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Abstract In the Heisenberg group framework, we obtain a geometric inequality for
stable solutions of A = f(u) in a domain 2 € H. More precisely, if we denote
the horizontal intrinsic Hessian by Hu, the mean curvature of a level set by #4, its
imaginary curvature by p, the intrinsic normal by v and the unit tangent by v, we have
that

/ | Vi 171 Vau P
Q

> / (| Hu | —((Hu)?v, vy — 2 (TYuXu — TXuYu)) »?

QN{Vigu=£0}
Huv,v 2
- / | Vg |2 [h2 n (p + ﬂ) + 2T, v)H]¢2
| Viu |
QN {Vyu=£0)
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352 F. Ferrari, E. Valdinoci

for any ¢ € C§°(£2). Stable solutions in the entire H satisfying a suitably weighted
energy growth and such that (T'v, v)iy > 0 are then shown to have level sets with
vanishing mean curvature.

0 Introduction

The purpose of this paper is to provide geometric estimates for stable solutions of
PDEs in the Heisenberg group, by suitably developing some techniques for level set
analysis provided in [16,17,20,25-27]. Such estimates will then be used for giving
a criterion under which the level sets of entire stable solutions are minimal surfaces,
i.e., they have vanishing mean curvature.

For this purpose, let us briefly recall the definition and the basic properties of the
Heisenberg group.

Let H be the Heisenberg group, namely R3 endowed with the following noncom-
mutative internal law: for every (x1, y1, #1), (x2, y2, 1) € R3

(x1, y1,t1) © (x2, ¥2, 1) = (x1 + x2, y1 + 2, t1, t2 + 2(x2y1 — X1)2)).

We shall denote X = (1,0, 2y) and Y = (0, 1, —2x). With the same notation we
denote the two vectorfields X = % ~|—2y% andY = 33—V —2x % generating the algebra.
Notice that )

d
X, Y] =T=—-4—,
[X, Y] a7

i.e. X and Y do not commute.
In particular, on each fiber H p = span{X, Y} aninternal product s given as follows:
forevery U,V € Hp, withU = a1 X + 1Y and V = ao X + B2Y, we have

(U, Vg = araz + B1B2.

This internal product makes the vectors X and Y orthonormal on H p. We shall define
the norm on H p for every U € H as

U la= (U X} + (U 1)

No confusion should arise between the Euclidean objects (-, -) and | - | and that ones
on the fibers in the Heisenberg group respectively denoted by (-, )y and | - |p.

For a smooth function u, we denote Vigu(P) = (Xu(P), Yu(P)) where Xu(P)
and Yu(P) are the coordinates of the vector Viyu (P) with respect to the basis given
by X and Y at P. In jargon, Vigu is called the intrinsic gradient of #. We remind that a
point P € X is characteristic for the C' level set & of u when the fiber in P coincides
with the Euclidean tangent space to X at P, namely: Hp = TpX. In particular if
Vmu(P) # 0, then P is not characteristic. The size of characteristic points on regular
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A geometric inequality in the Heisenberg group 353

surfaces is small in the following sense. The intrinsic Hausdorff measure Hgé of the
set of characteristic points C(X), of a C! surface ¥, is zero.

Moreover the same result holds even when we consider the 2-Hausdorff measure
with respect to the Euclidean distance, i.e. Hg) (C(%)), of C1 surfaces =; neverthe-
less below this regularity counterexamples exist, see [5].

Whenever P € {u = k}N{Viu # 0}, one can consider the smooth surface {u = k}
and define

b Vau(P)
| VEu(P) |
Usually, such v is called the intrinsic normal to {# = k} at P. Moreover, associated
with v, to any noncharacteristic point P € {u = k}, there exists the so called intrinsic
unit tangent direction to the level set {u = k} at P defined as

ey

_ (Yu(P), —Xu(P))
- | Vigu |

; @)

where the above coordinates are given with respect to the (X, Y)-frame.
We observe that (v, v) = 0.
The Kohn-Laplace operator on H is defined by

Apgu = X%u + Y?u.
Since a divergent operator is defined on each fiber, we can write
Agu = divg(Vgu) = X(Xu) + Y (Yu).
We define the horizontal intrinsic Hessian matrix as

| XXu, ¥ Xu
Y= xyu, vyu |

Notice that Hu is not symmetric. Its norm is given by

|Hu| = vV (XXu)2 + (YXu)2 + (XYu)?2 + (YYu)2. 3)
As usual, we set
(Hu)* = (Hu)(Hu)" . )

Let u be a C? stable weak solution of Amgu = f(u), with! f e C!,inadomain Q C
Hi, i.e., we suppose that

- / (Viut, Vig) s = / Fe. )
H H

! In fact, a locally Lipschitz f could also be considered with these techniques, up to performing some
further minor technicalities in the proofs, see [17,18].
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354 F. Ferrari, E. Valdinoci

and

0< / (VEg, VEd)H + / f )¢, (©6)
H H

for every ¢ € C3°(R2).

Condition (5) is the usual definition of weak solution.

Condition (6) is also classical and it is natural in the calculus of variation frame-
work—in particular, it says that the second variation of the associated functional has
a sign, as it happens, for instance, for local minima.

The main result of this paper is to provide a geometric inequality for such u. Namely,
in the subsequent Theorems 1.3 and 2.3, we shall prove that

/ | Vi 121 Vau P
Q

> / (| Hu > —((Hu)>v, v)gg — 2 (TYuXu — TXuYu)) »?

QN{Vyu#£0}
Huv,v 2

= / | Vigu |2 h2+(p+ﬂ) +2(Tv, vy |, (7)
| Vigu |

QN {Viu£0}

for any ¢ € C;°(2), where h and p are respectively the intrinsic mean curvature and
the imaginary curvature of the noncharacteristic points belonging to the level sets ¥
of u. Concerning the notion of intrinsic mean curvature we refer to [2,3,12,14,21,24],
while for the notion of imaginary curvature and its geometric meaning we refer to
[2,3].

Shortly, we just recall here that the mean curvature %, in a noncharacteristic point
P € ¥ of the level surface given by u, is defined as

h = divgv(P), )

while the imaginary curvature p at the point P € X of the level surface X, given by
u, is defined as
_ Tu(P)
| Vau(P) |

Another geometric interpretation of (7) will be provided in (40), where the imag-
inary curvature p will be related to the tangential gradient of | Vigu | along the level
set.

We observe that (7) may be interpreted in two ways. One way is to think that some
interesting geometric objects which describe u, such as its intrinsic Hessian and the
curvatures of its level sets, are bounded by an energy term. These quantities involved
in the inequality are weighted by a test function ¢ which can be chosen as we wish.

Another point of view consists in thinking that (7) bounds a suitably weighted
L?-norm of any test function ¢ with a suitably weighted L>-norm of its gradient. The
weights here are given by the stable solution u.

©)
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A geometric inequality in the Heisenberg group 355

The latter interpretation sees (7) as a Sobolev-Poincaré inequality for any test func-
tion ¢ and suitable choices of # may lead to interesting weighted inequalities, as shown
in [20].

In this paper, we shall emphasize the first point of view. Indeed, by a suitable choice
of ¢, it will be possible to give a criterion for the level sets of u to have vanishing
curvature (that is, to be minimal surfaces). Such criterion will be explicitly discussed
in Corollary 3.2.

We recall that the study of geometric inequalities for semilinear equations goes
back to [26,27], where uniformly elliptic PDEs in the Euclidean spaces were taken
into account, and further important developments have been performed in [16].

The techniques of [26,27] have been then applied in [17] for singular and degenerate
PDEs and in [25] for fractional operators. Related techniques have also been exploited,
in a different framework, by [11].

Here, we perform an interplay between the techniques of [26,27] and a geometric
analysis on the Heisenberg group, in order to obtain our results. For this, some formulas
will be borrowed from [2,3].

The relation between entire stable solutions and minimal surfaces, as performed
in Corollary 3.2 below, is inspired by a famous conjecture of De Giorgi (see [15]) in
the Euclidean setting. Though several results have been obtained in the Heisenberg
group analogue for such a conjecture (see [8,9]), and even in the general framework
of Carnot groups (see [7]), many questions are still open (see [4,10, 18]).

In the subsequent Sect. 1 we shall develop the analytical tools towards (7). In
particular, one part of (7) will be given in Theorem 1.3.

Then, in Sect. 2, the geometry of the Heisenberg group will be investigated, in order
to complete the proof of (7) (this will be accomplished in Lemma 2.2 and Theorem
2.3).

Finally, Sect. 3 contains the application to the stable solutions in the entire space,
see in particular Theorem 3.7, which shows that suitably low energy stable solutions
in the Heisenberg group cannot exist.

1 Analytical computations

We begin with an elementary observation:

Lemma 1.1 We have that
XAgu = AgXu +2TYu (10)

and
YAgu = AgYu — 2T Xu. (11
Proof
XApgu = X(XXu)+ XY Yu) = XX Xu)+ XY (Yu)
= AgXu —YY(Xu) + XY(Yu)
= AgXu —YY(Xu) + XYYu) =YX Yu)+YX(Yu)

@ Springer



356 F. Ferrari, E. Valdinoci

= AgXu —YYXu)+ TYu+YX(Yu)
= AgXu+TYu+YTu = AgXu+2TYu.

This proves (10). The proof of (11) is analogous. O

We observe that, if u satisfies Agu = f(u), then, by Lemma 1.1,

AgXu +2TYu = f'(u)Xu

, (12)

AgYu — 2T Xu = f'(u)Yu.

Next result is a version in the Heisenberg group of a classical result (we give details
for the reader’s facility):

Lemma 1.2 Let ¢ € R. Suppose that Q2 is an open domain of H and that w : Q@ — R
is Lipschitz with respect to the metric structure of H.
Then, Vigw = 0 for almost any x € {w = c}.

Proof By Coarea Formula (see (1.4) in [23]), given an integrable function y : Q2 — R,
we have that

+o00
/VIVHwI=/\IJ(t)dt,
Q —00
where
V(1) = / y diy

{w=t}

and u, is the Heisenberg group perimeter ||[d{w > t}|| (see [23] for details).
We take a bounded domain U C 2 and y to be the characteristic function xynjw=c}-
Then, W(¢) = 0 for any ¢ # ¢ and so

IVrw| =0,
UN{w=c}

hence |Vyw| = 0 almost everywhere in U N {w = c}. O
Next result gives the first part of the inequality in (7).
Theorem 1.3 For every ¢ € C3°(2)

(| Hu > —((Hu)?v, vy — 2 (TYuXu — TXuYu)) »?
QN {Vigu 0}

5/ | Vit 12| Vigu I (13)
Q
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Proof The proof'is inspired by some computations in [16,17,26,27], suitably modified
here in order to understand the complicated geometry of Heisenberg group.
Let us consider n = Xug? and & = Yugp? as test functions in (12). We get,

integrating by parts (12), that

—/(VHXM,VH(XM¢2))H+2 /TYuXuqbz :/f/(u)(Xu)quz
H

H H

and

—/(VHYu,VH(Yu¢2))H—2 /TXuYuqb2 =/f/(u)(Yu)2¢>2.
H

H H

Then, by summing term by term, we get

_/|V]HIXM |2¢2—/|VHYu 2 ¢?
H H

- / (Vi Xu, Vig(¢7))s Xu — / (VaYu, Vi (@) ¥ u

H H

+2/ (TYuXu — TXuYu)$>
H

= / f'w) | Vau | ¢,
H
On the other hand, putting | Vigu | ¢ as test function in (6), we get:

0§/|VH(| Viu | ¢) |2+/f’(u) | Vigu |* ¢°.
H H

We denote by H, the set Q2 N {Vyu # 0}. Let us stress that, in H,,

X | Vgu |= (XuXXu+YuXYu)
| Viu
and
Y | Viu |= (XuYXu+ YuYYu).
| Viu
In particular,
Vi | Veu |= (Hu)" Viu,
| Viu

(14)

15)

(16)

a7

(18)
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thus, in H,,,
2 1 T T
| V(| Vgu ) |7 = W“Hﬂ) Viu, (Hu)” Viyu)g
= W«Hu)zvmu, VHu)H.
due to (4).
Moreover, in H,,
¢

V(| Viu | ¢) = (Hu)" Vigu + Ve | Viu | .

| Vi |

So, in H,,

Vil Vi | )
= (Vu(l Vuu | ¢), Va(l Vru | ¢))u
¢2

[ Vaul?

= ¢*((Hu) v, (Hw) v)m + 2(Vae, (Hu) Vau)yud+ | Vug *| Vau |?

= ¢*(Hu)*v, v)m + 2{HuVue, Vau)ug+ | Vue *| Veu |* .

(19)

(Hu)T Vigu, (Hu)T Vigu) s +2(Vad, (Hu)" Vau)ud + | Vig 12| Viu |*

(20)

By exploiting Lemma 1.2 with v = |Vgu|, we obtain that V(| Viu | ¢) = 0 almost
everywhere outside H,. Analogously, using Lemma 1.2 with v = Xu or v = Yu, we

conclude that Vig Xu = VY u = 0 almost everywhere outside H,.
Thus, plugging (20) in (15) we get

0= / (#2(CHWv, vy + 2(HuViag, Visuhg+ | Vead | Viau )

H,

+/ £l | Vigu > ¢*.
H
Now recalling (14), it follows from (21) that
0< / (((Hw)*v, v)ug® + 2(Hu Vi, Vau)up+ | Vi 1*| Veu |*)

H()
—/WHXu |2¢2—/|VHYu 29
H, H,

21

—/(VHXM, Vi ($?))uXu —/(VHYM,VH(¢2))HYM +2/(TYMXM—TXMYM)¢2.

H, H, H,
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Rearranging the terms, we get

0= [ (v, g+ | Ve Pl i F)
H,
~ [ 1axu g [ Varu P o2
H, H,

+ 2/ (TYuXu — TXuYu) ¢>.
H,

This is equivalent to
/ (| VEXu ? + | VigYu |> —((Hu)*v, v)g — 2 (TYuXu — TXuYu)) 2
H,

5/|VH¢|2|VHu|2.
H

This, recalling (3), gives (13). O

2 Geometric computations

Having obtained the first part of (7) in the previous Theorem 1.3, our aim is now to
obtain the second part. For this, we perform a geometric analysis of the level sets
of u at nondegenerate points P where {Vyu # 0}. We denote by Vgﬂvw:k}(P) the
intrinsic Weingarten map at the point P associated with the noncharacteristic smooth
surface {u = k}. Let v be the unit tangent vector at P € {u = k}, as defined in (2).

Moreover, let & be the mean curvature and p the imaginary curvature on the level
surface {u = k} (recall (8) and (9)).

We also define
_ X\)l, le
Hy = [sz, sz]. (22)

Then (see [2,3]), atany P € {u = k} N {Vu # 0}, we have that
VE vty (P) = Hvv = —hv. (23)

Lemma 2.1 On {u = k} N {Vygu # 0},

2
| Hu |7 —((Hu)v, )z =| Vi | B+ (p + M) L)
Ve |

Proof From (1) and (2),
v = —vy and vy = vy. (25)
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360 F. Ferrari, E. Valdinoci

Thus, v € Hp is the unit tangent vector to {# = k}, namely the orthonormal vector to
v on Hp. Then,

VaXu = (Vg Xu, v)gv + (Vg Xu, v)gv
and
VaYu = (VgYu, vigv + (VgYu, v)gv.
Hence
IV Xul? = (Ve Xu, v)gv + (Vi Xu, v)gol* = (VeXu, v)E + (VeXu, v)f
and
IVeYul> = [(VeYu, v)gv + (Vg Yu, v)ygol* = (VeYu, v)i + (VeYu, v)d.
By developing the calculation, we come up with
|Hul* = |V Xul* + |VeYul*
= (XXu)*vi + (Y Xu)*v3 +2X XuY Xuviv)
+(XXu)* v} + (Y Xu)*v3 + 2X XuY Xuvi vy
+(XYu)* v} + (YYu)*v3 +2XYuYYuviv,
H(XYu)?vi + (YYu)*v3 +2XYuYYuv vy

= (XXu)?v? + (Y Xu)*v3 4+ (X Xu)*v] + (Y Xu)*v3
+(XYu)2vi + (YYu)?v? + (XYu)?v? + (YYu)*o3, (26)
due to (3) and (25).
On the other hand, recalling (16), (17) and (19), we obtain that
((Hu)*v, v)g = | Vg | Ve ||
= (XXu)?v? + (XYu)*v3 + 2X XuXYuviv
+(YYu)?v3 + (Y Xu)*v} 4 2Y YuY Xuvvs. (27)
Hence, making use of (25), (26) and (27), we conclude that the left hand side of (24),
which we denote by LHS, equals
LHS = (XXu)?v} = 2XXuXYuvivy + (XYu)?v?
+(YYu)*v3 4+ (Y Xu)*v3 — 2YYuY Xuviv,
= (XXwvi + (XYu)v2)> + (Y Xu)vy + (Y Yu)va)?
= (Hw v |*. (28)
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On the other hand, from (22),

1 [XM(XVHu, VH, Xu(YVyu, u)H]

| Viu | Hv + Yu(XVigu, v, YulY Vigu, v)g

| Viu |
= Hu

_ 0, —Tu T
[ 5 s mr

This and (23) imply that

T _ 0, —Tu _
(Hu)'v = [Tu,O v— | Vgu | hv

1 [Xu(XVHu, Wa, XulY Viu, u)H} ;

| Vigu | | Yu(XVgu, vig, Yu(Y Vgu, vig

Hence, from (28), we obtain

LHS = (Hu) v, Hu)Tv)g = (Tu)® + h* | Vygu |?

Xu(XVyu, vig, Xu(YVygu, v)g
- <[ }v, VYH
Yu(XVyu, vig, Yu(YVgu, v)g

1 [Xu(XVHu, VH, Xu(YVyu, v)H] ;

+| VHu |2 Yu(XVgu, vig, Yu(YVgu, v)g
Xu(XVyu, v)g, X (YViu, v)mg )
Yu(XVigu, vy, YulYVgu, v)g |8
_ 2 ( 0, —Tu Xu(XVyu, v)m, X (YViu, v)m )
| Veu ||| Tu, 0 Yu(XVigu, vig, YulY Vgu, vig | E
(29)
Now let us notice that
( Xu(XVyu, v)m, X (YViu, v)m )
Yu(XVigu, vig, YulY Vgu, vyig | VH
0. (30)

= (v (X Vmu, v)g + v2(Y VEu, v)g) Vau, v)g

Furthermore, from (25), we have

( 0, —Tu Xu(XVyu, vim, Xu(YVyu, v)g )
Tu, 0 Yu(X Vigu, vig, YulY Vgu, vig | CH

= Tu (v, (1 (X Vigu, vy +v2 (Y Vigu, v)g) Vi) = Tu | Viu | (Hw)" v, v)g
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and

( Xu(XVyu, v)g, Xu(YVgu, v)g Xu(XVyu, v)g, Xu(YVygu, v)g )
Yu(XVyu, v)y, Yu(YVgu, v)g Yu(XVygu, v)y, Yu(YVgu, v)g v

=| Vigu [* (01 (X Vigu, v)g + v2(¥ Vigu, vig)? =| Vigu |* ((Hu) v, v)3;.

Consequently, making use of (9),

(Tw? 2 [0 —Tu Xu(X Vigu, v}, Xu(¥ Vi, vy |
| Vgu 2 | Vgu P | Tu, 0 Yu (X Vigu, g, Yu(YVigu,vyg |5
4 1 Xu(XViu, vim, Xu(YViu, v)g y
| Vigu |4 | Yu(X Vi, vig, Yu(YVgu, vig |
Xu(XVyu, v)g, X (YViu, vymg )
Yu(XVigu, vy, Yu(YVgu, v)g |8
. 2p((Hw) v, v)y ((Hu)Tv, )

+

p
| Viu | | Viu |?
( (Hu) v, v)g )2
p+
| Viu |

N (Huv, v)g )2
p .
| Viu |

From this, (29) and (30), we obtain (24). O

We are now in the position of relating interesting analytical and geometrical objects,
in the following way:

Lemma 2.2 On {u = k} N {Vpu # 0},
TYuXu —TXuYu=—| Vgu |> (Tv, v)g. (31)
Proof By a straightforward calculation (see also [19]), it follows that

YuT Xu — XuTYu

Tv, =
(Tv, v\ Vo |2

This implies (31). O
Theorem 2.3 For any ¢ € CJ°(S2)

(Huv, v)\*
| Vigu |2|:h2+(p+m) +2(Tv, v) } /lVH¢| [ Viu|?.

QN{VEu£0}

Proof The desired claim follows from Theorem 1.3 and Lemma 2.2. O
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We remark that the general form of our geometric inequality given in (7) is a
consequence of Theorem 1.3, Lemma 2.1, Lemma 2.2 and Theorem 2.3.

3 Application to entire stable solutions
We now apply Theorem 2.3 in order to deduce suitable geometric properties of global

stable solutions.
For this, given £ = (x, y, ¢t) € H we define its gauge norm as

e= (w2 +) "

Analogously, the gauge ball centered at 0 of radius R will be denoted by B(0, R), that
is we set

B(O,R) = {€ e H st |&] < R} .

Lemma 3.1 Let g € L3O (R", [0, +00)) and let g > 0. Let also, for any t > 0,

loc

0= [ s (32)
B(0,7)
Then, for every 0 <r < R,
é) r (T) 1
8 n(t
/ |§|qd%’§q/rq+ldt+ﬁn(1?).
B(0,R)\B(0,r) r

Proof By changing order of integration,

g&)
d
/ | & 14 s

B(0,R)\B(0,r)

R
8(®) !

—q [ [ | g(E)de

BO,R)\B(0,r) \§| B(0,R\B(0.r)

/ © !
8

Sq/ / cqr1dE | AT+ g n(R)

r 0.7)

R
n(7) 1

r

O
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364 F. Ferrari, E. Valdinoci

Corollary 3.2 Let us assume that u is a stable solution of Agu = f(u) in the whole
H such that

(Tv,v)g = 0. (33)
For any t > 0, set
n(r) =4 /)|vaLan2u2+y%duM%o. (34)
B(0,7)
Suppose that
n() dr + n(R)
lim inf Jir " —0. (35)
R—o00 (log R)2

Then, the level sets of u in the vicinity of noncharacteristic points are minimal sur-
faces in the Heisenberg group (i.e., the curvature h vanishes identically) and on such
surfaces the following equation holds

(Huv, v)g. (36)

Proof Let

g(&) =4 | VEu@) > (x* + ).

Then, the function n defined in (34) is consistent with the notation in (32).
Therefore, Lemma 3.1 and (35) imply that

1 g®

B(0,R)\B(0,+/R)

Now, let us define the following test function for all positive R:

1, if £ € B0, VR)
5(E) = 2,10 ) if £ € H\B(0, R)
ekl if & € BO, R\B(O, VR).
Then
Xl = Gerlél ™ + yH)x + yi]
and

Y| = —|§|— |(x + y?)y — xt].

@ Springer



A geometric inequality in the Heisenberg group 365

Therefore, for &€ € B(0, R)\B(0, vVR),

|V (®) P = oz 1617 (@ 0D 4007 4+ (2 400y = a0)?)

4 (4D
~ (logR)? &

So,

e ! )
/'VH¢"VH”'_(logR)2 / R

H B(0,R)\B(0,v/R)

Hence, the claim follows from Theorem 2.3, (33) and (37). O

Remark 3.3 We observe that (35) may be seen as a condition on the growth of a
suitably weighted energy 7.
Notice also that if, for any R large enough,

n(R) < CR*,

for some constant C > 0, then (35) is satisfied.

Remark 3.4 Bounded stable solutions that do not depend on ¢ do not satisfy (35) unless
they are constant.

Indeed such solutions would satisfy Au = f(u) in R2 and so, by well known results
(see, e.g., [1,6,17,22]) they depend on only one variable, up to rotation.

Thatis, u(x, y) = u,(wix +way), forany (x, y) € R?, where w = (w1, w2) € Sh.

As a consequence, if # were not constant, there would exist € > 0 and an open
interval I C R for which |u/,(0)| > ¢ forany 0 € I.

Accordingly, by changing variables X = wix + wyy, ¥y = —wax + w1y, we obtain

/|VHu<x,y>|2<x2+y2)d<x,y,r)

B(0,7)
2,.2 2
> / / Ve, G2 + 2 di d(x, y)
(2022772} (11]=4/7572)

— Co? / ) (@1x + w02y) PG 4+ D) d(x, )
(x2+y2<4/74/2}
2 S R NP

— Cot / W @PE + ) d(E, 5)
(F2+32<4/74/2}

> Cor? / )52 A, 5).
(X2+32<4/74/2}
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for some Co > 0, and so, when 7 is large

/ IVigu(xe, VP + yHd(x, y, 1)
B(0,7)

> Cor? / /|u ® P52 7 d5

{I51< /<44y X<l

> Coe |17 / 7 d5
(I51<3/74/4)

> Cre? |1]7°,

which cannot be compatible with (35).

Remark 3.5 The minimal surface condition 2 = 0 implies that the level set of any
noncharacteristic point contains a horizonal straight segment (see Lemma 4.1 and
Theorem 4.1 in [3]). In particular, when {Vigu = 0} = @ (or, at least, when the level
set does not contain characteristic points), it follows that level sets satifying 7 = 0 are
ruled surfaces, that is, each point has a horizonal straight line passing through it.

Remark 3.6 Inspired by rigidity properties developed in the Euclidean setting after
a conjecture of De Giorgi (see [1,6,15,22]), one may wonder whether the minimal
surface condition 4 = 0, possibly together with (36), implies that stable solutions boil
down to one-dimensional Euclidean ones (this and Remark 3.4 would imply that such
solutions are, in fact, constant).

Analogously, one may wonder whether the minimal surface condition 2 = 0
together with (36) implies, locally, that the level surface is a flat Euclidean plane.

To see that additional assumptions are needed to obtain such a result, one may
consider the simple example given by u(x, y,t) =t — 2xy. Indeed, such u satisfies
Apu = 0, and so it is a stable solution of a semilinear equation, the mean curvature /1
of any level set {# = k} vanishes and (36) is satisfied on {x # 0}, though u does depend
on all the variables (x, y, #) € H and its level sets are not flat Euclidean planes.

In our framework, it is natural to define the horizontal derivative of | Vigu | along
the unit tangent direction v at P as

D} |Veu| = (Ve | Veu |, v)m. (38)

So, recalling (18), we get

DX | Vyu |= (Hu)" Vigu, vy = (Hw) v, v)g = (Huv, v)g.  (39)

| Viu |
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This equation allows us to rewrite (7) as
[ 1956 P Vi
Q

D | Viu |

2
2
Vo | ) +2(Tv,v)g | 9=, (40)

> / | Vigu | h2+(p+
QN(Viu£0)

for any ¢ € C;°(2).

Notice that, if u does not depend on ¢, inequality (40) reduces to the Euclidean one
in [26,27].

Analogously, one may rewrite (36) as

D' | Vyu |

41
| Vi | @b

p:

Keeping in mind the discussion in Remark 3.6, we may then state a nonexistence
result:

Theorem 3.7 There exists no u which is a C2(H) stable solution of Agu = f(u)
satisfying

(Vigu = 0} = 9, (42)
u € L°(MH), (43)
(Tv,v)g >0 (44)
and R no (R)
10 4o 4 1R
lim inf N R _ ), (45)
R—o0 (log R)2

where 1 is as in (32).

Proof We argue by contradition, considering u satisfying the above properties.
So, by (43) and Theorem 2.10 in [13],

|Vigu| € L H). (46)

We claim that
u(x,y,t) does not depend on ¢. (C))

For this, we argue again by contradiction, supposing that there exists P, € H for which
ur(Po) # 0. (48)
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368 F. Ferrari, E. Valdinoci

We thus consider the solution ¢ : R — H of the Cauchy problem

¢'(s) = v(g(s))
¢0) =P,

Note that such solution is global, that is, it is defined for any s € R, because v is

always well defined, due to (42), and it is bounded, having norm 1 in Hp.
Since ¢’ is horizontal, that is ¢’ € H p, we thus have

d
754 @ () = (Vau($(s), ¢'()m = |VEu @ ()] (v((5)), v(@())m =

thus ¢ lies on the level set {u = u(P,)}.
Moreover,

d
= | Viu(@(9) = (VEIVizul @ @), ¢ )z = (D' | Vi 1) @ ().

due to (38).
Also, using (44), (45), Corollary 3.2 and (41), we deduce that

Tu@(s)) = (DI | Vigu 1) @ (s)).

Therefore, by (49) and (50),

d
7 | ViU (¢ () [= —4u; (o (5)),
N

which, via (48), gives that

d
75 | ViEu(p(s)) | # 0.
s 5s=0

Furthermore, from (51),

d* | Vau(@(s)) | d
—a = g Tu@®)

= (VETu(9(s)), ¢'(s))m = (VEaTu(@(s)), v(p(s)))m.
Since

(VHTu, v)g = (T (IVaulv), v)g = (|Vau|Tv, v)y,

(49)

(50)

61y

(52)

(53)

because v and v are orthogonal with respect to (., .)p, we deduce from (53) and (44)

that
d>| v
%W = |Vau[(Tv(¢(s)), v(¢(s)))m = 0.
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Therefore, if we set

V(s) = [VEu(@ ()] — [VHu(Po)l,

we have that W € C2(R), ¥(0) = 0, ¥'(0) # 0 and W” > 0, thanks to (52) and (54).

Consequently,

sup¥ = +o0.
R

This is a contradiction with (46) and it thus proves (47).

Then, by (43), (45), (47) and Remark 3.4, we conclude that u is constant.
Since this cannot be, because of (42), we have obtained the contradiction which

proves Theorem 3.7. O
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