
Math. Ann. (2008) 342:487–514
DOI 10.1007/s00208-008-0234-3 Mathematische Annalen

Fibred multilinks and singularities f g

Anne Pichon · José Seade

Received: 18 October 2006 / Revised: 14 November 2007 / Published online: 9 July 2008
© Springer-Verlag 2008

Abstract In this article we extend Milnor’s fibration theorem to the case of functions
of the form fḡ with f , g holomorphic, defined on a complex analytic (possibly singular)
germ (X, 0). We further refine this fibration theorem by looking not only at the link of
{ f ḡ = 0}, but also at its multi-link structure, which is more subtle. We mostly focus
on the case when X has complex dimension two. Our main result (Theorem 4.4) gives
in this case the equivalence of the following three statements:

(i) The real analytic germ fḡ : (X, p) → (R2, 0) has 0 as an isolated critical value;
(ii) the multilink L f ∪ −Lg is fibered; and

(iii) if π : X̃ → X is a resolution of the holomorphic germ f g : (X, p) → (C, 0),
then for each rupture vertex ( j) of the decorated dual graph of π one has that
the corresponding multiplicities of f, g satisfy: m f

j �= mg
j .

Moreover one has that if these conditions hold, then the Milnor-Lê fibration � f ḡ :
LX\(L f ∪ Lg) → S

1
η of fḡ is a fibration of the multilink L f ∪ −Lg . We also give a

combinatorial criterium to decide whether or not the multilink L f ∪ −Lg is fibered.
If the meromorphic germ f/g is semitame, then we show that the Milnor-Lê fibration
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given by � f ḡ is equivalent to the usual Milnor fibration given by fḡ/| f ḡ|. We finish
this article by discussing several realization problems.

Mathematics Subject Classification (2000) 32S55 · 57C45 · 57A25

0 Introduction

Milnor’s fibration theorem for complex singularities [26] states that if (Cn, 0)
f→

(C, 0) is a holomorphic map, then for every sufficiently small sphere Sε = ∂Bε

around 0 ∈ C
n one has a fibre bundle

φ = f

| f | : Sε\K −→ S
1,

where K = f −1(0)∩Sε is the link of f at 0. In this work, we give generalizations and

refinements of this theorem for germs of maps of the form (X, 0)
f ḡ→ (C, 0), where

X is a complex analytic variety in C
n with an isolated singularity at 0 and f and g

are both holomorphic maps. Our main interest is when X is a complex surface, but in
Sects. 1 and 5 we consider more general settings.

Our first result (Theorem 1.3) is for real analytic germs in general, inspired by the
corresponding theorem of Milnor in [26, Chap. 10]. We consider an equidimensional
real analytic space X in R

m with an isolated singularity at 0 ∈ R
m and an analytic

map f : (X, 0) → (Rk, 0) with an isolated critical value at 0 ∈ R
k . Let D

k
η be a small

ball around 0 in R
k and let S

k−1
η be its boundary. We prove that if f has the Thom

property (see 1.2), then for every ε > 0 sufficiently small and η > 0 sufficiently small
with respect to ε, the map

f : N (ε, η) −→ S
k−1
η ;

is the projection of a locally trivial fibre bundle, where N (ε, η) is the Milnor tube
f −1(Sk−1

η )∩Bε. Moreover, if we let LX = X ∩S
m−1
ε be the link of X and Tε,η be the

intersection f −1(Dη)∩S
m−1
ε , then, by inflating the tube N (ε, η), one gets an induced

fibre bundle:

� f : LX\Int(Tε,η) −→ S
k−1
η ,

where � f coincides with f on the boundary ∂Tε,η = f −1(Sk−1
η ) ∩ Sε.

This result is certainly known to various people and the first part of it is implicit
in [20]; in particular, this proves that N (ε, η)\∂Tε,η is diffeomorphic to LX\L f , the
complement of the link L f := f −1(0)∩Sε of f in the link of X . We also give several
examples of real analytic functions with an isolated critical value that have the Thom
property.

In Sects. 2–4 we focus on the case when X is a complex surface with an isolated
singularity at 0 ∈ X . In this context, we prove (1.4 and 1.7) that every map X → C of
the form f ḡ with an isolated critical value and f, g holomorphic has Thom’s property,
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Fibred multilinks and singularities f g 489

and that � f ḡ extends to the complement of the link L f ḡ = L f ∪ Lg in LX . We obtain
what we call the Milnor–Lê fibration of f ḡ:

� f ḡ : LX\L f ḡ−→S
1
η.

We do not know whether or not an analogous result holds when X is a complex
variety of dimension greater than 2.

We remark that examples of maps of the form f ḡ with a Milnor fibration have
already appeared in [1,15,33–36].

We define an orientation on the link L f ḡ by setting L f ḡ = L f ∪ −Lg where L f

and Lg are equipped with their natural orientations as the boundaries of the complex
curves f −1(0) ∩ Bε and g−1(0) ∩ Bε. Then the link L f ḡ is in fact a plumbing mul-
tilink. This means that it is union of S

1-leaves (i.e., Seifert leaves) in a Waldhausen
decomposition of LX and each component of the link comes with an orientation and
a multiplicity.

In Sect. 2 we envisage fibered plumbing multilinks in general, and we give an
amazingly simple combinatorial criterium (2.11), which is necessary and sufficient,
to decide whether or not a plumbing multilink L can be fibered (see 2.2 for the pre-
cise definition). This result was first proved in [7] and generalizes a result of [11] for
multilinks in integral homology spheres. We use this to show (2.14) that the multilink
L f ḡ ⊂ LX fibers (as a multilink), if the multiplicities of f and g, are distinct at each
rupture vertex of the plumbing graph (decorated with arrows) of some resolution of
the holomorphic germ f g, which is part of the main result of this work, Theorem 4.4.

In Sect. 3, we look at the geometry of the Milnor–Lê fibration � f ḡ : LX\L f ḡ−→S
1
η

near the multilink L f ḡ . The main Lemma 3.1 in this section implies that � f ḡ is in fact
a fibration of the multilink L f ∪−Lg , i.e., it equips LX with an open-book decompo-
sition with multiplicities having L f ∪−Lg as binding. This is essential for the proof of
Theorem 4.4 in Sect. 4, which gives the equivalence of the following three statements:

(i) The real analytic germ f ḡ : (X, p) → (R2, 0) has 0 as an isolated critical value;
(ii) the multilink L f ∪ −Lg is fibered; and

(iii) if π : X̃ → X is a resolution of the holomorphic germ f g : (X, p) → (C, 0),
then for each rupture vertex ( j) of the decorated dual graph of π one has m f

j �=
mg

j .
Moreover, one has that if these conditions hold, then the Milnor–Lê fibration
� f ḡ : LX\(L f ∪ Lg) → S

1
η of f ḡ is a fibration of the multilink L f ∪ −Lg .

Notice that condition (ii) is topological while the others are analytic.
In Sect. 5, we compare the geometry of the Milnor–Lê fibration � f ḡ : LX\

Int(Tε,η) → S
1
η with the Milnor fibration φ f/g : LX\L f g → S

1 of the meromor-
phic function f/g defined in [4] by

φ f/g(z) = ( f/g)(z)

|( f/g)(z)|
under the assumption that f/g is semitame at 0 (Definition 5.2). We show (Theo-
rem 5.5) that the two fibrations are equivalent. The proof is based on ideas of [26]
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490 A. Pichon, J. Seade

adapted in [4] to semitame meromorphic germs, and a canonical decomposition of the
space X associated to the map f ḡ, which is introduced in [8] for holomorphic germs.

It is of course interesting to compare these fibrations with the local fibrations for
meromorphic germs studied for instance in [13,14,38,39]; this is done in [5].

At the end Sect. 5 we compare the two assumptions “ f/g is semitame” and “ f ḡ
has an isolated critical value at 0”; we notice (Theorem 5.8) that when X is C

2 these
two conditions turn out to be equivalent. Our proof of this equivalence is somehow
intricate and it is not clear to us how these two conditions are actually related, neither
we know whether the equivalence given in Theorem 5.8 extends to a more general
setting.

Finally, in Sect. 6 we look at a “realization question” regarding fibered multilinks.
We prove the following: let M be either S

3 or a 3-manifold homeomorphic to the link
of a taut surface singularity; let L1, L2 be two plumbing fibered multilinks in a suitable
plumbing decomposition of M , with positive multiplicities, such that L1 ∪−L2 is also
fibered and any two components K1 of L1 and K2 of L2 belong to distinct plumbing
pieces of M . Then there exist two holomorphic germs f, g : (X, p) → (C, 0) without
common branches, such that L1 and L2 are the multilinks of f and g, respectively,
L1 − L2 is the multilink of f ḡ and

f ḡ

| f ḡ| : LX\(L1 ∪ L2) −→ S
1,

is a fibre bundle that realizes L1 − L2 as a fibered multilink.
The proof is based on [32] (5.4 and 5.5) and its generalisation to multilinks in [31],

where it is shown that every fibered positive plumbing multilink in a normal surface
singularity link can be realized by a holomorphic map.

We thank the referee for valuable comments and for pointing out some errors in a
previous version of this article. We also thank the Instituto de Matemáticas of UNAM
at Cuernavaca, México, and the Institut de Mathématiques de Luminy, France, for
their support while working on this article.

1 Milnor’s fibration and the Thom af condition

Let U be an open neighbourhood of 0 in R
n+k and let X ⊂ U be a real analytic variety

of dimension m > 0 with an isolated singularity at 0. Let f̃ : (U, 0) → (Rk, 0) be a
real analytic germ which is generically a submersion, i.e., its jacobian matrix D f̃ has
rank k on a dense open subset of U . We denote by f the restriction of f̃ to X . Following
Thom and others, we say that x ∈ X\{0} is a regular point of f if D fx : Tx X → R

k

is a submersion, otherwise x is a critical point. A point y ∈ R
k is a regular value of

f if there is no critical point in f −1(y); otherwise y is a critical value. We say that f
has an isolated critical value at 0 ∈ R

k if there is a neighbourhood Dδ of 0 in R
k so

that all points y ∈ Dδ\{0} are regular values of f .

Example 1.1 (a) Define a map C
2 f−→ C by f (z1, z2) = z̄3

1(z
2
1 + z3

2). Its critical set
is the axis {z1 = 0} and 0 ∈ C is its only critical value.
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Fibred multilinks and singularities f g 491

(b) Define h : C
n → C, n > 1, by (z1, . . . , zn) �→ za1

1 z̄σ1 + · · · + zan
n z̄σn , with

all ai integers greater than 1 and {zσ1, . . . , zσn } a permutation of the coordinates
{z1, . . . , zn}. Then, by [35] or [37, Chap. VII], h has an isolated critical point at
0 ∈ C

n .
(c) Now define h : C

n → C, n > 1, by h = f ḡ where g(z1, . . . , zn) = z1 . . . zn

and f is the Pham–Brieskorn polynomial

f (z1, . . . , zn) = za1
1 + · · · zan

n ai ≥ 2,

A straightforward computation shows that h has an isolated critical value at
0 ∈ R

2 whenever the ai satisfy
∑n

i=1
1
ai

�= 1. Notice that for n = 2 this means
that one ai is more than 2. For n = 3 the condition is satisfied whenever the
unordered triple (p, q, r) is not (2, 3, 6), (2, 4, 4) or (3, 3, 3).

Our aim now is to extend Milnor’s fibration theorem [26, Chap. 11] to real singular-
ities with an isolated critical value at the origin and satisfying an additional condition:
the Thom property. Let us explain what this means (cf. [21]).

Let f̃ : (U, 0) → (Rk, 0) be again a real analytic map, and assume f = f̃ |X has
an isolated critical value at 0 ∈ R

k . We set V = f −1(0) = f̃ −1(0) ∩ X . According
to [16,21], there exists a Whitney stratification (Vα)α∈A of U adapted to X and V .

Definition 1.2 The Whitney stratification (Vα)α∈A satisfies the Thom a f condition
with respect to f if for every sequence of points {xn} ∈ X\V converging to a point
x0 in a stratum Vα ⊂ V such that the sequence of tangent spaces Txn ( f −1( f (xn)) has
a limit T , one has that T contains the tangent space of Vα at x0. We say that f has the
Thom property if such a stratification exists.

Since the Whitney stratification (Vα)α∈A has finitely many strata containing 0 in
their closures, by [26,40] one has that each sufficiently small sphere Sε intersects each
stratum Vα transversally and the homeomorphism type of the intersection LX = X ∩
Sε does not depend on ε (cf. [6,21]). By Thom’s transversality, if the stratification sat-
isfies the a f -condition, then given such ε one has that for every sufficiently small disc
D

k
η = {x ∈ R

k/||x || ≤ η} and for every t ∈ D
k
η, the level surface f −1(t) also intersects

transversally the sphere Sε. Let us set S
k−1
η = ∂D

k
η and N (ε, η) = f −1(Sk−1

η ) ∩ Bε,
where Bε is the ball bounded by Sε. Let Tε,η = f −1(Dk

η) ∩ LX , so it is an algebraic
neighbourhood of the link L f = f −1(0)∩LX in the sense of [10]. We refer to N (ε, η)

as a Milnor tube for f .
The following result is an extension of the Milnor–Lê fibration Theorem [26, 11.2],

[20].

Theorem 1.3 Let the analytic map f : X → R
k have 0 ∈ R

k as an isolated critical
value and assume it has the Thom property. Let LX = X ∩ Sε be the link of X. Then
for every ε > 0 sufficiently small and η > 0 sufficiently small with respect to ε, the
map

f : N (ε, η) → S
k−1
η ,
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492 A. Pichon, J. Seade

is the projection of a locally trivial fibre bundle. Moreover, the manifold N (ε, η) is
diffeomorphic to LX\I nt (Tε,η) and the previous fibration induces a fibre bundle:

� f : LX\Int(Tε,η) −→ S
k−1
η ,

with � f = f restricted to the boundary ∂Tε,η = f −1(Sk−1
η ) ∩ Sε. In particular, one

has that N (ε, η)\∂Tε,η is diffeomorphic to LX\L f .

Proof The first statement is essentially an application of Ehresmann’s Fibration The-
orem. Choose a Whitney stratification (Vα) for which f satisfies the Thom condition.
As before, choose a small enough sphere Sε around 0 that intersects all strata trans-
versally, and so does every other smaller sphere around 0. Choose η > 0 sufficiently
small so that for each t ∈ S

k−1
η the fibre f −1(t) intersects Sε transversally. One has

a submersion: N (ε, η)
f→ S

k−1
η with compact fibers f −1(t) ∩ Bε, which is a fibre

bundle, as in Ehresmann’s Theorem.
The aim now, to prove the second statement, is to construct a tangent vector field v

on (X\V ) ∩ U , with U a neighbourhood of 0, which is transversal to all the spheres
around 0 and also transversal to the “tube” f −1(Sk−1

η ) near 0. Since the construction
is local, we can assume X is R

m , for otherwise we construct the vector field locally
and then glue the pieces together by a partition of unity. This is done as in Milnor’s
work. For instance, let f1, . . . , fk be the components of f and define a function

r(x) = f 2
1 (x) + · · · + f 2

k (x).

Let ∇r be its gradient. Following [25], define a vector field on (X ∩ Bε)\V by:

v(x) = ‖x‖ · ∇r + ‖∇r‖ · x .

This is a smooth vector field and the Curve Selection Lemma implies it has the prop-
erties we want. The rest of the proof is as in [26, Chap. 5] and is left to the reader. �

Our main interest in this article is when X is a complex analytic surface and the
map is of the form f ḡ with f, g holomorphic. One has:

Proposition 1.4 Let X be a complex analytic surface in C
N with an isolated sin-

gularity at 0 and let f, g : (X, 0) → (C, 0) be the restriction to X of two germs
of holomorphic functions (CN , 0) → (C, 0). Assume further that f and g have no
common branch and f ḡ has an isolated critical value at 0 ∈ R

2 ∼= C. Then f ḡ has
the Thom property.

Our proof actually shows that if the local ring OX,0 is with unique factorization,
then the corresponding Whitney stratification is canonical.

Proof Suppose first that X is C
2. Let f1, . . . , fm be the irreducible factors of f and

let g1, . . . , gn be those of g. Let us equip a small open neighbourhood U ⊂ C
2 of 0
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Fibred multilinks and singularities f g 493

with the Whitney stratification whose strata are :

U\( f g)−1(0); Vi = f −1
i (0)\{0}, i = 1, . . . , m;

V ′
j = g−1

j (0)\{0}, j = 1, . . . , n; and {0}.

We claim that this stratification satisfies the (a f )-condition with respect to f ḡ. It suf-
fices to check the condition on the strata Vi , i = 1, . . . , m and V ′

j , j = 1, . . . , n. Let
us check this on V1; the arguments are the same for the other strata.

Let us decompose f as f = f p
1 h, p ≥ 1, in such a way that f1 is not a factor of h.

Then the jacobian matrix of f ḡ with respect to the coordinates (z1, z̄1, z2, z̄2) in R
4

is given by

D( f ḡ)(z1, z̄1, z2, z̄2) =
⎛

⎜
⎝

∂(�( f ḡ))
∂z1

∂(�( f ḡ))
∂ z̄1

∂(�( f ḡ))
∂z2

∂(�( f ḡ))
∂ z̄2

∂(�( f ḡ))
∂z1

∂(�( f ḡ))
∂ z̄1

∂(�( f ḡ))
∂z2

∂(�( f ḡ))
∂ z̄2

⎞

⎟
⎠ . (1.5)

Set:

ai = p f p−1
1

∂ f1

∂zi
hḡ + f p

1
∂h

∂zi
ḡ and bi = f̄1

p
h̄

∂g

∂zi

Then

∂(�( f ḡ))

∂zi
= 1

2
(ai + bi )

∂(�( f ḡ))

∂ z̄i
= 1

2
(ai + bi ),

∂(�( f ḡ))

∂zi
= 1

2i
(ai − bi ),

∂(�( f ḡ))

∂ z̄i
= − 1

2i
(ai − bi ),

For each t ∈ R
2\{0} and for each x ∈ ( f ḡ)−1(t), the tangent space Tx ( f ḡ)−1(t)

is defined by the equation D( f ḡ)(x)t (v1, v1, v2, v2) = 0, i.e., by the two equations,

� ((a1 + b1)v1 + (a2 + b2)v2) = 0 ,

and

� ((a1 − b1)v1 + (a2 − b2)v2) = 0 ;

or equivalently:

a1v1 + b1v1 + a2v2 + b2v2 = 0 ;
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i.e.,

(

p
∂ f1

∂z1
hḡ+ f1

∂h

∂z1
ḡ

)

v1+ f1
∂g

∂z1
hv̄1+

(

p
∂ f1

∂z2
hḡ + f1

∂h

∂z2
ḡ

)

v2 + f1
∂g

∂z2
hv̄2 = 0.

Then, if {xn} denotes a sequence of points in R
4\{( f g)−1(0)} converging to a point

x ∈ f −1
1 (0), the limit T of the tangent planes Txn ( f ḡ)−1(tn), where tn = ( f ḡ)(xn),

has equation:

(

p
∂ f1

∂z1
(x)h(x)ḡ(x)

)

v1 +
(

p
∂ f1

∂z2
(x)h(x)ḡ(x)

)

v2 = 0.

Since h(x)ḡ(x) �= 0, then T has equation:

∂ f1

∂z1
(x)v1 + ∂ f1

∂z2
(x)v2 = 0.

Then T equals the plane tangent at x to the curve f −1
1 (0); so one has that these

singularities satisfy the Thom a f -condition for the above Whitney stratification.
Now let (X, 0) be a germ of a normal complex surface with an isolated singularity

and let f, g be as in the statement of the theorem. Let us equip a coordinate chart
U ⊂ X around p with the Whitney stratification defined as above. The previous dis-
cussion shows that this stratification of U satisfies the a f -condition with respect to
f ḡ. �
Remark 1.6 (i) The previous arguments can be generalized to higher dimensions

in many cases, as for instance to the singularities in Example 1.1.c; in fact one
may conjecture that Proposition 1.4 also holds in higher dimensions. Notice
that every polynomial map R

2m → R
2 can be expressed as a sum of functions

of type f ḡ; it would be interesting to determine the class of such singularities
that have the Thom property, as for instance the examples in 1.1.b.

(ii) Notice that if X = C
2 and f, g are as in Proposition 1.4, then for each holo-

morphic germ h : (Cn, 0) → (C, 0) with an isolated critical value at 0 ∈ C,
the real analytic germ H : (Cn+2, 0) → (R2, 0) defined by

H(z1, z2, z3, . . . , zn+2) = f (z1, z2)g(z1, z2) + h(z3, . . . , zn+2)

obviously has 0 as an isolated critical value too. Since holomorphic functions
have the Thom property, by [16], it follows that H also has the Thom property.

As a consequence of Theorem 1.3 and Proposition 1.4 one obtains:

Corollary 1.7 Let X be a complex analytic surface in C
N with an isolated singularity

at 0 and let f, g : (X, 0) → (C, 0) be the restriction to X of two germs of holomorphic
functions (CN , 0) → (C, 0). Assume further that f and g have no common branch
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and f ḡ has an isolated critical value at 0 ∈ R
2 ∼= C. Then one has a locally trivial

fibration

� f ḡ : LX\L f ḡ −→ S
1
η

which restricted to T(ε,η)\L f ḡ is the map x �→ η
f ḡ

| f ḡ| .

Notice that � f ḡ depends on the choice of a diffeomorphism from N (ε, η) to LX\
I nt (Tε,η) (see the proof of Theorem 1.3), but all such choices yield isomorphic fibra-
tions.

Definition 1.8 We call � f ḡ : LX\L f ḡ −→ S
1
η the Milnor–Lê fibration of f ḡ.

2 Fibrations of plumbing multilinks

From now on the standard circle S
1 is oriented as the boundary of the complex disk

D
2 = {z ∈ C/|z| ≤ 1}. A circle means a one-dimensional manifold diffeomorphic to

S
1.

Let M be a compact connected oriented 3-manifold. An (unoriented) knot in M is
a circle embedded in M . A link L in M is a finite disjoint union of circles embedded
in M . We let L = K1 ∪ . . . ∪ Kl be the connected components of L . We say that L
is an oriented link if an orientation is fixed on each Ki . Notice that the normal bundle
of each Ki in M is trivial. Hence, if L is oriented then one has orientation preserving
diffeomorphisms N (Ki ) ∼= D

2 ×S
1 defined on a neighbourhood of each Ki , that carry

the oriented circles Ki into {0} × S
1 with its usual orientation.

A multilink is the data of an oriented link L = K1 ∪ . . . ∪ Kl together with a
multiplicity ni ∈ Z associated with each component Ki . We denote such a multilink
by

L = n1 K1 ∪ . . . ∪ nl Kl ,

and we fix the convention that ni Ki = (−ni )(−Ki ), where −Ki means Ki with the
opposite orientation. We say that two multilinks L ⊂ M and L ′ ⊂ M ′ are equivalent
if there exists an orientation-preserving homeomorphism H : (M, L) → (M ′, L ′)
such that the multiplicities of the corresponding components coincide.

Example 2.1 Let X be a complex surface in C
N with a normal singularity at 0 and let

LX = X ∩ S
2N−1
ε be its link. We equip LX with its natural orientation as boundary of

X ∩ B
2N
ε . Let f : (X, 0) −→ (C, 0) be a holomorphic germ and L f = LX ∩ f −1(0)

its link in LX , naturally oriented as the boundary of the complex curve f −1(0)∩B
2N
ε ,

ε > 0 sufficiently small.
Let π : X̃ → X be a good resolution of the germ f , i.e., a resolution of X such that

the irreducible components of the divisor ( f ◦ π)−1(0) are smooth and with normal
crossings. Let S1, . . . , Sl be the branches of the strict transform π−1( f −1(0)\{0}) of
f . We denote by ni the multiplicity of f ◦π along the curve Si . For each i = 1, . . . , l,
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let Ki be the component of L f associated with Si , i.e., the knot π(Si ) ∩ LX . By
definition the multilink associated with f is:

L f =
l⋃

i=1

ni Ki .

In particular, when the local ring OX,0 is a unique factorization ring (e.g. X = C
2),

let f = u
∏l

i=1 f ni
i be its decomposition into irreducible factors, u(0) �= 0; then the

multilink associated with f is L f = ⋃l
i=1 ni L fi .

Definition 2.2 Let M be a compact connected oriented 3-manifold. A multilink L =
n1 K1 ∪ . . . ∪ nl Kl in M is fiberable (or simply fibered) if there exists a map � :
M\L −→ S

1 which satisfies:

(i) the map � is a C∞ locally trivial fibration; and
(ii) for each i = 1, . . . , l, there exists a regular neighbourhood N (Ki ) of Ki in

M\(L\Ki ), an orientation-preserving diffeomorphism τ : S
1 × D

2 → N (Ki )

such that τ(S1 × {0}) = Ki and an integer ki ∈ Z such that for all (t, z) ∈
S

1 × (D2\{0}) one has:

(� ◦ τ)(t, z) =
(

z

|z|
)ni

tki

We say that such a � is a fibration of the multilink L .

Being precise, to say that L is fibered means that we have already chosen a fibration
for it, but by abuse of notation we also say L is fibered meaning that it can be fibered.

Example 2.3 If (X, 0) is a normal complex surface singularity and f : (X, 0) −→
(C, 0) is holomorphic, then the Milnor fibration f (x)

/| f (x)| : LX\L f → S
1 is a

fibration of the multilink L f .

Remark 2.4 (1) The integer ki is non unique; it depends on the choice of τ , but its
class modulo ni is well defined.

(2) For each t ∈ S
1 the intersection �−1(t) ∩ (N (Ki )) has gcd(ni , ki ) connected

components, each of them being diffeomorphic to a half-open annulus S
1×[0, 1[.

(3) The ni are local data whereas the classes ki (mod ni ) are global. Indeed, let D
be a meridian disk of N (Ki ) oriented as {1} × D

2 via τ and equip its boundary
m = ∂ D with the induced orientation. Then ni is the degree of the restriction of
� to m. But ki depends on the equivalence class of the multilink L in M , and
in particular on all the multiplicities ni , i = 1, . . . , nl . See [11, p. 30] where the
inverse li of ki modulo ni is computed explicitly when the link is an integral
homology sphere.

(4) If ki = 0 for each i = 1, . . . , n, and ni ∈ {−1,+1} then one has:

(� ◦ τ)(t, z) = z

|z| if ni = +1; or (� ◦ τ)(t, z) = z̄

|z| if ni = −1.
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In this case L is just an oriented link and � is a so-called open-book fibration of M
with binding L; this case is studied in [33] when M = S

3.

Definition 2.5 If � : M\L → S
1 and �′ : M ′\L ′ → S

1 are fibrations of the
multilinks (M, L) and (M ′, L ′), we say that � and �′ are topologically equivalent
if there exist orientation-preserving diffeomorphisms H : (M, L) → (M ′, L ′) and
ρ : S

1 → S
1 such that ρ ◦ � = �′ ◦ H |M\L .

Remark 2.6 (1) Such an H is an equivalence between the links (M, L) and (M ′, L ′).
(2) Notice that in general there can be several non-equivalent fibrations for a given

multilink. When M is an integral homology sphere, a multilink L ⊂ M deter-
mines a unique integral class α ∈ H1(M\N (L)), where N (L) is a regular neigh-
bourhood of L . Identifying H1(M\N (L)) ∼= [M\N (L) , S

1], the homotopy
classes of maps, one has that L is fibered if and only if α contains a locally trivial
fibration. Moreover, if there exists such a fibration then it is unique up to isotopy,
as a consequence of a result of Blank and Laudenbach (see [11, p. 34] for details).
Hence each fibered multilink L ⊂ M in an integral homology sphere has a unique
fibration � : M\L → S

1 up to topological equivalence (cf. Remark 2.13 (3)).

Now let M be a plumbing manifold, or equivalently a graph manifold in the sense
of Waldhausen. So M is homeomorphic to the boundary of a 4-manifold obtained
by plumbing together a finite number of D

2-bundles N1, . . . , Nr over oriented real
surfaces E1, . . . , Er , see [17] or [30]. If T ⊂ M denotes the union of the plumbing
tori, then M\T is a union of 3-manifolds equipped with an S

1-foliation, the S
1-leaves

being boundaries of the D
2-fibres of the Ni ’s.

Convention 2.7 In the sequel we make the convention that the surfaces Ei have genus
≥ 0 and are oriented. We also assume that each plumbing operation has positive ε in
the sense of [30], and that no bundle Ni is plumbed with itself (so each edge in the
associated plumbing graph joins two different vertices).

The homeomorphism class of a plumbing manifold M is completely encoded in the
plumbing graph � of any plumbing decomposition of M , defined in the classical way:
the vertices (1), . . . , (r) are in bijection with the bundles N1, . . . , Nr and the edges
joining two vertices (i) and ( j) are in bijection with the plumbing operations between
Ni and N j . Each vertex (i) is weighted by the genus of the surface Ei (usually omitted
when the genus is 0) and by the Euler class ei of the bundle Ni .

We denote by M� the intersection matrix associated with �, i.e., the r × r matrix
(ai j )1 ≤ i, j ≤ r defined by aii = ei for all i and for i �= j the integer ai j equals the
number of edges of � joining the vertices (i) and ( j).

Example 2.8 (cf. [30]) The link LX of a normal complex surface (X, p) is a plumbing
manifold and a plumbing graph of LX can be obtained as the dual graph � of any
resolution π : X̃ → X of X such that the irreducible components E1, . . . , Er of the
exceptional divisor E = π−1(p) are smooth curves with normal crossings. The inter-
section matrix M� is then the intersection matrix of the Ei ’s in X̃ and it is negative
definite [28].
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Definition 2.9 Let M be a plumbing manifold. A link L in M is a plumbing link if it
is a finite union of S

1-leaves in a plumbing decomposition of M .

Notice that every plumbing link L in M has a natural orientation as the union of the
boundaries of some fibres of the D2-bundles Ni . In the sequel we consider always this
natural orientation. Then a plumbing multilink is a multilink L = n1 K1 ∪ . . . ∪ nl Kl

such that each Ki is an S
1-leaf in a plumbing decomposition of M .

The equivalence class of a plumbing multilink L is fully described by its dec-
orated plumbing graph, obtained from a plumbing graph for M by adding arrows
corresponding to the components of L , each arrow endowed with its multiliplicity ni .

For example if (X, p) is a normal complex surface singularity and f : (X, p) →
(C, 0) is a holomorphic germ, then L f is a plumbing multilink and a plumbing graph
of L f can be obtained as the dual graph of any good resolution π : X̃ → X of f .

Definition 2.10 Let � be a plumbing graph of a plumbing multilink. A vertex of � is
a rupture vertex if it either carries genus > 0 or if it has at least three incident edges,
the arrows being considered as edges.

The following theorem is a generalization of a result of Eisenbud and Neumann
([11], Theorem 11.2, see also p. 136), reformulated in terms of plumbing links. In [11]
this result is proved for multilinks in Z-homology spheres and formulated in terms of
splicing diagrams. This result is also proved in the thesis of Chaves in terms of graph
decompositions ([7], theorem 2.2.10). The sketch of proof given here is similar to that
of [7] in the sense ⇒, but for the other implication we use the results of [32] extended
to the multilink case.

Theorem 2.11 Let L = n1 K1 ∪ . . . ∪ nl Kl be a plumbing multilink with plumb-
ing graph � and intersection matrix M� , and let (1), . . . , (r) be the vertices of �.
Let b(L) = (b1, . . . , br ) ∈ Z

r , where bi is the sum of the multiplicities n j carried
by the arrows attached to the vertex (i). Then L is fibered if and only if there exist
(m1, . . . , mr ) ∈ Z

r such that the following two conditions hold:

(1) M�
t (m1, . . . , mr ) + t b(L) = 0, where t (.) means the transposition.

(2) for each rupture vertex ( j) of �, the integer m j is �= 0.

The system of equations (1) is called the monodromical system of L (see [32]).

Proof Assume L is fibered and let � : M\L → S
1 be a fibration; let F = �−1(t), t ∈

S
1 be a fibre. Notice that F is naturally oriented by lifting to M\L the canonical vector

field on S
1. For each i = 1, . . . , r , let li be an S

1-leaf of Ni , and let mi be the inter-
section number F · li in M . Then (m1, . . . mr ) satisfies condition (1) in the theorem
(see [32], Thm 4.3). Moreover, when � has at least one rupture vertex then, according
to arguments of Thurston-Roussarie et al. (see [11, 4.2]), F is a horizontal surface in
M\N (L), where N (L) is a regular neighbourhood of L in M . This means that for
each rupture vertex ( j) of �, F is transversal to L j up to isotopy, thus m j �= 0.

Assume now that N = (m1, . . . , mr ) verifies both conditions (1) and (2). Using
the formulas of [32], one constructs a graph G N from � and N . The conditions (1)
and (2) imply that G N is the Nielsen graph of the monodromy of a fibration of the
multilink L ([32], Lemma 4.7). Therefore L is fibered. �
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Example 2.12 (1) Let M be the plumbing 3-manifold whose graph is −D4 (see
Fig. 1), and let L1, L2, L3 and L4 be the four multilinks whose graphs are repre-
sented on Fig. 1. The numbers without parenthesis are the Euler classes and the
numbers with parenthesis are the multiplicities mi and ni . Then L1 is not fibered
since the rupture vertex carries multiplicity 0. The multilink L2 = L3 − L4 is
fibered since it verifies the conditions 1 and 2 of 2.11, whereas L3 and L4 are not
fibered because they do not verify the condition 1.

(2) Let X be the hypersurface in C
3 with equation x3 + y3 + z3 = 0. Then a resolu-

tion graph of the germ (X, 0) consists of a single vertex with Euler class −3 and
genus 1. Let L5 be the plumbing multilink in LX whose graph is represented on
Fig. 1. Then L5 is fibered if and only if 3 divides n.

Remark 2.13 (1) An easy computation (using for instance [30]) shows that the con-
ditions in 2.11 do not depend on the choice of the plumbing graph.

(2) If the intersection matrix M� is invertible (e.g. if M is the link of a normal surface
singularity), then there is a unique solution (m1, . . . , mr ) ∈ Q

r to condition 1) in
Theorem 2.11; this is given by t (m1, . . . , mr ) = −(M�)−1 t b(L). One obtains
mi ∈ Z for all i by considering the multilink kL = (kn1)K1 ∪ . . .∪ (knl)Kl with
k = det M� . Thus, if condition 2 holds for the multilink L , then the multilink kL
is fiberable.

(3) An easy generalization of the arguments in [32] shows that each (m1, . . . , mr ) ∈
Z

r satifying the conditions (1) and (2) in Theorem 2.11 defines a finite number of
topological equivalence classes of fibrations of L such that F · li = mi for each
i = 1, . . . , r . When M� is invertible, then any fibered multilink admits a finite
number of fibrations up topological equivalence. Moreover, if M is a rational
homology sphere then there is only one such class, by [32, 4.7 and 4.8].

Fig. 1 Multilinks
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Corollary 2.14 Let (X, p) be a normal surface singularity and let f, g : (X, p) −→
(C, 0) be holomorphic germs. Let π : X̃ → X be a good resolution of the holomor-
phic germ f g such that the total transform ( f g ◦ π)−1(0) has normal crossings, and
let � be its dual graph; (1), . . . , (r) are the vertices of �. For each i = 1, . . . , r ,
let m f

i (respectively, mg
i ) be the multiplicity of f ◦ π (respectively, g ◦ π ) along the

corresponding irreducible component of the exceptional divisor. Then the multilink
L f ḡ = L f ∪ −Lg is fibered if and only if for each rupture vertex ( j) of � one has

m f
j �= mg

j .

Proof The links L f and Lg are fibered by Milnor’s theorem, and according to [18, 2.6]

the solutions of their monodromical systems are (m f
1 , . . . , m f

r ) and (mg
1, . . . , mg

r ),
respectively. With the notations of the theorem one has:

(M�)−1 t b(L f ∪ −Lg) = (M�)−1 t (b(L f ) − b(Lg)).

Therefore

(M�)−1 t b(L f ∪ −Lg) = −t (m f
1 − mg

1, . . . , m f
r − mg

r ).

Hence (m f
1 − mg

1, . . . , m f
r − mg

r ) is the solution of the monodromical system of
L f ∪ −Lg . One concludes 2.14 using 3.11. �

3 The geometry near the multilink L f ḡ

From now on (X, p) denotes a complex analytic surface with a normal singular-
ity at p, and f, g : (X, p) → (C, 0) are two holomorphic germs without com-
mon branches. The lemma below describes the behaviour of the real analytic germ
f ḡ : (X, p) → (C, 0) in a neighbourhood of its link L f ḡ ⊂ LX .

Lemma 3.1 Let K be a component of the multilink L f ∪ −Lg and let n be its mul-
tiplicity in L f ∪ −Lg. Then there exists a regular neighbourhood N (K ) of K in
LX , an orientation-preserving diffeomorphism τ : S

1 × D
2 → N (K ) such that

τ(S1 × {0}) = K , and an integer m ∈ Z such that for all (t, z) ∈ S
1 × (D2\{0}) we

have:

(
f ḡ

| f ḡ| ◦ τ

)

(t, z) =
(

z

|z|
)n

tm .

Proof The proof is adapted from that of [33, 3.1] for the case X = C
2. Let π : X̃ −→

X be a good resolution of the holomorphic germ f g. Let S be a branch of the strict
transform of f by π and let E be the irreducible component of the exceptional divisor
π−1(p) which intersects S. We denote by n the multiplicity of f along the curve S
and by m f (respectively, mg) the multiplicity of f ◦ π (respectively, g ◦ π ) along E .
We choose local coordinates (z1, z2) in X̃ such that S ∩ E is (0, 0), z2 = 0 is a local
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equation for E . Let γ ∈ C{{z1, z2}} be such that γ (z1, z2) = 0 is a local equation for
S, then in a neighbourhood of (0, 0) we have

( f ◦ π)(z1, z2) = z
m f
2 γ (z1, z2)

nu(z1, z2) ,

and

(g ◦ π)(z1, z2) = z
mg
2 v(z1, z2),

with u and v being units in C{{z1, z2}}. Then, locally,

( f ḡ ◦ π)(z1, z2) = z
m f
2 z2

mg γ (z1, z2)
n u(z1, z2) v(z1, z2).

A suitable change of local coordinates (z′
1, z2) = α(z1, z2) leads to

( f ḡ ◦ π)(z′
1, z2) = z

m f
2 z2

mg z′
1

n
,

where z′
1 = 0 is a local equation of S.

Now let us identify LX with the boundary of a regular neighbourhood W of the
exceptional divisor π−1(p) in X̃ , defined locally by W = {(z′

1, z2)//|z2| ≤ η}, with

η � 1; let us study the restriction of f ḡ
| f ḡ| ◦ π to a small tubular neighbourhood N (K )

of the component K = S ∩ ∂W of L f , say

N (K ) = {(z′
1, z2)/|z′

1| ≤ η′, |z2| = η},

where η′ � η. Let τ : S
1×D

2 → N (K ) be the orientation preserving diffeomorphism
defined by τ(t, z) = (η′z, ηt). Then for all (t, z) ∈ S

1 × (D2\{0}) one has:

f ḡ

| f ḡ| ◦ π ◦ α ◦ τ (t, z) =
(

z

|z|
)n

tm f · t̄mg =
(

z

|z|
)n

t (m f −mg).

Similar computations near a branch of the strict transform of g complete the proof.
�

The following immediate consequence of Lemma 3.1 refines Corollary 1.7 and is
part of our main Theorem 4.4.

Corollary 3.2 If f ḡ : (X, 0) → (R2, 0) has 0 as an isolated critical value, then its
Milnor–Lê fibration � f ḡ : LX\L f ḡ → S

1 is a fibration of the multilink L f ∪ −Lg.

Notice that L f ḡ is L f ∪ Lg as unoriented links, but 3.2 states that L f ḡ actually
fibres with its natural multilink structure. Thus 3.2 is much stronger than Corollary 1.7
since it describes this Milnor–Lê fibration as the fibration of the multilink, taking into
account the “multiple open-book” structure near the binding, the orientations and the
multiplicities. In particular, 3.2 enables us to describe (using [32]) the genus of the
fibres and most of the data concerning the topology of the fibration (see for instance
[34]).
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4 f ḡ and the discriminantal ratios of (g, f )

Let (X, p), f and g be as in Sects. 2 and 3. We now give a sufficient condition
(Lemma 4.2) in terms of the discriminantal ratios of the germ (g, f ), for the germ
f ḡ to have 0 as an isolated critical value. Then we use a result of [22] relating the
discriminantal ratios to some topological invariants of the meromorphic germ f/g to
prove our main Theorem 4.4.

The discriminantal ratios are defined in [22] as follows. Set π = (g, f ) : X → C
2

and let C ⊂ X be its critical locus. Let � = π(C) be its discriminant curve, and let
(�α)α∈A be the set of branches of � which are not the coordinates axes.

Definition 4.1 The discriminantial ratio of �α with respect to the canonical complex
coordinates u = g(x) and v = f (x) of (g, f )(X) is the rational number

dα = I (u = 0,�α)

I (v = 0,�α)
,

where I (−,−) denotes the intersection number at 0 of complex analytic curves in C
2.

Lemma 4.2 If the discriminantal ratios of π = (g, f ) with respect to the complex
coordinates u = g(x) and v = f (x) are all �= 1, then f ḡ : (X, p) → (C, 0) has 0
as an isolated critical value.

Proof Let U be an open neighbourhood of p in X such that f and g have no critical
points in U\( f g)−1(0). Let x ∈ U\( f g)−1(0), let φ : V → W be a parametrisation of
X\{p} in a neighbourhood W of x in X , with V an open set in C

2, and let y = φ−1(x).
Since Dφ(y) : TyC

2 → Tx X is an isomorphism, one has that x is a critical point of
f ḡ if and only if y is a critical point of ( f ḡ) ◦ φ = ( f ◦ φ) · (g ◦ φ) : V → R

2.
Consider the holomorphic functions F = f ◦ φ, G = g ◦ φ and the map FG =

( f ḡ) ◦ φ. We decompose FG in its real and imaginary parts:

(�(FG),�(FG)
) =

(
1

2
(FG + FG),

1

2i
(FG − FG)

)

.

Its jacobian matrix D(FG) is given by the matrix in (1.5) replacing f by F and g
by G. Therefore the rank of D(FG) at (z1, z2) ∈ V is not maximal if and only if all
2×2 minors of the jacobian matrix have zero determinant. This is equivalent to saying
that for each pair of variables (zi , z j ) one has the following equalities (cf. [33]):

FG

(
∂ F

∂z1

∂G

∂z2
− ∂ F

∂z2

∂G

∂z1

)

= 0 (1) (4.3)

| G
∂ F

∂z1
| = | F

∂G

∂z1
| (2)

| G
∂ F

∂z2
| = | F

∂G

∂z2
| (3)
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| G |2 ∂ F

∂z1

∂ F

∂z2
= | F |2 ∂G

∂z1

∂G

∂z2
(4)

Assume that (z1, z2) ∈ V \(FG)−1(0) is such a point. Then the first equation in
(4.3) implies

∂ F

∂z1
(z1, z2)

∂G

∂z2
(z1, z2) − ∂ F

∂z2
(z1, z2)

∂G

∂z1
(z1, z2) = 0,

so that (z1, z2) belongs to the critical locus of the germ (G, F) and φ(z1, z2) is in the
critical locus C of (g, f ).

Now assume that f ḡ does not have 0 as an isolated critical value. Then there exists a
branch γ of C in U which is not a branch of f g−1(0), and a sequence {xn}n∈N of points
of γ \{p} converging to p which satisfy that for each n ∈ N and for every parametri-
sation φ : V → W ⊂ X\{p} with xn ∈ W , the rank of D( f ḡ ◦ φ)(φ−1(xn)) is not
maximal. Let us choose one such parametrisation φ : V → W ⊂ X\{p} with W con-
tractible in X\{p} and γ \{p} ⊂ W . We set β = φ−1(γ \{p}), F = f ◦ φ, G = g ◦ φ,
and for each n ∈ N set (zn,1, zn,2) = φ−1(xn) and (un, vn) = (g(xn), f (xn)).

Let �α be a branch of the discriminant curve � such that �α = (g, f )(γ ). Accord-
ing to the definition of the discriminantal ratio dα , the curve �α admits a Puiseux
expansion of the form:

u = ξ(v) = vdα

(

a +
∑

k∈N∗
bkv

k
m

)

.

Then G|β = (ξ ◦ F)|β and for each point (z1, z2) of the curve β, the linear maps
DG(z1, z2) and D(ξ ◦ F)(z1, z2) coincide on the complex tangent line T(z1,z2)β. Set
v = F(z1, z2) and let h ∈ T(z1,z2)β\{0}. Then DG(z1, z2) · h = ξ ′(v)DF(z1, z2) · h.
As (z1, z2) belongs to the jacobian locus of (G, F), for all (z1, z2) ∈ β we obtain:

(
∂G

∂z1
(z1, z2),

∂G

∂z2
(z1, z2)

)

= ξ ′(v)

(
∂ F

∂z1
(z1, z2),

∂ F

∂z2
(z1, z2)

)

.

This holds in particular for each (zn,1, zn,2), n ∈ N.
Since f and g have no singular point in U\( f g)−1(0), then for each n ∈ N,

either
(

∂ F
∂z1

(zn,1, zn,2),
∂G
∂z1

(zn,1, zn,2)
)

�= (0, 0) or
(

∂ F
∂z2

(zn,1, zn,2),
∂G
∂z2

(zn,1, zn,2)
)
�=

(0, 0). Then, perhaps after replacing {xn}n∈N by a subsequence, we can assume that
either

(a) for all n ∈ N one has
(

∂ F
∂z1

(zn,1, zn,2),
∂G
∂z1

(zn,1, zn,2)
)

�= (0, 0); or

(b) for all n ∈ N one has
(

∂ F
∂z2

(zn,1, zn,2),
∂G
∂z2

(zn,1, zn,2)
)

�= (0, 0).

123



504 A. Pichon, J. Seade

If (a) holds then the second equation in (4.3) implies that for all n ∈ N one has
|ξ(vn)| = |vnξ ′(vn)|, where vn = f (xn). That is,

|adα +
∑

k∈N∗
bk

(

dα + k

m

)

vn
k
m | = |a +

∑

k∈N∗
bkvn

k
m | ,

for all n ∈ N. Taking the limit when n → ∞ leads to |adα| = |a|. Hence dα = 1.
Condition (b) also leads to dα = 1, so we arrive to Lemma 4.2. �
The following result is a generalization of ([33], theorem 5.1), which studied the

case where X = C
2 and f and g have an isolated critical point at 0 ∈ C

2.

Theorem 4.4 Let (X, p) be a normal surface singularity and let f, g : (X, p) →
(C, 0) be two holomorphic germs with no common branches. Then the following con-
ditions are equivalent

(i) The real analytic germ f ḡ : (X, p) → (R2, 0) has 0 as an isolated critical
value.

(ii) The multilink L f ∪ −Lg is fibered.
(iii) If π : X̃ → X is a resolution of the holomorphic germ f g : (X, p) → (C, 0),

then for each rupture vertex ( j) of the dual graph of π one has m f
j − mg

j �= 0.

Moreover, if these conditions hold, then the Milnor–Lê fibration � f ḡ : LX\L f ḡ → S
1
η

of f ḡ is a fibration of the multilink L f ∪ −Lg.

The key point in the proof of ([33], 5.1) is the theorem 1.1 of [24], which relates the
determinantal ratios of the germ (g, f ) : (C2, 0) → (C2, 0) with some topological
invariants of the meromorphic function f/g. The key point in the proof of theorem 4.4
is the following theorem of [22] that generalizes [24, theorem 1.1]. For this we need:

Definition 4.5 Let π : X̃ → X be a good resolution of the holomorphic germ f g,
let � be the associated dual graph and let (1), . . . , (r) be the vertices of �. For each
i = 1, . . . , r let m f

i (respectively, mg
i ) be the multiplicity of f ◦π (respectively, g ◦π )

along the irreducible component of the exceptional divisor π−1(p) represented by (i).
The contact quotient associated with (i) is the rational number m f

i / mg
i .

Theorem 4.6 ([22], Theorem 0.3) The set of the discriminantal ratios of the germ
(g, f ) : (X, p) → (C2, 0) equals the set T of contact quotients of (g, f ) associated
with the rupture vertices of the dual graph of a good resolution of the germ f g.

Notice that the set T does not depend on the choice of the good resolution.

Proof of 4.4. By 3.2, if f ḡ has 0 as an isolated critical value, then its Milnor–Lê
fibration (1.8) is a fibration of the multilink L f ∪ −Lg and (i) ⇒ (ii).

Assume now that the plumbing multilink L f ∪ −Lg is fibered. Let π : X̃ → X be
a good resolution of the germ f g and let � be its dual graph. Let (1), . . . , (r) be the
vertices of �. Let us denote by R the set of rupture vertices of �. Then, according to
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2.14, for each rupture vertex ( j) one has m f
j �= mg

j , so (ii) ⇒ (iii). Now, by defini-

tion 4.5 m f
j /mg

j is the contact quotient of (g, f ) associated with the vertex ( j), and
4.6 says that the set of contact quotients of (g, f ) associated to the rupture vertices
correspond to the determinantal ratios of the germ (g, f ). If we now assume (iii), then
Lemma 4.2 implies that f ḡ has 0 as an isolated critical value, completing the proof
of 4.4. �

5 The Milnor fibration for functions f/g

In this section, we compare the geometry of the Milnor–Lê fibration � f ḡ with that
of the Milnor fibration of the meromorphic function f/g introduced in [4], which we
now recall. Let us consider an equidimensional, reduced complex analytic isolated
singularity (X, 0) of dimension n in C

N and two germs of holomorphic functions
f, g : (X, 0) → (C, 0) such that f −1(0) and g−1(0) have no common irreducible
components.

Let us denote by LX the link of (X, 0) and by L f g the link of f g in LX , i.e., the
intersection of ( f g)−1(0) with LX .

The meromorphic function f/g is well defined on LX\L f g and takes values in
P

1\{0,∞}. Notice that, as observed in [15], away from V f g = { f g = 0} one has:
f ḡ = f

g · |g|2 and therefore:

f ḡ

| f ḡ| = f/g

| f/g| .

The following definitions were introduced in [4] when the germ of X at 0 is smooth,
following ideas of [29].

Let M( f/g) be the set of points in X\V f g where the fibers of h := f/g are tangent
to the spheres in C

N centered at 0. That is:

M( f/g) = {x ∈ X\V f g|Tx

(
(h−1(h(x))

)
⊂ TxS

2N−1
||x || }.

Definition 5.1 The bifurcation set B ⊂ P
1 of the meromorphic function f/g is the

union of {0,∞} and the set of c ∈ P
1 such that there exists a sequence of points

(xk)k∈N in M( f/g) such that

lim
k→∞ xk = 0 and lim

k→∞( f/g)(xk) = c.

Definition 5.2 The meromorphic function f/g is semitame at 0 if B = {0,∞}.
Adapting the proof of Theorem 2.6 of [4] which concerned the case when X is

smooth, we obtain the first part of the following theorem. The second part follows by
the same arguments as in Lemma 3.1.

Theorem 5.3 Consider an equidimensional, reduced complex analytic isolated sin-
gularity (X, 0) of dimension n in C

N and two germs of holomorphic functions f, g :

123



506 A. Pichon, J. Seade

(X, 0) → (C, 0) such that f −1(0) and g−1(0) have no common irreducible compo-
nents. If f/g is semitame at 0, then the map

φ f/g = f/g

| f/g| : LX\L f g −→ S
1,

is a locally trivial C∞ fibre bundle. Moreover, φ f/g is a fibration of the multilink
L f ∪ −Lg.

Definition 5.4 We call φ f/g : LX\L f g −→ S
1 the Milnor fibration of the meromor-

phic germ f/g.

When the link is a rational homology sphere, then the arguments of ([32], 4.7, 4.8)
show that the Milnor fibration and the Milnor–Lê fibration are topologically equivalent
(see Remark 2.13, 3). The following theorem states that these two fibrations are in fact
equivalent whatever the link LX may be.

Theorem 5.5 Let f, g : (X, 0) → (C, 0) be holomorphic germs such that f −1(0) and
g−1(0) have no common irreducible components, f ḡ has an isolated critical value at
0, f ḡ has the Thom property and f/g is semitame at 0. Let Tε,η = ( f/g)−1(D2

η)∩LX

be an algebraic neighbourhood of L f in LX as in Theorem 1.3. Then the Milnor–Lê
fibration of f ḡ and the Milnor fibration of f/g are equivalent in the sense that there
exists a diffeomorphism H : (LX , L f g) → (LX , L f g) such that 1

η
� f ḡ = φ f/g ◦ H

on LX\Int(Tε,η).

We recall that when X has dimension 2 the Milnor–Lê fibration � f ḡ is defined on all
LX\L f g . Then one has:

Corollary 5.6 The two fibrations � f ḡ and φ f/g of the multilink L f − Lg are topo-
logically equivalent in the sense of Definition 2.2.

Proof of Theorem 5.5. We follow the constructions used in [8] to refine the classi-
cal Milnor fibration theorem. For simplicity, assume the representative of the germ
X is small enough so that f ḡ has no critical points away from the hypersurface
V = ( f g)−1(0) and X has a Whitney stratification for which V is a union of strata,
{0} is a stratum and every stratum has {0} in its closure. We further assume that each
stratum meets transversally every sphere in C

N centered at 0. Such a stratification
exists by the Bertini–Sard theorem of Verdier in [40].

Notice one has the following canonical decomposition of X associated to f ḡ: con-
sider the set {lθ } of all the real lines through the origin in C, where θ is the angle
of the corresponding line with respect to the positive real axis; this set is of course
parametrized by P1

R
. Set Xθ = {z ∈ X | f ḡ(z) ∈ lθ }. Then one obviously has:

X =
⋃

θ∈[0,π [
Xθ and V =

⋂

θ∈[0,π [
Xθ .

We claim each Xθ is a real analytic hypersurface, non-singular away from Sing(V ),
the singular set of V . To prove this, let l⊥θ = lθ+ π

2
be the line orthogonal to lθ , and let

πθ : C → l⊥θ be the orthogonal projection. Then
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Xθ = (πθ ◦ f ḡ)−1(0) ,

so Xθ is analytic and its singular points are the critical points of πθ ◦ f ḡ contained in
Xθ . By hypothesis the critical values of f ḡ in X are exactly the singularities of V . If
z is a regular point of f ḡ, then the differential map D( f ḡ)(z) has rank 2. Since the
projection πθ is a submersion one has that D(πθ ◦ f ḡ)(z) has rank 1, hence z is a
regular value of πθ ◦ f ḡ and the claim follows.

Therefore X decomposes as the union of the real analytic hypersurfaces Xθ which
spin around V forming a “pencil” with axis V and they are non-singular away from
Sing(V ). Notice that each manifold X∗

θ = Xθ\V is a union of ( f ḡ)-fibers, and it is
also a union of ( f/g)-fibers; i.e.,

X∗
θ =

⋃

t∈(lθ\{0})
( f ḡ)−1(t) =

⋃

t∈(lθ\{0})
( f/g)−1(t).

Since by hypothesis the germ f/g is semitame at 0, for t �= 0 the fibers ( f/g)−1(t)
are transversal to the spheres in C

N centered at 0, and therefore every sufficiently
small sphere in C

N centered at 0 meets each manifold X∗
θ transversally.

We need the following:

Lemma 5.7 For εo > 0 sufficiently small, we have that each manifold X∗
θ is trans-

versal to every sphere centered at 0 of radius ≤ εo.

Proof of the Lemma Just as in Milnor’s proof of [26, Lemma 4.6], using [4, Lemma
2.7] and the Curve Selection Lemma of Milnor, we have that given f, g as above,
such that f/g is semitame, there is a number εo > 0 such that for all z ∈ C

n\V with
‖z‖ ≤ εo, the two vectors z and i grad log f

g (z) are either linearly independent over

C or else the argument of the complex number

λ =
(

i grad log
f

g
((z))

)

/z

has absolute value more than, say, π/4.
We claim this implies that there exists a C∞ vector field v on Dε\V so that for all

z ∈ Dε\V one has:

(i) the hermitian product 〈v(z), grad log f
g (z)〉 is real and positive; and

(ii) the hermitian product 〈v(z), z〉 has positive real part.

Indeed it suffices to construct this vector field locally, in the neighbourhood of some
given point zo ∈ Dε\V , for we can afterwards glue all these vector fields by a partition
of unity and get a vector field defined globally and satisfying the conditions of the
lemma. We work on a coordinate chart for X at zo, so we think of it as being identified
with an open ball U in C

n . We recall that the real part of the hermitian product is the
usual inner product in R

2n .
For simplicity set ∇(zo) = grad log f

g (zo), and let E denote the real orthogonal
complement of i∇(zo) in C

n ; every w in E satisfies that 〈v(zo),∇(zo)〉 is real; the
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vector ∇(zo) defines an oriented real line � in E and every vector in the half-space
E+ of vectors in E whose projection to � is positive satisfies condition (i). We need
to show that there are vectors in E+ satisfying also condition (ii). If zo and ∇(zo) are
linearly dependent over C, so that λzo = ∇(zo) for some λ in C, then one has

|argument λ| < π/4 ,

and we can just take v = zo. If the vectors zo and ∇(zo) are linearly independent
over C, then ∇(zo) and zo are linearly independent over R and every vector in E+ for
which the real inner product with zo is positive works for us.

Conditions (i) and (ii) imply one has a vector field on Dε\V which is everywhere
tangent to the X∗

θ and everywhere transversal to the spheres. �
We notice that condition (i) in the above proof actually gives more than we need:

the vector field one gets is transversal to the “pinched Milnor tubes” ( f/g)−1(S1
η) of

f/g. What we actually need for Theorem 5.5 is a vector field which is transversal to
the Milnor tubes N (ε, η) = ( f ḡ)−1(Dη) ∩ LX of f ḡ, being also transversal to the
spheres around 0 and tangent to the X∗

θ . For this we use the transversality of the X∗
θ

with the spheres to construct the vector field we need, following [8].
We claim Lemma 5.7 implies that the map

z �→ ρ(z) := ‖z‖ · f ḡ(z)

| f ḡ(z)| ,

is a submersion for all z ∈ X ∩ Bε0\V . Notice the fibers of ρ are the intersections of
the Xθ with the spheres around 0.

To prove that ρ is a submersion for each z ∈ X ∩ Bε0\V , let X∗
θ be the corre-

sponding manifold that contains the point z. Then we know that X∗
θ is transversal to

S‖z‖, the sphere in C
N with center at 0 and radius ‖z‖. Thus we know that the tangent

space Tz X∗
θ contains a vector v1 which is not tangent to S‖z‖. Since the fibers of ρ

are contained in the spheres, this implies that the derivative Dz(ρ) carries v1 into a
non-zero vector in Tρ(z)C transversal to the circle S

1‖x‖ of radius ‖x‖, which contains
the point ρ(z).

Similarly, by transversality, the intersection Nz := X∗
θ ∩S‖z‖ is a smooth submani-

fold of the sphere of codimension 1. Let v2 be a vector normal to Nz . Then Dz(ρ)(v1)

is a non-zero vector in Tρ(z)C transverse to the line lθ , so it is tangent to the circle S
1‖x‖

and transversal to the line spanned by the vector Dz(ρ)(v1). Hence ρ is a submersion
for each z ∈ X ∩ Bε0\V .

We can now finish the proof of the theorem: let vrad be the vector field in C defined
by vrad(x) = x , so its solutions are the real half-lines that emanate from the origin.
Since f ḡ has an isolated critical value at 0, we can assume it is a submersion at each
point in some open ball Bε1 centered at 0. Hence we can lift vrad to a differentia-
ble vector field ṽrad in Bε1 which, by construction, is transversal to all Milnor tubes
( f ḡ)−1(S1

η) for all circles S
1
η in C centered at 0 and sufficiently small with respect to

ε1. By construction D( f ḡ) maps ṽrad into vrad, so that the integral curves of ṽrad are
tangent to the manifolds X∗

θ .
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Similarly, if ε0 is chosen so that the second claim above is also satisfied, then we can
lift vrad to a differentiable vector field v̂rad in Bε1 which, by construction, is transversal
to the spheres around 0 and the integral curves of v̂rad are tangent to the manifolds X∗

θ .
We now observe that by the Curve Selection Lemma of Milnor [26], there are no

points in X sufficiently near 0 where these two vector fields point in exactly oppo-
site directions. Hence the vector field ζ(z) = ṽrad(z) + v̂rad(z) is non-singular on
(X\V ) ∩ Bε1 , it is integrable, it is tangent to the X∗

θ , transversal to all Milnor tubes
( f ḡ)−1(S1

η) and transversal to the intersection of X with all sufficiently small spheres
around 0. The rest of the proof is now as in Milnor’s book: we use the flow defined
by this vector field to inflate the tube N (ε0, η) that defines the Milnor–Lê fibration
in such a way that the corresponding fibers in the sphere are the fibers of the Milnor
fibration f/g

| f/g| . �
A natural question now is to compare the two hypothesis which lead, respectively, to
the Milnor and the Milnor–Lê fibration:

1. f/g is semitame at 0
2. f ḡ has an isolated critical value at 0 and the Thom a f property

We recall that when X has dimension 2 the Thom a f property is automatically sat-
isfied, by Proposition 1.4. If one further has X = C

2 then one can prove that the two
conditions above are actually equivalent. Moreover, one has the following theorem,
which follows immediately from previous results in this and other works:

Theorem 5.8 Let f, g : (C2, 0) → (C, 0) be holomorphic germs such that f −1(0)

and g−1(0) have no common factors. The following are equivalent:

(i) f ḡ has an isolated critical value at 0,
(ii) The map � f ḡ : LX\L f g → S

1
η is a fibration of the multilink L f ∪ −Lg,

(iii) The multilink L f ∪ −Lg is fibered,
(iv) Each c �= 0,∞ is a generic value of the local pencil generated by f and g,
(v) The map φ f/g : LX\L f g → S

1 is a fibration of the multilink L f ∪ −Lg,
(vi) f/g is semitame at 0

Moreover, if these condition hold, then the Milnor–Lê fibration � f ḡ and the Milnor
fibration φ f/g are equivalent fibrations of the multilink L f ∪ −Lg.

The equivalence between (i), (ii) and (iii) is proved in [33] when f ḡ has an iso-
lated critical point. The general case is given by Theorem 4.4 above. The equivalence
between (iii), (iv), (v) and (vi) is proved in [4, Theorem 5.6].

The previous result states that the semitameness of f/g is equivalent for f ḡ to
have an isolated critical value at 0. In fact, this equivalence is obtained as a conse-
quence of several implications. In particular, (i) ⇒ (vi) is a consequence of Lemma 4.2
((i) ⇒ (iii)), Proposition 2.13 of [4] ((iii) ⇒ (iv)) and an adaptation of some results of
A. Durfee ([9]) to the local case which lead to (iv) ⇔ (vi).

We do not know how to produce a direct proof of the equivalence (when X = C
2)

between the statements “ f ḡ has an isolated critical value” and “ f/g is semitame”,
i.e., the equivalence (i) ⇔ (iv). In fact, it is not obvious for us how these two con-
ditions are related even in simple examples. For instance, consider the two germs
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f, g : (C2, 0) → (C, 0) given by f (x, y) = x(x + y2) + y3 and g(x, y) = y3. As
noticed in [4], the bifurcation set of f/g is B = {0, 1,∞}, so f/g is not semitame
at 0. On the other hand, a straight-forward computation shows that the map f ḡ has
a non-isolated critical value at 0. However the non semitameness of f/g leading to
the bifurcation value 1 ∈ B is along the two-dimensional real set C1 ⊂ C

2\{ f g = 0}
with equation:

(2x + y2)|y|2 + (3x + y)|x |2 = 0,

whereas the real curve of critical points of f ḡ has equations:

2x + y2 = 0 and 2|y − 3| = 3|y − 2|.

These two sets are disjoint and it is not clear to us how their existences are related.
When X is not C

2, the comparison between the properties (1) and (2) remains open.
Perhaps the arguments of [9] can be adapted to the case when X is a surface, but it
seems that new ideas must be introduced for higher dimensions.

6 Realization of fibered multilinks by singularities : results and open questions

“Realization questions” arise naturally in the study of the topology of singularities.
Roughly speaking these ask whether a given topological object is realized by polyno-
mial or analytic equations.

For example, it is proved in [2] that all knots and links can be realised by alge-
braic equations in the following sense. Given a compact smooth submanifold with
boundary U of S

k−1 of codimension ≥ 1 and trivial normal bundle, there exists a
real algebraic set Z ⊂ R

k with an isolated singularity at the origin such that the pair
(Sk−1, S

k−1 ∩ Z) is diffeomorphic to (Sk−1, ∂U ). If U is a Seifert surface of a knot
K in S

k−1 the theorem yields the result stated as title of that article: “All knots are
algebraic” (cf. [27]).

Regarding the results of the present paper, a natural question is to ask which fibered
plumbing multilinks (M, L) are realized, up to diffeomorphism, as the binding of the
Milnor fibration of a holomorphic or real analytic germ. In this section, we restrict to
the case when M is homeomorphic to a surface singularity link.

Recall that in this paper, we only consider connected plumbing graphs whose ver-
tices carry non-negative genus and strictly negative Euler numbers ; moreover, all
plumbing operations have positive ε in the sense of [30].

In [31] we give a complete answer when L = n1 K1 ∪ . . . ∪ nl Kl is positive, i.e.
ni > 0 for all i = 1, . . . , l : all such multilinks are realized by holomorphic germs.
More precisely,

Theorem 6.1 ([31], 2.1) Let L = n1 K1 ∪ . . . ∪ nl Kl be a multilink in a 3-manifold
M with positive multiplicities ni . The following are equivalent:

(i) There exists a normal complex surface singularity (X, p) and a holomorphic
germ f : (X, p) → (C, 0) such that the pair (M, L) is diffeomorphic to the pair
(LX , L f ).
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(ii) (M, L) is a plumbing multilink admitting a plumbing graph � whose monodro-
mical system admits a solution (m1, . . . , mr ) ∈ (N>0)

r .

Remark 6.2 (1) In fact, it is proved in [31] that (X, p) and f : (X, p) → (C, 0) can
be chosen in such a way that � is a plumbing graph of (LX , L f ). This is stronger than
just having a diffeomorphism between (M, L) and (LX , L f ).

The following formulation of (ii) is very useful:

Proposition 6.3 The condition (ii) is equivalent to:

(ii’) (M, L) is a fibered plumbing multilink admitting a plumbing graph � whose
intersection matrix is negative definite.

Proof According to 2.11, the condition (i i) implies that L f is fibred. Morevover,
Zariski’s lemma ([3]) shows that (ii) implies Grauert’s condition : the intersection
matrix of � is negative definite.

Conversely, assume that (ii’) holds. Let (m1, . . . , mr ) be the solution of the mono-
dromical system of L . According to 2.11, mi ∈ Z

∗. Then one has to prove that
mi > 0 ∀i = 1, . . . , r . Let us consider the extremities j = 1, . . . , l of the arrows
decorating � as vertices of �, and let us set m j = n j .

Let (i) and ( j) be two vertices of � joined by an edge, weighted by the Euler classes
ei and e j . We call formal blow-up the operation consisting of

1. replacing (i)o−o( j) by a string of 3 vertices (i)o−o−o( j) by adding one vertex
(k) between (i) and ( j), and

2. replacing the Euler classes ei and e j by ei − 1 and e j − 1, respectively, and of
weighting (k) by the Euler class ek = −1.

One assigns to (k) the multiplicity mk = mi + m j . Then the intersection matrix of
the new graph is again negative definite, and the multiplicities m j are solution of its
monodromical system.

Assume that there exists i such that mi < 0. One can perform a finite number of
formal blow-ups in such a way that, in the new graph �, there is no pair of neighbour
vertices (i) and ( j) such that mi < 0 and m j > 0. Let �′ be the maximal subgraph of
� whose vertices (i) verify mi < 0. Then any vertex (k) of �\�′ which is neighbour
of a vertex of �′ carries mk = 0. Let us denote by (σ1), . . . (σh) the vertices of �′, and
by M�′ the intersection matrix associated with �′. Then (mσ1, . . . mσh ) is solution of
the monodromical system of �′:

M�′ t (mσ1 , . . . mσh ) = 0

But M�′ is definite negative, as the intersection matrix associated with a subgraph
of �. Contradiction. �

Now, let us consider a fibered plumbing multilink (M, L) such that the weights ni

of L = n1 K1 ∪ . . . ∪ nl Kl are not all positive. Considering Theorem 5.3, a natural
tentative to realize (M, L) by a real analytic germ is to try to construct two holo-
morphic germs f : (X, p) → (C, 0) and g : (X, p) → (C, 0) such that (M, L) is
diffeomorphic to the pair (LX , L f ∪ −Lg).
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The results of ([31], Sect. 2) together with Theorem 5.3 enable one to perform this
construction in a particular case, which is described in the following result. We recall
[19] that a surface singularity is taut if its topology determines the analytic type. Of
course, this includes the germ of C

2 at the origin.

Theorem 6.4 Let M be orientation preserving diffeomorphic to the link LX of a taut
surface singularity (X, p). Let L1 and L2 be two plumbing multilinks with positive
multiplicities in a plumbing decomposition of M with plumbing graph � whose inter-
section matrix is negative definite, and such that

1. The multilinks L1, L2 and L1 ∪ (−L2) are fibered
2. For any components K1 of L1 and K2 of L2, the arrows representing K1 and K2

are carried by distincts vertices of �.

Then there exist two holomorphic germs f, g : (X, p) → (C, 0) without common
branches such that (M, L1), (M, L2) and (M, L1 ∪ −L2) are, up to diffeomorphism,
the multilinks (LX , L f ), (LX , Lg) and (LX , L f ∪ −Lg) associated with the germs
f, g and f ḡ : (X, p) → (C, 0); and

f ḡ

| f ḡ| : LX\(L1 ∪ −L2) −→ S
1,

is a fibre bundle that realises L1 ∪ −L2 as a fibered multilink.

Proof Let �1 (resp. �2) be the graph � decorated with arrows corresponding to L1
(resp. L2). The graphs �1 and �2 hold the condition (ii’). There then exist two normal
surface singularities (X1, p1) and (X2, p2) and two analytic germs f : (X1, p1) →
(C, 0) and g : (X2, p2) → (C, 0) such that the multilink (LX1 , L f ) (resp. (LX2 , Lg)

has �1 (resp. �2) as plumbing graph. The tautness hypothesis implies that one can
take X1 = X2 = X . Moreover, the condition 2. guarantees that f and g does not have
common branches. One concludes using Theorem 5.3. �

The realization problem of a fibered plumbing multilink (M, L) by a real analytic
germ remains open in the general case even when M is a surface singularity link.
The following two situations show that there exists some (M, L) such that M is a
surface singularity link but which cannot be realized by real analytic germs of the
form f ḡ : (X, p) → (C, 0).

1. Assume that M is homeomorphic to the link LX of a normal surface singular-
ity which is not taut, and take two plumbing multilinks L1 and L2 in M with
positive multiplicities and such that the three multilinks L1 ∪ −L2, L1 and L2
are fibered. In this case, Theorem 6.1 implies that the multilinks L1 and L2 are
realized as the multilinks of two holomorphic germs f : (X1, p1) → (C, 0) and
g : (X2, p2) → (C, 0). But the analytic types of (X1, p1) and (X2, p2) may not
coincide. Therefore the germ f ḡ may not be defined and, a priori, the multilink
link L1 ∪ −L2 may not be realizable as the multilink of a real analytic germ f ḡ.
In [NP], the authors give some examples of such links such that the analytic type
of (X1, p1) and (X2, p2) cannot coincide.

123



Fibred multilinks and singularities f g 513

2. It could happen that L1 ∪ −L2 in 6.4 is fibered, but the multilinks L1 and L2 are
not fibered (e.g. the multilink L3 ∪ −L4 of example 2.12).
Since Li has positive multiplicities, then, by the same arguments as in the proof
of 6.3, m(i)

j > 0 for all j ∈ {1, . . . , r}, where

t (m(i)
1 , . . . , m(i)

r , ) = −(M�)−1 t b(Li ).

Therefore, this situation occurs when there exists k ∈ {1, . . . , r} such that m(i)
k �∈ Z

whereas for each j = 1, . . . , r, m(1)
j − m(2)

j ∈ Z
∗.
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