Q1 − Q2)(0). Writing ζ = t̂ + i∇ρ(0) and
applying the matrix identities (19) in (21), we get that

0 = −P0(A)P0(ζ̄ )P0(ζ )+ 2(A · t̂)P0(ζ )+ QI P0(ζ̄ )P0(ζ ). (22)

This is true also when t̂ is replaced by −t̂ , so we have

0 = −P0(A)P0(ζ )P0(ζ̄ )+ 2(A · t̂)P0(ζ̄ )+ QI P0(ζ )P0(ζ̄ ). (23)

Adding (22) and (23) together and using |ζ |2 = 2 we see that

0 = −P0(A)+ (A · t̂ )P0( t̂ )+ QI . (24)

If A were nonzero one could take t̂ = A/|A| and obtain QI = 0, and then choosing
t̂ ∈ T0(∂�) orthogonal to A would give A = 0. Therefore, A = 0, and going back to
(24) gives Q = 0. ��
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