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Abstract We consider quite general h-pseudodifferential operators on Rn with small
random perturbations and show that in the limit h → 0 the eigenvalues are distributed
according to a Weyl law with a probabality that tends to 1. The first author has pre-
viously obtained a similar result in dimension 1. Our class of perturbations is different.
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178 M. Hager, J. Sjöstrand

1 Introduction

This work can be viewed as a continuation of [7], where one of us studied random
perturbations of non-selfadjoint h-pseudodifferential operators on R and showed that
Weyl asymptotics holds with a probability that is very close to 1. In the present work
we consider the multidimensional case and weaken some of the assumptions in [7]
(like independence of the differentials and analyticity of the symbol). Our random
perturbations are slighly different however, in [7] they are given by a random potential
while here they are rather given by a random integral operator.

Before continuing the general discussion, we fix the framework more in detail. We
will work in the semi-classical limit on Rn . Write ρ = (x, ξ) and let m ≥ 1 be an
order function on the phase space R2n

x,ξ :

∃C0 ≥ 1, N0 > 0 such that m(ρ) ≤ C0〈ρ − µ〉N0 m(µ),

∀ρ,µ ∈ R2n, 〈ρ − µ〉 =
√

1+ |ρ − µ|2. (1.1)

The corresponding symbol space (cf [2]) is then

S(R2n,m) = {a ∈ C∞(R2n); |∂αρ a(ρ)| ≤ Cαm(ρ), ρ ∈ R2n, α ∈ N2n}. (1.2)

Let
P(ρ; h) ∼ p(ρ)+ hp1(ρ)+ · · · in S(R2n,m). (1.3)

Assume ∃ z0 ∈ C, C0 > 0 such that

|p(ρ)− z0| ≥ m(ρ)/C0, ρ ∈ R2n . (1.4)

Let � denote the closure of p(R2n) so that � = p(R2n) ∪ �∞, where �∞ ⊂ C is
the set of accumulation points of p in the limit (x, ξ) = ∞.

For h > 0 small enough, we also let P denote the h-Weyl quantization,

Pu(x) = Pw(x, h Dx ; h)u(x) = 1

(2πh)n

∫∫
e

i
h (x−y)·ηP

(
x + y

2
, η; h

)
u(y)dydη.

Let � � C\�∞ be open simply connected and not entirely contained in �. Then,
as we shall see,

1o σ(P) ∩� is discrete for h > 0 small enough,
2o ∀ ε > 0, ∃ h(ε) > 0, such that

σ(P) ∩� ⊂ � + D(0, ε), 0 < h ≤ h(ε).

Here D(0, ε) denotes the open disc in C with center 0 and radius ε > 0 and we equip
the operator P with the domain H(m) := (P − z0)

−1(L2(Rn)), where the operator
to the right is the pseudodifferential inverse of P − z0 (see [2,7]).

If P is selfadjoint (so that p is real-valued) we have Weyl asymptotics:
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Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators 179

For every interval I ⊂ � with volR2n (p−1(∂ I )) = 0, the number N (P, I ) of
eigenvalues of P in I satisfies

N (P, I ) = 1

(2πh)n
(vol (p−1(I ))+ o(1)), h → 0. (1.5)

This result has been proved with increasing generality and precision by Chazarain,
Helffer, Robert, and Ivrii. (We here follow the presentation of [2] where references to
original works can be found. The corresponding developement for selfadjoint partial
differential operators in the high energy limit has a long and rich history starting with
the work of Weyl [14].) A very simple and explicit example is given by the harmonic
oscillator P = 1

2 ((h D)2 + x2) : L2(R)→ L2(R), P(x, ξ) = p(x, ξ) = 1
2 (x

2 + ξ2).
In this case the eigenvalues are given by λk(h) = (k + 1

2 )h, k = 0, 1, 2, . . .
In the non-selfadjoint case, Weyl asymptotics does not always hold. If P is a diffe-

rential operator with analytic coefficients on the real line, then often the spectrum is
determined by action integrals over complex cycles, having nothing to do with volumes
of subsets of real phase space. A simple example of this is given by the non-selfadjoint
harmonic oscillator,

P = 1

2
((h D)2 + i x2) : L2(R)→ L2(R), (1.6)

whose spectrum is equal to {eiπ/4(k+ 1
2 )h; k ∈ N}; This is easy to see by the method

of complex scaling, or by applying the general multidimensional result of [11]. In
this case, we have �∞ = ∅, and � is the closed 1st quadrant. Clearly the number of
eigenvalues in an open set � � C intersecting the 1st quadrant, whose closure avoids
the ray given arg z = π

4 is equal to zero while the corresponding Weyl coefficient
vol(p−1(�)) is not. (Further results about the non-selfadjoint harmonic oscillator have
been obtained by Davies and Boulton, see [1] and further references given there.)

However, in this case and for quite a general class of h-pseudodifferential operators
in one dimension, it was shown by one of us in [7] that if we replace the operator P
by P + δQω, where 0 < δ � 1 varies in a suitable parameter range and Qω is a
random potential of a suitable type then we do have Weyl asymptotic in the interior
of � with a probability that is close to 1. The book [4] of Embree and Trefethen as
well as the paper [13] by Trefethen and Chapman contain (in our opinion) numerical
examples where one can see the onset of Weyl-asymptotics after adding small random
perturbations.

In this work we establish similar results in arbitrary dimension that we shall now
describe. Let 0 < m̃, m̂ ≤ 1 be square integrable order functions on R2n such that
m̃ or m̂ is integrable, and let S̃ ∈ S(m̃), Ŝ ∈ S(m̂) be elliptic symbols. We use
the same symbols to denote the h-Weyl quantizations. The operators S̃, Ŝ are then
Hilbert–Schmidt with

‖S̃‖HS, ‖Ŝ‖HS � h−
n
2 ,
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180 M. Hager, J. Sjöstrand

where � indicates same order of magnitude. Let ẽ1, ẽ2, . . ., and ê1, ê2, . . . be ortho-
normal bases for L2(Rn). Our random perturbation will be

Qω = Ŝ ◦
∑

j,k

α j,k(ω)̂e j ẽ
∗
k ◦ S̃, (1.7)

whereα j,k are independent complex N (0, 1) random variables, and ê j ẽ∗k u = (u |̃ek )̂e j ,
u ∈ L2. In the Appendix A we show that up to a change of the set of independent
N (0, 1)-laws, the representation (1.7) is independent of the choice of bases ê j and ẽ j .

Let
M = C1h−n, (1.8)

for some C1 � 1. Then, as we shall see in Sect. 8, we have the following estimate on
the probability that Q be large in Hilbert–Schmidt norm:

P(‖Q‖2
HS ≥ M2) ≤ Cexp (−h−2n/C), (1.9)

for some new constant C > 0. In the following discussion we may restrict the attention
to the case when ‖Qω‖HS ≤ M . We wish to study the eigenvalue distribution of
P + δQω for δ in a suitable range.

Let � � � be open with C2 boundary and assume that for every z ∈ ∂�:

�z := p−1(z) is a smooth sub-manifold of T ∗Rn on

which dp, d p are linearly independent at every point. (1.10)

The following result will be established in Sect. 10.

Theorem 1.1 Let � � � be open with C2 boundary and make the assumption (1.10).
For 0 < h � 1, let δ > 0 be a small parameter such that

0 < δ � h3n+1/2.

For some small parameter 0 < ε � 1 assume h ln δ−1 � ε � 1 (or equivalently
δ ≥ e−ε/(Dh) for some D � 1, implying also that ε ≥ C̃h ln h−1 for some C̃ > 0).
Then there is a constant C > 0 (that is independent of h, δ and ε) such that the number
N (Pδ, �) of eigenvalues of Pδ in � satisfies

|N (Pδ, �)− 1

(2πh)n
vol (p−1(�))| ≤ C

√
ε

hn
(1.11)

with probability

≥ 1− C√
ε

e−
ε/2

(2πh)n .
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Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators 181

This is a restatement of Theorem 10.1. In Theorem 10.3 we give a similar statement
about the simultaneous Weyl asymptotics for all �s in a family of sets that satisfy the
assumptions of the above theorem uniformly. The lower bound on the probability
becomes slightly worse but is still very close to 1 for suitable values of ε.

The condition (1.10) says that ∂� does not intersect the set of critical values of p
and this is clearly not a serious restriction when � is contained in the interior of �.
However, we also would like to study the eigenvalue distribution near the boundary
of �, and we then need a weaker assumption.

Let � � � be open with C∞ boundary. For z in a neighborhood of ∂� and
0 < s, t � 1, we put

Vz(t) = Vol {ρ ∈ R2n; |p(ρ)− z|2 ≤ t}. (1.12)

Our weak assumption, replacing (1.10) is

∃κ ∈]0, 1], such that Vz(t) = O(tκ), uniformly for z ∈ neigh (∂�), 0 ≤ t � 1.

(1.13)

Here we have written in an informal way “neigh (∂�)” for some neighbourhood of
∂�. Notice that (1.10) implies (1.13) with κ = 1.

Generically, we will have {p, {p, p}} �= 0 when p(ρ) ∈ ∂� and if we assume that

at every point of p−1(z), we have {p, p} �= 0 or {p, {p, p}} �= 0, (1.14)

then as shown in Example 12.1, we have (1.13) with δ0 = 3/4. (When p is analytic,
we believe that (1.13) will always hold with some κ > 0 but have not consulted with
experts in analytic geometry.) Under this more general assumption, we have

Theorem 1.2 Assume (1.13) and let δ satisfy

0 < δ � h3n+1/2.

Let N (P + δQω, �) be the number of eigenvalues of P + δQω in �. Then for every
fixed K > 0 and for 0 < r � 1:

|N (P + δQω, �)− 1

(2πh)n

∫∫

p−1(�)

dxdξ |

≤ C

hn

(
ε

r
+ CK

(
r K + ln

(
1

r

)∫∫

p−1(∂�+D(0,r)
dxdξ

))
, 0 < r � 1, (1.15)

with probability

≥ 1− C

r
e−

ε
2 (2πh)−n

(1.16)
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182 M. Hager, J. Sjöstrand

provided that

hκ ln
1

δ
� ε � 1, (1.17)

or equivalently,

e−
ε

Chκ ≤ δ, C � 1, ε � 1,

implying that ε ≥ C̃hκ ln 1
h , for some C̃ > 0.

This is a restatement of Theorem 12.3 and as explained after that theorem, when
κ > 1/2, the integral in the right hand side of (1.15) is O(r2κ−1) and it follows that
we have Weyl asymptotics with probability close to 1, if we let r be a suitable power
of ε. To have the same conclusion when κ ≤ 1/2 we can assume that the integral is
O(rα0) for some α0 > 0.

Again we have a similar theorem about the simultaneous asymptotics for N (P +
δQω, �)when � varies in a bounded family of domains satisfying all the assumptions
uniformly. See Theorem 12.4.

The proofs follow the same general strategy as those of [7] with some essential
differences:

We do not use any non-vanishing assumption on the Poisson bracket 1
i {p, p}. Ins-

tead we work systematically with the operators P∗P and P P∗ and their eigenfunctions
in order to set up a Grushin-problem.

As in [7] we reduce ourselves to the study of a random holomorphic function,
but in the present work this function appears as the determinant of the full operator
(essentially) and we need to make some estimates for determinants of random matrices,
and especially to prove that such a determinant is not too small with a probability close
to 1. Those estimates were sufficiently elementary to be carried out by hand, but we
think that future generalizations and improvements will require a careful study of the
existing results on random determinants and possibly the derivation of new results in
that direction. See the book [5] of Girko.

2 Determinants and Grushin problems

Here we mainly follow [12] and give a more explicit formulation of one of the results
there. Let H1, H2, G1, G2 be complex Hilbert spaces and let A j,k : Hk → G j be
bounded operators depending in a C1 fashion on the real parameter t ∈]a, b[. We also
assume that Ȧ j,k are of trace class and continuously dependent of t in the space of
such operators. Here “over-dot” means derivative with respect to t .

Proposition 2.1 ([12]) Assume in addition that A = (A j,k) : H1×H2 → G1×G2 has
a bounded inverse B = (B j,k), and that A2,2 and B1,1 are invertible. (The invertibility
of one of A2,2, B1,1 implies that of the other). Then

tr ȦB = tr Ȧ2,2 A−1
2,2 − tr B−1

1,1 Ḃ1,1. (2.1)
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Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators 183

Proof We expand

Ḃ j,k = −
∑

ν

∑

µ

B j,ν Ȧν,µBµ,k,

that are of the trace class too. In particular,

−Ḃ1,1 = B1,1 Ȧ1,1 B1,1 + B1,1 Ȧ1,2 B2,1 + B1,2 Ȧ2,1 B1,1 + B1,2 Ȧ2,2 B2,1.

Rewrite the right hand side of (2.1):

tr Ȧ2,2 A−1
2,2 − tr B−1

1,1 Ḃ1,1

= tr Ȧ2,2 A−1
2,2 + tr Ȧ1,1 B1,1+tr Ȧ1,2 B2,1 + tr B−1

1,1 B1,2 Ȧ2,1 B1,1+tr B−1
1,1 B1,2 Ȧ2,2 B2,1

= tr Ȧ2,2 A−1
2,2 + tr Ȧ1,1 B1,1 + tr Ȧ1,2 B2,1 + tr Ȧ2,1 B1,2 + tr B−1

1,1 B1,2 Ȧ2,2 B2,1

= tr Ȧ2,2(A
−1
2,2 + B2,1 B−1

1,1 B1,2)+ tr Ȧ1,1 B1,1 + tr Ȧ1,2 B2,1 + tr Ȧ2,1 B1,2

= tr ȦB.

Here we used the cyclicity of the trace and for the last equality the fact that

B2,2 = A−1
2,2 + B2,1 B−1

1,1 B1,2. (2.2)

To check (2.2) we proceed by equivalences:

(2.2) ⇐⇒ A−1
2,2 = B2,2 − B2,1 B−1

1,1 B1,2

⇐⇒ 1 = A2,2 B2,2 − A2,2 B2,1 B−1
1,1 B1,2

⇐⇒ 1 = (1− A2,1 B1,2)+ A2,1 B1,1 B−1
1,1 B1,2

⇐⇒ 1 = 1.

Here and in the following, we often denote the identity operator by 1 when the meaning
is clear from the context. ��

Consider the case H1 = G1 = H, H2 = G2 = CN ,

A = P =
(

P R−
R+ 0

)

.

Assume also that P , P are invertible. (In the proposition we can permute the indices
1 and 2 and think of P as A2,2.) We look for

P̃ =
(

P R̃−
R̃+ R̃+−

)

: H× CN → H× CN ,
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184 M. Hager, J. Sjöstrand

that is also invertible, i.e. we should be able to solve uniquely

{
Pu + R̃−ũ− = v,
R̃+u + R̃+−ũ− = ṽ+. (2.3)

Let

(
E E+

E− E−+

)

=
(

P R−
R+ 0

)−1

.

Rewrite the first equation in (2.3) as Pu = v − R̃−ũ−. The general solution to that
equation is

u = E(v − R̃−ũ−)+ E+v+,

where v+, ũ− should be determined so that

0 = E−(v − R̃−ũ−)+ E−+v+. (2.4)

The second equation in (2.3) becomes

ṽ+ = R̃+E(v − R̃−ũ−)+ R̃+E+v+ + R̃+−ũ−. (2.5)

Hence we get the following system that is equivalent to (2.3):

{
E−+v+ − E− R̃−ũ− = −E−v,
R̃+E+v+ + (R̃+− − R̃+E R̃−)̃u− = ṽ+ − R̃+Ev,

(2.6)

so (2.3) is well-posed iff

(
E−+ −E− R̃−

R̃+E+ R̃+− − R̃+E R̃−

)

: C2N → C2N (2.7)

is invertible.
Choose R̃+ = t R+, R̃− = s R−, R̃+− = r idCN with s, t, r ∈ C, and use that

R+E+ = 1, E−R− = 1, R+E = 0, to see that the matrix (2.7) is equal to

(
E−+ −s

t r

)

. (2.8)

This matrix is invertible precisely when (s, t, r) belongs to the set

{(s, t, 0); st �= 0} ∪
{
(s, t, r); r �= 0, − st

r
�∈ σ(E−+)

}
. (2.9)
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Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators 185

Since P is invertible, we know that 0 �∈ σ(E−+). We can therefore find a C1-curve

[0, 1] � τ �→ (s(τ ), t (τ ), r(τ )) ∈ the set (2.9),

with

(s(0), t (0), r(0)) = (1, 1, 0), (s(1), t (1), r(1)) = (0, 0, 1).

This means that we have a C1 deformation

P(τ ) =
(

P s(τ )R−
t (τ )R+ r(τ )1

)

: H× CN → H× CN

of bijective operators with

P(0) = P, P(1) =
(

P 0

0 1

)

.

Applying (2.1) with the indices “1” and “2” permuted gives

tr ṖP−1 = tr Ṗ P−1 − tr E−1−+(τ )Ė−+(τ ) = −tr E−1−+(τ )Ė−+(τ ),

where now “over-dot” means derivative with respect to τ . If we integrate from τ = 0
to τ = 1, we get with a suitable choice of branches for ln:

ln det P − ln det P = ln det E−+(0).

For this relation to make sense we also assume that

P − 1 is of trace class. (2.10)

Then for the original operator and its inverse we have

ln det P = ln det P + ln det E−+, (2.11)

or equivalently,
det P = det P det E−+. (2.12)

3 General frame-work and reduction to trace class operators

Let m ≥ 1 be an order function on R2n in the sense that there exist constants C0 ≥ 1,
N0 > 0, such that

m(ρ) ≤ C0〈ρ − µ〉N0 m(µ), ∀ ρ, µ ∈ R2n,
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186 M. Hager, J. Sjöstrand

where we write 〈ρ〉 = √
1+ |ρ|2. We consider a symbol

P(ρ; h) ∼ p(ρ)+ hp1(ρ)+ · · · in S(R2n,m),

where

S(R2n,m) = {a ∈ C∞(R2n); |∂αx,ξa(x, ξ)| ≤ Cαm(x, ξ), ∀(x, ξ) ∈ R2n, α ∈ N2n}.

Put

� = p(R2n), �∞ = {z ∈ C; ∃ρ j ∈ R2n, j = 1, 2, 3, . . . , ρ j →∞,
p(ρ j )→ z, j →∞}.

Assume ∃z0 ∈ C\�, C0 > 0, such that

|p(ρ)− z0| ≥ m(ρ)/C0, ∀ρ ∈ R2n . (3.1)

Then as pointed out in [7], for every z ∈ C\�, there exists C > 0 such that

|p(ρ)− z| ≥ m(ρ)/C, ∀ρ ∈ R2n, (3.2)

and for every z ∈ C\�∞, there exists C > 0 such that

|p(ρ)− z| ≥ m(ρ)/C, ∀ρ ∈ R2n with |ρ| ≥ C. (3.3)

Let� � C\�∞ be open simply connected containing at least one point z0 ∈ C\�.

Lemma 3.1 For every compact set K ⊂ �, there exists a smooth map κ : �\{z0} →
�\{z0} with κ(z) = z for all z in a neighborhood of ∂�, such that κ(�∩�)∩K = ∅.

Proof � is diffeomorphic to the open unit disc D(0, 1) in such a way that z0 cor-
responds to 0. Now consider κ̃ : D(0, 1)\{0} → D(0, 1)\{0} defined by κ̃(z) =
f (|z|)z/|z|, where f is a smooth function on ]0, 1] with 1− ε ≤ f (r) ≤ 1, such that
f (r) = r for 1 − r ≤ ε/2. Choosing ε > 0 small enough and conjugating with the
diffeomorphism above we get the desired map κ . ��

Let �̃ � � be open. Take κ as in the lemma with K containing the closure of �̃.
Extend κ to be the identity in C\� and put p̃ = κ ◦ p. Then p̃(ρ)− z is elliptic in the
sense of (3.2), uniformly for z ∈ �̃ and

p̃ − p ∈ C∞0 (R2n). (3.4)

Put

P̃ = p̃ + hp1 + h2 p2 + · · · .
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Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators 187

Now pass to operators and denote by the same letters symbols and their h-Weyl
quantizations. We shall consider P as a closed operator: L2 → L2 with domain
H(m) := (P − z0)

−1L2 (see [7]). From the discussion above, we get

• For every compact set K ⊂ C\�, we have σ(P) ∩ K = ∅, when h > 0 is small
enough.

• σ(P) ∩ �̃ is discrete when h > 0 is small enough.
• σ(P̃) ∩ �̃ = ∅ when h > 0 is small enough.

In view of the last property and (3.4), we also have (for h > 0 small enough),

Proposition 3.2 For z ∈ �̃, we have that

P(z) := (P̃ − z)−1(P − z) = 1+ K (z),

where K (z) is a trace class operator. Moreover,

z ∈ σ(P)⇔ 0 ∈ σ(P(z)).

Notice that K (z) = (P̃ − z)−1(P − P̃) is the quantization of a symbol belonging
to the intersection of S(m̃) for all order functions m̃.

4 Some functional calculus

Let P = 1 + K , K ∈ Oph(S(m)), where m ∈ C∞(R2n; ]0,∞[) is an integrable
order function. We also assume that K = k0 + hk1 + · · · in S(m) on the symbol
level. We shall review some functional calculus for Q = P∗P and more generally
for a selfadjoint operator Q ≥ 0 with Q ∼ q + hq1 + · · · on the symbol level, with
Q − 1 ∈ S(m), q ≥ 0.

Let ψ ∈ C∞0 (R). For h � α � 1 we shall study the properties of ψ(α−1 Q).
To this end we shall consider α−1 Q as a symbol with h/α as a new semiclassical

parameter, after a suitable dilation in phase space. More precisely, we make the change
of variables

x = α 1
2 x̃, Dx = α− 1

2 Dx̃

and write
1

α
Q(x, h Dx ; h) = 1

α
Q

(
α

1
2

(
x̃,

h

α
Dx̃

)
; h

)
, (4.1)

with symbol α−1 Q(α1/2(̃x, ξ̃ ); h) for the h/α-quantization. The lower order terms
are O(h/α) uniformly with all their derivatives, so we shall just look at the leading
symbol

q
(
α

1
2 (x, ξ)

)

α
, (4.2)
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188 M. Hager, J. Sjöstrand

where we dropped the tildes on the new variables. The (new) associated order function
will be

m(x, ξ) := 1+
q
(
α

1
2 (x, ξ)

)

α
≥ 1. (4.3)

We have

∇m = (∇q)(α
1
2 (x, ξ))

α
1
2

≤ C
q

1
2 (α

1
2 (x, ξ))

α
1
2

≤ Cm(x, ξ)
1
2 ,

∇2m = O(1),

so by Taylor’s formula,

m(ρ) = m(µ)+O(1)m(µ) 1
2 |ρ − µ| +O(1)|ρ − µ|2,

and since m(µ) ≥ 1:
m(ρ) ≤ C〈ρ − µ〉2m(µ). (4.4)

Hence m is an order function, uniformly with respect to α.
Similarly, we have the improved symbol estimates

∇
q
(
α

1
2 ρ
)

α
= O(1)m 1

2 , (4.5)

∇2
q
(
α

1
2 ρ
)

α
= O(1), (4.6)

∇k
q
(
α

1
2 ρ
)

α
= O

(
α

k
2−1

)
, k ≥ 2. (4.7)

In particular, we have the standard symbol estimates

∇k
q
(
α

1
2 ρ
)

α
= O(1)m(ρ). (4.8)

It is therefore clear that we can apply the functional calculus in the version of [9]
(see also [2]), to see that if ψ ∈ C∞0 (R), and if we interpret Q/α as the right hand
side of (4.1), then

ψ(α−1 Q) = Op h
α
,̃x ( f̃ ), (4.9)

where

f̃ =
∞∑

0

(
h

α

)ν
fν (̃x, ξ̃ ), in S(m−1), (4.10)
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with f0(̃x, ξ̃ ) = ψ(α−1q(α1/2(̃x, ξ̃ ))),

fν =
∑

j≤ j (ν)

a j,ν (̃x, ξ̃ , α)ψ
( j)(α−1q(α1/2(̃x, ξ̃ ))), a j,ν ∈ S(1). (4.11)

Proposition 4.1 Let m̃ = m̃α(̃x, ξ̃ ) be an order function, uniformly with respect to α,
such that m̃ (̃x, ξ̃ ) = 1 for α−1q(α1/2(̃x, ξ̃ )) ≤ sup suppψ + 1/C, for some C > 0
that is independent of α. Then (4.10) holds in S(m̃), for h and h/α sufficiently small.

Proof Write qα = q(α1/2(̃x, ξ̃ ))/α, Qα = α−1 Q(α1/2(̃x, h
α

Dx̃ ); h) and drop the
tildes. Let q̂α ∈ S(m) be such that sup suppψ + 1/(5C) ≤ q̂α , and be equal to
qα when qα ≥ sup suppψ + 2/(5C). Let χα ∈ S(1) be equal to 1 when qα ≤
sup suppψ + 3/(5C) and equal to 0 when qα ≥ sup suppψ + 4/(5C). We use the
same symbols qα , q̂α , χα to denote the h/α quantizations.

Let ψ̃ be an almost holomorphic extension of ψ and recall the Cauchy–Green–
Riemann–Stokes formula, in the operator sense [2,3,9]:

ψ(qα) = 1

π

∫
(z − qα)

−1 ∂ψ̃(z)

∂z
L(dz),

where L(dz) denotes Lebesgue-measure. For z in a neighborhood of supp ψ̃ , we write

(z − qα)
−1 = (z − qα)

−1 ◦ χα + (z − q̂α)
−1 ◦ (1− χα)

−(z − qα)
−1(q̂α − qα)(z − q̂α)

−1(1− χα).

Then, since the middle term is holomorphic near the support of ψ̃ ,

ψ(qα) = ψ(qα) ◦ χα − 1

π

∫
(z − qα)

−1(q̂α − qα)(z − q̂α)
−1(1− χα)∂ψ̃

∂z
L(dz).

Here the symbol ofψ(qα)◦χα has the asymptotic expansion (4.10) in S(m̃), thanks to
the extra factor χα and with the same terms given by (4.11). For z ∈ neigh (supp ψ̃),
(z−q̂α)−1 ∈ Op (1/m) depends holomorphically on z and thanks to the factor q̂α−qα ,
whose support on the symbol level is separated from that of 1 − χα by some fixed
positive distance, we know that (q̂α − qα)(z − q̂α)−1(1 − χα) ∈ (h/α)N Op (S(m̃))
for any N ≥ 0 and any m̃ as in the proposition. Combining this with the estimates
for the symbol of (z − qα)−1 from the Beals lemma as in [9] (see also [2, Proposition
8.6]), we get the proposition. ��

We next apply the functional result to the study of certain determinants. Let χ ∈
C∞0 ([0,+∞[; [0,+∞[), χ(0) > 0 and extend χ to C∞0 (R;C) in such a way that
χ(t) > 0 near 0 and t +χ(t) �= 0, ∀t ∈ R. We want to study ln det(Q+αχ(α−1 Q)),
when h � α � 1. Let us first recall from [10] that if Q̃ = Oph(q̃) with q̃ ∈ S(1),
q̃ > 0, q̃ − 1 ∈ S(m̃), where m̃ is an integrable order function, then

ln det Q̃ = 1

(2πh)n

(∫∫
ln q̃(x, ξ)dxdξ +O(h)

)
. (4.12)
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In fact, let Q̃t = (1− t)1+ t Q̃, so that Q̃0 = 1, Q̃1 = Q̃. Then by standard elliptic
calculus, with q̃t = (1− t)+ t q̃, we have

d

dt
ln det Q̃t = tr Q̃−1

t
d

dt
Q̃t

= 1

(2πh)n

(∫∫
q̃−1

t
d

dt
q̃t dxdξ +O(h)

)

= 1

(2πh)n

(
d

dt

∫∫
ln q̃t (x, ξ)dxdξ +O(h)

)
,

and integrating from t = 0 to t = 1, we get (4.12).
For α = α1 > 0 fixed with α1 � 1, this applies to Q + α1χ(α

−1
1 Q) and we get

ln det(Q + α1χ(α
−1
1 Q)) = 1

(2πh)n

(∫∫
ln(q + α1χ(α

−1
1 q))dxdξ +O(h)

)
.

(4.13)
We have for t > 0 and E ≥ 0:

d

dt
ln

(
E + tχ

(
E

t

))
= 1

t
ψ

(
E

t

)
,

with

ψ(E) = χ(E)− Eχ ′(E)
E + χ(E) .

Now for h � α ≤ t ≤ α1, we get from Proposition 4.1 by dilatation:

d

dt
ln det(Q + tχ(t−1 Q)) = tr t−1ψ(t−1 Q)

=
(

t

2πh

)n
⎛

⎝
∫∫

1

t
ψ

⎛

⎝
q
(

t
1
2 (̃x, ξ̃ )

)

t

⎞

⎠ dx̃d ξ̃

+O
(

h

t

)
1

t

∫∫
χ̂

⎛

⎝
q
(

t
1
2 (̃x, ξ̃ )

)

t

⎞

⎠ dx̃d ξ̃

+O(1)1

t

(
h

t

)∞ ∫∫
⎛

⎝1+ dist

⎛

⎝(̃x, ξ̃ ); supp χ̂

⎛

⎝
q
(

t
1
2 (·)

)

t

⎞

⎠

⎞

⎠

⎞

⎠

−N

dx̃d ξ̃

⎞

⎟
⎠,

(4.14)

where 0 ≤ χ̂ ∈ C∞0 (R) is equal to one on some interval containing [0, sup suppψ] and
the last term is coming from the “remainder” in the asymptotic development (4.10).
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We are interested in the integral of this quantity from t = α to t = α1. Let us first
treat the leading term

(
t

2πh

)n ∫∫ 1

t
ψ

⎛

⎝
q
(

t
1
2 (̃x, ξ̃ )

)

t

⎞

⎠ dx̃d ξ̃ = 1

(2πh)n

∫∫
1

t
ψ

(
q(x, ξ)

t

)
dxdξ

= 1

(2πh)n

∫∫
d

dt
ln
(

q+tχ
(q

t

))
dxdξ,

and integrating this from t = α to t = α1, we get

[
1

(2πh)n

∫∫
ln
(

q + tχ
(q

t

))
dxdξ

]α1

t=α
. (4.15)

The second term in (4.14) is

O(1)
(

t

h

)n h

t2

∫∫
χ̂

(
1

t
q
(

t
1
2 (̃x, ξ̃ )

))
dx̃d ξ̃

= O(1) 1

hn

h

t2

∫∫
χ̂

(
1

t
q(x, ξ)

)
dxdξ

≤ O(1)h−n h

t2

∫∫

q(x,ξ)≤C2t
dxdξ.

Integrating this from t = α to t = α1, we get

O(1)h1−n
∫∫∫

max(α,q/C)≤t≤α1

1

t2 dtdxdξ

= O(1)h1−n
∫∫

q(x,ξ)≤Cα1

(
1

max (α, q(x, ξ)/C)
− 1

α1

)
dxdξ

≤ O(1)h−n
∫∫

q(x,ξ)≤Cα1

h

α + q(x, ξ)
dxdξ. (4.16)

When estimating the third term in (4.14) we consider separately the regions |(x, ξ)|
≤ C and |(x, ξ)| > C for some large C ≥ 1. Consider first the region |(x, ξ)| ≤ C .
Put

dt (̃x, ξ̃ ) = dist

(
(̃x, ξ̃ ),

{
(y, η); 1

t
q
(

t
1
2 (y, η)

)
≤ Ĉ

})
, Ĉ = sup supp χ̂ .

For (y, η) with q(t
1
2 (y, η))/t ≤ Ĉ , we have ∇(q(t 1

2 (y, η))/t) = O(1) and ∇2

(q(t
1
2 (y, η))/t) = O(1), so by Taylor expanding at (y, η) we get
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1

t
q
(

t
1
2 (̃x, ξ̃ )

)
≤ O(1)(1+ dt (̃x, ξ̃ )+ dt (̃x, ξ̃ )

2) ≤ O(1)(1+ dt (̃x, ξ̃ ))
2.

The contribution to the third term in (4.14) from t1/2|(̃x, ξ̃ )| ≤ C is therefore

ON (1)

(
h

t

)∞ 1

t

∫∫

|(̃x ,̃ξ )|≤Ct−1/2

(
1+ 1

t
q
(

t
1
2 (̃x, ξ̃ )

))−N

dx̃d ξ̃

= OM,N (1)
1

hn

(
h

t

)M 1

t

∫∫

|(x,ξ)|≤C

(
1+ 1

t
q(x, ξ)

)−N

dxdξ. (4.17)

We integrate this from t = α to α1, so we want to estimate

hM

α1∫

α

1

t M+1
(
1+ 1

t q(x, ξ)
)N

dt.

If q ≤ α, we get

O(1)hM

α1∫

α

1

t M+1 dt = O(1)
((

h

α

)M
)

.

If α < q ≤ α1, we get

hM

q∫

α

1

t M+1

(
1+ q

t

)−N
dt + hM

α1∫

q

1

t M+1

(
1+ q

t

)−N
dt

� hM

q∫

α

t N

t M+1q N
dt +

(
h

q

)M

,

with the symbol � indicating same order of magnitude. Choose N = M + 1, to get

�
(

h

q

)M

.

For α1 ≤ q, we get

O(1)hM

α1∫

α

t N

t M+1q N
dt = O(1)hM
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with the same choice of N . Thus the integral from α to α1 of the expression (4.17) is

O(1)
hn

∫ ∫

|(x,ξ)|≤C

(
h

α + q(x, ξ)

)M

dxdξ, ∀ M ≥ 0.

We next look at the contribution to the last term in (4.14) from the region t
1
2 |(̃x, ξ̃ )| >

C , which is

O(1)
(

h

t

)∞ 1

t

∫ ∫

t
1
2 |(̃x ,̃ξ )|≥C

(1+ |(̃x, ξ̃ )|)−N dx̃d ξ̃ = O(1)
(

h

t

)M

t Ñ , ∀M, Ñ ,

= O(1)hM , ∀ M.

Summing up, we have proved

Proposition 4.2 Let χ ∈ C∞0 (R) with χ(0) > 0 and χ(t) ≥ 0 for t ≥ 0. Then for
h � α � 1:

ln det(Q + αχ(α−1 Q))

= 1

(2πh)n

⎛

⎜
⎝
∫∫

ln
(

q + αχ
(q

α

))
dxdξ+O(1)

∫ ∫

|(x,ξ)|≤C

h

α + q(x, ξ)
dxdξ

⎞

⎟
⎠

+O(h∞). (4.18)

Most of the proof was based on (4.14), of which the second part is valid for any
ψ ∈ C∞0 (R). The estimates leading to the preceding proposition, also give

Proposition 4.3 Let χ ∈ C∞0 (R), and choose χ̂ ∈ C∞0 (R; [0, 1]) equal to 1 on an
interval containing 0 and suppχ . Then for 0 < h � α � 1, we have

tr χ(α−1 Q) = 1

(2πh)n

⎛

⎜
⎝
∫∫

χ

(
q(x, ξ)

α

)
dxdξ+O

(
h

α

)∫∫
χ̂

(
q(x, ξ)

α

)
dxdξ

+ON ,M (1)

(
h

α

)M ∫ ∫

|(x,ξ)|≤C

(
1+ q

α

)−N
dxdξ +O(h∞)

⎞

⎟
⎠ . (4.19)

Put

V (t) =
∫ ∫

q(x,ξ)≤t

dxdξ, 0 ≤ t ≤ 1

2
, (4.20)

so that 0 ≤ V (t) is an increasing function. By introducing an assumption on V (t), we
shall make (4.19) more explicit and replace (4.18) by a more explicit estimate.
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We assume that there exists κ ∈]0, 1] such that

V (t) = O(1)tκ , 0 ≤ t ≤ 1

2
. (4.21)

The first integral in (4.18) can be written

∫∫
ln
(

q + αχ
(q

α

))
dxdξ =

∫∫
ln(q)dxdξ +O(1)

∫ ∫

q≤Cα

ln
1

q
dxdξ

=
∫∫

ln(q)dxdξ +O(1)
Cα∫

0

ln
1

q
dV (q),

so (4.18) gives

ln det

(
Q + αχ

(
1

α
Q

))

= 1

(2πh)n

⎛

⎜
⎝
∫∫

ln(q)dxdξ +O(1)
Cα∫

0

ln
1

q
dV (q)

+O(1)
1
2∫

0

h

α + q
dV (q)+O(h∞)

⎞

⎟
⎠ . (4.22)

Similarly (4.19) can be written

tr χ(α−1 Q) = 1

(2πh)n

⎛

⎝
∫
χ
(q

α

)
dV (q)+O

(
h

α

)∫
χ̂
(q

α

)
dV (q)

+ ON ,M (1)

(
h

α

)M
α1∫

0

(
1+ q

α

)−N
dV (q)+O(h)

⎞

⎠ . (4.23)

In particular, the number N (α) of eigenvalues of Q in [0, α] satisfies

N (α) ≤ O(1)
⎛

⎝h−n

α1∫

0

(
1+ q

α

)−N
dV (q)+ h1−n

⎞

⎠. (4.24)

Proposition 4.4 Under the assumption (4.21), we have

α∫

0

ln(q)dV (q) = O(ακ ln α), (4.25)

123



Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators 195

α1∫

0

h

α + q
dV (q) =

⎧
⎪⎨

⎪⎩

O(ακ h
α
), for κ < 1,

O(h ln 1
α
), when κ = 1,

(4.26)

N (α) = O(ακh−n + h1−n). (4.27)

Proof This follows by straight forward calculations, starting with an integration by
parts.

α∫

0

ln(q)dV (q) = [ln(q)V (q)]α0 −
α∫

0

1

q
V (q)dq = O(ακ ln(α)),

α1∫

0

h

α + q
dV (q) =

[
h

α + q
V (q)

]α1

0
+

α1∫

0

h

(α + q)2
V (q)dq

= O(h)+O(1)
α1∫

0

hqκ

(α + q)2
dq

= O(h)+O(1)hακ−1

α1/α∫

0

q̃κ

(1+ q̃)2
dq̃

=

⎧
⎪⎨

⎪⎩

O(hακ−1), 0 < κ < 1,

O (
h ln 1

α

)
, κ = 1.

To get (4.27), we use (4.24) and the estimate

α1∫

0

(
1+ q

α

)−N
dV (q) =

[(
1+ q

α

)−N
V (q)

]α1

0
+ N

α1∫

0

(
1+ q

α

)−(N+1)
V (q)

dq

α

= O(1)αN +O(1)
∞∫

0

(1+ q̃)−(N+1)q̃κdq̃ακ

= O(1)ακ .

��
Since we will always assume that h � α � 1, and since κ ≤ 1, we can simplify

(4.27) to
N (α) = O(1)ακh−n . (4.28)

Proposition 4.5 Assume (4.21). Under the assumptions of Proposition 4.2, we have

ln det(Q + αχ(α−1 Q)) = 1

(2πh)n

(∫∫
ln(q)dxdξ +O(1)ακ ln α

)
. (4.29)
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Under the assumptions of Proposition 4.3, we have

tr χ(α−1 Q) = 1

(2πh)n

(∫∫
χ

(
q(x, ξ)

α

)
dxdξ +O(1)ακ h

α

)
. (4.30)

For 0 < h � α � 1, the number N (α) of eigenvalues of Q in [0, α] satisfies
(4.27).

Notice that when Q ≥ 0:

ln det Q ≤ ln det(Q + αχ(α−1 Q)),

so (4.29) with α = Ch, C � 1, gives an upper bound which is more precise than the
one in [10].

5 Grushin problem for the unperturbed operator

In Sect. 3 we introduced the operator

P(z) = 1+ K (z), K (z) ∈ Oph(S(m))

where m is an integrable order function, so that K (z) is a trace class operator. Here P(z)
depends holomorphically on z ∈ �̃ � C, where �̃ is open. Also recall that P(z) =
(P̃− z)−1(P− z). We are interested in the spectrum of small random perturbations of
P; Pδ = P + δQ. Correspondingly, we get Pδ(z) = (P̃ − z)−1(Pδ − z) = 1+ Kδ(z),
and the main work in later sections will be to study | det(1 + Kδ(z))|. The upper
bounds will be fairly simple to get, and the delicate point will be to get lower bounds.
As a preparation for this more delicate step, we here study a Grushin problem for the
unperturbed operator P(z). In this section z ∈ �̃ will be fixed and we simply write P
instead P(z).

Let e1, e2, . . . be an orthonormal (ON) basis of eigenvectors of P∗P and let 0 ≤
λ1 ≤ λ2 ≤ · · · be the corresponding eigenvalues. (Strictly speaking, if we want the
eigenvalues to form an increasing sequence, the set of indices j should be of the form
J = J0 ∪ J1 ∪ J2, with

• J0 = N or a finite set, 0 ≤ λ j < 1, for j ∈ J0,
• J1 = N or a finite set, λ j = 1, j ∈ J1
• J2 = −N or a finite set, λ j > 1, j ∈ J2.

We will only be concerned with finitely many indices from J0.)
Since P = P(z) is a Fredholm operator of index zero by Proposition 3.2, we

know that P P∗ and P∗P have the same number N0 of eigenvalues equal to 0. Let
f1, . . . , fN0 be an ON basis of ker(P P∗). For j > N0, we have λ j > 0 and Pe j is
an eigenvector of P P∗ with eigenvalue λ j :

P P∗Pe j = λ j Pe j .
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Using standard notations for norms and scalar products, we put f j = ‖Pe j‖−1 Pe j .
Then { f j } j∈J is an ON system of eigenvectors of P P∗, with P P∗ f j = λ j f j . Let
f ∈ L2(Rn)with ( f | f j ) = 0 for all j ∈ J . Then (P∗ f |e j ) = ( f |Pe j ). If j ≤ N0, we
get (P∗ f |e j ) = ( f |0) = 0, and if j ≥ N0+1, we get (P∗ f |e j ) = ‖Pe j‖( f | f j ) = 0.
Hence P∗ f = 0, so f ∈ ker(P P∗) and hence f = 0 is zero since ker(P P∗) is the
span of f1, . . . , fN0 . We conclude that { f j } j∈J is an ON basis of eigenvectors of P P∗.
By construction, we have Pe j = w j f j with 0 ≤ w j = ‖Pe j‖. Then

w2
j = (P∗Pe j |e j ) = λ j ,

so w j =
√
λ j and it follows that,

Pe j =
√
λ j f j , (5.1)

P∗ f j =
√
λ j e j (5.2)

for all j ∈ J .
Let 0 < α � 1 and let N = N (α) be given by

λ j ≤ α ⇔ j ≤ N (α). (5.3)

Define

R+ : L2(Rn)→ CN , R− : CN → L2(Rn)

by

R+u = √α((u|e j ))
N
j=1, R−u− = √α

N∑

1

u−( j) f j ,

and put

P =
(

P R−
R+ 0

)
: L2(Rn)× CN → L2(Rn)× CN . (5.4)

If u =∑
j∈J u j e j , u− = (u−( j))N

j=1, we get

P
(

u
u−

)
=
(∑

J

√
λ j u j f j +∑N

1
√
αu−( j) f j

(
√
αu j )

N
j=1

)

,

and we conclude that

| det P| =
(

N∏

1

∣
∣
∣
∣det

(√
λ j

√
α√

α 0

)∣∣
∣
∣

)⎛

⎝
∏

N< j∈J

√
λ j

⎞

⎠

= αN
∏

N< j∈J

√
λ j

= α
N
2
∏

J

max(
√
α,
√
λ j ). (5.5)
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Notice that
| det P| =

∏

J

√
λ j . (5.6)

Let δ j (k) = δ j,k, 1 ≤ j, k ≤ N . Then P maps Ce j × Cδ j to C f j × Cδ j and has
the corresponding matrix

(√
λ j

√
α√

α 0

)

.

The inverse is given by

⎛

⎝
0 1√

α

1√
α
−
√
λ j

α

⎞

⎠ ,

so if v =∑
J v j f j , v+ =∑N

1 v+( j)δ j , then (writing as before E for P−1)

E
(
v

v+

)
=
⎛

⎝

∑∞
N+1

1√
λ j
v j e j + 1√

α

∑N
1 v+( j)e j

∑N
1

1√
α
v jδ j −∑N

1

√
λ j

α
v+( j)δ j

⎞

⎠ =
(

E E+
E− E−+

)(
v

v+

)
, (5.7)

where

E+v+ = 1√
α

N∑

1

v+( j)e j , (5.8)

E−v = 1√
α

N∑

1

v jδ j ,

E−+ = − 1

α
diag

(√
λ j
)
,

‖E‖, ‖E+‖, ‖E−‖, ‖E−+‖ ≤ 1√
α
.

From (5.5)–(5.8), we see that

| det P| = | det P|| det E−+|, (5.9)

as we already know from (2.12).
We next study | det P|, when h � α � 1. The formula (5.5) can be written

| det P|2 = αN det 1α(P
∗P), (5.10)
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where 1α(t) = max(α, t). Let χ ∈ C∞0 ([0, 2[; [0, 1]) be equal to 1 on [0, 1]. Then for
t ≥ 0,

t + α

4
χ

(
4t

α

)
≤ 1α(t) ≤ t + αχ

(
t

α

)
. (5.11)

In the following, we assume that Q = P∗P satisfies the assumptions of Sect. 4,
including (4.21), and choose h � α � 1. Then we know that

N (α) = O(ακh−n), (5.12)

and Proposition 4.5 in combination with (5.10)–(5.12) show that

ln | det P|2 = 1

(2πh)n

(∫∫
ln(q)dxdξ +O(1)ακ ln α

)
. (5.13)

As noticed after Proposition 4.5, we also have the upper bound

ln det P∗P ≤ 1

(2πh)n

(∫∫
ln(q)dxdξ +O(1)ακ ln

1

α

)
. (5.14)

6 The Hilbert–Schmidt norm of a Gaussian random matrix

Let α(ω) be a complex Gaussian random variable with density

1

πσ 2 e−|α|2/σ 2
L(dα), L(dα) = dRe α d Im α, (6.1)

that is a N (0, σ 2)-law with σ 2 denoting the variance. The distribution of |α(ω)|2 is

µdα = 1

s
e−r/s H(r)dr, (6.2)

where s = σ 2 and H(r) denotes the standard Heaviside function. Notice that

‖|α|2‖L1 = 〈|α|2〉 = σ 2.

Let α j (ω), j = 1, 2, . . . be independent random variables as above with variance σ 2
j

and assume for simplicity that σ1 ≥ σ j for all j . We also assume that

∞∑

1

σ 2
j <∞, (6.3)

implying the a.s. convergence of
∑∞

1 |α j (ω)|2.
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We want to estimate the probability that
∑ |α j (ω)|2 ≥ a. The probability distribu-

tion of
∑∞

1 |α j (ω)|2 is equal to (µ1 ∗ µ2 ∗ · · · )dx , where µ j is given in (6.2) with
s = s j = σ 2

j , so that
∞∑

1

s j <∞. (6.4)

The Fourier transform of µ j is given by

µ̂ j (ρ) = 1

1+ is jρ
, (6.5)

which has a simple pole at ρ = i/s j . The probability that we are after, is

∞∫

a

(µ1 ∗ µ2 ∗ · · · )dr = 1

2π

∫ ∞∏

1

(µ̂ j (ρ))̂1[a,∞[(ρ)dρ, (6.6)

by Parseval’s identity. Here

̂1[a,∞[(ρ) = 1

i(ρ − i0)
e−iaρ, (6.7)

so the probability (6.5) becomes

i

2π

∞∫

−∞

( ∞∏

1

1

1+ is jρ

)
1

ρ + i0
eiaρdρ. (6.8)

The assumption (6.4) implies that the infinite product converges away from the poles
i/s j . For ρ in a half plane Im ρ ≤ b < 1

2s1
, we have

∣
∣
∣
∣

1

1+ is1ρ

∣
∣
∣
∣ ≤

1

((1− bs1)2 + s2
1 (Re ρ)2)

1
2

,

∣
∣
∣
∣
∣

∞∏

2

1

1+ is jρ

∣
∣
∣
∣
∣
≤

∞∏

2

1

1− bs j
≤ exp

(

C0

∞∑

2

bs j

)

,

where C0 is a universal constant appearing in the estimate,

1

1− t
≤ eC0t , 0 ≤ t ≤ 1

2
.

123



Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators 201

Shifting the contour in (6.8) from R to R + ib and choosing b = 1/(2s1), we can
estimate the probability (6.6) from above by

C(s1)exp

[
C0

2s1

∞∑

1

s j − 1

2s1
a

]

, (6.9)

where C0 > 0 is the universal constant introduced above and C(s1) can be chosen
uniformly bounded on any compact subset of ]0,+∞].
Remark 6.1 Bordeaux Montrieux has obtained (6.9) by a more elementary argument
that will appear in his thesis.

Remark 6.2 If Q = (α j,k(ω)) j,k∈N is a random matrix where α j,k(ω) are independent
N (0, σ 2

j,k) laws, and
∑

j,k

σ 2
j,k <∞, (6.10)

then (6.9) gives an estimate on the probability that the Hilbert–Schmidt norm is≥ a1/2:

P(‖(α j,k(ω))‖2
HS ≥ a) ≤ C(s1)exp

⎡

⎣ C0

2s1

∑

j,k∈N2

σ 2
j,k −

1

2s1
a

⎤

⎦ (6.11)

where C0, C(s1) is the same constants as in (6.9) and s1 = max σ 2
j,k .

7 Estimates on determinants of Gaussian random matrices

Consider first a random vector

tu(ω) = (α1(ω), . . . , αN (ω)) ∈ CN , (7.1)

whereα1, . . . , αN are independent complex Gaussian random variables with a N (0, 1)
law and ω is the random parameter living in a probability space with probability P.
The law of α j , i.e. the direct image of P under α j , is given by

(α j )∗(P) = 1

π
e−|z|2 L(dz) =: f (z)L(dz) (7.2)

and L(dz) = LC(dz) is the Lebesgue measure on C.
The distribution of u is

u∗(P) = 1

πN
e−|u|2 LCN (du). (7.3)

If U : CN → CN is unitary, then Uu has the same distribution as u.
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We next compute the distribution of |u(ω)|2. The distribution of |α j (ω)|2 isµ(r)dr ,
where

µ(r) = −H(r)
d

dr
e−r = e−r H(r),

where H(r) = 1[0,∞[(r). We have µ̂(ρ) = 1
1+iρ .

We have |u(ω)|2 = ∑N
1 |α j (ω)|2 and since |α j (ω)|2 are independent and iden-

tically distributed, the distribution of |u(ω)|2 is µ ∗ · · · ∗ µ dr = µ∗N dr , where ∗
indicates convolution. For r > 0, we get by straight forward calculation the χ2

2N
distribution (for the variable 2r )

µ∗N dr = r N−1e−r

(N − 1)!H(r)dr. (7.4)

Recall here that

∞∫

0

r N−1e−r dr = �(N ) = (N − 1)!,

so µ∗N is indeed normalized.
The expectation value of each |α j (ω)|2 is 1 so:

〈|u(ω)|2〉 = N . (7.5)

We next estimate the probability that |u(ω)|2 is very large in a fashion that is slightly
different from that of Sect. 6. It will be convenient to pass to the variable ln(|u(ω)|2),
which has the distribution obtained from (7.4) by replacing r by t = ln r , so that
r = et , dr/r = dt . Thus ln(|u(ω)|2) has the distribution

r N e−r

(N − 1)!H(r)
dr

r
= eNt−et

(N − 1)!dt =: νN (t)dt. (7.6)

Now consider a random matrix

(u1 . . . uN ) (7.7)

where uk(ω) are random vectors in CN (here viewed as column vectors) of the form

tuk(ω) = (α1,k(ω), . . . , αN ,k(ω)),

and all the α j,k are independent with the same law (7.2).
Then

det(u1 u2 . . . uN ) = det(u1 ũ2 . . . ũN ), (7.8)
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where ũ j are obtained in the following way (assuming the u j to be linearly inde-
pendent, as they are almost surely): ũ2 is the orthogonal projection of u2 in the orthogo-
nal complement (u1)

⊥, ũ3 is the orthogonal projection of u3 in (u1, u2)
⊥ = (u1, ũ2)

⊥,
etc.

If u1 is fixed, then ũ2 can be viewed as a random vector in CN−1 of the type (7.1),
(7.2), and with u1, u2 fixed, we can view ũ3 as a random vector of the same type in
CN−2 etc. On the other hand

| det(u1 u2 . . . uN )|2 = |u1|2 |̃u2|2 · · · |̃uN |2. (7.9)

The squared lengths |u1|2, |̃u2|2, . . . , |̃uN |2 are independent random variables with
distributions µ∗N dr, µ∗(N−1)dr, . . . , µdr . This reduction plays an important role in
[5]. The following lemma will not be used directly.

Lemma 7.1 Let α, β > 0 be independent random variables with distributions µα(r)
dr
r , µβ(r)

dr
r . Then the product αβ has the distribution µαβ

dr
r , with

µαβ = µα�µβ :=M−1((Mµα)(Mµβ)). (7.10)

Here

Mµ(τ) =
∫

r−iτµ(r)
dr

r

is the Mellin transform of µ.

Proof Recall that the Mellin transform of µ(r) is the Fourier transform of µ(et );
r = et , r−1dr = dt . The distribution of ln α is related to that of α by the same
change of variables µα(r) dr

r → µα(et )dt = να(t)dt . Since multiplication on the
Fourier transform side corresponds to convolution, (7.10) is equivalent to the fact
that the distribution of the sum of two independent random variables is equal to the
convolution of the distributions of the two variables. ��

The proof also shows that the multiplicative convolution in the lemma is given by

µα�µβ(r) =
∞∫

0

µα

(
r

ρ

)
µβ(ρ)

dρ

ρ
. (7.11)

As already mentioned we shall not use the lemma directly but rather its
proof by taking logarithms and use that the distribution of the random variable
ln | det(u1 u2 . . . uN )|2 is equal to

(ν1 ∗ ν2 ∗ · · · ∗ νN )dt, (7.12)

with ν j defined in (7.6).
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We have

νN (t) ≤ ν̃N (t) := 1

(N − 1)!e
Nt .

Choose x(N ) ∈ R such that
x(N )∫

−∞
ν̃N (t)dt = 1. (7.13)

More explicitely, we have

1

N !e
N x(N ) = 1, x(N ) = 1

N
ln(N !) = 1

N
ln�(N + 1). (7.14)

Using Stirling’s formula,

(N − 1)!√
2π

= �(N )√
2π

= e−N N N− 1
2

(
1+O

(
1

N

))
,

we get

x(N ) = 1

N

(
1

2
ln(2π)− (N + 1)+

(
N + 1

2

)
ln(N + 1)+O

(
1

N

))

= 1

N

((
N + 1

2

)
ln N − N + C0 +O

(
1

N

))

= ln N + 1

2N
ln N − 1+ C0

N
+O

(
1

N 2

)
, (7.15)

where C0 = (ln 2π)/2 > 0.
With this choice of x(N ), we put

ρN (t) = 1]−∞,x(N )](t )̃νN (t),

so that ρN (t)dt is a probability measure “obtained from νN (t)dt , by transfering mass
to the left” in the sense that

∫
f νN dt ≤

∫
fρN dt, (7.16)

whenever f is a bounded decreasing function. Equivalently,

g ∗ νN ≤ g ∗ ρN ,

whenever g is a bounded increasing function. Now, for such a g, both g ∗ νN and
g ∗ ρN are bounded increasing functions, so by induction, we get

g ∗ ν1 ∗ · · · ∗ νN ≤ g ∗ ρ1 ∗ · · · ∗ ρN .
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In particular, by taking g = H , we get

t∫

−∞
(ν1 ∗ · · · ∗ νN )(s)ds ≤

t∫

−∞
(ρ1 ∗ · · · ∗ ρN )(s)ds, t ∈ R. (7.17)

We have by (7.14)

ρ̂N (τ ) =
x(N )∫

−∞

1

(N − 1)!e
t (N−iτ)dt = 1

(N − 1)!(N − iτ)
eN x(N )−i x(N )τ

= e−i x(N )τ

1− i τN
. (7.18)

This function has a pole at τ = −i N .
Similarly,

̂1]−∞,a](τ ) = i

τ + i0
e−iaτ . (7.19)

By Parseval’s formula, we get

a∫

−∞
ρ1 ∗ · · · ∗ ρN dt = 1

2π

∞∫

−∞
F(ρ1 ∗ · · · ∗ ρN )(τ )F1]−∞,a](τ )dt (7.20)

= 1

2π

+∞∫

−∞
e−iτ(

∑N
1 x( j)−a) −i

τ − i0

N∏

1

1
(

1− iτ
j

)dτ. (7.21)

We deform the contour to Im τ = −1/2 (half-way between R and the first pole in the
lower half-plane). For j ≥ 2, we use the estimate

∣
∣
∣
∣
∣

1

1− iτ
j

∣
∣
∣
∣
∣
≤ 1

1− 1
2 j

= exp

(
1

2 j
+O

(
1

j2

))
,

when Im τ = −1/2. Hence,

N∏

2

∣
∣
∣
∣
∣

1

1− iτ
j

∣
∣
∣
∣
∣
≤ exp

(
1

2

N∑

2

(
1

j
+ O(1)

j2

))

≤ C N
1
2 .

It follows that for a ≤∑N
1 x( j) :

a∫

−∞
ρ1 ∗ · · · ∗ ρN dt ≤ C N

1
2 exp

(

−1

2

(
N∑

1

x( j)− a

))

. (7.22)
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In view of (7.17), (7.20) the right hand side is an upper bound for the probability that
ln | det(u1 . . . uN )|2 ≤ a.

From the formula (7.15), we get for some constants C1,C2 ∈ R:

N∑

1

x( j) ≥ C1+
(

N+ 1

2

)
ln N−2N+1

4
(ln N )2+C0 ln N ≥ C2+

(
N + 1

2

)
ln N−2N .

(7.23)
Hence, for a ≤ C2 + (N + 1

2 ) ln N − 2N ,

P(ln | det(u1 . . . uN )|2 ≤ a)

≤ C N
1
2 exp

[
−1

2

(
C2 +

(
N + 1

2

)
ln N − 2N − a

)]

= Cexp

[
−1

2

(
C2 +

(
N − 1

2

)
ln N − 2N − a

)]
. (7.24)

We shall next extend our bounds on the probability for the determinant to be small,
to determinants of the form

det(D + Q)

where Q = (u1 . . . uN ) is as before, and D = (d1 . . . dN ) is a fixed complex N × N
matrix. As before, we can write

| det((d1 + u1) . . . (dN + uN ))|2 = |d1 + u1|2|d̃2 + ũ2|2 · · · |d̃N + ũN |2,

where d̃2 = d̃2(u1), ũ2 = ũ2(u1, u2) are the orthogonal projections of d2, u2 on
(d1 + u1)

⊥, d̃3 = d̃3(u1, u2), ũ3 = ũ3(u1, u2, u3) are the orthogonal projections of
d2, u2 on (d1 + u1, d2 + u2)

⊥ and so on.
Let ν(N )d (t)dt be the probability distribution of ln |d + u|2, when d ∈ CN is fixed

and u ∈ CN is random as in (7.1), (7.2). Notice that ν(N )0 (t) = ν(N )(t) is the density
we have alreay studied.

Lemma 7.2 For every a ∈ R, we have

a∫

−∞
ν
(N )
d (t)dt ≤

a∫

−∞
ν(N )(t)dt.

Proof Equivalently, we have to show that P(|d + u|2 ≤ ã) ≤ P(|u|2 ≤ ã) for every
ã > 0. For this, we may assume that d = (c, 0, . . . , 0), c > 0. We then only have to
prove that

P(|c + Re u1|2 ≤ b2) ≤ P(|Re u1|2 ≤ b2), b > 0,
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and here we may replace P by the corresponding probability density

µ(t)dt = 1√
π

e−t2
dt

for Reµ1. Thus, we have to show that

1√
π

∫

|c+t |≤b

e−t2
dt ≤ 1√

π

∫

|t |≤b

e−t2
dt. (7.25)

Fix b and rewrite the left hand side as

I (c) = 1√
π

b−c∫

−b−c

e−t2
dt.

The derivative satisfies (recall that c > 0)

I ′(c) = 1√
π
(e−(b+c)2 − e−(b−c)2) ≤ 0.

hence c �→ I (c) is decreasing and (7.25) follows, since it is trivially fulfilled when
c = 0. ��

Now consider the probability that ln | det(D+ Q)|2 ≤ a. If χa(t) = H(a− t), this
probability becomes

∫
· · ·

∫
P(du1) · · ·P(duN )

×χa(ln |d1 + u1|2 + ln |d̃2(u1)+ ũ2(u1, u2)|2 + · · · + ln |d̃N (u1, . . . , uN−1)

+ ũN (u1, . . . , uN )|2).
Here we first carry out the integration with respect to uN , noticing that with the
other u1, . . . , uN−1 fixed, we may consider d̃N (u1, . . . , uN−1) as a fixed vector in
C " (d1 + u1, . . . , dN−1 + uN−1)

⊥ and ũN as a random vector in C. Using also the
lemma, we get

P(ln | det(D + Q)|2 ≤ a)

=
∫
· · ·

∫
ν
(1)
d̃N
(tN )dtN P(duN−1) · · ·P(du1)

×χa(ln |d1 + u1|2 + · · · + ln |d̃N−1(u1, . . . , uN−2)+ ũN−1(u1, . . . , uN−1)|2 + tN )

≤
∫
· · ·

∫
ν(1)(tN )dtN P(duN−1) · · ·P(du1)

×χa(ln |d1 + u1|2 +· · ·+ ln |d̃N−1(u1, . . . , uN−2)+ ũN−1(u1, . . . , uN−1)|2 + tN ).

We next estimate the uN−1- integral in the same way and so on. Eventually, we get
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Proposition 7.3 Under the assumptions above,

P(ln | det(D + Q)|2 ≤ a) ≤
∫
..

∫
χa(t1 + · · · + tN )ν

(1)(tN )ν
(2)(tN−1)..ν

(N )(t1)

= P(ln | det Q|2 ≤ a).

In particular the estimate (7.24) extends to random perturbations of constant matrices:

P(ln | det(D + Q)|2 ≤ a) ≤ Cexp

[
−1

2

(
C2 +

(
N − 1

2

)
ln N − 2N − a

)]
,

(7.26)

when a ≤ C2 + (N + 1
2 ) ln N − 2N.

8 Grushin problem for the perturbed operator

Let P be as in Sect. 3. Let 0 < m̃, m̂ ≤ 1 be square integrable order functions on R2n

such that m̃ or m̂ is integrable, and let S̃ ∈ S(m̃), Ŝ ∈ S(m̂) be elliptic symbols. We
use the same symbols to denote the h-Weyl quantizations. The operators S̃, Ŝ will be
Hilbert–Schmidt with

‖S̃‖HS, ‖Ŝ‖HS � h−
n
2 .

Let ẽ1, ẽ2, . . ., and ê1, ê2, . . . be orthonormal bases for L2(Rn). Our random pertur-
bation will be

Qω = Ŝ ◦
∑

j,k

α j,k(ω)̂e j ẽ
∗
k ◦ S̃, (8.1)

where α j,k are independent complex N (0, 1) random variables. See the Appendix A,
for a general discussion.

Consider the polar decompositions

Ŝ = D̂Û , S̃ = Ũ D̃, (8.2)

where Û , Ũ are unitary pseudodifferential operators with symbol in S(1) and D̂, D̃
are positive selfadjoint elliptic pseudodifferential operators with symbol in S(m̂) and
S(m̃) respectively. After replacing ê j by Û ê j and ẽk by Ũ∗ẽk , we get with the new
orthonormal bases that

Qω = D̂ ◦
∑

j,k

α j,k(ω)̂e j ẽ
∗
k ◦ D̃, (8.3)

Now as we recall in the Appendix A, we may replace the bases ê j and ẽ j by any new
orthonormal bases we like, if we replace the α j,k(ω) by a new set of random variables
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(that we also denote by α j,k) having identical properties. If we choose ê j to be an
orthonormal basis of eigenfunctions of D̂ and similarly for ẽ j , then we get

Qω =
∑

j,k

ŝ j s̃kα j,k(ω)̂e j ẽ
∗
k , (8.4)

where ŝ j > 0 and s̃ j > 0 are the eigenvalues of D̂ and D̃ respectively, i.e. the singular
values of Ŝ and S̃.

We are then precisely in the situation of Sect. 6, noting that ŝ j s̃kα j,k(ω) are inde-
pendent N (0, ŝ2

j s̃2
k )-laws, so (6.11) can be applied with σ j,k = ŝ j s̃k ,

∑

j,k

σ 2
j,k = ‖Ŝ‖2

HS‖S̃‖2
HS � h−2n .

We also know that

s1 = max σ j,k = ‖Ŝ‖‖S̃‖ � 1.

From (6.11), we deduce that

P(‖Qω‖2
HS ≥ a) ≤ Cexp

[
Ch−2n − a

C

]
(8.5)

for some constant C > 0. Let
M = C1h−n, (8.6)

for some C1 � 1. Then (8.5) gives

P(‖Q‖2
HS ≥ M2) ≤ Cexp (−h−2n/C), (8.7)

for some new constant C > 0.
We also want to control the trace class norm of Qω, so we will use the assumption

that one of m̃ and m̂ is integrable. Assume for instance that m̂ is integrable. Then
m̂1/2 is square integrable and we can factorize Ŝ = Ŝ1 Ŝ2, with Ŝ j ∈ Op(m̂1/2) being
Hilbert–Schmidt operators. Let us write

Qω = Ŝ1 Ŝ2

∑

j,k

α j,k(ω)̂e j ẽ
∗
k S̃.

Now recall that the composition of two Hilbert–Schmidt operators is of trace class and
the corresponding trace class norm does not exceed the product of the Hilbert–Schmidt
norms of the two factors. Knowing that ‖Ŝ1‖HS = O(h−n/2) and applying (8.7) to
Ŝ2
∑

j,k α j,k(ω)̂e j ẽ∗k S̃, we get

P(‖Qω‖tr ≥ M3/2) ≤ Cexp (−h−2n/C). (8.8)
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In the following we will restrict the attention to Qω’s with

‖Qω‖HS ≤ M, ‖Qω‖tr ≤ M3/2, (8.9)

and we have just seen that the probability that this is the case is bounded from below
by 1− Ce−h−2n/C .

We wish to study the eigenvalue distribution of

Pδ = P − δQω, (8.10)

when δ > 0 is sufficiently small. (The minus sign is for notational convenience only.)
Recall from Sect. 3, that for z ∈ �̃,

P(z) = (P̃ − z)−1(P − z) (8.11)

is a trace class perturbation of the identity. We now introduce

Pδ(z) = (P̃ − z)−1(P − δQω − z) = P(z)− δ(P̃ − z)−1 Qω. (8.12)

The Grushin problem will be used to find lower bounds for | det Pδ(z)|. First we derive
an upper bound: We have with Pδ(z) = Pδ , P = P(z):

P∗δ Pδ
= P∗P−δ(P∗(P̃−z)−1 Qω + Q∗ω(P̃∗−z)−1 P−δQ∗ω(P̃∗ − z)−1(P̃ − z)−1 Qω)

= P∗P + δR, (8.13)

where

‖R‖HS ≤ C(‖Qω‖HS + δ‖Qω‖‖Qω‖HS) ≤ C̃ M,
(8.14)‖R‖tr ≤ C(‖Qω‖tr + δ‖Qω‖‖Qω‖tr) ≤ C̃ M3/2,

provided that δ‖Qω‖ ≤ O(1), as will follow from (8.15).
In Sect. 4 we studied P∗P + αχ(α−1 P∗P) for h � α � 1. This operator is ≥ α

if 1[0,1] ≤ χ , as we may assume. Now assume that

δM � h. (8.15)

Then

P∗P + αχ(α−1 P∗P)+ δR ≥ α

2
,
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and

ln det P∗δ Pδ ≤ ln det

(
P∗δ Pδ + αχ

(
P∗P

α

))

= ln det

(
P∗P + αχ

(
P∗P

α

)
+ δR

)

= ln det

(
P∗P + αχ

(
P∗P

α

))

+
δ∫

0

tr

((
P∗P + αχ

(
P∗P

α

)
+ t R

)−1

R

)

dt.

The integral is O(1) δ
α
‖R‖tr = O(1)δM

3
2 /α and combining this with (4.29) (assuming

now (4.21)), we get

ln det P∗δ Pδ ≤ 1

(2πh)n

(∫∫
ln |p|2dxdξ +O(1)ακ ln

1

α

)
+O(1)δM

3
2

α
. (8.16)

Here we choose α = Ch , C � 1 and we can drop the last remainder term if we
assume that

δM
3
2 � h1+κ−n ln

1

h
, δ � h1+κ+n/2 ln

1

h
. (8.17)

For n ≥ 2 this follows from (8.15), but for n = 1 it might be a stronger assumption
depending on the value of κ . Then

ln | det Pδ| ≤ 1

(2πh)n

(∫∫
ln |p|dxdξ +O(1)hκ ln

1

h

)
. (8.18)

Still with h � α � 1 we define R+, R−, P0 = P , E0 = E as in Sect. 5. Here z is
fixed, P = P(z). With Pδ = Pδ(z), we put

Pδ =
(

Pδ R−
R+ 0

)
: L2(Rn)× CN → L2(Rn)× CN . (8.19)

Now ‖δ(P̃ − z)−1 Qω‖ ≤ CδM , and

δM√
α
� h√

α
� 1

under the assumption (8.15), so Pδ has the inverse

Eδ = E0

(

1−
(
δ(P̃ − z)−1 Qω 0

0 0

)

E0

)−1

(8.20)
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of norm ≤ O(1/√α). Writing

Q̃ω = (P̃ − z)−1 Qω, (8.21)

we have the Neumann series expansion

Eδ =
(

Eδ Eδ+
Eδ− Eδ−+

)

=
⎛

⎝

∑∞
j=0 E0(δ Q̃ωE0) j ∑∞

j=0(E
0δ Q̃ω)

j E0+
∑∞

j=0 E0−(δ Q̃ωE0) j E0−+ +
∑∞

j=1 E0−(δ Q̃ωE0) j−1δ Q̃ωE0+

⎞

⎠ . (8.22)

For 0 ≤ t ≤ δ we have

d

dt
ln det Pt = −tr Et

(
Q̃ω 0

0 0

)

= O(1) 1√
α
‖Q̃ω‖tr

= O(1) 1√
α

M
3
2 ,

so

ln det Pδ = ln det(P)+O(1) δ√
α

M
3
2 .

Applying (5.13), we get

ln | det Pδ| = 1

(2πh)n

(∫∫
ln |p|dxdξ +O(1)ακ ln α

)
+O(1) δ√

α
M

3
2 . (8.23)

Again, under the assumption (8.17), we get with α = Ch, C � 1,

ln | det Pδ| = 1

(2πh)n

(∫∫
ln |p|dxdξ +O(1)hκ ln

1

h

)
. (8.24)

The idea to get a lower bound for ln | det Pδ| with high probability is now to use
(2.11), (2.12) which gives

ln | det Pδ| = ln | det Pδ| + ln | det Eδ−+|, (8.25)

and to get a lower bound for ln | det Eδ−+|.
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9 Lower bounds on the determinant

We keep the assumptions formulated in the beginning of Sect. 8, in particular (8.1).
We restrict the attention to the case when (8.9) holds with M given by (8.6), and recall
that so is the case with probability ≥ 1 − Ce−h−2n/C . The restrictions (8.15), (8.17)
on δ will be further strengthened below.

Using a formula of the type (8.25) we shall show that for every z ∈ �̃, the deter-
minant of Pδ(z) is very likely not to be too small. For that we study the probability
distribution of the random matrix Eδ−+, and show that we are close enough to the Gaus-
sian case to be able to apply the results of Sect. 7 to the determinant. Recall that we
work under the assumption (8.9), which is fulfilled with probability≥ 1−Ce−h−2n/C .
We want to study the map

Q �→ Eδ−+ = E0−+ +
∞∑

1

E0−(δ Q̃E0) j−1δ Q̃E0+

= E0−+ + δE0− Q̃E0+ +
∞∑

2

(
δCh−n

√
α

) j 1√
α

R j ,

where Q̃ = (P̃− z)−1 Q and ‖R j‖HS ≤ 1. Here, we used that ‖E0±‖, ‖E0‖ ≤ 1/
√
α.

We can rewrite this further as

Eδ−+ = E0−++
δ

α

(
√
αE0− Q̃

√
αE0++

Ch−nδCh−n

√
α

∞∑

0

(
δCh−n

√
α

) j

R j+2

)

=: E0−+ +
δ

α
Q̂. (9.1)

We strengthen (8.15), (8.17) to
δM2

√
α
� 1, (9.2)

and recall that by (8.6), M = C1h−n .
Then

δCh−n

√
α

� hn

C
� 1,

and we get

Q̂ = √αE0− Q̃
√
αE0+ + T, ‖T ‖HS ≤ C2h−2nδ√

α
� 1. (9.3)

In view of (8.1) we have

√
αE0− Q̃

√
αE0+ =

√
αE0−(P̃ − z)−1 Ŝ

∑

j,k

ê jα j,k ẽ∗k S̃
√
αE0+, (9.4)
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where we recall from (5.8) that

√
αE0+v+ =

N∑

1

v+( j)e j ,
√
αE0−v( j) = (v| f j ), 1 ≤ j ≤ N , (9.5)

where e1, . . . , eN and f1, . . . , fN are orthonormal bases for ran(1[0,α](P(z)∗P(z)))
and ran(1[0,α](P(z)P(z)∗)) respectively, writing ran(B) for the range of B.

Here, we wish to apply the discussion of Sect. 12. The operators S̃
√
αE0+,√

αE0−(P̃ − z)−1 Ŝ are clearly Hilbert–Schmidt of rank ≤ N . Let t̃ j , t̂ j denote the
singular values of these operators so that t̃ j = t̂ j = 0 for j ≥ N + 1.

Lemma 9.1 We have
1

C
≤ t̃ j , t̂ j ≤ C, 1 ≤ j ≤ N , (9.6)

where C > 0 is independent of h, α.

Proof (9.5) shows that ‖√αE0+‖, ‖
√
αE0−‖ ≤ 1, and clearly ‖(P̃ − z)−1 Ŝ‖, ‖S̃‖ =

O(1), so the upper bound in (9.6) is clear.
On the other hand,

√
αE0+v+ is confined to a bounded region in phase space, and

it is easy to show that

C‖S̃
√
αE0+v+‖ ≥ ‖

√
αE0+v+‖ = ‖v+‖,

which implies that the smallest eigenvalue of ((S̃
√
αE0+)∗(S̃

√
αE0+))1/2 is ≥ 1/C .

The lower bound on t̃ j follows. The argument for t̂ j is essentially the same. ��
Let f̂1, . . . , f̂N and f̃1, . . . , f̃N be orthonormal bases in CN of eigenfunctions of

((
√
αE0−(P̃ − z)−1 Ŝ)(

√
αE0−(P̃ − z)−1 Ŝ)∗)1/2 and ((S̃

√
αE0+)∗(S̃

√
αE0+))1/2 res-

pectively, with t̂ j and t̃k as the corresponding eigenvalues. We can then choose the
orthonormal bases {̂e j }, {̃e j } in L2 so that

ê j = 1

t̂ j
(
√
αE0−(P̃ − z)−1 Ŝ)∗ f̂ j , ẽ j = 1

t̃ j
(S̃
√
αE0+) f̃ j , (9.7)

for j = 1, 2, . . . , N . Then from (9.4), we get

√
αE0− Q̃

√
αE0+ =

∑

1≤ j,k≤N

t̂ j t̃kα j,k f̂ j f̃ ∗k . (9.8)

Now we will be a a little more specific about the assumption (8.9). We will restrict
the attention to the set QM of matrices (α j,k(ω)) such that

‖Ŝ2

∑
α j,k(ω)̂e j ẽ

∗
k S̃‖HS ≤ M, (9.9)

which implies (8.9) and which is fulfilled with probability ≥ 1 − Cexp (−h−2n/C).
Here we recall that we assumed m̂ to be integrable and wrote Ŝ = Ŝ1 Ŝ2 with Ŝ j ∈
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Op(S(m̂1/2)) (When m̃ is integrable instead, we make a corresponding factorization
of S̃).

(9.3) can be reformulated as

Q̂(α) = diag (̂t j ) ◦
(
(α j,k)1≤ j,k≤N + T̃ (α·)

) ◦ diag (̃tk), (9.10)

‖T̃ (α·)‖HS ≤ O(1)δM2

√
α
, (9.11)

for (α j,k) ∈ QM .
Let |||(α j,k)||| denote the norm in (9.9) and let H be the corresponding Hilbert space

of N × N matrices. We shall view HS(CN ,CN ) =: HN as a subspace of H in the
natural way. Note that the two norms are uniformly equivalent on this subspace.

The Cauchy inequality implies (after decreasing M by a constant factor) that the
differential of the map α· �→ T̃ (α·) satisfies the following estimate on QM :

‖dT̃ ‖H→HN = O(1) δM√
α
. (9.12)

On H, HN we have the basic probability measures,

µH =
∞∏

j,k=1

(
e−|α j,k |2 L(dα j,k)

π

)
µHN =

N∏

j,k=1

(
e−|α j,k |2 L(dα j,k)

π

)
. (9.13)

We shall now estimate �∗(µH) on QM , where

�((α j,k)) = (α j,k)1≤ j,k≤N + T̃ (α·), (9.14)

and to do so, we identify T̃ (α·) with its image in H under the natural inclusion HN ⊂
H, and write

� = �0 ◦ κ, κ(α·) = α· + T̃ (α·), �0(α·) = (α j,k)1≤ j,k≤N , (9.15)

for α· = (α j,k) ∈ H.
We first proceed formally, ignoring some technical difficulties due to the infinite

dimension. We have

| ‖κ(α·)‖2
HS − ‖α·‖2

HS | = | ‖�0κ(α·)‖2
HS − ‖�0α·‖2

HS |
= | ‖�0κ(α·)‖HS − ‖�0α·‖HS |
×| ‖�0κ(α·)‖HS + ‖�0α·‖HS |

≤ ‖T̃ (α·)‖HS

(
2|||α·||| +O

(
δM2

√
α

))

≤ O(1)δM3

√
α
, (9.16)
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where we strengthen the assumption (9.2) to

δM3

√
α
� 1, or equivalently δ � h3n+1/2. (9.17)

As for the Jacobian of κ , we recall that if A : H → H is linear with ‖A‖tr � 1
(uniformly with respect to M), then det(1+ A) = 1+O(‖A‖tr ). Also, if A is of rank
≤ N 2, we know that ‖A‖tr ≤ N 2‖A‖, so in our case we get from (9.12) that

det
∂κ

∂x
= 1+O(1)δN 2 M√

α
.

Here the remainder term is � 1 in view of the assumption (9.17) and the fact that
N � M . (Recall that N = O(ακh−n) by (4.27).)

If F is a locally defined holomorphic map : H → H, then

L(d F(x)) =
∣
∣
∣
∣det

∂F

∂x

∣
∣
∣
∣

2

L(dx),

so in our case,

L(dκ(x)) =
(

1+O(1)δN 2 M√
α

)
L(dx).

Combining this with (9.16), we get

κ∗(µH) ≤
(

1+O(1)δM3

√
α

)
µH on QM .

Since (�0)∗µH = µHN , we conclude that

�∗(µH) ≤
(

1+O(1)δM3

√
α

)
µHN on QM . (9.18)

At the end of this section we shall complete the proof of (9.18) by means of finite
dimensional approximations.

For α· = α·(ω) ∈ QM we want to estimate the probability that | det Eδ−+| is small.
According to Proposition 7.3, the µHN (d Q̌)-measure of the set of matrices Q̌ with

∣
∣
∣det

(
diag (̂t j )

−1 ◦ α
δ

E0−+ ◦ diag (̃t j )
−1 + Q̌

)∣∣
∣ ≤ ea

is

≤ Ce−
1
2 (C2+(N− 1

2 ) ln N−2N−a),
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if

a ≤ C2 +
(

N + 1

2

)
ln N − 2N . (9.19)

In view of (9.1), (9.10), (9.18) this is also (after a slight increase of C) an upper bound
for the probability to have (α j,k) ∈ QM and

∣
∣
∣det

(
diag ( t̂ j )

−1 ◦
(α
δ

E0−+ + Q̂
)
◦ diag (̃t j )

−1
)∣∣
∣ ≤ ea,

or equivalently that

| det Eδ−+| ≤ ea
(
δ

α

)N N∏

1

t̂ j

N∏

1

t̃ j .

Write

a = C2 +
(

N − 1

2

)
ln N − 2N − b (9.20)

and restrict the attention to b ≥ 0. Then

ea = eC2+(N− 1
2 ) ln N−2N−b

and we get

P
(

(9.9) holds and | det Eδ−+| ≤ eN ln 1
α
−N ln 1

δ
+(N− 1

2 ) ln N−C N+C2−b
)
≤ e−b.

(9.21)

Summing up the discussion so far, we have

Proposition 9.2 Consider the Grushin problem (8.19). Assume (4.21) and choose
α = Ch, C � 0. Then there exist positive constants C̃0, C̃1, C̃2, C̃ such that for
b ≥ 0

P
(

(9.9) holds and | det Eδ−+| ≥ e−C̃0hκ−n ln 1
h−C̃1−C̃2hκ−n ln 1

δ
−b
)

≥ 1− C̃e−b − C̃e−C0h−2n
. (9.22)

Here δ is assumed to satisfy (9.17).

In view of (8.24), (8.25), we get

Theorem 9.3 We now return to the original Pδ(z) in (8.12) and we assume (4.21)
uniformly for all z in some open set �̂ � �̃. If δ satisfies (8.15), (8.17) there is a
constant C > 0 such that

ln | det Pδ| ≤ 1

(2πh)n

(∫∫
ln |p|dxdξ + Chκ ln

1

h

)
, ∀z ∈ �̂, (9.23)
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with probability ≥ 1 − Ce−C0h−2n
. If δ satisfies the stronger condition (9.17), then

there are constants C, C̃,C0 > 0 such that for every z ∈ �̂ and ε ≥ 0:

ln | det Pδ| ≥ 1

(2πh)n

(∫∫
ln |p|dxdξ − Chκ

(
ln

1

h
+ ln

1

δ

)
− ε

)
(9.24)

with probability ≥ 1− e−ε(2πh)−n − C̃e−C0h−2n
.

Notice that the last term in the lower bound for the probability is much smaller than
the second term, and can therefore be eliminated.

We end this section by completing the proof of (9.18) by finite dimensional
approximation (We suggest the reader to proceed directly to Sect. 10).

Lemma 9.4 We can choose the orthonormal bases {̂e j }, {̃e j } in L2 so that (9.7) is
fulfilled for 1 ≤ j ≤ N and such that the square of the norm in (9.9) is equivalent to

∑

j,k

|α j,k |2µ̂2( j)2µ̃(k)2, (9.25)

where µ̂2( j), µ̃(k) denote the singular values of Ŝ2 and S̃ respectively.

In this lemma we did not try to have any uniformity with respect to h.
Assume the lemma for a while. Then for Ñ ≥ N + 1, we can replace Qω in (8.1)

by

QÑ
ω = Ŝ ◦

⎛

⎝
∑

1≤ j,k≤Ñ

α j,k(ω)̂e j ẽ
∗
k +

∑

j or k≥Ñ+1

β Ñ
j,k(α

Ñ (ω))̂e j ẽ
∗
k

⎞

⎠ ◦ S̃,

which depends on finitely many random variables. Here α Ñ (ω) = (α j,k(ω))1≤ j,k≤Ñ

and β Ñ
j,k are the linear functions of α Ñ which minimize

∥
∥
∥
∥
∥
∥

Ŝ2 ◦
⎛

⎝
∑

j,k≤Ñ

α j,k ê j ẽ
∗
k +

∑

j or k>Ñ

β j,k ê j ẽ
∗
k

⎞

⎠ ◦ S̃

∥
∥
∥
∥
∥
∥

HS

.

Here we can use the ê j , ẽ j of Lemma 9.4. On the set QM , we have Ŝ2◦QÑ ◦ S̃ → Ŝ2 QS̃

in Hilbert–Schmidt norm, and ‖Ŝ2 QÑ S̃‖HS ≤ M when α(ω) ∈ QM .

We get the corresponding matrix Eδ,Ñ−+ = E0−+ + δ
α

Q̂ Ñ and Q̂ Ñ can be written as
in (9.10) with T̃ (α) replaced by T̃Ñ (α) satisfying (9.11). Now instead of µH we have
the finite dimensional measure

µHÑ
=

Ñ∏

j,k=1

(
e−|α j,k |2 L(dα j,k)

π

)
,
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which we can view as the restriction of µH to the tribe generated by α j,k with 1 ≤
j, k ≤ Ñ ) and we define �Ñ as in (9.14) with T̃ replaced by T̃Ñ . The subsequent
arguments now become rigorous since we are in finite dimension and we get

�Ñ∗ (µHÑ
) ≤

(
1+O(1)δM3

√
α

)
µHN on QM .

Since �Ñ → � on QM , we obtain (9.18) in the limit.
We next prove Lemma 9.4.

Proof We consider first the following simplified problem. Let mS ≤ 1 be a square
integrable order function and let S ∈ Op (S(mS)) be elliptic. We look for an ortho-
normal basis e1, e2, . . . in L2 such that

∥
∥
∥
∑

uk Sek

∥
∥
∥

2
�
∑

µ j (S)
2|uk |2, (9.26)

where µ1(S) ≥ µ2(S) ≥ · · · → 0 are the singular values of S and such that

e1, . . . , eN0

is a prescribed orthonormal family of functions in S.
Since

∑
µ2

j = O(h−n), we have Nµ2
N = O(h−n), and using also thatµN ≤ O(1),

we get

µN ≤ O(1)
(Nhn)1/2 + 1

.

On the other hand there exists a constant κ0 > 0 such that

mS(ρ) ≥ 1

C0
〈ρ〉−κ0 ,

and we can use the mini-max principle to compare the eigenvalues of (S∗S)1/2 with
those of (1+ ((h D)2 + x2))−κ0/2 and deduce that

µN ≥ 1

O(1)
1

(1+ hN 1/n)κ0/2
.

If 0 < µ� 1, we have, with p denoting the symbol of (S∗S)1/2, that

dist (0, p−1([0, 2µ])) ≥ dist

(
0,m−1

S

([
0,

2µ

C

]))

≥ dist

(
0,

{
ρ; 1

C0
〈ρ〉−κ0 ≤ 2µ

C

})

≥ 1

C1
µ−1/κ0 .

123



220 M. Hager, J. Sjöstrand

If u is a corresponding normalized eigenfunction, we have (µ−1(S∗S)1/2−1)u = 0,
and we notice thatµ−1(S∗S)1/2 ∈ Op (S(µ−1mS)), whereµ−1mS satisfies uniformly
the axioms of an order function, when µ→ 0. We conclude that

u = O(1), in H(m)

uniformly with respect to m if m = mµ belongs to a family of orderfunctions that
satisfy uniformly the axioms and m = 1 on {ρ ∈ T ∗Rn; p(ρ) ≤ 2µ}. From this, we
deduce that

(ϕ|u) = O(µN ), ∀N ,

if ϕ ∈ S is fixed, and µ→ 0.
Let f1, f2, . . . be an orthonormal basis of eigenfunctions of (S∗S)1/2 with µ1 ≥

µ2 ≥ · · · the corresponding decreasing enumeration of eigenvalues. Then (e j | fk) =
O(k−∞), 1 ≤ j ≤ N0, k ≥ 1. Let N � N0. For j ≥ N + 1, put

g j = f j −�EN0
f j = f j + r j , EN0 � r j = O( j−∞). (9.27)

Here, we let EN0 = (e1, . . . , eN0) be the span of e1, . . . , eN0 and �EN0
: L2 → EN0

be the corresponding orthogonal projection. Then g j ∈ E⊥N0
and for j, k > N :

(g j |gk) = δ j,k +O( j−∞k−∞). (9.28)

Here the estimates are uniform with respect to N and if N is sufficiently large, we see
that G = ((g j |gk)) is a positive definite matrix of which any real power has elements
satisfying (9.28). Let (a j,k) = G−1/2, so that a j,k = δ j,k +O( j−∞k−∞), j, k > N .
Put

e j =
∑

k>N

a j,k gk, j > N .

Then e j , j > N form an orthonormal basis in the span G⊥N of gN+1, gN+2, . . .. We
see that for j > N :

e j = f j +
∑

k>N

O( j−∞k−∞) fk + r̃ j , EN0 � r̃ j = O( j−∞). (9.29)

G N = (G⊥N )⊥ is a space of dimension N , containing EN0 . For 1 ≤ j ≤ N , we
consider

�G N f j = f j −�G⊥N
f j ,

�G⊥N
f j =

∞∑

N+1

( f j |ek)ek
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=
∞∑

N+1

( f j |̃rk)ek

=
∞∑

N+1

O(k−∞)
(

fk +
∞∑

�=N+1

O(k−∞�−∞) f� + r̃k

)

=
∞∑

N+1

O(k−∞) fk +O(N−∞),

where the last term is in EN0 . Thus, we get for 1 ≤ j ≤ N :

�G N f j = f j +
∞∑

N+1

O(k−∞) fk + r̂ j , EN0 � r̂ j = O(N−∞).

This implies

�G N f j = f j +
∞∑

1

O((k + N )−∞) fk, 1 ≤ j ≤ N . (9.30)

Now, complete e1, . . . , eN0 to an orthonormal basis e1, . . . , eN in G N . Then
e1, e2, . . . is an orthonormal basis in L2. (9.30) shows that �G N f1, . . . ,�G N fN is
very close to being an orthonormal basis in G N , and we see that

e j =
N∑

k=1

u j,k fk +
∞∑

1

O((k + N )−∞) fk, 1 ≤ j ≤ N , (9.31)

where (u j,k)1≤ j,k≤N is a unitary matrix. (9.29), (9.31) imply that for all j ≥ 1:

e j =
∞∑

k=1

a j,k fk +
∞∑

k=1

O(( j + N )−∞(k + N )−∞) fk, (9.32)

where a j,k = u j,k for j, k ≤ N and a j,k = δ j,k when max( j, k) > N . We now fix N
sufficiently large so that the above estimates hold. Using (9.32), we get

e j = f j +∑
k O( j−∞k−∞) fk, Se j = µ j f j +∑

k O( j−∞k−∞) fk,

(Sek |Se j ) = µ2
kδ j,k +O(k−∞ j−∞),

∥
∥
∥
∥
∥

∞∑

1

uk Sek

∥
∥
∥
∥
∥

2

=
∞∑

k=1

µ2
kukuk +

∞∑

k=1

∞∑

j=1

O(k−∞ j−∞)uku j

= ((µ2 + K )u|u)�2

= ((1+ µ−1 Kµ−1)µu|µu)
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where µ denotes the operator diag (µ j ). Here µ−1 Kµ−1 is compact: �2 → �2, so
1+ µ−1 Kµ−1 is a non-negative selfadjoint Fredholm operator of index 0. If u( j) =
O( j M0) and (1 + µ−1 Kµ−1)u = 0, then u = O( j−∞). If 0 �= v ∈ �2, (1 +
µ−1 Kµ−1)v = 0, we conclude that

((1+ µ−1 Kµ−1)v|v) = ((µ2 + K )u|u) =
∥
∥
∥
∥
∥

S

( ∞∑

1

ukek

)∥∥
∥
∥
∥

2

> 0

thus 1+ µ−1 Kµ−1 is bijective and we finally conclude that (9.26) holds.
Now we can finish the proof of the lemma. We choose {̂e j }, {̃e j } in (9.7) so that

(9.26) holds with S = Ŝ2, e j = ê j and S = S̃∗, e j = ẽ j respectively. Then the square
of the norm (9.9) is equal to

∑

i, j,k,�

(Ŝ2êi |Ŝ2ê j )(S̃
∗ẽk |S̃∗ẽ�)αi,kα j,� = (Ŝ ⊗ S̃α|α)�2⊗�2 , (9.33)

where

Ŝ j,i = (Ŝ2êi |Ŝ2ê j ), S̃�,k = (S̃∗ẽk |S̃∗ẽ�).

From (9.26) we know that

Ŝ = µ̂P̂ P̂µ̂, µ̂ = diag (µ̂2( j))

S̃ = µ̃P̃ P̃µ̃, µ̃ = diag (µ̃( j)),

where P̂ , P̃ are positive selfadjoint operators satisfying

1

C
I ≤ P̂, P̃ ≤ C I.

Then (9.33) can be written

‖(P̂µ̂⊗ P̃µ̃)α‖2
�2⊗�2 ,

and the lemma follows. ��

10 Spectral asymptotics when d p, d p are independent

Let � � � be open with C2 boundary and assume that for every z ∈ ∂�:

�z := p−1(z) is a smooth sub-manifold of T ∗Rn on

which dp, d p are linearly independent at every point. (10.1)

This assumption, which is satisfied also in a neighborhood of ∂�, implies that codim
(�z) = 2. The assumption can also be rephrased more briefly by saying that ∂� does
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not contain any critical value of p : R

2n → R

2. Here p is the leading symbol of the
original (z-independent operator.) If pz(ρ) = ( p̃(ρ)− z)−1(p(ρ)− z) is the principal
symbol of (P̃ − z)−1(P − z), we introduce

I (z) =
∫

R2

ln |pz(ρ)|dρ (10.2)

which is the same integral as in (9.23), (9.24) (where z was fixed). It is easy to see
that I (z) is a smooth function on the neighborhood of ∂� where (10.1) holds and
as in [10] we can compute �z I (z). Since z �→ pz(ρ) is holomorphic, we know that
�z ln |pz(ρ)| = 0 when pz(ρ) �= 0, ie when ρ �∈ �z . On the other hand pz(ρ) =
( p̃(ρ)− z)−1(p(ρ)− z) where the first factor is holomorphic in z and non-vanishing,
so

�z ln |pz(ρ)| = �z ln |p(ρ)− z| = 2πδ(z − p(ρ)).

If ϕ ∈ C∞0 (�), we get

∫
(�z I (z))ϕ(z)L(dz) =

∫ ∫
�z(ln |pz(ρ)|)ϕ(z)L(dz)dρ

= 2π
∫ ∫

δ(z − p(ρ))ϕ(z)L(dz)dρ = 2π
∫
ϕ(p(ρ))dρ.

Thus we get (as in [6,7] when n = 1):

1

2π
�(I (z))L(dz) = p∗(dρ) near ∂�, (10.3)

where dρ is the symplectic volume element. Notice that this formula is still true without
the assumption (10.1) and hence not only in a neighborhood of ∂�, but in�; however,
I (z) is no more smooth in general but still well-defined as a distribution. This fact will
be used in the proof of Theorem 10.1.

In view of (10.1), we have V (t) � t and (4.21) holds uniformly with κ = 1, when
z varies in a neighborhood of ∂�. Correspondingly the conclusions in Theorem 9.3
hold uniformly, when z varies in a small neighborhood of ∂�.

Theorem 10.1 Let � � � be open with C2 boundary and make the assumption
(10.1). Let δ > 0 satisfy (9.17) and assume that h ln 1

δ
� ε � 1 (or equivalently

δ ≥ e−ε/(Ch), C � 1, ε � 1, implying also that ε ≥ C̃h ln 1
h for some C̃ > 0). Then

with C > 0 large enough, the number N (Pδ, �) of eigenvalues of Pδ in � satisfies

∣
∣N (Pδ, �)− 1

(2πh)n
vol (p−1(�))

∣
∣ ≤ C

√
ε

hn
(10.4)

with probability

≥ 1− C√
ε

e−
ε/2

(2πh)n .
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Proof The eigenvalues of Pδ in �̃ coincide with the zeros of the holomorphic function

Fδ(z) = det Pδ(z). (10.5)

Theorem 9.3 tells us that there exists a neighborhood �̂ of ∂� such that

(a) With probability ≥ 1− Ce−C0h−2n
, we have

ln |Fδ(z)| ≤ 1

(2πh)n

(
I (z)+ Ch ln

1

h

)
, z ∈ �̂.

(b) For every z ∈ �̂ and ε > 0 we have

ln |Fδ(z)| ≥ 1

(2πh)n

(
I (z)− Ch(ln

1

h
+ ln

1

δ
)− ε

)
,

with probability ≥ 1− e−ε(2πh)−n − Ce−C0h−2n
. Notice here that ln 1

δ
≥ ln 1

h .
We can then repeat the arguments of [6,7]. Recall Proposition 6.1 from [7] proved

in a more general form in [6].

Proposition 10.2 Let �̂, �̃ be open neighborhoods of ∂� and � respectively. Let
ϕ ∈ C∞(�̂;R) and let f be a holomorphic function in �̃ such that

| f (z; h̃)| ≤ eϕ(z)/h̃, z ∈ �̂, 0 < h̃ � 1. (10.6)

Assume that for some ε > 0, ε � 1, ∃zk ∈ �̂, k ∈ J , such that

∂� ⊂
⋃

k∈J

D(zk,
√
ε), #J = O

(
1√
ε

)
,

| f (zk; h̃)| ≥ e
1
h̃
(ϕ(zk )−ε), k ∈ J. (10.7)

Then the number of zeros of f in � satisfies

#( f −1(0) ∩ �) = 1

2π h̃

∫

�

�ϕL(dz)+O
(√

ε

h̃

)
,

where we let ϕ denote some distribution in D′(�∪�̂) extending the previous function ϕ.

The original statement in [6,7] was with a smooth function ϕ defined in a whole
neighborhood of � satisfying (10.6) there, but the proof works without any changes
under the weaker assumptions above.

In view of (a), (b), we can apply the proposition with h̃ = (2πh)n and ε replaced
by 2ε, ϕ = I (z) + Ch ln 1

h , f = Fδ . Then (10.6) holds with a probability as in (a),
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while (10.7) holds with a probability

≥ 1− C√
ε

e−
ε
2 (2πh)−n − Ce−C0h−2n

.

We can define ϕ as a distribution in a full neighborhood of � by (10.2). Then

1

2π h̃

∫

�

�ϕL(dz) = 1

(2πh)n

∫

�

1

2π
�I (z)L(dz) = 1

(2πh)n

∫∫

p−1(�)

dxdξ.

The theorem follows. ��
We next give a result about the simultaneous Weyl asymptotics for a family of

domains

Theorem 10.3 Let G be a family of domains � � � that satisfy the assumptions
of Theorem 10.1 uniformly in the following sense: each � is of the form g(z) < 0
(with g = g�) where g belongs to a bounded set in C2(�) and g > 1/C on ∂� and
|dg| > 1/C on ∂�, where C > 0 is independent of �. We also assume that (10.1)
holds for all z ∈ ∂�, � ∈ G, uniformly with respect to (z, �).

Choose δ, ε as in Theorem 10.1. Then with probability

≥ 1− C

ε
e−

ε/2
(2πh)n ,

we have (10.4) with a constant C independent of �.

Proof As in the proof of Theorem 10.1, we use Proposition 10.3 with an appropriate
grid of points zk (see [7] for further details). We now need O(1/ε) points to achieve
that the union of the D(zk,

√
ε) covers the union of all the ∂�, rather than O(1/√ε)

points as in the proof of Theorem 10.1. ��

11 Counting zeros of holomorphic functions

Let � � C have smooth boundary ∂�. Assume for simplicity that γ := ∂� is connec-
ted (or equivalently that � is simply connected). This is for notational convenience
only. For 0 < r � 1, we put

γr = γ + D(0, r) = ∂� + D(0, r). (11.1)

Then γr has smooth boundary and is a thin domain of width ≈ 2r . Let Gr (z, w),
Pr (z, w) denote the Green and Poisson kernels of γr , so that the Dirichlet problem

�u = v, u|∂γr
= f, u, v ∈ C∞(γr ), f ∈ C∞(∂γr ),
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has the unique solution

u(z) =
∫

γr

Gr (z, w)v(w)L(dw)+
∫

∂γr

Pr (z, w) f (w)|dw|.

We recall some properties of the Green kernel: If � � C has a smooth boundary
and G�(x, y)is the corresponding Green kernel, then

G� ≤ 0, (11.2)

G� is C∞ for x �= y, (11.3)

G�(x, y) = 1+ o(1)

2π
ln |x − y| for x ≈ y, x, y �∈ ∂�, x − y → 0. (11.4)

G�

( x

r
,

y

r

)
= Gr�(x, y), x, y ∈ r�. (11.5)

� = 1
r γr is a very long domain of approximately constant width and (11.4) is

valid uniformly for x, y ∈ �, |x − y| ≤ O(1), dist (x, ∂�), dist (y, ∂�) ≥ 1/O(1).
Moreover,

|Gr−1γr
(x, y)| ≤ C0e−|x−y|/C0 , x, y ∈ r−1γr , |x − y| ≥ 1

O(1) . (11.6)

To recover these well-known facts, notice that r−1γr is given by −1 < ϕ(x) < 1,
where ϕ(x) is the suitably signed distance from r−1∂� to x , so that |∇ϕ(x)| = 1,
|∇2ϕ(x)| = O(r). If u ∈ H1

0 (r
−1γr ), we have by integration by parts,

∫

r−1γr

((∇ϕ)2 + ϕ(x)�ϕ)|u|2dx = −2Re
∫

r−1γr

ϕ(∇ϕ · ∇u)udx,

implying

∫
(1−O(r))|u|2dx ≤ (2+O(r))‖∇u‖‖u‖,

‖u‖ ≤ (2+O(r))‖∇u‖,
−� ≥ (1

4
−O(r)),

where � = �r−1γr
is the Dirichlet Laplacian on r−1γr . From this estimate we can

develop exponential decay estimates for−�, since we still have a positive lower bound
for Re (eψ(−�)e−ψ) = −�−|∇ψ |2, if |∇ψ(x)|2 ≤ 1/5. We drop the ensuing routine
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arguments. In view of (11.5), (11.6) we get

|Gr (x, y)| ≤ C0e
− 1

C0r |x−y|
, x, y ∈ γr , |x − y| ≥ r/O(1), (11.7)

|Gr (x, y)| = 1+ o(1)

2π
ln
∣
∣
∣
x

r
− y

r

∣
∣
∣ , for |x − y| ≤ r/C0, (11.8)

dist (x, ∂�), dist (y, ∂�) ≥ r/C0,

∣
∣
∣
x

r
− y

r

∣
∣
∣→ 0.

Let ϕ be a continuous subharmonic function defined in some neighborhood of γr .
Let

µ = µϕ = �ϕ (11.9)

be the corresponding locally finite positive measure.
Let u be a holomorphic function defined in a neighborhood of γr . We assume that

h ln |u(z)| ≤ ϕ(z), z ∈ γr . (11.10)

Lemma 11.1 Let C1,C2 > 1 and let z0 ∈ γ(1− 1
C1
)r be a point where

h ln |u(z0)| ≥ ϕ(z0)− ε, 0 < ε � 1. (11.11)

Then the number of zeros of u in D(z0,C2r) ∩ γ(1− 1
C2
)r is

≤ C3

h

⎛

⎝ε +
∫

γr

−Gr (z0, w)µ(dw)

⎞

⎠, (11.12)

where C3 is independent of ε, h.

Proof Writing ϕ as a uniform limit of an increasing sequence of smooth functions,
we may assume that ϕ ∈ C∞. Let

nu(dz) =
∑

2πδ(z − z j ),

where z j are the zeros of u counted with their multiplicity. We may assume that no z j

are situated on ∂γr . Then, since � ln |u| = nu ,

h ln |u(z)| =
∫

γr

Gr (z, w)hnu(dw)+
∫

∂γr

Pr (z, w)h ln |u(w)||dw|

≤
∫

γr

Gr (z, w)hnu(dw)+
∫

∂γr

Pr (z, w)ϕ(w)|dw|

=
∫

γr

Gr (z, w)hnu(dw)+ ϕ(z)−
∫

γr

Gr (z, w)µ(dw). (11.13)
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Putting z = z0 in (11.13) and using (11.11), we get

∫

γr

−Gr (z0, w)hnu(dw) ≤ ε +
∫

γr

−Gr (z0, w)µ(dw).

Now

−Gr (z0, w) ≥ 1

2πC3
, C3 > 0,

in D(z0,C2r) ∩ γ(1− 1
C2
)r , and we get (11.12). ��

Notice that this argument is basically the same as when using Jensen’s formula to
estimate the number of zeros of a holomorphic function in a disc. We could assume
the bound h ln |u(z)| ≤ ϕ(z), in D(z0, C̃2r) ∩ γ(1− 1

C̃2
)r =: �̃r for some C̃2 > C2.

Then we can replace the bound (11.12) by

C3

h

⎛

⎜
⎝ε +

∫

�̃r

−G�̃r
(z0, w)µ(dw)

⎞

⎟
⎠,

which is sharper, since −G�1 ≤ −G�2 , when �1 ⊂ �2.
Now we sharpen the assumption (11.11) and assume

h ln |u(z j )| ≥ ϕ(z j )− ε, (11.14)

where z1, . . . , zN ∈ γ(1− 1
C1
)r are points such that

γr ⊂
N⋃

1

D(z j ,C1r), N � 1

r
. (11.15)

We may assume that z1, z2, . . . , zN are arranged in such a way that

|z j − zk | � rdist ( j, k), j �= k, (11.16)

where j, k are viewed as elements of Z/NZ and we take the natural distance on that
set. We will also assume for a while that ϕ is smooth.

According to Lemma 11.1, we have

#(u−1(0) ∩ (D(z j ,C1r) ∩ γ(1− 1
C1
)r )) ≤

C3

h

⎛

⎝ε +
∫

γr

−Gr (z j , w)µ(dw)

⎞

⎠ .

(11.17)
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We introduce

r̃ =
(

1− 1

C1

)
r (11.18)

and consider the harmonic functions on γ r̃ ,

�(z) = h(ln |u(z)| +
∫

γ r̃

−Gr̃ (z, w)nu(dw)), (11.19)

�(z) = ϕ(z)+
∫

γ r̃

−Gr̃ (z, w)µ(dw). (11.20)

Then �(z) ≥ ϕ(z) with equality on ∂γ r̃ . Similarly, �(z) ≥ h ln |u(z)| with equality
on ∂γ r̃ .

Consider the harmonic function

H(z) = �(z)−�(z), z ∈ γ r̃ . (11.21)

Then on ∂γ r̃ , we have by (11.10) that

H(z) = ϕ(z)− h ln |u(z)| ≥ 0,

so by the maximum principle,

H(z) ≥ 0, on γ r̃ . (11.22)

By (11.14), we have

H(z j ) = �(z j )−�(z j )

= ϕ(z j )− h ln |u(z j )| +
∫

γ r̃

−Gr̃ (z j , w)µ(dw)−
∫

γ r̃

−Gr̃ (z j , w)hnu(dw)

≤ ε +
∫

γ r̃

−Gr̃ (z j , w)µ(dw). (11.23)

Harnack’s inequality implies that

H(z) ≤ O(1)
(
ε +

∫
−Gr̃ (z j , w)µ(dw)

)
on D(z j ,C1r) ∩ γ(1− 1

C1
)̃r . (11.24)

Now assume that u extends to a holomorphic function in a neighborhood of �∪γr .
We then would like to evaluate the number of zeros of u in �. Using (11.17), we first
have

#(u−1(0) ∩ γ r̃ ) ≤ C

h

⎛

⎝Nε +
N∑

j=1

∫

γr

(−Gr (z j , w))µ(dw)

⎞

⎠. (11.25)
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Let χ ∈ C∞0 (� ∪ γ(1− 1
C1
)̃r ; [0, 1]) be equal to 1 on �. Of course χ will have to

depend on r but we may assume that for all k ∈ N, and as r → 0,

∇kχ = O(r−k). (11.26)

We are interested in

∫
χ(z)hnu(dz) =

∫

γ̂r

h ln |u(z)|�χ(z)L(dz), r̂ =
(

1− 1

C1

)
r̃ . (11.27)

Here we have on γ r̃

h ln |u(z)| = �(z)−
∫

γ r̃

−Gr̃ (z, w)hnu(dw)

= �(z)− H(z)−
∫

γ r̃

−Gr̃ (z, w)hnu(dw)

= ϕ(z)+
∫

γ r̃

−Gr̃ (z, w)µ(dw)− H(z)−
∫

γ r̃

−Gr̃ (z, w)hnu(dw)

= ϕ(z)+ R(z), (11.28)

where the last equality defines R(z).
Inserting this in (11.27), we get

∫
χ(z)hnu(dz) =

∫
χ(z)µ(dz)+

∫
R(z)�χ(z)L(dz). (11.29)

(Here we also used some extension of ϕ to � with µ = �ϕ.) The task is now to
estimate R(z) and the corresponding integral in (11.29). Put

M j = µ(� j ), � j = D(z j ,C1r) ∩ γr . (11.30)

Using the exponential decay property (11.7) (equally valid for Gr̃ ) we get for z ∈
� j ∩ γ r̃ , dist (z, ∂(D(z j ,C1r) ∩ γ r̃ )) ≥ r/O(1):

∫

γ r̃

−Gr̃ (z, w)µ(dw) ≤
∫

� j∩γ r̃

−Gr̃ (z, w)µ(dw)+O(1)
∑

k �= j

Mke
− 1

C0
| j−k|

.

(11.31)
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Similarly from (11.24), we get

H(z) ≤ O(1)

⎛

⎜
⎝ε +

∫

� j∩γ r̃

−Gr̃ (z j , w)µ(dw)+
∑

k �= j

e
− 1

C0
| j−k|

Mk

⎞

⎟
⎠, (11.32)

for z ∈ � j ∩ γ r̃ .
This gives the following estimate on the contribution from the first two terms in

R(z) to the last integral in (11.29):

∫

γ r̃

⎛

⎝
∫

γ r̃

−Gr̃ (z, w)µ(dw)− H(z)

⎞

⎠�χ(z)L(dz)

= O(1)

⎛

⎜
⎝Nε +

∑

j

⎛

⎜
⎝ sup

z∈� j∩γ̂r

∫

� j∩γ r̃

−Gr̃ (z, w)µ(dw)+
∑

k �= j

e
− 1

C0
| j−k|

Mk

⎞

⎟
⎠

⎞

⎟
⎠

= O(1)

⎛

⎜
⎝Nε +

∑

j

sup
z∈� j∩γ̂r

∫

� j∩γ r̃

−Gr̃ (z, w)µ(dw)+ µ(γr )

⎞

⎟
⎠ . (11.33)

The contribution from the last term in R(z) (in (11.28)) to the last integral in (11.29)
is ∫

z∈γ̂r

∫

w∈γ r̃

Gr̃ (z, w)hnu(dw)�χ(z)L(dz). (11.34)

Here

∫

z∈γ̂r

Gr̃ (z, w)(�χ)(z)L(dz) =
∫

z̃∈̃r−1γ̂r

Gr̃ (̃r z̃, r̃w̃)�zχ(̃r z̃)̃r2L(dz̃)

=
∫

Gr̃−1γ r̃
(̃z, w̃)�z̃(χ (̃r z̃))L(dz) = O(1),

so the expression (11.34) is

O(h)#(u−1(0) ∩ γ r̃ ) = O(1)
⎛

⎝ε
r
+

N∑

j=1

∫

γr

(−Gr (z j , w))µ(dw)

⎞

⎠

= O(1)

⎛

⎜
⎝
ε

r
+

N∑

j=1

∫

� j

−Gr (z j , w)µ(dw)+ µ(γr )

⎞

⎟
⎠ . (11.35)
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Using all this in (11.29), we get

∫
χ(z)hnu(dz)

=
∫
χ(z)µ(dz)+O(1)

⎛

⎜
⎝
ε

r
+
∑

j

⎛

⎜
⎝ sup

z∈� j∩γ̂r

∫

� j∩γ r̃

−Gr̃ (z, w)µ(dw)

+
∫

� j

−Gr (z j , w)µ(dw)

⎞

⎟
⎠ + µ(γr )

⎞

⎟
⎠ . (11.36)

We replace the smoothness assumption on ϕ by the assumption that ϕ is continuous
near � and keep (11.14). Then by regularization, we still get (11.36).

In order to simplify this further, we introduce a weak regularity assumption on the
measureµ. Assume first thatµ = �ϕ is defined in a fixed r -independent neighborhood
of ∂�. For D(z, t) contained in that neighborhood we assume that as t → 0,

Wz(t) := µ(D(z, t)) = O(tρ0), (11.37)

for some 0 < ρ0 ≤ 2.

Remark 11.2 It is easy to see that this assumption on�ϕ implies that ϕ is continuous
near �. In the case ρ0 > 1, we notice that as r → 0,

µ(γr ) = O(rρ0−1). (11.38)

(This is true also for ρ0 ≤ 1 but then of no interest.)

Lemma 11.3 Assume (11.37) for some ρ0 ∈]0, 2]. Then for every domain � ⊂ γr

and every z ∈ � ∩ γ(1− 1
C )r

, we have for 0 < t ≤ r/2:

∫

�

−Gr (z, w)µ(dw) ≤ O(1)tρ0 ln
r

t
+O(1) ln

(r

t

)
µ(�). (11.39)

Proof Write

∫

�

−Gr (z, w)µ(dw) =
∫

D(z,t)∩�
−Gr (z, w)µ(dw)+

∫

�\D(z,t)
−Gr (z, w)µ(dw).
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For |z − w| ≥ t , we have −Gr (z, w) ≤ O(1) ln r
t (cf (11.5)), so the last integral is

O(1) ln( r
t )µ(�). For w ∈ D(z, t) ∩�, we have

−Gr (z, w) ≤ O(1) ln
r

|z − w| ,

hence

∫

D(z,t)∩�
−Gr (z, w)µ(dw) ≤ O(1)

t∫

0

ln
r

s
dWz(s)

= O(1)
⎛

⎝
[
ln
(r

s

)
Wz(s)

]t

0
+

t∫

0

1

s
Wz(s)ds

⎞

⎠

= O(1)tρ0 ln
r

t
.

��

Corollary 11.4 Under the same assumptions, we have for every N ∈ N:

∫

�

−Gr (z, w)µ(dw) ≤ ON (1)

(
r N + ln

(
1

r

)
µ(�)

)
. (11.40)

Proof We just choose t = r M , 0 < M ∈ N and use that ln r−M = M ln r−1 ��

If we assume (11.38), then the corollary allows us to simplify (11.36) to

∫
χ(z)hnu(dz) =

∫
χ(z)µ(dz)+O(1)ε

r
+ON

(
r N + ln

(
1

r

)
µ(γr )

)
.

(11.41)

Summing up the discussion, we have proved

Proposition 11.5 Let � � C have smooth boundary and let ϕ be a continuous sub-
harmonic function defined near �. Then we have the following result, valid uniformly
for 0 < ε � 1, 0 < r � 1, 0 < h � 1: Let u be a holomorphic function, defined in
� + D(0, r) with h ln |u(z)| ≤ ϕ(z), z ∈ ∂� + D(0, r) and assume that there exist
z1, . . . , zN ∈ ∂� + D(0, r

2 ) such that

∂� + D(0, r) ⊂
N⋃

1

D(z j , 2r), N � 1

r
, h ln |u(z j )| ≥ ϕ(z j )− ε. (11.42)
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Then with � j = D(z j , 2r) ∩ (∂� + D(0, r)), we have

|#(u−1(0) ∩ �)− 1

2πh

∫

�

�ϕL(dz)|

≤ O(1)
h

⎛

⎜
⎝
ε

r
+µ(γr )+

∑

j

⎛

⎜
⎝ sup

z∈� j∩(∂�+D(0, r
4 ))

∫

� j∩(∂�+D(0, r
2 ))

−G r
2
(z, w)µ(dw)

+
∫

� j

−Gr (z j , w)µ(dw)

⎞

⎟
⎠

⎞

⎟
⎠ . (11.43)

If we assume also that (11.37) holds for some 0 < ρ0 ≤ 2, then we have for every
N > 0:

|#(u−1(0) ∩ �)− 1

2πh

∫

�

�ϕL(dz)|

≤ O(1)
h

(
ε

r
+ON (1)

(
r N + ln

(
1

r

)
µ(∂� + D(0, r))

))
. (11.44)

Example 11.6 If ϕ is of class C2 near the boundary, then (11.37) is satisfied with
ρ0 = 2 and µ(∂� + D(0, r)) = O(r). We choose N = 1 so that the right hand side
of (11.44) becomes

O(1)
h

(
ε

r
+ r ln

1

r

)
.

If we choose r = √ε, we get

∣
∣
∣
∣
∣
∣
#(u−1(0) ∩ �)− 1

2πh

∫

�

�ϕ(z)L(dz)

∣
∣
∣
∣
∣
∣
≤ O(1)

h

√
ε ln

1

ε
.

In this case we loose a factor ln ε−1 compared to Proposition 6.1 in [7].

12 Spectral asymptotics in a more general case

Let � � �̃ be open with C∞ boundary. For z in a neighborhood of ∂� and 0 < s, t �
1, we put

Vz(t) = Vol {ρ ∈ R2n; |p(ρ)− z|2 ≤ t}, Wz(s) = Vz(s
2). (12.1)
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Recall that in any bounded domain in phase space, the symbols |pz(ρ)|2 = qz(ρ)

and |p(ρ)−z|2 are uniformly of the same order of magnitude. If we replace |p(ρ)−z|2
by qz(ρ) in (12.1), we get a new function V new

z (t) such that

Vz

(
t

C

)
≤ V new

z (t) ≤ Vz(Ct). (12.2)

For the purposes of this paper, we can therefore identify the two functions and resort
to the second definition whenever we find it convenient. Also, when z is fixed, we will
sometimes write V (t) instead of Vz(t).

Our weak assumption, replacing (10.1), is

∃κ ∈]0, 1], such that Vz(t) = O(tκ), uniformly for z ∈ neigh (∂�), 0 ≤ t � 1.
(12.3)

Example 12.1 When (10.1) holds for z ∈ neigh (∂�), it is clear that (12.3) is fulfilled
with κ = 1 and in particular this is the case when {p, p} �= 0 on p−1(∂�). If
z ∈ ∂� \�∞ then (10.1) cannot hold, so if ∂� ∩ ∂� �= 0, the best we can hope
for is that

∀z ∈ p−1(∂�), either {p, p} �= 0 or {p, {p, p}} �= 0. (12.4)

This is the situation considered in the 1-dimensional case in [8] where deterministic
upper bounds on the density of the eigenvalues were obtained. Following some argu-
ments there, we shall see that if (12.4) holds, then (12.3) holds with κ = 3

4 . In fact,
if we assume (12.4) and if p(ρ0) = z0 ∈ ∂�, we estimate the contribution to Wz0(τ )

from a neighborhood of ρ0 in the following way:
If |{p, p}(ρ0)| ≥ 1/C , then dRe p, d Im p are independent near ρ0 and the contri-

bution is O(τ 2). If |{p, p}(ρ0)| is very small, we know that |{p, {p, p}}(ρ0)| ≥ 1/C
and in order to fix the ideas we assume that H2

Re p Im p(ρ0) ≥ 1/C . This means that

H := {ρ; {Re p, Im p}(ρ) = 0}

is a smooth hypersurface in a neighborhood of ρ0 and that HRe p is transversal to H
there. A general point in a neighborhood of ρ0 can therefore we written

ρ = exp (t HRe p)(ρ
′), t ∈ neigh (0,R), ρ′ ∈ H.

Then Re p(ρ)=Re p(ρ′), Im p(ρ) = Im p(ρ′)+t2g(t, ρ), g > 1/C . Write Re p=s
so that a general point ρ′ in H is parametrized by (s, ρ′′) with ρ′′ ∈ neigh (0,R2n−2).

Write z0 = x0 + iy0. For every fixed ρ′′, if |p(ρ)− z0| ≤ τ then |s − x0| ≤ τ and
| Im p(ρ′)+ t2g(t, s, ρ′′)− y0| ≤ τ . Then we are confined to an interval of length 2τ
in the s-variable and, for every such fixed s, to an interval of length O(τ 1/2) in the
t-variable, or to the union of two such intervals. By Fubini’s theorem, the contribution
to the volume is therefore O(τ 3/2). Hence Wz0(τ ) = O(τ 3/2), so Vz0(t) = O(t3/4),
as claimed.

123



236 M. Hager, J. Sjöstrand

In Sect. 10 we introduced the distribution I (z) in (10.2) and showed that I (z) is
subharmonic, satisfying (10.3). This implies that

∫

D(z,s)

�(I (w))L(dw) = 2πWz(s), (12.5)

and (12.3) is equivalent to

∫

D(z,t)

�(I (w))L(dw) = O(tρ0), uniformly for z ∈ neigh (∂�), 0 ≤ t � 1,

(12.6)

with ρ0 = 2κ ∈]0, 2]. This is precisely the condition (11.37) for I = ϕ, µ = �I .
In view of (12.2), the assumption (12.3) is also equivalent to requiring (4.21) to hold
uniformly for z ∈ neigh (∂�) with q = qz = |( p̃ − z)−1(p − z)|2 .

Consider the holomorphic function

Fδ(z; h) = det Pδ(z), z ∈ �̃, (12.7)

where we recall that Pδ(z) = (P̃ − z)−1(Pδ − z). Theorem 9.3 and its proof give:

Proposition 12.2 Let δ satisfy (9.17). Then there exist constants C,C0, C̃ > 0 such
that

(a) With probability ≥ 1− Ce−C0h−2n
, we have

ln |Fδ(z; h)| ≤ 1

(2πh)n

(
I (z)+ Chκ ln

1

h

)
, (12.8)

for all z in some fixed neighborhood of ∂�.
(b) For every z ∈ neigh (∂�), ε ≥ 0, we have

ln |Fδ(z; h)| ≥ 1

(2πh)n

(
I (z)− Chκ

(
ln

1

h
+ ln

1

δ

)
− ε

)
, (12.9)

with probability ≥ 1− Ce−ε(2πh)−n − C̃e−C0h−2n
.

For the upper bound (12.8), we recall that the upper bound (8.18) was obtained
when ‖Q‖HS satisfies the estimate (8.9) and this event is independent of z.

We can now apply Proposition 11.5, with ϕ equal to I +Chκ ln 1
h and with h there

replaced by (2πh)n , with ε in (11.14) replaced by

O(1)
(

hκ ln
1

h
+ hκ ln

1

δ
+ ε

)
,
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and with ε in (12.9) large enough, so that ε is the dominant term in the last expression.
In other words, we take

ε � hκ ln
1

δ
, (12.10)

using also that ln δ−1 ≥ ln h−1.
For 0 < r � 1, choose z1, . . . , zN and N as in the first part of (11.42). Then in

view of (b) in the proposition, the last estimate in (11.42) (with h there replaced by
(2πh)n) holds for all j with a probability

≥ 1− C

r
e−

ε
2 (2πh)−n − C̃e−C0h−2n

.

The term

1

2πh

∫

�

�ϕL(dz)

in (11.44) becomes after the substitutions h �→ (2πh)n , ϕ �→ I :

1

(2πh)n

∫

�

�I (z)

2π
L(dz) = 1

(2πh)n
Vol (p−1(�)),

where we also used (10.3).

Theorem 12.3 Let δ satisfy (9.17). Assume (12.3), with κ ∈]0, 1]. Let N (P+δQω, �)

be the number of eigenvalues of P + δQω in �. Then for every fixed K > 0 and for
0 < r � 1:

∣
∣
∣
∣N (P + δQω, �)− 1

(2πh)n

∫∫

p−1(�)

dxdξ

∣
∣
∣
∣

≤ C

hn

(
ε

r
+ CK

(
r K + ln

(
1

r

)∫∫

p−1(∂�+D(0,r))
dxdξ

))
, 0 < r � 1,

(12.11)

with probability

≥ 1− C

r
e−

ε
2 (2πh)−n

(12.12)

provided that

hκ ln
1

δ
� ε � 1, (12.13)

or equivalently,

e−
ε

Chκ ≤ δ, C � 1, ε � 1,

implying that ε ≥ C̃hκ ln 1
h , for some C̃ > 0.
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In (12.11) we want the right hand side to be much smaller than h−n so it is natural
to assume that

ln

(
1

r

)∫∫

p−1(∂�+D(0,r))
dxdξ = O(rα0), r → 0, (12.14)

for some α0 > 0. When κ ∈] 1
2 , 1], we automatically have (12.14) with any α0 ∈

]0, 2κ − 1[. In the right hand side of (12.11), we first choose N ≥ α0 and we choose

r = ε1/(1+α0), so that ε/r , rα0 = O(ε
α0

1+α0 ). Then the right hand side of (12.11)
becomes

≤ C

hn
ε

α0
1+α0 .

So, if 1 � ε ≥ C̃hκ ln 1
h with C̃ sufficiently large, and δ is as in the theorem, then

∣
∣
∣
∣
∣
∣
∣
N (P + δQω, �)− 1

(2πh)n

∫ ∫

p−1(�)

dxdξ

∣
∣
∣
∣
∣
∣
∣
≤ C

hn
ε

α0
1+α0 , (12.15)

with probability

≥ 1− C

ε
1

1+α0

e−
ε
2 (2πh)−n

. (12.16)

This expression is very close to 1 except possibly in the case κ = 1, n = 1. In that
case, we replace κ by a strictly smaller value and choose δ, ε as above.

Theorem 12.4 Let G be a family of domains � as in Theorem 12.3 satifying the
assumptions there uniformly (cf Theorem 10.3) and in particular we assume (12.3)
uniformly for all z in a neighborhood of the union of all the ∂�. Then we have (12.11)
with probability

≥ 1− C

r2 e−
ε

(2πh)n

provided that

hκ ln
1

δ
� ε � 1.

Appendix A: Gaussian random variables in Hilbert spaces

In this appendix we review some generalities about Gaussian random variables in
Hilbert spaces that seem to be quite standard to probabilists.

Let α1, α2, . . . be a sequence of independent N (0, 1)-laws, and let H be a complex
separable Hilbert space.
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Proposition A.1 Let v1, v2, . . . ∈ H be a sequence of vectors such that
∑∞

1 ‖v j‖2 <

∞, then if the sequence n1 < n2 < · · · tends to∞ sufficiently fast, we have that

lim
k→∞

nk∑

1

α j (ω)v j exists almost surely (a.s.).

Let S(ω) denote the almost sure limit. If ñk is another increasing sequence tending to
infinity, such that the limit

lim
k→∞

ñk∑

1

α j (ω)v j =: S̃(ω)

exists almost surely, then S̃(ω) = S(ω) a.s.

Proof Let (�,P) be the underlying probability space. Then f j := α j (ω)v j can be
viewed as elements of L2(�,H) of norm ‖v j‖. They are mutually orthogonal since
the α j are independent. We thus have an orthogonal sum

∑∞
1 α jv j which converges

in L2(�;H) and as usual, using the Chebyschev inequality, we deduce the existence
of a sequence of partial sums that converges a.s. ��

Let e1, e2, . . . and f1, f2, . . . be two orthonormal bases in H. Let α1(ω), α2(ω), . . .

be independent complex N (0, 1)-laws, and consider the formal vector
∑∞

1 α j (ω)e j .
Almost surely, {α j (ω)}∞1 is not in �2 so our vector is not in H. However, if v ∈ H,
then a.s., we can define the scalar product

( ∞∑

1

α j (ω)e j |v
)

=
∞∑

1

α j (ω)(e j |v) (A.1)

as in Proposition A.1, since {(e j |v)}∞1 ∈ �2.
We now look for random variables β1(ω), β2(ω), . . . such that

∞∑

1

αk(ω)ek =
∞∑

1

β j (ω) f j , (A.2)

in the sense that the formal scalar products with f1, f2, . . . are equal. This leads to the
definition

β j (ω) =
∞∑

k=1

(ek | f j )αk(ω), (A.3)

which is well-defined as in Proposition A.1, since k �→ (ek | f j ) is in �2. For every
finite N , the variable

N∑

k=1

(ek | f j )αk(ω) (A.4)
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has the density

∗N
k=1

1

π |(ek | f j )|2 e−|α|2/|(ek | f j )|2 ,

where ∗ indicates convolution products. Hence the characteristic function (i.e. the
Fourier transform) is

exp

(

−1

4

(
N∑

k=1

|(ek | f j )|2
)

|ξ |2
)

,

so (A.4) is a normal distribution N (0,
∑N

k=1 |(ek | f j )|2). The unitarity of the matrix
((ek | f j )) then implies that β j (ω) is a N (0, 1)-law.

Proposition A.2 β j are independent N (0, 1)-laws.

Proof We have already seen thatβ j are N (0, 1)-laws. To see that they are independent,
we compute (using Proposition A.1) the joint distribution of β1, β2, . . . , βN . Write

β(N ) =

⎛

⎜
⎜
⎝

β1
β2
· · ·
βN

⎞

⎟
⎟
⎠ =

∞∑

1

αkνk,

where

νk =

⎛

⎜
⎜
⎝

σ1,k
σ2,k
. . .

σN ,k

⎞

⎟
⎟
⎠ , σ j,k = (ek | f j ).

αk(ω)νk is a random variable with values in CN and with the characteristic function

χαkνk (ξ) =
∫

e−iRe α(νk |ξ)e−|α|2 L(dα)

π

= exp

(
−1

4
|(νk |ξ)|2

)

= exp

(

−1

4

N∑

�=1

N∑

m=1

σ�,kσm,kξ�ξm

)

.

It follows that

χ∑∞
1 αkνk

(ξ) = exp

(

−1

4

N∑

�=1

N∑

m=1

(σ�|σm)ξ�ξm

)

,
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where σ j = (σ j,k)
∞
k=1 ∈ �2. But the σ j form an orthonormal system, so finally,

χ∑∞
1 αkνk

(ξ) = exp − 1

4
|ξ |2.

This means that the joint distribution of β1, . . . , βN is

1

πN
e−|β|2 LCN (dβ),

and that β1, . . . , βN are independent. ��
The random variable (A.1) is an N (0, ‖v‖2)-law.
If v ∈ H is any finite linear combination of the f j , we know by construction that

( ∞∑

1

α j (ω)e j |v
)
=
( ∞∑

1

β j (ω) f j |v
)
, a.s.

If v ∈ H is arbitrary, we write v = vε + rε , where vε is a finite linear combination of
the f j and ‖rε‖ < ε. We conclude that almost surely,

( ∞∑

1

α j (ω)e j |v
)
=
( ∞∑

1

β j (ω) f j |v
)
+
( ∞∑

1

α j (ω)e j |rε
)
−
( ∞∑

1

β j (ω) f j |rε
)
.

Here the last two terms are N (0, ‖rε‖2)-laws and hence as small as we like with a
probability as close as we like to 1, when ε is small eneough. We conclude that

( ∞∑

1

α j (ω)e j |v
)
=
( ∞∑

1

β j (ω) f j |v
)

a.s. (A.5)

Proposition A.3 Let H, H̃ be two separable Hilbert spaces and let T : H → H̃ be a
Hilbert–Schmidt operator. Let α j (ω)e j , β j (ω) f j be as above. Then T (

∑∞
1 α j (ω)e j )

is well defined a.s. and equal to T (
∑∞

1 β j (ω) f j ) a.s.

Proof We define T (
∑∞

1 α j (ω)e j ) as
∑∞

1 α j (ω)T e j in the sense of Proposition A.1,
using that

∑
‖T e j‖2

H̃ = ‖T ‖2
HS <∞.

Notice also that for every v ∈ H̃ we have a.s.

(
T
( ∞∑

1

α j (ω)e j

)
|v
)
=

∞∑

1

α j (ω)(T e j |v) a.s.

=
∞∑

1

α j (ω)(e j |T ∗v).
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The same considerations apply to T (
∑∞

1 β j (ω) f j ) so in view of (A.5), for every
v ∈ H̃ we have

(
T
( ∞∑

1

α j (ω)e j

)
|v
)
=
(

T
( ∞∑

1

β j (ω) f j

)
|v
)

a.s.

We get the same conclusion a.s. simultaneously for all v in any countable set, and
letting v = g1, g2, . . . ., where g j form and orthonormal basis in H̃, we conclude that

T

( ∞∑

1

α j (ω)e j

)

= T

( ∞∑

1

β j (ω) f j

)

a.s.

��

Now let E,F ,G,H be separable Hilbert spaces and let T : E → F , S : G → H be
Hilbert–Schmidt operators. If f ∈ F , g ∈ G, we also denote by g, f the corresponding
multiplication operators C � z �→ zg, z f ∈ G,F , so that f ∗u = (u| f ). Then
g f ∗u = (u| f )g defines an operator : F → G which has the Hilbert–Schmidt norm
‖g‖‖ f ‖. Let f j , j = 1, 2, . . ., g j , j = 1, 2, . . . be orthonormal bases in F , G.
Then {g j f ∗k }∞j,k=1 is an orthonormal basis for the space HS(F ,G)of Hilbert–Schmidt
operators F → G. Now,

Sg j f ∗k T = (Sg j )(T
∗ fk)

∗,

and

‖Sg j f ∗k T ‖2
HS = ‖Sg j‖2‖T ∗ fk‖2.

It follows that

∑

j,k

‖Sg j f ∗k T ‖2
HS = ‖S‖2

HS‖T ‖2
HS,

and we conclude that

HS(F ,G) � A �→ S AT ∈ HS(E,H)

is a Hilbert–Schmidt operator. The earlier discussion can therefore be applied:

Proposition A.4 Let α j,k(ω) be independent N (0, 1) laws. Then

S
∑

j,k

α j,k(ω)g j f ∗k T =
∑

j,k

α j,k(ω)Sg j f ∗k T
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is almost surely defined as a Hilbert–Schmidt operator. Moreover, if g̃ j , f̃k are new
orthonormal bases in G, F , then there exists a new set of independent N (0, 1)-laws
β j,k(ω) such that

S ◦
⎛

⎝
∑

j,k

α j,k(ω)g j f ∗k

⎞

⎠ ◦ T = S ◦
⎛

⎝
∑

j,k

β j,k(ω)g̃ j f̃ ∗k

⎞

⎠ ◦ T a.s. (A.6)
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