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Abstract It is well-known that there is a deep interplay between analysis and prob-
ability theory. For example, for a Markovian infinitesimal generator L, the transition
density function p(t, x, y) of the Markov process associated with L (if it exists) is the
fundamental solution (or heat kernel) of L. A fundamental problem in analysis and in
probability theory is to obtain sharp estimates of p(t, x, y). In this paper, we consider
a class of non-local (integro-differential) operators L on R

d of the form

Lu(x) = lim
ε↓0

∫

{y∈Rd : |y−x |>ε}
(u(y)− u(x))J (x, y)dy,

where J (x, y) = c(x, y)

|x − y|d+α 1{|x−y|≤κ} for some constant κ > 0 and a measurable

symmetric function c(x, y) that is bounded between two positive constants. Associated

Z.-Q. Chen was partially supported by NSF Grant DMS-06000206. P. Kim was partially supported by the
Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research
Promotion Fund) (KRF-2007-331-C00037). T. Kumagai was partially supported by the Grant-in-Aid for
Scientific Research (B) 18340027.

Z.-Q. Chen
Department of Mathematics, University of Washington, Seattle, WA 98195, USA
e-mail: zchen@math.washington.edu

P. Kim (B)
Department of Mathematics, Seoul National University, Seoul 151-747, South Korea
e-mail: pkim@snu.ac.kr

T. Kumagai
Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan
e-mail: kumagai@math.kyoto-u.ac.jp

123



834 Z.-Q. Chen et al.

with such a non-local operator L is an R
d -valued symmetric jump process of finite

range with jumping kernel J (x, y). We establish sharp two-sided heat kernel esti-
mate and derive parabolic Harnack principle for them. Along the way, some new heat
kernel estimates are obtained for more general finite range jump processes that were
studied in (Barlow et al. in Trans Am Math Soc, 2008). One of our key tools is a
new form of weighted Poincaré inequality of fractional order, which corresponds to
the one established by Jerison in (Duke Math J 53(2):503–523, 1986) for differential
operators. Using Meyer’s construction of adding new jumps, we also obtain various a
priori estimates such as Hölder continuity estimates for parabolic functions of jump
processes (not necessarily of finite range) where only a very mild integrability condi-
tion is assumed for large jumps. To establish these results, we employ methods from
both probability theory and analysis extensively.

Mathematics Subject Classification (2000) Primary 60J75 · 60J35; Secondary
31C25 · 31C05

1 Introduction and main results

The second order elliptic differential operators and diffusion processes take up, respec-
tively, an central place in the theory of partial differential equations (PDE) and in prob-
ability theory, see [16,20] for example. There are close relationships between these
two subjects. For a large class of second order elliptic differential operators L on R

d ,
there is a diffusion process X on R

d associated with it so that L is the infinitesimal
generator of X , and vice versa. The connection between L and X can also be seen
as follows. The fundamental solution (also called heat kernel) for L is the transition
density function of X .

Recently there are intense interests in studying discontinuous Markov processes,
due to their importance both in theory and in application. See, for example, [5,21,26]
and the references therein. The infinitesimal generator of an discontinuous Markov
process in R

d is no longer a differential operator but rather a non-local (or, inte-
gro-differential) operator. For example, the infinitesimal generator of a isotropically
symmetric α-stable process in R

d with α ∈ (0, 2) is a fractional Laplacian operator
c (−�)α/2. Recently there are also many interests from the theory of PDE (such as
singular obstacle problems) to study non-local operators; see, for example, [7,31] and
the references therein.

In this paper, we consider the following type of non-local (integro-differential)
operators L on R

d with measurable symmetric kernel J :

Lu(x) = lim
ε↓0

∫

{y∈Rd : |y−x |>ε}
(u(y)− u(x))J (x, y)dy,

where

J (x, y) = c(x, y)

|x − y|d+α 1{|x−y|≤κ} (1.1)

123



Heat kernel estimate for finite range jump process 835

for some constant κ > 0 and a measurable symmetric function c(x, y) that is bounded
between two positive constants. Associated with such a non-local operator L is an
R

d -valued finite range symmetric jump process X with jumping kernel J (x, y). We
will be concerned with obtaining sharp two-sided heat kernel estimates for L (or,
equivalently, for X ), as well as establishing parabolic Harnack inequality and a priori
joint Hölder continuity estimate for parabolic functions of L. Our approach employs
a combination of probabilistic and analytic techniques.

Two-sided heat kernel estimates for diffusions (or second order elliptic differen-
tial operators) have a long history and many beautiful results have been established.
But two-sided heat kernel estimates for jump processes in R

d have only been studied
recently. In [27], Kolokoltsov obtained two-sided heat kernel estimates for certain
stable-like processes in R

d , whose infinitesimal generators are a class of pseudo-
differential operators having smooth symbols. Bass and Levin [4] used a completely
different approach to obtain similar estimates for discrete time Markov chain on Z

d

where the conductance between x and y is comparable to |x−y|−d−α forα ∈ (0, 2). In
[11], two-sided heat kernel estimates and a scale-invariant parabolic Harnack inequal-
ity for symmetric α-stable-like processes on d-sets are obtained. (See [18] for some
extensions.) Very recently in [12], parabolic Harnack inequality and two-sided heat
kernel estimates are even established for non-local operators of variable order. But so
far the two-sided heat kernel estimates for non-local operators have been established
only for the case that the jumping kernel has full support on the state space. See [1] for
some results on parabolic Harnack inequality and heat kernel estimate for non-local
operators of variable order on R

d , whose jumping kernel is supported on jump size
less than or equal to 1.

Throughout this paper, d ≥ 1 and α ∈ (0, 2). Let the jump kernel J be defined by
(1.1) and let

Q(u, v) := 1

2

∫

Rd

∫

Rd

(u(x)− u(y))(v(x)− v(y))J (x, y)dxdy, (1.2)

D :=
{

f ∈ L2(Rd , dx) : Q( f, f ) < ∞
}
. (1.3)

It is easy to check that (Q,D) is a regular Dirichlet form on R
d and so there is a Hunt

process X associated with it. When the jumping kernel J (x, y) is the unrestricted
c(x,y)

|x−y|d+α , the associated process is the symmetric α-stable-like process Y on R
d stud-

ied in [11]. Among other things, it is shown in [11] that Y has Hölder continuous
transition density function and so Y can be modified to start from every x ∈ R

d . Since
X can be constructed from Y by removing jumps of size larger than κ via Meyer’s
construction (see [1,3]), X is conservative and can be modified to start from every
point in R

d . For this reason, in the sequel, we will call such X a finite range (or
truncated) α-stable-like process. It is proved in [1, Theorem 3.1] that there is a prop-
erly exceptional set N ⊂ R

d and a positive symmetric kernel p(t, x, y) defined on
(0,∞) × (Rd\N ) × (Rd\N ) such that p(t, x, y) is the transition density function
of X (starting from x ∈ R

d\N ) with respect to the Lebesgue measure on R
d , and

for each y ∈ R
d\N and t > 0, x �→ p(t, x, y) is quasi-continuous. It is this version
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836 Z.-Q. Chen et al.

of the transition density function of X we will take throughout this paper. Here a set
N ⊂ R

d is called properly exceptional with respect to the process X if it has zero
Lebesgue measure and

P
x
(
{Xt , Xt−} ⊂ R

d\N for every t > 0
)

= 1 for x ∈ R
d\N .

It is well-known (see [15]) that every exceptional set is Q-polar and every Q-polar
set is contained in a properly exceptional set. Later we will show in Theorem 4.3,
p(t, x, y) in fact has a Hölder continuous version and so we can take N = ∅. The
purpose of this paper is to obtain sharp upper and lower estimates on p(t, x, y). The
jump size cutoff constant κ in (1.1) plays no special role, so for convenience we will
simply take κ = 1 for the rest of this paper.

When c(x, y) is a constant, X is a finite range (also called truncated) isotropical-
ly symmetric α-stable process in R

d with jumps of size larger than 1 removed. The
potential theory of this Lévy process is studied in [24,25]. One interesting fact is that,
even though scale-invariant elliptic Harnack principle is true for such a process, the
boundary Harnack principle is only valid for the positive harmonic functions of this
process in bounded convex domains (see the last section of [24] for a counterexample).
Since the parabolic Harnack principle implies elliptic Harnack principle, our Theo-
rem 4.1 extends the result on Harnack principle in [24] to the case that c(x, y) is not
necessarily constant.

Finite range stable processes, more generally finite range jump processes, are very
important both in theory and in application. Finite range jump processes are very nat-
ural in applications where jumps only up to a certain size are allowed. Moreover, in
some aspects, finite range jump processes have nicer behaviors and are more prefera-
ble than unrestricted jump processes. For instance, in [13], to show certain property of
Schramm–Loewner evolution driven by symmetric stable processes, finite range (or
truncated) stable process has been used as a tool. However, as we shall see below, in
some other respects, finite range jump processes are much more delicate to study than
unrestricted jump processes.

In the sequel, for two non-negative functions f and g, the notation f 
 g means that
there are positive constants c1, c2, c3 and c4 so that c1g(c2x) ≤ f (x) ≤ c3g(c4x) in
the common domain of definition for f and g. The Euclidean distance between x and
y will be denoted as |x − y|. For a, b ∈ R, a ∧b := min{a, b} and a ∨b := max{a, b}.
We will useµd or dx to denote the Lebesgue measure in R

d . A statement that is said to
be hold quasi-everywhere (q.e. in abbreviation) on a set A ⊂ R

d if there is an Q-polar
set N such that the statement holds for every point in A\N .

Our theorems on the heat kernel estimate on p(t, x, y) can be stated as follows (in
the figure, R∗ is a constant in (0, 1)):

(i) (Proposition 2.1 and Theorem 3.6) In the regions D1 and D2, we have

p(t, x, y) 

(

t−d/α ∧ t

|x − y|d+α

)
.

(More precisely, p(t, x, y) 
 t−d/α in D1 and p(t, x, y) 
 t
|x−y|d+α in D2).
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Heat kernel estimate for finite range jump process 837

(ii) (Theorem 2.3 and Theorem 3.6) In the region D3, we have

p(t, x, y) 

(

t

|x − y|
)c|x−y|

= exp

(
−c|x − y| log

|x − y|
t

)
.

(iii) (Theorems 2.3 and 3.6) In the regions D4 and D5, we have

p(t, x, y) 
 t−d/2 exp

(
−c|x − y|2

t

)
.

(More precisely, p(t, x, y)
 t−d/2 in D4 and p(t, x, y) 
 t−d/2 exp
(
− c|x−y|2

t

)
in D5).

As we see, the heat kernel estimate is of α-stable type in (i), of Poisson type in (ii)
and of Gaussian type in (iii). Such behavior of the heat kernel, in particular (i) and
(iii), may be useful in applications. For example, in mathematical finance, it has been
observed that even though discontinuous stable processes provide better representa-
tions of financial data than Gaussian processes (cf. [19]), financial data tend to become
more Gaussian over a longer time-scale (see [28] and the references therein). Our heat
kernel estimates show that finite range stable-like processes have this type of prop-
erty: they behave like discontinuous stable processes in small scale and behave like
Brownian motion in large scale. Furthermore, they avoid large sizes of jumps which
can be considered as impossibly huge changes of financial data in short time.

In fact, some of our heat kernel estimates for t ≥ 1 will be stated and proved for
a more general class of finite range jump processes that is studied in [1] (see (2.16),
Theorems 2.4 and 3.5 below). These heat kernel estimates improve the estimates given
in [1, Theorems 1.2 and 1.3] significantly. They are also used in Sect. 4 to show the
two-sided estimates for Green functions of these processes for |x − y| ≥ 1.

To get the near diagonal lower bound of the heat kernel p(t, x, y), we introduce and
prove a general scaling version of weighted Poincaré inequality of fractional order (see
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Theorem 5.1 below). This inequality may be of independent interest. (For the details
on (weighted) Poincaré inequality and lower bound estimate of heat kernels for diffu-
sions, we refer our readers to [14,22,29,30] and the references therein.) The proof of
our weighted Poincaré inequality is quite long and involved. To keep the flow of the
main ideas of our proof for the heat kernel estimates, we put the proof of the weighted
Poincaré inequality in the last section. We hope that the establishing of such a scaling
version of weighted Poincaré inequality and its usage in getting the heat kernel lower
bound estimate will shed new light on our understanding of the heat kernel behavior
of more general Markov processes.

Using the heat kernel estimates, we derive the parabolic Harnack inequality for the
finite range jump processes. Our proof uses a combination of the techniques devel-
oped in [1,2,11,12]. As a direct consequence of the heat kernel estimates, we derive
a two-sided sharp estimate for Green functions in R

d for d ≥ 3. From the heat kernel
estimates and the parabolic Harnack inequality, we also obtain the Hölder continuity of
the parabolic functions of finite range stable-like processes. In particular, we note that
the Hölder continuity for bounded parabolic functions is a consequence of the local
heat kernel estimate, while the parabolic Harnack inequality at small size scale can be
obtained from the local heat kernel estimate and some mild condition on the jumping
kernel for large jumps. This allows us to establish the parabolic Harnack inequality
and the joint Hölder continuity for parabolic functions for a larger class of symmetric
processes that can be obtained from finite range stable-like process by adding larger
jumps with uniformly bounded (total) jumping intensity for those jumps of size larger
than 1 through Meyer’s construction. See Theorem 4.5 for details.

The remainder of this paper is organized as follows. In Sect. 2, we prove the upper
bound estimates of the heat kernel. Section 3 contains the results on the lower bound
estimates of the heat kernel. In Sect. 4, we establish parabolic Harnack principle and
the two-sided estimates for Green functions of the finite range jump processes as well
as Hölder continuity of heat kernels. In the last section, we give the proof of weighted
Poincaré inequality of fractional order.

2 Heat kernel upper bound estimate

In this section, we will state the results on the upper bound estimates of the heat ker-
nel for the finite range symmetric α-stable-like process X more precisely and present
proofs. Most of the heat kernel estimates in this section and next one are established
for quasi-everywhere (q.e.) point in R

d . However in Theorem 4.3 of Sect. 4, we will
show that the heat kernels of finite range stable processes are Hölder continuous and
therefore these estimates hold for every point in R

d .

Proposition 2.1 (i) For each T ∗ > 0, there exists c1 = c1(T ∗) > 0 such that

p(t, x, y) ≤ c1

(
t−d/α ∧ t

|x − y|d+α

)

for all t ∈ (0, T ∗] and q.e. x, y ∈ R
d .
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(ii) There exist 0 < R∗ < 1 and c2 > 0 such that

c2

(
t−d/α ∧ t

|x − y|d+α

)
≤ p(t, x, y)

for all t ∈ (0, T∗] and q.e. x, y ∈ R
d with |x − y| ∈ (0, R∗] where T∗ := Rα∗ .

Proof The estimates on these regions can be deduced from the existing results. Let
p0(t, x, y) be the transition density function of stable-like process Y on R

d whose
jumping kernel is c(x,y)

|x−y|d+α . Since X can be constructed from Y by removing jumps of
size larger than 1 via Meyer’s construction, by [1, Lemma 3.6] and [3, Lemma 3.1(c)]
we have

p(t, x, y) ≤ et‖J ‖∞ p0(t, x, y) and p0(t, x, y) ≤ p(t, x, y)+ t‖J1‖∞

where

J1(x, y) := c(x, y)

|x − y|d+α 1{|x−y|>1} and J (x) :=
∫

Rd

J1(x, y)dy.

Applying the estimates on p0(t, x, y) in [11] to the above two inequalities, we have

p(t, x, y) ≤ c1et‖J ‖∞
(

t−d/α ∧ t

|x − y|d+α

)
(2.1)

and

1

c1

(
t−d/α ∧ t

|x − y|d+α

)
− t‖J1‖∞ ≤ p(t, x, y). (2.2)

Now (i) follows immediately from (2.1). Since

1

2c1
t−d/α ≤ 1

c1
t−d/α − t‖J1‖∞ if t ≤ (2c1‖J1‖∞)−

α
d+α

and

1

2c1

t

|x − y|d+α ≤ 1

c1

t

|x − y|d+α − t‖J1‖∞ if |x − y| ≤ (2c1‖J1‖∞)−
1

d+α ,

we get (ii) from (2.2). ��

The discrete Markov chain analogue of the following result is established in
[4, Proposition 2.1]. See also [8, Sect. 2] where the following result is discussed
when c(x, y) is a constant and α = 1.
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Proposition 2.2 There exist c1, c2 > 0 such that

p(t, x, y) ≤
{

c1t−d/α for t ∈ (0, 1],
c2t−d/2 for t ∈ [1,∞).

(2.3)

Proof By Proposition 2.1(i), we only need to show (2.3) for t ∈ [1,∞).
Let (E0,F0) be the Dirichlet form for the finite range isotropically symmetric

α-stable process with jumps of size larger than 1 removed. That is,

E0(u, u) =
∫

Rd×Rd

(u(x)− u(y))2
c0(d, α)

|x − y|d+α 1{|x−y|≤1}dxdy,

F0 =
{

u ∈ L2(Rd , dx) : E0(u, u) < ∞
}
,

where c0(d, α) > 0 is a constant. Note that D ⊂ F0 and there is a constant κ :=
κ(d, α) > 0 such that

E0(u, u) ≤ κ Q(u, u) for u ∈ F . (2.4)

By the Fourier transform, we have

E0( f, g) = c0

∫

Rd

ĝ(ξ) ¯̂f (ξ)φ(ξ)dξ,

where f̂ (ξ) := (2π)−d/2
∫
Rd eiξ ·y f (y)dy is the Fourier transform of u and

φ(ξ) :=
∫

{|y|<1}

1 − cos(ξ · y)

|y|d+α dy. (2.5)

By the change of variable y = x/|ξ |, we have from (2.5)

φ(ξ) = |ξ |α
∫

{|x |<|ξ |}

1 − cos
(
ξ
|ξ | · x

)

|x |d+α dx . (2.6)

Note that 1 − cos
(
ξ
|ξ | · x

)
behaves like |x |2 for small |x |. Moreover, as |ξ | goes to

infinity, the integral in the above equation goes to a positive constant. Thus it is easy
to see that there exist M > 1 and c1 > 0 such that

φ(ξ) ≥
{

c1|ξ |α, for all |ξ | > M,
c1|ξ |2, for all |ξ | ≤ M.
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Thus for every r ≤ 1, we have

∫

{|ξ |>r}
| f̂ (ξ)|2dξ ≤

∫

{M>|ξ |>r}

( |ξ |
r

)2

| f̂ (ξ)|2dξ +
∫

{|ξ |≥M}

( |ξ |
r

)α
| f̂ (ξ)|2dξ

≤ c2

⎛
⎜⎝r−2

∫

{M>|ξ |>r}
φ(ξ)| f̂ (ξ)|2dξ+r−α

∫

{|ξ |≥M}
φ(ξ)| f̂ (ξ)|2dξ

⎞
⎟⎠

≤ c2r−2
∫

Rd

φ(ξ)| f̂ (ξ)|2dξ=c3r−2E0( f, f ) ≤ c3κr−2Q( f, f ),

where the last inequality is due to (2.4). Using the above inequality, we get

‖ f ‖2
2 =

∫

{|ξ |>r}
| f̂ (ξ)|2dξ +

∫

{|ξ |≤r}
| f̂ (ξ)|2dξ

≤ c4(κ)
(

r−2Q( f, f )+ 2 rd‖ f ‖2
1

)
, r ≤ 1. (2.7)

Note that, if a ≤ b, the function r → h(r) := ar−2 + 2brd has a local minimum at

r =
( a

db

) 1
d+2 ≤ 1.

Thus by minimizing the right-hand side of (2.7) for Q( f, f ) ≤ ‖ f ‖2
1, we get

‖ f ‖2
2 ≤ c5 E0( f, f )

d
d+2 ‖ f ‖

4
d+2
1 ≤ c6 Q( f, f )

d
d+2 ‖ f ‖

4
d+2
1 .

Therefore by Theorem 2.9 in [8], we conclude that

p(t, x, y) ≤ c7 t−d/2 for all t ∈ [1,∞).

��
Theorem 2.3 There exist C∗ < 1 and c1, c2, c3, c4 > 0 such that

p(t, x, y) ≤ c1

(
t

|x − y|
)c2|x−y|

= c1 exp

(
−c2|x − y| log

|x − y|
t

)
(2.8)

for q.e. x, y ∈ R
d with (t, |x − y|) ∈ {(t, R) : R ≥ max{t/C∗, R∗}} and

p(t, x, y) ≤ c3t−d/2 exp

(
−c4|x − y|2

t

)
(2.9)
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842 Z.-Q. Chen et al.

for q.e. x, y ∈ R
d with (t, |x − y|) ∈ {(t, R) : R∗ ≤ R ≤ t/C∗}, where R∗ is given in

Proposition 2.1.

Proof Using Proposition 2.3 above, [8, Corollary 3.28] and [1, Theorem 3.1], we have

p(t, x, y) ≤ c(t−d/α ∨ t−d/2) exp(−E(2t, x, y)) for q.e. x, y ∈ R
d . (2.10)

Here E(2t, x, y) is given by the following:

�(ψ)(x) =
∫
(eψ(x)−ψ(y) − 1)2 J (x, y)dy,


(ψ)2 = ‖�(ψ)‖∞ ∨ ‖�(−ψ)‖∞,
E(t, x, y) = sup{|ψ(x)− ψ(y)| − t
(ψ)2 : ψ ∈ Lip0 with 
(ψ) < ∞},

where Lip0 is a space of compactly supported Lipschitz continuous functions on R
d .

Fix x0, y0 ∈ R
d and let R = |x0 − y0| ≥ R∗. Define

ψ(x) = λ(R − |x0 − x |)+.

So |ψ(x)− ψ(y)| ≤ λ|x − y|. Note that |et − 1|2 ≤ t2e2|t |. Hence

�(ψ)(x) =
∫
(eψ(x)−ψ(y)−1)2 J (x, y)dy ≤ e2λλ2

∫
|x − y|2 J (x, y)dy ≤c1 λ

2e2λ.

So we have

− E(2t, x0, y0) ≤ −λR + c1tλ2e2λ. (2.11)

For each t and R, take λ0 > 0 such that

λ0e2λ0 = R

2c1t
. (2.12)

Since xe2x is strictly increasing, it is easy to check that suchλ0 exists uniquely. Then the
right hand side of (2.11) is equal to −λ0 R/2. Let C∗ = (2c1e)−1 which is less than 1 by
taking c1 large. When R/(2c1t) ≥ e (i.e., t ≤ C∗ R), (2.12) holds with λ0 
 log(R/t),
and when R/(2c1t) < e (i.e., t ≥ C∗ R), (2.12) holds with λ0 
 R/t . Putting these
into (2.10), we obtain the following; In the region {(t, R) : t ≤ C∗ R, R ≥ R∗},

p(t, x, y) ≤ c′(t−d/α ∨ t−d/2) exp

(
−c2 R log

R

t

)

= c′ (t−d/α ∨ t−d/2
)( t

R

)c2 R

, (2.13)

and in the region {(t, R) : t ≥ C∗ R, R ≥ R∗},

p(t, x, y) ≤ c′t−d/2 exp(−c′′ R2/t),
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Heat kernel estimate for finite range jump process 843

which gives (2.9).
To complete the proof, we need to discuss the former case more. When t ≥ 1,

the right hand side of (2.13) is bounded from above by c′(t/R)c2 R , and when t ≤ 1
and R ≥ R∗ for some large R∗ > 1, it is bounded from above by c′(t/R)c2 R−d/α ≤
c′(t/R)c3 R , both of which give (2.8). So all we need is to consider the case t ≤ 1
and R∗ ≤ R ≤ R∗. But in this case, the desired estimate is already established in
Proposition 2.1(i). ��

Now let’s consider a more general non-local Dirichlet form (E,F). Set

E( f, f ) =
∫

Rd

∫

Rd

( f (y)− f (x))2 J (x, y) dx dy, (2.14)

F = C1
c (R

d)
E1
, (2.15)

where the jump kernel J (x, y) is a symmetric non-negative function of x and y such
that J (x, y) = 0 for |x − y| ≥ 1 and there exist α, β ∈ (0, 2), β > α and positive
κ1, κ2 such that

κ1|y − x |−d−α ≤ J (x, y) ≤ κ2|y − x |−d−β for |y − x | < 1. (2.16)

Here E1( f, f ) := E( f, f ) + ‖ f ‖2
2, C1

c (R
d) denotes the space of C1 functions on

R
d with compact support, and F is the closure of C1

c (R
d) with respect to the metric

E1( f, f )1/2. The Dirichlet form (E,F) is regular on R
d and so it associates a Hunt

process Z , starting from quasi-everywhere in R
d . It is proved in [1] that Z is conser-

vative and has quasi-continuous transition density function q(t, x, y) with respect to
the Lebesgue measure on R

d .
When t ∈ [1,∞), only the upper bound of the jumping kernel played a role in the

proofs of Proposition 2.2 and Theorem 2.3. Thus, combining with Theorem 1.2 in [1],
the following is true for Z .

Theorem 2.4 There is a constant c > 0 such that

q(t, x, y) ≤ c (t−d/α ∨ t−d/2) for q.e. x, y ∈ R
d .

Moreover, there exist C1 < 1, R1 ≤ 1
4 and c1, c2, c3, c4 > 0 such that

q(t, x, y) ≤ c1

(
t

|x − y|
)c2|x−y|

= c1 exp

(
−c2|x − y| log

|x − y|
t

)

for q.e. x, y ∈ R
d (2.17)

with (t, |x − y|) ∈ {(t, R) : t ≥ 1, R ≥ max{t/C1, R1}} and

q(t, x, y) ≤ c3t−d/2 exp

(
−c4|x − y|2

t

)
for q.e. x, y ∈ R

d (2.18)

with (t, |x − y|) ∈ {(t, R) : t ≥ 1, R1 ≤ R ≤ t/C1}.
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The above theorem will be used in the next section to prove the near-diagonal lower
bound for q(t, x, y).

3 Heat kernel lower bound estimate

In this section, we give the proof of the lower bound estimate of the heat kernel. We
first record a simple observation, which sheds lights on the different heat kernel behav-
iors at small (stable) and large (Gaussian) scale. Recall that a finite range isotropically
symmetric α-stable process in R

d with jumps of size larger than 1 removed is the Lévy
process with Lévy measure c0(d, α)|h|−d−α1{|h|≤1}dh.

Lemma 3.1 Let X be finite range isotropically symmetric α-stable process in R
d with

jumps of size larger than 1 removed. For λ > 0, define

Y (λ)t := Y (λ)0 + λ−1/2(Xλt − X0) and Z (λ)t := Z (λ)0 + λ−1/α(Xλt − X0).

Then the process Y (λ) converges in finite-dimensional distributions to a Brownian
motion on R

d as λ → ∞ and Z (λ) converges in finite-dimensional distributions to
the isotropically symmetric α-stable process as λ → 0.

Proof Recall that the Lévy exponent φ of X is given by (2.5). Clearly Y (λ) and Z (λ)

are Lévy processes as well, with

E

[
eiξ ·(Y (λ)t −Y (λ)0 )

]
= E

[
eiξ ·λ−1/2(Xλt −X0)

]
= eλtφ(λ−1/2ξ), ξ ∈ R

d

and

E

[
eiξ ·(Z (λ)t −Z (λ)0 )

]
= E

[
eiξ ·λ−1/α(Xλt −X0)

]
= eλtφ(λ−1/αξ), ξ ∈ R

d .

Let φλ(ξ) and ψλ(ξ) denote the Lévy exponents of Y (λ) and Z (λ), respectively. Then
we have by above and (2.6) that

φλ(ξ) = λφ(λ−1/2ξ) = λ1−α/2|ξ |α
∫

{x∈Rd :|x |≤λ−1/2|ξ |}

1 − cos x1

|x |d+α dx (3.1)

which converges to c|ξ |2 as λ → ∞. Moreover, there is c1 > 0 so that

|φλ(ξ)| ≤ c1|ξ |2 for every ξ ∈ R
d and λ > 0. (3.2)

Similarly,

ψλ(ξ) = λφ(λ−1/αξ) = |ξ |α
∫

{x∈Rd :|x |≤λ−1/α |ξ |}

1 − cos x1

|x |d+α dx (3.3)
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which increases to c2|ξ |α as λ ↓ 0, where c2 = ∫
Rd

1−cos(x1)

|x |d+α dx . This proves the
lemma. ��

Inequality (3.2) will be used later in the proof of Theorem 3.4.
Now let’s consider the more general non-local Dirichlet form (E,F) in (2.14)–

(2.15). Recall that the jump kernel J (x, y) for (E,F) is zero for |x − y| ≥ 1 and
satisfies the condition (2.16), and q(t, x, y) is the transition density function for the
associated Hunt process Z with respect to the Lebesgue measure on R

d .
Define

φ(x) = c
(

1 − |x |2
)12/(2−β)

1B(0,1)(x),

where c > 0 is the normalizing constant so that
∫
Rd φ(x)dx = 1.

The following proposition is an immediate consequence of the Assumption (2.16)
and Theorem 5.1 in Sect. 5 below. As mentioned earlier, to keep the flow of our proof
for heat kernel estimates, we will postpone its proof to Sect. 5.

Proposition 3.2 There is a positive constant c1 = c1(d, α, β) independent of r > 1,
such that for every u ∈ L1(B(0, 1), φdx),

∫

B(0,1)

(u(x)− uφ)
2φ(x)dx

≤ c1

∫

B(0,1)×B(0,1)

(u(x)− u(y))2 rd+2 J (r x, r y)
√
φ(x)φ(y) dxdy.

Here uφ := ∫B(0,1) u(x)φ(x)dx.

Remark 3.3 The above weighted Poincaré inequality in fact holds for more general
weight function φ. See Sect. 5 for the details. ��

For δ ∈ (0, 1), set

Jδ(x, y) =
{

J (x, y) for |x − y| ≥ δ;
κ2|y − x |−d−β for |x − y| < δ,

(3.4)

and define (Eδ,F δ) in the same way as we defined (E,F) in (2.14)–(2.15).
For δ ∈ (0, 1), let Z δ be the symmetric Markov process associated with (Eδ,F δ).

By [1], the process Z δ can be modified to start from every point in R
d and is con-

servative; moreover Z δ has a quasi-continuous transition density function qδ(t, x, y)
defined on [0,∞)× R

d × R
d , with respect to the Lebesgue measure on R

d .
The idea of the proof of the following theorem is motivated by that of Proposition

4.9 in [1]. For ball B(x0, r) ⊂ R
d , let qδ,B(x0,r)(t, x, y) denote the transition density

function of the subprocess Z B(x0,r) of Z killed upon leaving the ball B(x0, r).

Theorem 3.4 Suppose the Dirichlet form (E,F) is given by (2.14)–(2.15) with the
jumping kernel J satisfying the condition (2.16) and Jδ is given by (3.4). For each

123



846 Z.-Q. Chen et al.

δ0 > 0, there exists c = c(δ0) > 0, independent of δ ∈ (0, 1) such that for every
x0 ∈ R

d and t ≥ δ0 ,

qδ,B(x0,t1/2)(t, x, y) ≥ c t−d/2 for every t ≥δ0 and q.e.x, y ∈ B(x0,
√

t/2) (3.5)

and

qδ(t, x, y) ≥ c t−d/2 for every t ≥ δ0 and q.e.x, y with |x − y|2 ≤ t. (3.6)

Proof In view of [1, Theorem 4.10], it suffices to prove that there are t0 < 1/2 and
c > 0, independent of δ ∈ (0, 1), such that (3.5)–(3.6) hold for t ≥ t−1

0 . In fact, if
δ0 < t−1

0 and δ0 ≤ t ≤ t−1
0 , we let n0 = 1 + [2/√t0δ0], where [a] is the largest

integer which is no larger than a. By [1, Theorem 4.10], we have

qδ,B(x0,δ
1/2
0 )(s, x, y)≥c0, for every

δ0

n0
≤s ≤ t−1

0 and x, y ∈ B(x0, 3δ1/2
0 /4)

(3.7)

where the constant c0 is independent of δ and x0 ∈ R
d . Given x, y ∈ B(x0,

√
t/2),

let z1 · · · zn0−1 be equally spaced points on the line segment joining x and y such
that x ∈ B(z1, 3δ1/2

0 /4) ⊂ B(z1, δ
1/2
0 ) ⊂ B(x0, t1/2) and y ∈ B(zn0−1, 3δ1/2

0 /4) ⊂
B(zn0−1, δ

1/2
0 ) ⊂ B(x0, t1/2). Using (3.7) and the semigroup property, we have

qδ,B(x0,t1/2)(t, x, y)

=
∫

B(x0,t1/2)

. . .

∫

B(x0,t1/2)

qδ,B(x0,t1/2)(t/n0, x, w1) . . .

qδ,B(x0,t1/2)(t/n0, wn0−1, y)dw1 . . . dwn0−1

≥
∫

B(z1,3δ
1/2
0 /4)

. . .

∫

B(zn0−1,3δ
1/2
0 /4)

qδ,B(z1,δ
1/2
0 )(t/n0, x, w1) . . .

qδ,B(zn0 ,δ
1/2
0 )(t/n0, wn0−1, y)dw1 . . . dwn0−1 ≥ c̃0 ≥ c̃0δ

d/2
0 t−d/2.

Similar argument gives (3.6) when δ0 < t−1
0 and t ∈ [δ0, t−1

0 ].
Fix δ ∈ (0, 1) and, for simplicity, in this proof we sometimes drop the superscript

“δ” from Z δ and qδ(t, x, y). For ball Br := B(0, r) ⊂ R
d , let q Br (t, x, y) denote the

transition density function of the subprocess Z Br of Z killed upon leaving the ball Br .
Then by the proof of Proposition 4.3 in [1], there is a constant c1 = c1(δ, r) > 0 such
that

q Br (t, x, y) ≥ c1(r − |x |)β(r − |y|)β for every t ∈ [r2/8, r2/4] and x, y ∈ Br .
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Define

ϕr (x) =
(

r2 − |x |2
)12/(2−β)

1Br (x).

It follows from Lemmas 4.5 and 4.6 of [1] that for every t > 0 and y0 ∈ Br ,
q Br (t, x, y0) ∈ F Br and ϕr (·)/q Br (t, x, y0) ∈ F Br , where (E,F Br ) is the Dirich-
let form for the killed process Z Br .

Note that the Dirichlet form of
{
r−1 Zr2t , t ≥ 0

}
is (E (r),F (r)), where

E (r)(u, u) =
∫

Rd×Rd

(u(x)− u(y))2rd+2 Jδ(r x, r y)dxdy (3.8)

F (r) =
{

u ∈ L2(u, u) : E (r)(u, u) < ∞
}

= Wβ/2,2(Rd).

By (2.16) and (3.2), there are constants c2, c3 > 0 independent of r ≥ 1 and δ ∈ (0, 1)
such that for every u ∈ W 1,2(Rn) ⊂ Wβ/2,2(Rd),

E (r)(u, u) ≤ c2

∫

Rd

φr (ξ)|̂u(ξ)|2dξ ≤ c3

∫

Rd

|∇u(x)|2dx . (3.9)

Here û denotes the Fourier transform of u.
Define

q B
r (t, x, y) := rdq Br (r2t, r x, r y). (3.10)

It is easy to see q B
r (t, x, y) is the transition density function for process r−1 Z Br

r2t
. The

latter is the subprocess of {r−1 Zr2t , t ≥ 0} killed upon leaving the unit ball B(0, 1),
whose Dirichlet form will be denoted as (E (r),F (r),B). It follows from above there is
a constant c4 = c4(δ, r) > 0 such that

q B
r (t, x, y) ≥ c4(1−|x |)β(1 − |y|)β for every t ∈ [1/8, 1/4] and x, y ∈ B(0, 1).

Recall that

φ(x) = c5

(
1 − |x |2

)12/(2−β)
1B(0,1)(x),

where c5 is a normalizing constant so that
∫
Rd φ(x)dx = 1. Let x0 ∈ B(0, 1) and

Define
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848 Z.-Q. Chen et al.

u(t, x) := q B
r (t, x, x0), v(t, x) := q B

r (t, x, x0)/φ(x)
1/2,

H(t) :=
∫

B(0,1)

φ(y) log u(t, y)dy,

G(t) :=
∫

B(0,1)

φ(y) log v(t, y)dy

=
∫

B(0,1)

φ(y) log u(t, y)dy − 1

2

∫

B(0,1)

φ(x) logφ(x)dx

= H(t)− c6.

By Lemma 4.7 of [1],

G ′(t) = −E (r)
(

u(t, ·), φ

u(t, ·)
)
. (3.11)

(The reason we work with Jδ rather than J is so that we can use [1, Lemma 4.7] to
obtain above (3.11). The remainder of the argument does not use the condition on Jδ ,
and in particular the constants can be taken to be independent of δ ∈ (0, 1)).

Write J (r)(x, y) := rd+2 Jδ(r x, r y) and κ(r)B (x) := 2
∫
Rd\B(0,1) J (r)(x, y)dy for

x ∈ B := B(0, 1). Then we have from (3.8) and (3.11),

G ′(t) = −
∫

B

∫

B

[u(t, y)− u(t, x)]
u(t, x)u(t, y)

[u(t, x)φ(y)− φ(x)u(t, y)]J (r)(x, y) dy dx

−
∫

B

φ(x)κ(r)B (x)dx .

The main step is to show that for all t in (0,1] one has

G ′(t) ≥ −c7 + c8

∫

B

(log u(t, y)− H(t))2φ(y) dy . (3.12)

for positive constants c7, c8.
Setting a = u(t, y)/u(t, x) and b = φ(y)/φ(x), we see that

[u(t, y)− u(t, x)]
u(t, x)u(t, y)

[u(t, x)φ(y)− φ(x)u(t, y)]

= φ(x)

(
b − b

a
− a + 1

)

= φ(x)

[(
(1 − b1/2

)2 −b1/2
(

a

b1/2 + b1/2

a
− 2

)]
. (3.13)
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Using the inequality

A + 1

A
− 2 ≥ (log A)2, A > 0,

with A = a/
√

b, the right hand side of (3.13) is bounded above by

(φ(x)1/2 − φ(y)1/2)2 −√φ(x)φ(y) (log v(t, y)− log v(t, x))2.

Substituting in the formula for G ′(t) and using Proposition 3.2,

H ′(t) = G ′(t) ≥ −c9+
∫

B

∫

B

(log v(t, y)− log v(t, x))2
√
φ(x)φ(y)J (r)(x, y) dx dy

≥ −c9 + c10

∫

B

(log v(t, y)− G(t))2φ(y) dy

≥ −c11 + c12

∫

B

(log u(t, y)− H(t))2φ(y) dy ,

which gives (3.12). Note that in the first inequality we used the fact that

∫

B

∫

B

(φ(x)1/2 − φ(y)1/2)2 J (r)(x, y) dx dy +
∫

B

φ(x)κ(r)B (x)dx

= E (r)(φ1/2, φ1/2) < ∞,

which follows from (3.9) and in the last inequality we used the fact that

∫

B

(log u(t, y)− H(t))2φ(y) dy

=
∫

B

(
log v(t, y)− G(t)+ 1

2 logφ(y)− c6
)2
φ(y) dy

≤ 2
∫

B

(log v(t, y)− G(t))2 φ(y) dy + 2
∫

B

( 1
2 logφ(y)− c6

)2
φ(y) dy

= 2
∫

B

(log v(t, y)− G(t))2 φ(y) dy + c13.

Let qr (t, x, y) := rdq(r2t, r x, r y), which is the transition density function with
respect to the Lebesgue measure on R

d for the process Z (r)t := r−1 Zr2t , whose non-
local Dirichlet form is given by the jumping intensity measure rd+2 J (r x, r y). Using
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Theorem 2.4 and the fact that R1 ≤ 1
4 ≤ r

4 where R1 is given in Theorem 2.4, for
r2t ≥ 1,

Px

(
Z (r)t /∈ B(x, 1/4)

)

=
∫

B(x,1/4)c

rdq(r2t, r x, r y)dy

=
∫

B(r x,r/4)c

q(r2t, r x, z)dz

≤ c14

∫

{z∈Rd :C1|z−r x |≥max{C1r/4, r2t}}
e−c15|z−r x | dz

+c16

∫

{z∈Rd :r2t≥C1|z−r z|≥C1r/4}
r−d t−d/2 exp

(
−c17|z − r z|2

r2t

)
dz

≤ c18

∫

{w∈Rd :|w|≥r/4}
e−c15|w| dw + c19

r2t/C1∫

r/4

r−d t−d/2 exp

(
−c17s2

r2t

)
sd−1ds

≤ c18

∫

{w∈Rd :|w|≥r/4}
e−c15|w| dw + c19

∞∫

1/(4
√

t)

exp
(
−c17u2

)
ud−1du.

Let t0 ∈ (0, 1/2) be small so that

c19

∞∫

1/(4
√

t0)

exp
(
−c17u2

)
ud−1du < 1/16

and

c18

∫

{w∈Rd :|w|≥1/(4
√

t0)}
e−c15|w| dw < 1/16.

We then have

Px

(
Z (r)t /∈ B(x, 1/4)

)
<1/16+1/16 = 1/8 for every r ≥ t−1/2

0 and 0 < t ≤ t0.

By Lemma 3.8 of [1], we have for every r ≥ t−1/2
0 ,

Px

(
sup

s∈[0,t0]
|Z (r)s − Z (r)0 | > 1/4

)
≤ 1/4.
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Therefore, with r ≥ t−1/2
0 , for every t ≤ t0,

∫

B(0,1/4)

u(t, x) dx ≥ P0

(
sup

s∈[0,t0]
|Z (r)s − Z (r)0 | < 1/4

)

= 1 − P0

(
sup

s∈[0,t0]
|Z (r)s − Z (r)0 | ≥ 1/4

)
≥ 3

4 .

Here the conservativeness of Z (r)t is used in the first equality.
Choose K such that µd(B(0, 1/4))e−K = 1

4 and define

Dt := {x ∈ B(0, 1/4) : u(t, x) ≥ e−K }.

By Proposition 2.2, if t ≤ t0

3

4
≤

∫

B(0,1/4)

u(t, x)dx =
∫

Dt

u(t, x) dx +
∫

B(0,1/4)\Dt

u(t, x) dx

≤ c20t−d/αµd(Dt )+ µd(B(0, 1/4))e−K

= c20t−d/αµd(Dt )+ 1

4
.

Therefore

µd(Dt ) ≥ td/α

c21
≥ c22 > 0 if t ∈ [ε/4, t0].

Note that the positive constant c22 = c22(ε) can be chosen to be independent of
r ≥ t−1/2

0 and x0 ∈ B(0, 1/2).
Jensen’s inequality tells us that if t ≤ t0

H(t) =
∫

B

(
log u(t, x)

)
φ(x) dx ≤ log

∫

B

u(t, x)φ(x) dx ≤ log ‖φ‖∞ := H .

On Dt , log u(t, x) ≥ −K so there are only four possible cases:

(a) If log u(t, x) > 0 and H(t) ≤ 0, then (log u(t, x)− H(t))2 ≥ H(t)2.
(b) If log u(t, x) > 0 and 0 < H(t) ≤ H , then

(log u(t, x)− H(t))2 ≥ 0 ≥ H(t)2 − H
2
.

(c) If −K ≤ log u(t, x) ≤ 0 and |H(t)| ≥ 2K , then (log u(t, x) − H(t))2 ≥
1
4 H(t)2.
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(d) If −K ≤ log u(t, x) ≤ 0 and |H(t)| < 2K , then

(log u(t, x)− H(t))2 ≥ 0 ≥ 1

4
H(t)2 − K 2.

Thus we conclude

(log u(t, x)− H(t))2 ≥ 1

4
H(t)2 − (H ∨ K )2 on Dt .

Since φ is bounded below by c23 > 0 on B(0, 1/4), then

c12

∫

B

(log u(t, x)−H(t))2φ(x)dx − c11 ≥ c12

∫

Dt

(log u(t, x)−H(t))2φ(x)dx−c11

≥ c24µd(Dt )
(

1
4 H(t)2−(H ∨ K )2

)
−c11.

We therefore have

H ′(t) ≥ F H(t)2 − E, t ∈ [ε/4, t0]

for some positive constants E and F that are independent of r ≥ t−1/2
0 .

Now we do some calculus. Let t2 ∈ [ε/2, t0 ∧ 2] and let Q := max(16E,
(16E/F)1/2). Suppose H(t2) ≤ −Q. Since H ′(t) ≥ −E and t2 − t < t0 ∧ 2 ≤ 2,

H(t2)− H(t) ≥ −2E for t ∈ [ε/4, t2]. (3.14)

This implies H(t) ≤ −Q/2. Since F Q2/4 ≥ 4E , E < F
2 H(t)2 and hence

H ′(t) ≥ F

2
H(t)2.

Integrating H ′/H2 ≥ F/2 over [ ε4 , t2] yields

1

H(t2)
− 1

H(ε/4)
≤ − F

2
(t2 − ε/4) ≤ − Fε

8
.

Since H(ε/4) ≤ −Q/2 < 0, we have 1/H(t2) ≤ −Fε/16, that is,

H(t2) ≥ − 16

Fε
.

This proves that either H(t2) ≥ −Q or H(t2) ≥ −16/(Fε). Thus in either case,
H(t2) ≥ −U , where U = U (ε) := max{Q, 16/(Fε)} > 0, and so G(t2) = H(t2)−
c6 ≥ −U − c6.
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Now for every x0, x1 ∈ B(0, 1/2), applying the above first with x0 and then with
x0 replaced by x1, we have

log q B
r (2t2, x0, x1) = log

∫

B

q B
r (t2, x0, z)q B

r (t2, x1, z) dz

≥ log
∫

B

q B
r (t2, x0, z)q B

r (t2, x1, z)φ(z) dz − log ‖φ‖∞

≥
∫

B

log
(

q B
r (t2, x0, z)q B

r (t2, x1, z)
)
φ(z) dz − log ‖φ‖∞

=
∫

B

log q B
r (t2, x0, z)φ(z)dz +

∫

B

log q B
r (t2, x1, z)φ(z)dz

− log ‖φ‖∞
≥ −2(U + c26),

that is, q B
r (2t2, x0, x1) ≥ e−2(U+c26). A repeated use of the semigroup property (but at

most 2/t2 more times) then shows q B
r (t, x0, x1) ≥ c27(ε) for every t ∈ [ε/2, 2] and

x0, x1 ∈ B(0, 1/2). Taking ε = 1/4, we have for every r ≥ t−1/2
0 , x, y ∈ B(0, 1/2)

and t ∈ [1/4, 2],

rdq Br (r2t, r x, r y) = q B
r (t, x, y) ≥ c28,

in particular,

q Br (r2, r x, r y) ≥ c28r−d .

Thus we have

q B(0,
√

t)(t, x, y) ≥ c28t−d/2 for t ≥ t−1
0 and x, y ∈ B(0,

√
t/2).

Clearly the above inequality holds with B(0,
√

t) and B(0,
√

t/2) being replaced by
any other ball B(x0,

√
t) and B(x0,

√
t/2) of the same radius, respectively. Conse-

quently,

q(t, x, y) ≥ q B(x0,
√

t)(t, x, y) ≥ c28t−d/2 for t ≥ t−1
0 and |x − y|2 ≤ t.

This proves the theorem. ��
For any ball B ⊂ R

d , let (Eδ,B,F δ,B) denote the Dirichlet form of the subprocess
Z δ,B of Z δ killed upon leaving the ball B. It is shown in [1, Theorems 1.5 and 2.6] that
(Eδ,F δ) and (Eδ,B,F δ,B) converge as δ → 0 to (E,F) and (E B,F B), respectively
in the sense of Mosco, where B is a ball in R

d . Therefore the semigroup of Z δ and
Z δ,B converge in L2 to that of Z and Z B , respectively. By the same proof as that for
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[1, Theorem 1.3], we deduce from Theorem 3.4 the following lower bound estimate
for the heat kernel of Z , which extends Theorem 1.3 in [1].

Theorem 3.5 Suppose the Dirichlet form (E,F) is given by (2.14)–(2.15) with the
jumping kernel J satisfying the condition (2.16). For each t0 > 0, there exists c1 =
c1(t0) > 0, such that for every x0 ∈ R

d , t ≥ t0,

q B(x0,t1/2)(t, x, y) ≥ c1t−d/2 for q.e. x, y ∈ B(x0,
√

t/2)

and

q(t, x, y) ≥ c1t−d/2 for q.e. x, y with |x − y|2 ≤ t.

Now we return to the case for the Dirichlet form (Q,D) given by (1.2)–(1.3).

Theorem 3.6 There exist c0, c1, c2, c3, c4 > 0 such that

p(t, x, y) ≥

⎧⎪⎪⎨
⎪⎪⎩

c0 t−d/2 when t ≥ Rα∗ , |x − y|2 ≤ t,

c1

(
t

|x−y|
)c2|x−y|

when |x − y| ≥ max{t/C∗, R∗},
c3t−d/2 exp

(
− c4|x−y|2

t

)
when C∗|x − y| ≤ t ≤ |x − y|2,

(3.15)

where R∗ and C∗ are the constants given in Proposition 2.1 and in Theorem 2.3,
respectively.

Proof By Theorem 3.5, we only need to show the second and third inequalities in
(3.15). We first prove the second inequality in (3.15). Let R := |x − y| and c+ :=
(4/R∗) ∨ (C∗/T∗) ≥ 1. Let l ≥ 2 be a positive integer such that c+ R < l ≤
c+ R + 1 and let x = x0, x1, . . . , xl = y be such that |xi − xi+1| ≤ 2R/ l ≤ 2/c+
for i = 1, . . . , l − 1. (Here we used the fact that R

d is a geodesic space.) Since
t/ l ≤ C∗ R/ l ≤ C∗/c+ ≤ T∗ and 2R/ l ≤ 2/c∗ ≤ R∗/2, by Proposition 2.1(ii), we
have for all (yi , yi+1) ∈ B(xi , R∗/4)× B(xi+1, R∗/4)

p(t/ l, yi , yi+1) ≥ c0

(
(t/ l)−d/α ∧ (t/ l)

(R/ l)d+α

)
≥ c1

(
(t/ l)−d/α ∧ (t/ l)

)
=c1t/ l,

(3.16)

since t/ l ≤ T∗ ≤ 1. Let Bi = B(xi , R∗/4). Using (3.16), we have

p(t, x, y) ≥
∫

B1

. . .

∫

Bl−1

p(t/ l, x, y1) . . . p(t/ l, yl−1, y)dy1 . . . dyl−1

≥ c1(t/ l)�l−1
i=1c2(t/ l) = (c3t/ l)l 
 (c4t/R)c+ R+1 ≥ c5(t/R)c6 R,

and the proof is completed.
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We next prove the third inequality in (3.15). Take maximum l ∈ N such that
t/ l ≤ (R/ l)2; then R2/t − 1 < l ≤ R2/t . Since t ≥ C∗ R, we can take t/ l ≥ C2∗ . Let
x = x0, x1, . . . , xl = y be such that |xi − xi+1| 
 R/ l for i = 1, . . . , l − 1. Since
(R/ l)2 
 t/ l ≥ C2∗ , by Theorem 3.5, we have

p(t/ l, xi , xi+1) ≥ c1(t/ l)−d/2. (3.17)

Using (3.17), we have

p(t, x, y) ≥
∫

B1

. . .

∫

Bl−1

p(t/ l, x, y1) . . . p(t/ l, yl−1, y)dy1 . . . dyl−1

≥ c1(t/ l)−d/2�l−1
i=1

(
c2(t/ l)−d/2(R/ l)d

)

≥ c1(t/ l)−d/2cl−1
2

≥ c1(t/ l)−d/2 exp(−c3l)

≥ c4t−d/2 exp

(
−c5|x − y|2

t

)
.

This completes the proof. ��
Remark 3.7 In [12], the following two-sided transition density function estimate was
obtained for the relativisticα-stable-like process where J (x, y) 
 |x−y|−d−αe−|x−y|:
for t ≤ 1:

c1

(
t−d/α ∧ t

|x − y|d+α

)
e−c2|x−y| ≤ p(t, x, y)

≤ c3

(
t−d/α ∧ t

|x − y|d+α

)
e−c4|x−y|.

Theorems 2.3 and 3.6 show that when |x − y| → ∞, the behavior of the heat kernel
for finite range α-stable-like process is different from that of relativistic α-stable-like
process.

We will use the following near diagonal lower bound for the killed process in the
next section. Recall that R∗ ∈ (0, 1) is the constant given in Proposition 2.1(ii).

Proposition 3.8 For every c1 ∈ (0, 1), c2, c3 > 0, there is a constant c4 > 0 such
that for every x0 ∈ R

d and r ≤ R∗,

pB(x0,r)(t, x, y)≥c4 t−d/α for q.e. x, y ∈ B(x0, c1r) and t ∈ [c2rα, c3rα].
(3.18)

Proof Let κ := c2/(2c3) and Br := B(x0, r). We first show that there is a constant
c5 ∈ (0, 1) so that (3.18) holds for every r ≤ R∗, quasi-every x, y ∈ B(x0, c1r) and
t ∈ [κ c5rα, c5rα]. We will use the following Dynkin–Hunt formula, which is easy to
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establish using the strong Markov property, since we know the existence of the heat
kernels:

pBr (t, x, y) = p(t, x, y)− E
x [1{τBr ≤t} p(t − τBr , XτBr

, y)]. (3.19)

For r ≤ R∗ and t ∈ [κ c5rα, c5rα], and x, y ∈ B(x0, c1r), by (3.19) and Proposition
2.1(i) and (ii) (|x − y| ≤ 2c1r ≤ 2c1(κc5)

−1/αt−1/α), we have

pBr (t, x, y) ≥ c6c1+d/α
5 t−d/α−c7E

x
[

1{τBr ≤t}
(
(t−τBr )

−d/α ∧ t − τBr

|XτBr
−y|d+α

)]
,

(3.20)

where constants c6, c7 are independent of c5 ∈ (0, 1]. Observe that

|XτBr
− y| ≥ (1 − c1)r, t − τBr ≤ t ≤ c5rα

and so

t − τBr

|XτBr
− y|d+α ≤ t − τBr

((1 − c1)r))d+α ≤ c1+d/α
5

(1 − c1)d+α t−d/α. (3.21)

Note that if c5 < ((1 − c1)/2)α , by Proposition 2.1 (i), for t ≤ c5rα

Px (Xt /∈ B(x, (1 − c1)r/2)) =
∫

B(x,(1−c1)r/2)c

p(t, x, y)dy

≤ c7

∫

B(x,(1−c1)r/2)c

t

|x − y|d+α dz ≤ c8
t

rα
≤ c8c5

where c8 is independent of c5. Now applying [1, Lemma 3.8], we have

Px
(
τB(x,(1−c1)r) ≤ t

) ≤ 2c8c5. (3.22)

Consequently, we have from (3.20), (3.21) and (3.22)

pBr (t, x, y) ≥
(

c6c1+d/α
5 − c7

c1+d/α
5

(1 − c1)d+α Px
(
τBr ≤ t

))
t−d/α

≥
(

c6c1+d/α
5 − c7

c1+d/α
5

(1 − c1)d+α Px
(
τB(x,(1−c1)r) ≤ t

))
t−d/α

≥ c1+d/α
5

(
c6 − 2c8c7

c5

(1 − c1)d+α

)
t−d/α.
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Clearly we can choose c5 < ((1 − c1)/2)α small so that pBr (t, x, y) ≥ c9t−d/α . This
establishes (3.18) for any x0 ∈ R

d , r ≤ R∗ and t ∈ [κ c5rα, c5rα].
Now for r ≤ R∗ and t ∈ [c2rα, c3rα], define k0 = [2c3/c5]+1. Here for a ≥ 1, [a]

denotes the largest integer that does not exceed a. Then t/k0 ∈ [κ c5rα, c5rα]. Using
semigroup k0 times, we conclude that for q.e. x, y ∈ B(x0, c1r) and t ∈ [c2rα, c3rα],

pB(x0,r)(t, x, y)

=
∫

B(x0,r)

. . .

∫

B(x0,r)

pB(x0,r)(t/k0, x, w1) . . .

pB(x0,r)(t/k0, wn−1, y)dw1 . . . dwn−1

≥
∫

B(x0,(t/k0)1/α/2)

. . .

∫

B(x0,(t/k0)1/α/2)

pB(x0,r)(t/k0, x, w1) . . .

pB(x0,r)(t/k0, wn−1, y)dw1 . . . dwn−1

≥ c9(t/k0)
−d/α

(
c9(t/k0)

−d/α c1rd
)k0−1

≥ c10t−d/α,

where c10 := ck0
9 kd/α

0

(
c1c9c−d/α

5

)k0−1
. The proof of (3.18) is now completed. ��

4 Applications of heat kernel estimates

4.1 Parabolic Harnack inequality

We first introduce a space-time process Zs := (Vs, Xs), where Vs = V0 − s. The fil-
tration generated by Z satisfying the usual condition will be denoted as {F̃s; s ≥ 0}.
The law of the space-time process s �→ Zs starting from (t, x) will be denoted as
P
(t,x).

We say that a non-negative Borel measurable function h(t, x) on [0,∞) × R
d is

parabolic (or caloric) on D = (a, b)× B(x0, r) if for every relatively compact open
subset D1 of D, h(t, x) = E

(t,x)[h(ZτD1
)] for every (t, x) ∈ D1 ∩ ([0,∞) × R

d),
where τD1 = inf{s > 0 : Zs /∈ D1}.

For each r > 0, we define

ψ(r) := rα ∨ r2.

Theorem 4.1 For every δ ∈ (0, 1), there exists c = c(α, δ) > 0 such that for every
x0 ∈ R

d , t0 ≥ 0, R > 0 and every non-negative function u on [0,∞) × R
d that is

123



858 Z.-Q. Chen et al.

parabolic on (t0, t0 + 6δψ(R))× B(x0, 4R),

sup
(t1,y1)∈Q−

u(t1, y1) ≤ c inf
(t2,y2)∈Q+

u(t2, y2), (4.1)

where Q− = (t0 + δψ(R), t0 + 2δψ(R))× B(x0, R) and Q+ = (t0 + 3δψ(R), t0 +
4δψ(R))× B(x0, R).

To prove the theorem, we need one notion and one lemma. According to [2], we
say (UJS) holds if

J (x, y) ≤ c

rd

∫

B(x,r)

J (x ′, y)dx ′ whenever r ≤ 1

2
|x − y|, x, y ∈ R

d . (UJS)

For R > 0, we say (UJS)≤R holds if the above holds for all x, y ∈ R
d and r ≤

|x−y|
2 ∧ R.
It is easy to check that finite range jump process satisfies (UJS)≤1.
The following lemma corresponds to [11, Lemma 4.9] (also [12, Lemmas 6.1]). The

statement is changed (in the sense that the size of two space-time balls are different
and the initial points are also different) and the proof requires major changes from the
original ones.

Lemma 4.2 Let R ≤ R∗ and δ < 1. Q1 = [t0 +2δRα/3, t0 +5δRα]× B(x0, 3R/2),
Q2 = [t0 + δRα/3, t0 + 6δRα] × B(x0, 2R) and define Q− and Q+ as in Theorem
4.1. Let h : [0,∞)× R

d → R+ be bounded and supported in [0,∞)× B(x0, 3R)c.
Then there exists C1 = C1(δ) > 0 such that the following holds:

E
(t1,y1)[h(ZτQ1

)] ≤ C1E
(t2,y2)[h(ZτQ2

)] for (t1, y1) ∈ Q− and (t2, y2) ∈ Q+.

Proof Without loss of generality, assume that t0 = 0. Denote BcR = B(x0, cR).
Using the Lévy system formula,

E
(t2,y2)[h(ZτQ2

)] = E
(t2,y2)[h(t2 − (τB2R ∧ (t2 − δRα/3)), XτB2R ∧(t2−δRα/3))]

= E
(t2,y2)

⎡
⎢⎣

t2−δRα/3∫

0

1{t≤τB2R }dt
∫

Bc
3R

h(t2 − t, v)J (Xt , v)dv

⎤
⎥⎦

=
t2−δRα/3∫

0

h(t2 − t, v)dt
∫

Bc
3R

E
(t2,y2)[1{t≤τB2R } J (Xt , v)]dv

=
t2∫

δRα/3

h(s, v)ds
∫

Bc
3R

E
(0,y2)

[
1{t2−s≤τB2R } J (Xt2−s, v)

]
dv
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=
t2∫

δRα/3

ds
∫

Bc
3R

h(s, v)dv
∫

B2R

pB2R (t2−s, y2, z)J (z, v)dz (4.2)

≥
t1∫

δRα/3

ds
∫

Bc
3R

h(s, v)dv
∫

B2R

pB2R (t2 − s, y2, z)J (z, v)dz

≥
t1∫

δRα/3

ds
∫

Bc
3R

h(s, v)dv
∫

B3R/2

pB2R (t2−s, y2, z)J (z, v)dz. (4.3)

Since 6δRα ≥ t2 − s ≥ t2 − t1 ≥ δRα for s ∈ [δRα/3, t1], by Proposition 3.8, we
have that the right hand side of (4.3) is greater than or equal to

c1

Rd

t1∫

δRα/3

ds
∫

Bc
3R

h(s, v)dv
∫

B3R/2

J (z, v)dz.

So, the proof is complete once we obtain

E
(t1,y1)[h(ZτQ1

)] ≤ c2

Rd

t1∫

δRα/3

ds
∫

Bc
3R

h(s, v)dv
∫

B3R/2

J (z, v)dz. (4.4)

Analogous to (4.2), we have by using the Lévy system,

E
(t1,y1)[h(ZτQ1

)] =
t1∫

2δRα/3

ds
∫

Bc
3R

h(s, v)dv
∫

B3R/2

pB3R/2(t1 − s, y1, z)J (z, v)dz.

Since
∫

B3R/2

pB3R/2(t1 − s, y1, z)
∫

Bc
3R

J (z, v)h(s, v)dvdz

=
∫

B5R/4

pB3R/2(t1 − s, y1, z)
∫

Bc
3R

J (z, v)h(s, v)dvdz

+
∫

B3R/2\B5R/4

pB3R/2(t1 − s, y1, z)
∫

Bc
3R

J (z, v)h(s, v)dvdz = I1 + I2.

When z ∈ B3R/2\B5R/4, we have |y1 − z| ≥ R/4, so by Proposition 2.1(i), p
B3R/2
s

(y1, z) ≤ c3 R−d for some constant c3 > 0 and
∫ t1

0 I2 ds is less than or equal to the
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right hand side of (4.4). For z ∈ B5R/4 by UJS≤1,

∫

Bc
3R

J (z, v)h(s, v)dv ≤ c4

Rd

∫

B(z,R/6)

∫

Bc
3R

J (z′, v)h(s, v)dvdz′

≤ c4

Rd

∫

B3R/2

∫

Bc
3R

J (z′, v)h(s, v)dvdz′

since B(z, R/6) ⊂ B3R/2. Since the right hand side of the above inequality does not
depend on z anymore, multiplying both sides by pB3R/2(t1 − s, y1, z) and integrating
over z ∈ B5R/4 (and further integrating over

∫ t1
2δRα/3 ds), we obtain

∫ t1
0 I1ds is less

than or equal to the right hand side of (4.4). This proves the lemma. ��

Proof of Theorem 4.1 Let R∗ denote the constant given in Proposition 2.1. We first
consider the case that u is non-negative and bounded on [0,∞)× R

d .

(1) Suppose R ≤ R∗/2. When t ∈ (0, Rα∗ ] and |x − y| ≤ R∗, one can prove [11,
Lemmas 4.11] (also see [12, Lemma 6.2]) from our heat kernel estimates in Prop-
osition 2.1. Given our Lemma 4.2 and the lemmas corresponding to [11, Lemmas
4.11 and 4.13], the proof of the parabolic Harnack inequality is similar to those
in [11,12] with some modification. We skip the details here. Interested reader
can find its full proof in [10].

(2) Suppose R ∈ (R∗/2, 1] and let (t1, x1) ∈ Q− and (t2, x2) ∈ Q+. Without
loss of generality, we may assume x0 = 0 and t0 = 0. We further assume that
|x1 − x2| ≤ R∗/8. If not, we just repeat the argument below at most 16[R/R∗]
times.

For notational convenience, denote R∗/2 by r∗ and let B1 = B(x1, r∗), B2 =
B(x1, r∗/2). Define

Q1 = (t1 + δ
2ψ(r∗), t1 + 3δ

4 ψ(r∗)
)×

(
B1\B2

)
and Q2 = [0, t2] × B2.

Since u is parabolic, by the case (1) but with

(
t1 − δ

4ψ(r∗), t1 + δ
4ψ(r∗)

)× B1 and
(
t1 + δ

2ψ(r∗), t1 + 3δ
4 ψ(r∗)

)× B1

in place of Q− and Q+ respectively, we have

u(t2, x2) = E
(t2,x2)

[
u(ZτQ2

)
]

≥ E
(t2,x2)

[
u(ZτQ2

) : ZτQ2
∈ Q1

]
≥ c1 u(t1, x1)P

(t2,x2)
(
ZτQ2 ∈ Q1

)
.
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Since |y − z| < 2r∗ = R∗ < 1 for every (y, z) ∈ B2 × B1, we have by the Lévy
system formula for X that

P
(t2,x2)

(
ZτQ2

∈ Q1

)
= P

x2
(

XτB2 ∈ B1, t2−t1− 3δ
4 ψ(r∗) < τB2 < t2−t1− δ

2ψ(r∗)
)

≥ c2

t2−t1− δ2ψ(r∗)∫

t2−t1− 3δ
4 ψ(r∗)

∫

B2

⎛
⎜⎜⎝
∫

B1\B2

pB2
(s, x2, y)

|y − z|d+α dz

⎞
⎟⎟⎠ dyds

≥ c3

t2−t1− δ2ψ(r∗)∫

t2−t1− 3δ
4 ψ(r∗)

∫

B2

pB2
(s, x2, y)dyds

for some positive constants c2 = c2(α, d) and c3 = c3(α, d, R∗). Note that

δ
4ψ(r∗) ≤ t2 − t1 − 3δ

4 ψ(r∗) ≤ t2 − t1 − δ
2ψ(r∗) ≤ 3δψ(2r∗).

Applying Proposition 3.8 to pB2
(s, x2, y), we have

P
(t2,x2)

(
ZτQ2

∈ Q1

)
≥ c4

t2−t1− δ2ψ(r∗)∫

t2−t1− 3δ
4 ψ(r∗)

∫

B(x1,ψ(r∗/8))

s−d/αµd(dy)ds

≥ c5
δ
4ψ(r∗) > 0.

This proves that u(t2, x2) ≥ c6u(t1, x1) for some positive constant c6=c6(d, α, R∗, δ).

(3) Now let’s consider the case R ≥ 1. We will use balayage; see [6, Chap. VI] for
details, and see [1, Theorem 1.7] and [2, Proposition 3.3] for similar arguments.
Without loss of generality, we may assume x0 = 0 and t0 = 0. Let B = B(0, 4R),
B ′ = B(0, 3R), E = (0, 6δψ(R))× B ′, Q = (0, 6δψ(R))× B. As in the proof
of [1, Theorem 1.7], we define uE , the réduite of u with respect to E by

uE (s, x) = E
(s,x)[u(VTE , XTE ) : TE < τQ],

where TE = inf{s ≥ 0 : Zs ∈ E}; then u = uE on E . By the balayage formula,
there exists a measure νE supported on Ē such that

uE (t, x) =
∫

E

pB(t − r, x, z)νE (dr, dz) for all (t, x) ∈ Q, (4.5)

where pB(s, x, y) = 0 if s < 0.
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Let (t1, x1) ∈ Q− and (t2, x2) ∈ Q+ and observe that

3δψ(R) ≥ t2 − r ≥ t2 − t1 ≥ δψ(R) for every r ∈ [0, t1].

It follows from Theorem 3.5 and semigroup property that

pB(t2 − r, y, z) ≥ c1 R−d , for all y, z ∈ B ′, r ∈ [0, t1].

The above gives us that

uE (t2, x2) ≥
∫

[0,t1]×B′

pB(t − r, x, z)νE (dr, dz) ≥ c1

Rd
νE ([0, t1] × B ′).

Thus in order to prove the parabolic Harnack inequality, it suffices to show the fol-
lowing for each (t1, x1) ∈ Q−;

uE (t1, x1) =
∫

[0,t1]×B′

pB(t1 − r, x1, z)νE (dr, dz) ≤ c2

Rd
νE ([0, t1] × B ′). (4.6)

Since the jumps of the process X are bounded by 1 and R ≥ 1, uE is parabolic
(caloric) on (0, 6δψ(R))× B(0, 2R). It follows that the support of νE is contained in
Ē\(0, 6δψ(R))× B(0, 2R). Thus, we can write

uE (t1, x1) =
∫

F1(t1)∪F2

pB(t1 − r, x1, z)νE (dr, dz),

where F1(t) := [0, t] × (B ′\B(0, R)), F2 = {0} × B ′. If (r, z) ∈ F1(t1), then
|x1 − z| ≥ R, so by (2.3) when t1 − r ≥ δψ(R) and by Proposition 2.1 (i) and
Theorem 2.3 otherwise, we have pB(t1 − r, x1, z) ≤ c3 R−d . If (r, z) ∈ F2, then
t1 − r ≥ δψ(R) and by (2.3) again, we have pB(t1 − r, x1, z) ≤ c3 R−d . Thus,

uE (t1, x1) ≤ c3

Rd
νE (F1(t1) ∪ F2) ≤ c2

Rd
νE ([0, t1] × B ′)

and (4.6) is established.
Finally, we will prove (4.1) when u is not necessarily bounded on [0,∞)×R

d . Let U
be a bounded domain such that Q− ∪ Q+ ⊂ U ⊂ U ⊂ (t0, t0+6δψ(R))×B(x0, 4R).
For any n ∈ N, define un(t, x) = E

(t,x)[(u ∧ n)(ZτU )]. Then un is non-negative
and bounded on [0,∞) × R

d , parabolic on U and limn→∞ un(t, x) = u(t, x) for
x ∈ [0,∞)× R

d . From the above arguments, we see that (4.1) holds for un with the
constant c independent of n. Letting n → ∞, we obtain (4.1) for u. ��

By the same proof as that for [11, Theorem 4.14] or [12, Proposition 4.14], we have
the following Hölder continuity for parabolic functions.
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Theorem 4.3 For every R0 ∈ (0, 1], there are constants c = c(R0) > 0 and κ >
0 such that for every 0 < R ≤ R0 and every bounded parabolic function h in
Q(0, x0, 2R) := (0, (2R)α)× B(x0, 2R),

|h(s, x)− h(t, y)| ≤ c ‖h‖∞,R R−κ (|t − s|1/α + |x − y|
)κ

(4.7)

holds for (s, x), (t, y)∈Q(0, x0, R), where ‖h‖∞,R := sup(t,y)∈[0, (2R)α]×Rd |h(t, y)|.
In particular, for the transition density function p(t, x, y) of X, for any t0 ∈ (0, 1),
there are constants c = c(t0) > 0 and κ > 0 such that for any t, s ∈ [t0, 1] and
(xi , yi ) ∈ R

d × R
d with i = 1, 2,

|p(s, x1, y1)− p(t, x2, y2)| ≤ c t (−d+κ)/α
0

(
|t − s|1/α + |x1 − x2| + |y1 − y2|

)κ
.

(4.8)

Remark 4.4 (i) Since the heat kernel p(t, x, y) is Hölder continuous, the estimates
derived in previous sections for p(t, x, y) hold for every x, y ∈ R

d .
(ii) Note that the proof of Theorem 4.3 needs only the short time heat kernel esti-

mates in Proposition 2.1 on p(t, x, y) for t ∈ (0, T ∗] and for q.e. x, y ∈ R
d

having |x − y| ≤ R∗ for some T∗ ∈ (0, 1) and R∗ ∈ (0, 1]. Therefore as long
as a pure jump symmetric strong Markov process Y has a transition density
function p(t, x, y) that has the two sided short time finite range estimates as
that in Theorem 4.3 for t ∈ (0, t0) and (x, y) ∈ R

d × R
d with |x − y| ≤ r0

for some t0 and r0 > 0, it can be established directly from these heat kernel
estimate that every bounded parabolic functions of Y is Hölder continuous. If
in addition we have (UJS)≤1 and the lower bound on the heat kernel pB(t, x, y)
as in Proposition 3.8, then the parabolic Harnack inequality (Theorem 4.1) can
be proved for R ≤ R∗/2.

(iii) In fact, (UJS)≤1 is necessary for the parabolic Harnack inequality for R ≤ 1.
This is proved in [2, Proposition 4.7] for the discrete space setting, and the proof
for the continuous space case can be found in [10].

(iv) There is a minor gap in the proof of [12, Lemma 6.1]. Condition (UJS)≤1 should
be imposed on the jumping kernel J for this lemma and consequently for the
main results (such as Theorems 1.2 and 4.12) of [12]. Note that (UJS)≤1 is auto-
matically satisfied ifψ ≡ 1 in (1.12) of [12] (corresponds to the case γ1 = γ2 =
0). A sufficient condition for J to satisfy condition (UJS)≤1 is that the function
ψ in (1.12) of [12] has the property that ψ(r + 1) ≤ c0 ψ(r) for every r ≥ 1.

Suppose that Y is the Hunt process associated with Dirichlet form (Q,D) given
by (1.2)–(1.3) whose jumping intensity kernel J (x, y) has the property that J (x, y)
1{(x,y): d(x,y)>κ} is bounded and

J (x, y) = c(x, y)

|x − y|d+α for |x − y| ≤ 1 and

sup
x∈Rd

∫

{y∈Rd : |y−x |>1}
J (x, y)dy < ∞, (4.9)
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where c(x, y) is a function that is bounded between two positive constants and is
symmetric in x and y. Then by the Meyer’s construction method (see [1, Lemma 3.6]
and [3, Lemmas 3.1(c) and (3.18)]), the process Y can be constructed from the finite
range α-stable-like process X having jump intensity kernel c(x,y)

|x−y|d+α 1{|x−y|≤1} and so
Y has a transition density function q(t, x, y) with respect to µd . Moreover, for any
ball B ⊂ R

d ,

q(t, x, y) ≥ e−t‖J ‖∞ p(t, x, y) and q B(t, x, y) ≥ e−t‖J ‖∞ pB(t, x, y), (4.10)

and

q(t, x, y) ≤ p(t, x, y)+ t‖J1‖∞ (4.11)

where p(t, x, y) is the transition density function of X ,

J1(x, y) := J (x, y)1{d(x,y)>1} and J (x) :=
∫

Rd

J1(x, y)µd(dy).

Thus using the heat kernel estimate for p(t, x, y) in Proposition 2.1 and Proposi-
tion 3.8, by the same line of argument as that in the Remark 4.4(ii) we have the
following.

Theorem 4.5 The Hölder continuity estimate (4.7) holds for bounded parabolic func-
tions of Y . In particular, all these applies to the transition density function q(t, x, y) of
Y . Moreover, if in addition, we assume (UJS)≤R1 then the parabolic Harnack inequal-
ity (4.1) holds for non-negative parabolic functions of Y with R ≤ R1/2.

The full detail of the above theorem will be given in more general context in [10].

Remark 4.6 Very recently, Kassmann [23, Theorem 1.1] proved by a quite different
analytic method the Hölder continuity for bounded harmonic functions of symmetric
pure jump processes whose jumping intensity kernel J satisfies the condition

J (x, y) = c(x, y)|x − y|−d−α for |x − y| ≤ 1 and

J (x, y) ≤ c|x − y|−d−η for |x − y| > 1,

where η > 0 and c > 0 are two positive constants. Clearly, such type of jumping
kernel is a special case of those given by (4.9). Since every harmonic function is para-
bolic, our Theorem 4.5 recovers and extends the main result of [23]. See [31] for some
related work on the Hölder continuity of bounded harmonic functions for a class of
non-local operators.

4.2 Two-sided Green function estimates

When d = 1, 2, the finite range α-stable-like processes are all recurrent. So in this
subsection, we assume d ≥ 3 and give two-sided sharp estimates the Green function
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for G(x, y) of finite range stable-like process X in R
d where

G(x, y) :=
∞∫

0

p(t, x, y)dt, x, y ∈ R
d .

Theorem 4.7 There exists c = c(α, d) > 1 such that

c−1
(

1

|x − y|d−α + 1

|x − y|d−2

)
≤ G(x, y)

≤ c

(
1

|x − y|d−α + 1

|x − y|d−2

)
, x, y ∈ R

d .

Proof We first note that for every T,M ∈ [0,∞)

∞∫

T

t−
d
2 e− M|x−y|2

2t dt = 1

|x − y|d−2

|x−y|2
T∫

0

u
d−4

2 e− 1
2 Mudu. (4.12)

Recall that R∗ < 1 and T∗ = Rα∗ are the constants from Proposition 2.1(ii). Using
(4.12), it is easy to see that, if |x − y| ≤ R∗, by Proposition 2.1(i) and Theorem 2.3

G(x, y) ≤ c1

|x−y|α∫

0

t

|x − y|d+α dt + c2

T∗∫

|x−y|α
t−d/αdt + c3

∞∫

T∗

t−
d
2 e− c4|x−y|2

2t dt

≤ c5

|x − y|d−α + c3

|x − y|d−2

|x−y|2
T∗∫

0

u
d−4

2 e− 1
2 c4udu ≤ c6

|x − y|d−α .

On the other hand if |x − y| > R∗, by Theorem 2.3 and (4.12)

G(x, y) ≤ c7

C∗|x−y|∫

0

exp

(
−c8|x−y| log

|x − y|
t

)
dt+c9

∞∫

C∗|x−y|
t−

d
2 e− c4|x−y|2

2t dt

≤ c7

∫ C∗|x−y|

0
exp (−c10|x − y|) dt + c9

|x − y|d−2

|x−y|
C∗∫

0

u
d−4

2 e− 1
2 c4udu

≤ c7C∗|x − y| exp (−c10|x − y|)+ c11

|x − y|d−2 ≤ c12

|x − y|d−2

where C∗ < 1 is given in Theorem 2.3.
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866 Z.-Q. Chen et al.

The lower bounded is easier. If |x − y| ≤ R∗, by Proposition 2.1(ii)

G(x, y) ≥ c13

|x−y|α∫

0

t

|x − y|d+α dt = c13

2|x − y|d−α .

If |x − y| ≥ R∗, by Theorem 3.6 and (4.12)

G(x, y) ≥ c14

∞∫

|x−y|2
t−

d
2 dt = c14

|x − y|d−2

1∫

0

u
d−4

2 du.

��
Remark 4.8 Under some mild assumptions on bounded open set D, when c(x, y) is
a constant, Green function G D(x, y) for X in D is comparable to the one for isotrop-
ically symmetric stable process in D (see [17,25]). Theorem 4.7 shows that, unlike
bounded open sets, the behavior of the Green function for X in R

d is different from
the behavior of the Green function for isotropically symmetric stable process in R

d .

Now let’s consider the more general non-local Dirichlet form (E,F) in (2.14)–
(2.15) with the jumping kernel J satisfying the condition (2.16). Recall that q(t, x, y)
is the transition density function for the associated Hunt process Z with respect to the
Lebesgue measure on R

d . For d ≥ 3, let

V (x, y) :=
∞∫

0

q(t, x, y)dt, x, y ∈ R
d .

Using Theorems 2.4 and 3.5 instead of Theorems 2.3 and 3.6, respectively, in the proof
of Theorem 4.7, we get the Green function estimate for the process Z for |x − y| ≥ 1.

Theorem 4.9 There exists c = c(α, d) > 1 such that

c−1 1

|x − y|d−2 ≤ V (x, y) ≤ c
1

|x − y|d−2 for |x − y| ≥ 1.

4.3 Differentiability of spectral functions

In [32–34], the differentiability of spectral functions for symmetric stable processes
are studied.

Recall that X is a finite range stable-like process considered in this paper whose
Dirichlet form (Q,D) is given by (1.2)–(1.3) whose jumping intensity kernel
J (x, y) = c(x,y)

|x−y|d+α 1{|x−y|≤1}. Let µ be a signed measure in Kato class K∞(X) as
introduced in [9]. The associated spectral function C(λ) is defined to be
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C(λ) = − inf

⎧⎪⎨
⎪⎩Q(u, u)+ λ

∫

Rd

u(x)2µ(dx) : u ∈ D with
∫

Rd

u(x)2dx = 1

⎫⎪⎬
⎪⎭ .

Using the heat kernel estimates established in this paper, by an almost same argument
as that in [32–34], it can be shown that if d ≤ 4 and if the extended Dirichlet space
(Q,De) is compactly embedded into L2(Rd , |µ|)), then λ �→ C(λ) is differentiable
on R. But we will not go into details about it.

5 Weighted Poincaré inequality of fractional order

Throughout this section, r ≥ 1, σ ∈ (0,∞) and α ∈ (0, 2). Recall that µd denotes
the Lebesgue measure in R

d . In this section, the exact values of the constants c’s
are always independent of r and they might change from one appearance to another.
Let M(σ ) be the set of all non-increasing function � from [0, 1] to [0, 1] such that
�(s) > �(1) = 0 for every s ∈ [0, 1) and

�(s + 1
2 ((1 − s) ∧ 1

2 )) ≥ σ �(s), s ∈ (0, 1). (5.1)

We will use N (σ ) to denote all the functions � of the form c�(|x |) for some � ∈
M(σ ) having

∫
Rd �(x)dx=1. Note that, when β∈(0, 2), c(1−|x |2)12/(2−β)1B(0,1)(x)

is in N ((1/8)12/(2−β)). Condition (5.1) says that for each � ∈ N (σ ), values of � at
points with comparable distance from the unit sphere ∂B(0, 1) are comparable. This
implies that values of � in balls in Whitney-type covering, which will be discussed
below, are universally comparable to each other. This property will be used in many
places below.

For � ∈ N (σ ), define

u� :=
∫

B(0,1)

u(x)�(x)dx .

This section is devoted to prove the following form of weighted Poincaré inequality.

Theorem 5.1 For every d ≥ 1, 0 < α < 2 and σ ∈ (0,∞), there exists a positive
constant c1 = c1(d, α, σ ) independent of r ≥ 1, such that for every � ∈ N (σ ) and
u ∈ L1(B(0, 1),�(x)dx),

∫

B(0,1)

(u(x)− u�)
2�(x)dx

≤ c1

∫

B(0,1)×B(0,1)

(u(x)− u(y))2
r2−α

|x − y|d+α 1{|x−y|≤1/r}(�(x) ∧�(y)) dxdy.

Moreover, the constant c1 stays bounded for α ∈ (0, 2).
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The exponent 2 − α of r in the integral above is quite delicate to get. We will prove
the above theorem through several lemmas. For the remainder of this section, we fix
σ ∈ (0,∞) and � ∈ N (σ ).

We first prove the following simple lemma. Let

u B(x,s) := 1

µd(B(x, s))

∫

B(x,s)

u(y)dy.

Lemma 5.2 For every B(z, s) ⊂ B(0, 1) and every u ∈ L1(B(z, s), dx),

∫

B(z,s)

(u(x)− u B(z,s))
2dx ≤ 1

µd(B(z, s))

∫

B(z,s)

∫

B(z,s)

(u(x)− u(y))2dxdy.

Proof By Cauchy–Schwartz inequality,

∫

B(z,s)

(u(x)− u B(z,s))
2(x)dx =

∫

B(z,s)

⎛
⎜⎝ 1

µd(B(z, s))

∫

B(z,s)

(u(x)− u(y))dy

⎞
⎟⎠

2

dx

≤ 1

µd(B(z, s))

∫

B(z,s)

∫

B(z,s)

(u(x)− u(y))2dxdy.

��
Recall Whitney-type coverings (see [29, Sect. 5.3.3] for details): We first let

W :=
{

B : the center of the ball B is in B(0, 1) and r(B) = 1

103 ρ(B)

}

where r(B) is the radius of the ball B andρ(B) denotes the Euclidean distance between
the ball B and B(0, 1)c. In the sequel, for λ > 0 and a ball B = B(x, r) centered at x
with radius r , we denote λB the concentric ball B(x, λ r) with radius λ r .

Start W by picking a ball B0 ∈ W with the largest possible radius. Pick the next ball
B1 to be a ball in W which does not intersect B0 and has maximal radius. Assuming
that k balls B0, . . . , Bk−1 have already been picked, pick the next ball Bk to be a ball in
W which does not intersect ∪k−1

j=0 B j and has maximal radius. Though this procedure,

we get a sequence of disjoint balls W := {B0, . . . , Bk−1, Bk, . . .} from W . Moreover,
the Whitney-type decomposition of the unit ball B(0, 1) has the following properties
(see, for example, [29, p. 135]).

(1)

B(0, 1) =
⋃

B∈W
2B.
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(2) There exists a positive constant K such that

sup
y∈B(0,1)

#{B ∈ W : y ∈ 102 B} ≤ K (5.2)

where #S is the number of elements in the set S.

There exists a ball B(0) ∈ W such that 0 ∈ 2B(0). We pick an fix such a ball B(0)
and call it the central ball of W . For any B ∈ W , let γB be the straight line segment
between the center of B and the origin. Let

W(B) := {A ∈ W : 2A ∩ γB �= ∅}.

Now we define the chain W(B) := (B0, B1, · · · , Bl(B)−1) with B0 = B(0) and
Bl(B)−1 = B as follows; Starting from the origin, let y0 be the first point along γB

which does not belong to 2B0. Define B1 to be (any) one of balls in W(B) such that
y0 ∈ 2B1. Inductively, having B0, B1, . . . , Bk constructed, let yk be the first point
along γB which does not belong to ∪k

j=02B j . Define Bk+1 to be (any) one of balls in

W(B) such that yk ∈ 2Bk+1. When the last chosen is not B, we simply add B as the
last ball in W(B).

Using Lemma 5.2, the next lemma can be proved easily.

Lemma 5.3 There exists a positive constant c = c(d) such that for every B ∈ W ,
Bi , Bi+1 ∈ W(B) and for every u ∈ L1(B(0, 1),�dx),

|u4Bi − u4Bi+1 | ≤
1∑

j=0

c

µd(Bi+ j )

⎛
⎜⎝
∫

4Bi+ j

∫

4Bi+ j

(u(x)− u(y))2dxdy

⎞
⎟⎠

1/2

.

Proof Note that

(µd(4Bi ∩ 4Bi+1))
1/2|u4Bi − u4Bi+1 |

=
⎛
⎜⎝

∫

4Bi ∩4Bi+1

|u4Bi − u4Bi+1 |2µd(dx)

⎞
⎟⎠

1/2

≤
⎛
⎜⎝
∫

4Bi

|u(x)− u4Bi |2µd(dx)

⎞
⎟⎠

1/2

+
⎛
⎜⎝
∫

4Bi+1

|u(x)− u4Bi+1 |2µd(dx)

⎞
⎟⎠

1/2

.

Now the lemma follows from our Lemma 5.2 and the fact that

µd(4Bi ∩ 4Bi+1) ≥ c max{µd(Bi ), µd(Bi+1)}

(see Lemma 5.3.7 in [29]). ��
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Lemma 5.4 There exists a positive constant c = c(d, σ ) such that for every B ∈ W ,
Bi , Bi+1 ∈ W(B) and for every u ∈ L1(B(0, 1),�dx),

√
�B |u4Bi − u4Bi+1 |

≤
1∑

j=0

c

µd(Bi+ j )

⎛
⎜⎝
∫

4Bi+ j

∫

4Bi+ j

(u(x)− u(y))2(�(x) ∧�(y))dxdy

⎞
⎟⎠

1/2

.

Proof Since the values of� are universally comparable to each other on 4B for every
B ∈ W , we have from Lemma 5.3

|u4Bi − u4Bi+1 | ≤
1∑

j=0

c

(µd(Bi+ j ))1/2(
∫

Bi+ j
�(y)dy)1/2

×
⎛
⎜⎝
∫

4Bi+ j

∫
4Bi+ j

(u(x)− u(y))2(�(x) ∧�(y))dxdy

⎞
⎟⎠

1/2

. (5.3)

Note that

ρ(A) = 103r(A) ≥ 103

4
r(B) = 1

4
ρ(B) for every A ∈ W(B). (5.4)

(See Lemma 5.3.6 in [29].) Using (5.1), (5.4) and the fact that � is non-increasing,
there exists a positive constant c independent of B such that

max
y∈B

�(y) ≤ c min
y∈A

�(y) for every A ∈ W(B).

Thus we have

�B = 1

µd(B)

∫

B

�(y)dy ≤ c
1

µd(Bi )

∫

Bi

�(y)dy for every Bi ∈ W(B). (5.5)

The lemma follows from (5.3) and (5.5). ��
The proof of the next lemma is similar to that of Theorem 5.3.4 on pp. 141–143 of

[29]. For reader’s convenience, we nevertheless spell out the details of the proof here.

Lemma 5.5 There exists a positive constant c = c(d, σ ) such that for every u ∈
L1(B(0, 1),�dx),

∫

B(0,1)

(u(x)− u�)
2�(x)dx

≤ c
∑
A∈W

1

µd(A)

∫

4A×4A

(u(x)− u(y))2(�(x) ∧�(y))dxdy.
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Proof Note that

∫

B(0,1)

(u(x)− u�)
2�(x)dx

≤ 2
∫

B(0,1)

(u(x)− u4B(0))
2�(x)dx + 2

⎛
⎜⎝
∫

B(0,1)

�(x)dx

⎞
⎟⎠ (u� − u4B(0))

2

≤ 2
∫

B(0,1)

(u(x)− u4B(0))
2�(x)dx + 2

∫

B(0,1)

(u(x)− u4B(0))
2�(x)dx

≤ 4
∑

B∈W

∫

4B

(u(x)− u4B(0))
2�(x)dx

≤ 8
∑

B∈W

∫

4B

(u(x)− u4B)
2�(x)dx + 8

∑
B∈W

(u4B − u4B(0))
2
∫

4B

�(x)dx

≤ c
∑

B∈W

1

µd(B)

∫

4B×4B

(u(x)− u(y))2(�(x) ∧�(y))dxdy

+c
∑

B∈W

∫
1B(z)

(
|u4B − u4B(0)|(�B)

1/2
)2

dz,

where in the last inequality, we used the fact that the values of� are universally com-
parable to each other on 4B for every B ∈ W . To establish the lemma, it suffices to
deal with the second summation above.

By Lemma 5.4, we get

|u4B − u4B(0)|(�B)
1/21B(z)

≤
l(B)−2∑

i=0

|u4Bi − u4Bi+1 |(�B)
1/21B(z)

≤ c
l(B)−1∑

i=0

1

µd(Bi )

⎛
⎜⎝
∫

4Bi

∫

4Bi

(u(x)− u(y))2(�(x) ∧�(y))dxdy

⎞
⎟⎠

1/2

1B(z)

= c
l(B)−1∑

i=0

1

µd(Bi )

⎛
⎜⎝
∫

4Bi

∫

4Bi

(u(x)−u(y))2(�(x)∧�(y))dxdy

⎞
⎟⎠

1/2

1104 Bi
(z)1B(z)

≤ c
∑
A∈W

1

µd(A)

⎛
⎝
∫

4A

∫

4A

(u(x)− u(y))2(�(x) ∧�(y))dxdy

⎞
⎠

1/2

1104 A(z)1B(z).
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In the first equality above, we have used the fact that B ⊂ 104 Bi (Lemma 5.3.8 in
[29]). Since the balls in W are disjoint, summing both sides over B ∈ W and taking
the square, we get

∑
B∈W

1B(z)
(
|u4B − u4B(0)|(�B)

1/2
)2

≤ c

⎛
⎜⎝∑

A∈W

1

µd(A)

⎛
⎝
∫

4A

∫

4A

(u(x)− u(y))2(�(x) ∧�(y))dxdy

⎞
⎠

1/2

1104 A(z)

⎞
⎟⎠

2

.

Integrating over z ∈ B(0, 1), and using Lemma 5.3.12 in [29] and the fact the balls in
W are disjoint, we have

∑
B∈W

∫
1B(z)

(
|u4B − u4B(0)|�1/2

B

)2
dz

≤ c
∫ ⎛⎜⎝∑

A∈W

1

µd(A)

⎛
⎝
∫

4A

∫

4A

(u(x)−u(y))2(�(x) ∧�(y))dxdy

⎞
⎠

1/2

1104 A(z)

⎞
⎟⎠

2

dz

≤ c
∫ ⎛⎜⎝∑

A∈W

1

µd(A)

⎛
⎝
∫

4A

∫

4A

(u(x)−u(y))2(�(x) ∧�(y))dxdy

⎞
⎠

1/2

1A(z)

⎞
⎟⎠

2

dz

≤ c
∫ ∑

A∈W

1

(µd(A))2

⎛
⎝
∫

4A

∫

4A

(u(x)− u(y))2(�(x) ∧�(y))dxdy

⎞
⎠ 1A(z)dz

≤ c
∑
A∈W

1

µd(A)

⎛
⎝
∫

4A

∫

4A

(u(x)− u(y))2(�(x) ∧�(y))dxdy

⎞
⎠ .

This completes the proof for the lemma. ��

Lemma 5.6 There exists a positive constant c = c(d, σ ) such that for every u ∈
L1(B(0, 1),�dx),

∫

B(0,1)

(u(x)− u�)
2�(x)dx

≤ c

102α

∫

B(0,1)×B(0,1)

(u(x)− u(y))2

|x − y|d+α 1{|x−y|≤ 1
102 }(�(x) ∧�(y))dxdy.
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Proof Since |x − y| ≤ 8r(A) ≤ 1
102 if x, y ∈ 4A, we have for every A ∈ W

1

µd(A)

∫

4A×4A

(u(x)− u(y))2(�(x) ∧�(y))dxdy

≤ c

(r(A))d

∫

4A×4A

(u(x)− u(y))2|x − y|d+α

|x − y|d+α 1{|x−y|≤ 1
102 }(�(x) ∧�(y))dxdy

≤ c

102α

∫

4A×4A

(u(x)− u(y))2

|x − y|d+α 1{|x−y|≤ 1
102 }(�(x) ∧�(y))dxdy.

It then follows from Lemma 5.5 and (5.2) that

∫

B(0,1)

(u(x)− u�)
2�(x)dx

≤ c

102α

∑
A∈W

∫

4A×4A

(u(x)− u(y))2

|x − y|d+α 1{|x−y|≤ 1
102 }(�(x) ∧�(y))dxdy

≤ c

102α

∫

B(0,1)×B(0,1)

(u(x)− u(y))2

|x − y|d+α 1{|x−y|≤ 1
102 }(�(x) ∧�(y))dxdy.

��
Due to Lemma 5.6, we have Theorem 5.1 for 1 ≤ r ≤ 102. So, from now we may

assume r > 102.

Lemma 5.7 There exists a positive constant c = c(d, σ ) such that for every r > 102

for every u ∈ L1(B(0, 1),�dx),

∫

B(0,1)

(u(x)− u�)
2�(x)dx

≤ c
∫

B(0,1)×B(0,1)

(u(x)− u(y))2
r−α

|x − y|d+α 1{|x−y|<1/r}(�(x) ∧�(y))dxdy

+c
∫

B(0,1− 10
r )×B(0,1− 10

r )

(u(x)− u(y))2

|x − y|d 1{|x−y|< 1
102 }(�(x) ∧�(y))dxdy.
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Proof By Lemma 5.5, we have

∫

B(0,1)

(u(x)− u�)
2�(x)dx

≤ c
∑
A∈W

∫

4A×4A

(u(x)− u(y))2

|x − y|d
( |x − y|

r(A)

)d

(�(x) ∧�(y))dxdy

≤ c

⎛
⎜⎝ ∑

A∈W : r(A)≤ 1
10r

+
∑

A∈W : r(A)> 1
10r

⎞
⎟⎠

∫

4A×4A

(u(x)−u(y))2

|x − y|d (�(x) ∧�(y))dxdy

=: I + I I.

If A ∈ W and r(A) ≤ 1
10r , then |x − y| ≤ 8r(A) < 1

r for every x, y ∈ 4A. So using
(5.2), we have

I ≤ c
∑

A∈W : r(A)≤ 1
10r

∫

4A×4A

(u(x)−u(y))2
r−α

|x−y|d+α 1{|x−y|≤1/r}(�(x) ∧�(y))dxdy

≤ c
∫

B(0,1)×B(0,1)

(u(x)− u(y))2
r−α

|x − y|d+α 1{|x−y|<1/r}(�(x) ∧�(y))dxdy.

On the other hands, if A ∈ W and r(A) > 1
10r , then for every pair of points x, y in

4A, we have |x − y| ≤ 8r(A) < 1
102 and

dist(x, ∂B(0, 1)) ≥ ρ(A)− 4r(A) > 102r(A) ≥ 10

r
.

Therefore, using (5.2) we have

I I ≤ c
∑

A∈W : r(A)> 1
10r

∫

4A×4A

(u(x)− u(y))2

|x − y|d 1{|x−y|≤ 1
102 }(�(x) ∧�(y))dxdy

≤ c
∫

B(0,1− 10
r )×B(0,1− 10

r )

(u(x)− u(y))2

|x − y|d 1{|x−y|< 1
102 }(�(x) ∧�(y))dxdy.

��
For our purpose, we need to construct another covering; For each r > 102, we let

V = Vr := {B1, . . . , Bk(r)} be a maximum sequence of disjoint balls with radius 1
400r

that we can put inside B(0, 1 − 10
r ). Note that

B

(
0, 1 − 10

r

)
⊂
⋃
B∈V

2B ⊂
⋃
B∈V

102 B ⊂ B

(
0, 1 − 9

r

)
.
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For every y ∈ B(0, 1), since
⋃

B∈V :y∈2B B ⊂ B(y, 3
400r ),

#{B ∈ V : y ∈ 2B} · µd(B(0, 1
400r )) ≤ µd(B(y,

3
400r )).

Therefore we have

sup
y∈B(0,1)

#{B ∈ V : y ∈ 2B} ≤ 3d . (5.6)

Recall that ρ(B) denotes the Euclidean distance between the ball B and B(0, 1)c.
For balls A and B in V with dist(A, B) > 1

40r and ρ(B) ≥ ρ(A), we construct the
path γA,B starting from A in the following way. Let xA be the center of A and xB be
the center of B. If |xB | ≥ 1/(400r), then let yB := |xA|

|xB | xB so that xB is in the straight

line segment from yB to 0. Let γ 2
A,B be the straight line segment from yB to xB . We

also let γ 1
A,B be the shortest path from xA to yB with γ 1

A,B ⊂ ∂B(0, |xA|). In this

case, γA,B is the union of γ 1
A,B and γ 2

A,B starting from xA and ending at xB via yB . If
|xB | < 1/(400r), let γA,B be simply a straight line segment between 0 and xA.

For A, B ∈ V with ρ(B) ≥ ρ(A), let

V(A, B) := {C ∈ V : 2C ∩ γA,B �= ∅}

and define the chain V(A, B) := (C0,C1, . . . ,Cl(A,B)−1) with C0 = A and
Cl(A,B)−1 = B similar to the chain in the Whitney-type coverings; Starting from
the center of A, let y0 be the first point along γA,B which does not belong to 2C0.
Define C1 to be one of balls in V(A, B) such that y0 ∈ 2C1. Inductively, having
C0,C1, . . . ,Ck constructed, let yk be the first point along γA,B which does not belong
to ∪k

j=02C j . Define Ck+1 to be one of balls in V(A, B) such that yk ∈ 2Ck+1. When
the last chosen is not B, we add B as the last ball in V(A, B).

In the sequel, for every path γ in R
d we denote by |γ | the length of γ .

Lemma 5.8 There exists a positive constant c = c(d) such that for every r > 102

and every A, B ∈ V with ρ(B) ≥ ρ(A), |γA,B | > 1
4r and dist(A, B) ≤ 1

50 ,

|x − y| ≥ c

r
#V(A, B) ≥ c

r
#V(A, B) ≥ |γA,B |, for every (x, y) ∈ 2A × 2B.

(5.7)

In particular,

#V(A, B) ≤ #V(A, B) ≤ cr. (5.8)

Proof It is easy to see that the length of γA,B is less than or equal to 4|x − y| for every
(x, y) ∈ A × B. Thus by using the fact that balls C’s in V(A, B) are disjoint and that
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∪C∈V(A,B)C is within the 1
100r -neighborhood of γAB , we have

#V(A, B) ·
(

1

400r

)d

= c
∑

C∈V(A,B)
µd(C) ≤ c|x − y| r1−d

and so #V(A, B) ≤ cr |x − y|.
On the other hand, since 2C’s in V(A, B) covers γA,B , it is easy to see that

E :=
{

x ∈ B(0, 1) : dist(x, γA,B) <
1

400r

}
⊂

⋃
C∈V(A,B)

3C

and that

µd(E) ≥ c |γA,B |
(

1

r

)d−1

.

Thus

c|γA,B |r1−d ≤ µd(E) ≤
∑

C∈V(A,B)
µd(3C) = #V(A, B) ·

(
3

400r

)d

and so |γA,B | ≤ c
r #V(A, B). The lemma is proved. ��

The proof of the next lemma is similar to the one of Lemma 5.3. So we skip its
proof.

Lemma 5.9 Let A, B ∈ V with ρ(B) ≥ ρ(A). There exists a positive constant c =
c(d) such that for every Ci ,Ci+1 ∈ V(A, B) and for every u ∈ L1(B(0, 1),�dx),

|u2Ci − u2Ci+1 |2 ≤
1∑

j=0

c

(µd(2Ci+ j ))2

∫

2Ci+ j

∫

2Ci+ j

(u(x)− u(y))2dxdy.

Lemma 5.10 There exist positive constants c = c(d, σ ) and c1 = c1(d) such that for
every r > 102 and every A, B ∈ V with ρ(B) ≥ ρ(A) and |γA,B | ≥ 1

4r ,∫

2A

∫

2B

(u(x)− u(y))2

|x − y|d 1{|x−y|< 1
100 }(�(x) ∧�(y))dxdy

≤ c cα1 (#V(A, B))1−d−α ∑
C∈V(A,B)

∫

2C

∫

2C

(u(x)−u(y))2

|x − y|d+α (�(x) ∧�(y)) dxdy.
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Proof Let l := #V(A, B) ≥ 2. For every y ∈ A and x ∈ B,

(u(x)− u(y))2(�(x) ∧�(y))

≤ (l + 2)(�(x) ∧�(y))
(

|u(x)−u2A|2 + |u(x)−u2B |2+
l−1∑
i=0

|u2Ci − u2Ci+1 |2
)

≤ 2l

(
(�(x) ∧�(y))|u(y)− u2A|2 + (�(x) ∧�(y))|u(x)− u2B |2

+
l−1∑
i=0

(�(x) ∧�(y))|u2Ci − u2Ci+1 |2
)
.

Note that from the construction of the chain V(A, B), it is easy to see that there exists
a constant c independent of r such that for every A, B ∈ V and C ∈ V(A, B),

∫

2A

∫

2B

(�(x) ∧�(y))dxdy ≤ c
∫

2Ci

∫

2Ci+1

(�(x) ∧�(y)) dxdy.

Obviously

∫

2A

∫

2B

|u(x)− u2B |2(�(x) ∧�(y))dxdy ≤ µd(2B)
∫

2B

|u(x)− u2B |2�(x)dx

and

∫

2A

∫

2B

|u(y)− u2A|2(�(x) ∧�(y))dxdy ≤ µd(2A)
∫

2A

|u(y)− u2A|2�(y)dy.

Thus we have, for every y ∈ A and x ∈ B,

∫

2A

∫

2B

(u(x)− u(y))2(�(x) ∧�(y))dxdy

≤ 2l

⎛
⎝
∫

2A

∫

2B

(�(x) ∧�(y))|u(y)− u2A|2dxdy

+
∫

2A

∫

2B

(�(x) ∧�(y))|u(x)− u2B |2dxdy

+
l−1∑
i=0

∫

2A

∫

2B

(�(x) ∧�(y))|u2Ci − u2Ci+1 |2dxdy

⎞
⎠
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≤ cl

⎛
⎜⎝µd(2A)|

∫

2A

|u(y)− u2A|2�(y)dy + µd(2B)
∫

2B

|u(x)− u2B |2�(x)dx

+
l−1∑
i=0

|u2Ci − u2Ci+1 |2
∫

2Ci

∫

2Ci+1

(�(x) ∧�(y)) dxdy

⎞
⎟⎠ .

We apply Lemma 5.2 to the first two integrals in the above and apply Lemma 5.9 to
the integrals in the summation above. Then using the fact that the values of � are
universally comparable on each A, B,Ci , we get that

∫

2A

∫

2B

(u(x)− u(y))2(�(x) ∧�(y))dxdy

≤ c l
∑

C∈V(A,B)

∫

2C

∫

2C

(u(x)− u(y))2(�(x) ∧�(y)) dxdy. (5.9)

Note that, using (5.7), we have that for x ∈ B and y ∈ A with |x − y| < 1
100

1

100
≥ |x − y| ≥ c

l

r
≥ c l |z − w|, ∀z, w ∈ C ∈ V(A, B). (5.10)

Therefore, from (5.9)–(5.10), we conclude that

∫

2A

∫

2B

(u(x)− u(y))2

|x − y|d (�(x) ∧�(y))1{|x−y|< 1
100 }dxdy

≤ 1

102α

∫

2A

∫

2B

(u(x)− u(y))2

|x − y|d+α (�(x) ∧�(y))1{|x−y|< 1
100 }dxdy

= 1

102α

(
c

r

l

)d+α ∫

2A

∫

2B

(u(x)− u(y))2(�(x) ∧�(y))1{|x−y|< 1
100 }dxdy

≤ ccα1 l1−d−α ∑
C∈V(A,B)

∫

2C

∫

2C

(u(z)− u(w)))2

|z − w|d+α (�(z) ∧�(w)) dzdw.

��
Recall that [a] denote the largest integer which is no larger than a and define for

C ∈ V

C(V) := {(A, B) : A, B ∈ V with ρ(B) ≥ ρ(A) and C ∈ V(A, B)}.

The following is a key lemma to count the number of chains containing each C ∈ V .
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Lemma 5.11 There exists a positive constant c = c(d) such that for every r > 102,
30 ≤ l ≤ [16r ] and C ∈ V ,

#

{
(A, B) ∈ C(V) : 100 + l

400r
< |γA,B | ≤ 101 + l

400r

}
≤ c ld . (5.11)

Proof Without loss of generality, we assume d ≥ 2. (The case of d = 1 is eas-
ier.) Fix r > 102, 30 ≤ l ≤ [16r ] and C ∈ V . We will order (A, B) ∈ C(V) so
that ρ(B) ≥ ρ(A). Let xC be the center of the ball C . If |xC | ≤ 4/(400r), then
|xB | ≤ 6/(400r), so the number of possible choice for B is less than c2d . Since
(100 + l)/(400r) ≤ |γA,B | ≤ (101 + l)/(400r), the number of possible choice for A
is cld−1, so (5.11) holds in this case. We thus assume |xC | > 4/(400r). Define HxC :=
B(0, |xC |+2/(400r))\B(0, |xC |−2/(400r)). Since 2C ∩γA,B �= ∅, HxC ∩γA,B �= ∅.
Let y′

B be the first point along γA,B (starting from xB) which belongs to HxC ∩ γA,B .
Also, let z A,B be the first point along γA,B (starting from xB) which belongs to 2C ,
and let γB be the sub-path of γA,B starting from z A,B ending at xB .

Let m/(400r) ≤ |γB | < (m + 1)/(400r) where 0 ≤ m ≤ l + 100 and consider the
following two cases:

Case 1 |y′
B − z A,B | ≤ 5

400r .

Case 2 |y′
B − z A,B | > 5

400r .

For Case 1, the number of possible choices for y′
B and B is less than c2d when C

is given and m is fixed. Once y′
B is fixed, the number of possible choice for A is

c(l − m + 106)d−1, since the arclength between z A,B and xA along the curve γA,B

is at most 101+l−m
400r and |y′

B − z A,B | ≤ 5/(400r). Summing over m, the number of
possible choices for A and B is less than

c′
l+100∑
m=0

(l − m + 106)d−1 ≤ c′′ld .

For Case 2, let i ≤ m be such that i/(400r) ≤ |z A,B − yB | < (i + 1)/(400r)
where yB := |xA|

|xB | xB . In this case, |yB − y′
B | ≤ 4/(400r) and i ≥ 1. Since yB ∈

∂B(0, |xA|) ⊂ HxC , given C , the number of possible choices for yB and B is less than
cid−2 when m and i are fixed. Observe that given C and B, y′

B and xB are determined.
Since xA ∈ ∂B(0, |xA|) ⊂ HxC , given C and B, the number of possible choice for xA

is less than c((l − m + i + 101)/ i)d−2 when m and i are fixed. Summing over m and
i , the number of possible choices for A and B is less than

c′
l+100∑
m=1

m∑
i=1

id−2
(

l−m + i + 101

i

)d−2

=c′
l+100∑
m=1

m∑
i=1

(l − m + i + 101)d−2 ≤ c′′ld .

We thus obtain (5.11). ��
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Lemma 5.12 There exist positive constants c = c(d, σ ) and c1 = c1(d) such that for
every r ≥ 102

∑
A,B∈V

dist(A,B)> 1
3r

∫

2A

∫

2B

(u(x)− u(y))2

|x − y|d 1{|x−y|≤ 1
100 }(�(x) ∧�(y))dxdy

≤ c cα1

∫

B(0,1)×B(0,1)

(u(x)− u(y))2
r2−α

|x − y|d+α 1{|x−y|≤ 1
r }(�(x) ∧�(y)) dxdy.

Proof For (x, y) ∈ 2A × 2B with |x − y| ≤ 1
100 , it is elementary to check that

|γA,B | < 1
25 . Thus, by Lemma 5.10, we have

∑
A,B∈V

dist(A,B)> 1
3r

∫

2A

∫

2B

(u(x)− u(y))2

|x − y|d 1{|x−y|≤ 1
100 }(�(x) ∧�(y))dxdy

≤ c cα1
∑

A,B∈V :ρ(B)≥ρ(A)
130
400r <|γA,B |< 1

25

(#V(A, B))1−d−α

×
∑

C∈V(A,B)

∫

2C

∫

2C

(u(x)− u(y))2

|x − y|d+α (�(x) ∧�(y)) dxdy

≤ c cα1
∑
C∈V

⎛
⎜⎜⎜⎝

[16r ]∑
l=30

∑
(A,B)∈C(V)

100+l
400r <|γA,B |≤ 100+l+1

400r

(#V(A, B))1−d−α

⎞
⎟⎟⎟⎠

×
∫

2C

∫

2C

(u(x)− u(y))2

|x − y|d+α 1{|x−y|≤ 1
r }(�(x) ∧�(y)) dxdy.

Applying (5.7), we see that

∑
A,B∈V

dist(A,B)> 1
3r

∫

2A

∫

2B

(u(x)− u(y))2

|x − y|d 1{|x−y|≤ 1
100 }(�(x) ∧�(y))dxdy

≤ c cα1
∑
C∈V

([16r ]∑
l=30

l1−d−α · #

{
(A, B) ∈ C(V) : 100 + l

400r
< |γA,B | ≤ 101 + l

400r

})

×
∫

2C

∫

2C

(u(x)− u(y))2

|x − y|d+α 1{|x−y|≤ 1
r }(�(x) ∧�(y)) dxdy.
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By Lemma 5.11,

[16r ]∑
l=30

l1−d−α · #

{
(A, B) ∈ C(V) : 100+l

400r
< |γA,B |≤ 101+l

400r

}
≤c

[16r ]∑
l=30

l1−α≤cr2−α.

Thus we conclude that

∑
A,B∈V

dist(A,B)> 1
3r

∫

2A

∫

2B

(u(x)− u(y))2

|x − y|d 1{|x−y|≤ 1
100 }(�(x) ∧�(y))dxdy

≤ c cα1 r2−α ∑
C∈V

∫

2C

∫

2C

(u(x)− u(y))2

|x − y|d+α 1{|x−y|≤ 1
r }(�(x) ∧�(y)) dxdy

≤ c cα1

∫

B(0,1)×B(0,1)

(u(x)− u(y))2
r2−α

|x − y|d+α 1{|x−y|≤ 1
r }(�(x) ∧�(y)) dxdy.

In the last inequality above, we have used (5.6). ��
Proof of Theorem 5.1 By Lemma 5.7, it is enough to show the following claim; there
exist constants c = c(d, σ ) > 0 and c1(d) > 0 such that for every r > 102 and
u ∈ L1(B(0, 1),�dx)

∫

B(0,1− 10
r )×B(0,1− 10

r )

(u(x)− u(y))2

|x − y|d 1{|x−y|≤ 1
100 }(�(x) ∧�(y))dxdy

≤ c cα1

∫

B(0,1)×B(0,1)

(u(x)− u(y))2
r2−α

|x − y|d+α 1{|x−y|≤ 1
r }(�(x) ∧�(y))dxdy.

(5.12)

Note that

∫

B(0,1− 10
r )×B(0,1− 10

r )

(u(x)− u(y))2

|x − y|d 1{|x−y|≤ 1
100 }(�(x) ∧�(y))dxdy

≤
∑

A,B∈V

∫

2A

∫

2B

(u(x)− u(y))2

|x − y|d 1{|x−y|≤ 1
100 }(�(x) ∧�(y))dxdy

≤
∑

A, B ∈ V
dist(A, B) ≤ 1

3r

∫

2A

∫

2B

(u(x)− u(y))2

|x − y|d 1{|x−y|≤ 1
r }(�(x) ∧�(y))dxdy
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+
∑

A, B ∈ V
dist(A, B) > 1

3r

∫

2A

∫

2B

(u(x)− u(y))2

|x − y|d 1{|x−y|≤ 1
100 }(�(x) ∧�(y))dxdy

≤ c r2−α
∫

B(0,1)×B(0,1)

(u(x)− u(y))2

|x − y|d+α 1{|x−y|≤ 1
r }(�(x) ∧�(y))dxdy

+
∑

A, B ∈ V
dist(A, B) > 1

3r

∫

2A

∫

2B

(u(x)− u(y))2

|x − y|d 1{|x−y|≤ 1
100 }(�(x) ∧�(y))dxdy.

In the last inequality above, we have used (5.6) and the fact r2−α ≥ 1. Thus (5.12)
follows from Lemma 5.12. ��
Acknowledgments We thank Zoran Vondraček for pointing out an error in a preliminary version of this
paper.
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