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Abstract Let X → P
n be an irreducible holomorphic symplectic manifold of

dimension 2n fibred over P
n . Matsushita proved that the generic fibre is a holomorphic

Lagrangian abelian variety. In this article we study the discriminant locus ∆ ⊂ P
n

parametrizing singular fibres. Our main result is a formula for the degree of ∆, leading
to bounds on the degree when X is a fourfold.

Mathematics Subject Classification (2000) 53C26 · 14D06

1 Introduction

Due primarily to the work of Matsushita [14,15], much is now known about the
structure of fibrations on irreducible holomorphic symplectic manifolds. In particular,
the generic fibre must be a holomorphic Lagrangian complex torus and it is expected
that the base must be projective space. In fact, 10 years earlier Mukai [17] already
posed the question: when is a fibration X → P

n by n-dimensional complex tori a
holomorphic symplectic manifold? Our goal in this article is to find restrictions on the
degree of the discriminant locus ∆ ⊂ P

n in the case that X is holomorphic symplectic.
To begin with, we assume the fibration is the relative Jacobian of a family of curves,

where the curves degenerate in a controlled manner over a generic point of ∆ (they
acquire a single node). We prove that the degree of ∆ is given by

deg∆ = 24
(

n!
√

Â[X ]
) 1

n
,
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202 J. Sawon

where
√

Â[X ] the characteristic number of X coming from the square root of the
Â-polynomial. This same characteristic number arose in earlier work of Hitchin and
Sawon [10], and it appears to play a fundamental rôle in holomorphic symplectic
geometry. The important point in this case is that we have a model for the singular
fibre Xt above a generic point t ∈ ∆. Indeed the above formula for deg∆ readily
generalizes to projective X fibred by principally polarized abelian varieties, provided
the singular fibre Xt for generic t ∈ ∆ conforms to this same model (Theorem 1). We
then generalize our formula to fibrations by non-principally polarized abelian varieties,
whose singular fibres conform to slightly different models (Theorem 2). All of these
models come from toroidal compactifications of moduli spaces of abelian varieties,
due to Igusa [13] and Mumford [19] (see also [1]). In addition to constructing these
compactifications, Mumford [18] described degenerations of abelian varieties which
sit above the boundary. Our assumption is that for generic t ∈ ∆, the singular fibre Xt

is a (semi-stable) degeneration of an abelian variety which occurs over a generic point
in a codimension one component of the boundary. We will of course give an explicit
description of how these degenerate abelian varieties look.

It is worth noting that in four dimensions Matsushita [16] has classified all possible
singular fibres that can occur over a generic point of ∆, and given local models. Some
of these look like products of smooth and singular elliptic curves, up to étale cover,
and occur in examples like the Hilbert scheme Hilb2S of two points on an elliptic K3
surface S → P

1 (Example 3.5 in [23]). Excluding such Lagrangian fibrations, where
the generic fibre is a product of elliptic curves, the singular fibres considered in this
article are the only ones known to occur in global examples. It would be good to extend
our results to allow any of the singular fibres on Matsushita’s list, though the existence
of non-reduced components creates some difficulties.

In [9] Guan proved that the characteristic numbers of a holomorphic symplectic
fourfold are bounded; so when X is a fourfold our formulae give bounds on the degree
of ∆. We briefly indicate why such bounds might be useful. Suppose X → P

2 is a
fibration by abelian surfaces with polarization of type (1, d). This leads to a morphism

φ : P
2\∆ −→ A◦(1, d),

where A◦(1, d) is the moduli space of abelian surfaces with this polarization. If the
singular fibres Xt for generic t ∈ ∆ are well-behaved, then this map can be extended
to a morphism between (partial) compactifications

φ∗ : P
2\∆sing −→ A◦∗(1, d).

The construction and properties of A◦∗(1, d) when d is prime are well-described in the
book by Hulek et al. [11]. The hope then is that the degree of ∆ can be used to control
the degree of the morphism φ∗, implying finiteness of the number of deformation
classes of holomorphic symplectic fourfolds which admit Lagrangian fibrations (cf. the
comments at the end of the introduction in [26]). Unfortunately it is not immediately
clear how to achieve this: the degree of ∆ only tells us about the intersection of
φ∗(P2\∆sing) with the boundary divisor in A◦∗(1, d), and the latter is not ample in
general.
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Discriminant locus of a Lagrangian fibration 203

Instead we end the article by pursuing a slightly different direction. We use Guan’s
Theorem to show that both d and the degree of ∆ are bounded (Theorem 4). Under
an additional hypothesis, concerning the polarization of X , we are able to show that
the pair consisting of d and the degree of ∆ can take only thirteen possible values
(Theorem 5). We expect that further work will eliminate many of these possibilities.

2 Good singular fibres

In this article a Lagrangian fibration shall mean an irreducible holomorphic symplectic
manifold X of dimension 2n which is fibred over projective space

f : X → P
n .

Let ∆ ⊂ P
n be the discriminant locus over which the Jacobian of f drops rank; it

is a divisor parametrizing singular fibres of f . The singular locus ∆sing of ∆ will be
codimension at least two in P

n , which will mean that it can effectively be ignored in
most of our calculations. We write ∆sm := ∆\∆sing for the smooth locus of ∆.

Matsushita [14,15] proved that the generic fibre of f must be a (holomorphic
Lagrangian) complex torus. We begin by describing an example where the fibres are
Jacobians of genus n curves.

Example 1 (The Beauville–Mukai integrable system [3]) Let S be a K3 surface which
contains a smooth genus n curve C , and assume for simplicity that the Picard group
of S is generated (over Z) by this curve. Then C moves in an n-dimensional linear
system |C | ∼= P

n and every curve in this family

C → P
n

is integral (reduced and irreducible). The relative compactified Jacobian X = J̄0(C/P
n)

is then a (smooth) Lagrangian fibration over P
n . Here the compactified Jacobian J̄0Ct

of an integral curve Ct is defined to be the moduli space of rank-one torsion-free
sheaves of Euler characteristic zero, i.e., degree n − 1 (see [6]).

There are two features of this fibration to which we wish to draw attention. Firstly,
each smooth fibre contains a canonical theta divisor Θ (the image of

Symn−1Ct → Picn−1Ct = J0Ct ,

which can be defined without reference to a basepoint). When t ∈ ∆sm, the curve
Ct acquires a single node. In this case too there is a (generalized) theta divisor Θ on
J̄0Ct (for example, see [7]). So we have a relative theta divisor over P

n\∆sing, whose
closure gives a divisor Y in X .

Secondly, consider the structure of a singular fibre J̄0Ct for t ∈ ∆sm. The following
description of the compactified Jacobian of a curve Ct with a single node is well known
(see [12]; Example (1) on page 83 of [20] describes the genus two case, which can
easily be generalized). Let C̃t be the normalization of Ct . The normalization of J̄0Ct

123



204 J. Sawon

is then a certain P
1-bundle over J0C̃t . The zero and infinity sections s0 and s∞ of the

P
1-bundle are canonically isomorphic to J0C̃t , but we instead identify them using a

certain translation in J0C̃t . Then J̄0Ct is given by taking the P
1-bundle and gluing s0

and s∞ using the above identification.

s∞

P
1 ↪→

�
�
�
�
���

�
�
�
�
���

J̄0Ct

s0 ↓
J0C̃t

Definition 1 Let X → P
n be a Lagrangian fibration by principally polarized abelian

varieties such that the generic singular fibre Xt for t ∈ ∆sm is obtained by gluing
together the zero and infinity sections of a P

1-bundle over a principally polarized
abelian variety of dimension n−1, just as in the example above. Then we say X → P

n

has good singular fibres.

Remark 1 As mentioned in the introduction, Igusa [13] and Mumford [19] constructed
compactifications of the moduli space of abelian varieties. Although this involves some
choices, in the principally polarized case there is just one boundary component of
codimension one. Moreover, Mumford [18] also gave a construction of degenerating
abelian varieties; a generic point of the boundary then corresponds to a degenerate
abelian variety as described above, i.e., a good singular fibre, which can therefore be
regarded as the generic semi-stable degeneration of a principally polarized abelian
variety.

For a Lagrangian fibration with good singular fibres we arrive at the following
picture of the local structure of the fibration f : X → P

n over ∆sm. In a neigh-
bourhood of the singular locus of a fibre over ∆sm there exist local coordinates
(z1, . . . , zn, w1, . . . , wn) on X such that f is given by

f : (z1, . . . , zn, w1, . . . , wn) 	→ (z1w1, z2, . . . , zn).

Here ∆sm is given by the vanishing of the first component, locally on P
n .

3 The Beauville–Bogomolov quadratic form

Let X be an irreducible holomorphic symplectic manifold of dimension 2n. There is a
quadratic form qX on H2(X, Z) known as the Beauville–Bogomolov quadratic form
(see [2]). This form generalizes the intersection pairing on a K3 surface. We begin
with some formulae involving qX , which may be found in Huybrechts’ notes in [8],
for instance.
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Discriminant locus of a Lagrangian fibration 205

The Fujiki formula states that

qX (α)n = const.
∫

X

α2n (1)

for all α ∈ H2(X, Z), where the constant depends only on X . Fujiki also proved that
if η ∈ H4 j (X, R) is of pure Hodge type (2 j, 2 j) on X and on all small deformations
of X then

qX (α)n− j = const.
∫

X

ηα2(n− j)

for all α ∈ H2(X, Z), where the constant depends only on η. In particular, the second
Chern class c2(TX ) satisfies the hypothesis and thus

qX (α)n−1 = const.
∫

X

c2α
2n−2. (2)

Writing out Eqs. (1) and (2) for α and β ∈ H2(X, Z), we can eliminate qX (α), qX (β),
and both constants to obtain

⎛
⎝

∫

X

α2n

⎞
⎠

n−1 ⎛
⎝

∫

X

c2β
2n−2

⎞
⎠

n

=
⎛
⎝

∫

X

β2n

⎞
⎠

n−1 ⎛
⎝

∫

X

c2α
2n−2

⎞
⎠

n

. (3)

This equation will eventually yield a formula for the degree of the discriminant locus.
We return to the situation of the previous section. Thus we have a Lagrangian

fibration f : X → P
n with a divisor Y which restricts to the theta divisor on each

smooth fibre and to the generalized theta divisor on a generic singular fibre (over ∆sm).
There is also a divisor L given by pulling back a hyperplane from P

n . We denote the
holomorphic symplectic form by σ . Substituting α = σ + t1σ̄ and β = Y + t2L into
Eq. (3), and then comparing coefficients of (t1t2)n(n−1) gives

⎛
⎝

∫

X

(σ σ̄ )n

⎞
⎠

n−1 ⎛
⎝

∫

X

c2Y n−1Ln−1

⎞
⎠

n

=
⎛
⎝

∫

X

Y n Ln

⎞
⎠

n−1 ⎛
⎝

∫

X

c2(σ σ̄ )n−1

⎞
⎠

n

.

Note that we have used the fact that qX (L) = 0, which implies that tn(n−1)
2 is the

highest power of t2 appearing. Next we identify the terms appearing in this equation.

Lemma 1 We have
∫

X

Y n Ln = n!.
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Proof Since L is the pullback of a hyperplane in P
n , Ln must be the pullback of a

point, i.e., a fibre F , which we assume is smooth. The restriction of Y to F is a theta
divisor, and hence

∫

X

Y n Ln =
∫

F

Θn = n!

since Θ is a principal polarization of F .

Lemma 2 We have

(∫
X c2(σ σ̄ )n−1

)n

(∫
X (σ σ̄ )n

)n−1 = 24n(n!)2

nn

√
Â[X ],

where
√

Â[X ] is the characteristic number of X coming from the square root of the
Â-polynomial.

Remark 2 Note that

√
Â =

(
1 + Â1 + Â2 + · · ·

)1/2

= 1 + 1

2
Â1 +

(
1

2
Â2 − 1

8
Â2

1

)
+ · · ·

= 1 + 1

24
c2 + 1

5760
(7c2

2 − 4c4) + · · ·

In particular
√

Â[X ] does not mean
(

Â[X ]
)1/2

.

Proof The proof of the lemma is based on recognizing that the left-hand side is a
Rozansky–Witten invariant of X . Following the notation of [10]

∫

X

c2(σ σ̄ )n−1 =
∫

X

1

16π2n
[Θ(Φ)]σ n σ̄ n−1

= 1

16π2n
cΘ

∫

X

(σ σ̄ )n,

where Θ denotes the two-vertex trivalent graph and is unrelated to the theta divisor.
Therefore

(∫
X c2(σ σ̄ )n−1

)n

(∫
X (σ σ̄ )n

)n−1 = 1

(16π2n)n
cn
Θ

∫

X

(σ σ̄ )n

= n!
2nnn

bΘn (X).
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Discriminant locus of a Lagrangian fibration 207

The main result of Hitchin and Sawon [10] is that the Rozansky–Witten invariant
bΘn (X) can be written in terms of characteristic numbers

bΘn (X) = 48nn!
√

Â[X ]

which completes the proof.

The remaining term
∫

X c2Y n−1Ln−1 will be calculated in the next section.

4 The second Chern class of X

On f : X → P
n we have the inclusion f ∗Ω1

Pn → Ω1
X , which is dual to the derivative

d f : TX → f ∗TPn of f . The holomorphic symplectic form σ gives an isomorphism
between Ω1

X and TX , so the two maps can be combined into a complex

0 → f ∗Ω1
Pn → Ω1

X
∼= TX → f ∗TPn .

For a Lagrangian fibration with good singular fibres, let

Sing = ∪t∈∆Sing(Xt )

be the union of the singular loci of all singular fibres of X , and let ι : Sing ↪→ X be the
inclusion into X . Note that Sing is a fibration over ∆ whose generic fibre (over a point
of ∆sm) is an abelian variety of dimension n − 1. In particular, Sing is codimension
two in X .

Lemma 3 Let f : X → P
n be a Lagrangian fibration with good singular fibres. Then

0 → f ∗Ω1
Pn → Ω1

X
∼= TX → f ∗TPn → ι∗F → 0

is exact over P
n\∆sing, where F is a sheaf on Sing which is generically rank one.

Proof Over smooth fibres and over smooth points of singular fibres our sequence
comes from splicing the two exact sequences

0 → f ∗Ω1
Pn → Ω1

X → Ω1
X/Pn

↓∼=
0 → TX/Pn → TX → f ∗TPn .

The composition TX/Pn → TX

σ∼= Ω1
X → Ω1

X/Pn is zero, since σ restricted to a
(Lagrangian) fibre must vanish. This proves exactness away from Sing, where all of
the above sheaves are locally free.
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208 J. Sawon

In a neighbourhood of Sing we do a local computation. Recall that f is given locally
by

f : (z1, . . . , zn, w1, . . . , wn) 	→ (z1w1, z2, . . . , zn).

Therefore f ∗Ω1
Pn → Ω1

X is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1

z1 0 . . . 0

0 0 . . . 0

...
...

. . .
...

0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

the isomorphism Ω1
X

σ∼= TX is given by

(
0 Idn×n

−Idn×n 0

)
,

and d f : TX → f ∗TPn is given by

d f =

⎛
⎜⎜⎜⎜⎜⎝

w1 0 . . . 0 z1 0 . . . 0

0 1 . . . 0 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . 1 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

.

It is now a simple matter to check that

0 → f ∗Ω1
Pn → Ω1

X
∼= TX → f ∗TPn

is exact, and that d f drops rank by one when w1 = z1 = 0, which are precisely
the local equations for Sing. Thus the cokernel of d f looks like ι∗F where F is a
generically rank one sheaf on Sing.

It follows immediately from the lemma that

c1(TX ) = f ∗c1(Ω
1
Pn ) + f ∗c1(TPn ) = 0
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Discriminant locus of a Lagrangian fibration 209

and

c2(TX ) = [Sing] + f ∗c2(Ω
1
Pn ) + f ∗c2(TPn ) + const.[ f −1(∆sing)]

= [Sing] + n(n + 1)L2 + const.L2

for some constant.

Remark 3 This formula for the second Chern class is the holomorphic analogue
of a well-known formula relating the first Chern class and singular locus of a real
Lagrangian fibration on a (real) symplectic manifold. It is really the key to Theorem 1
below, as [Sing] will lead directly to deg∆, while we already saw that c2(TX ) leads to√

Â[X ].
Lemma 4 We have

∫

X

c2Y n−1Ln−1 =
∫

X

[Sing]Y n−1Ln−1 = (n − 1)!deg∆.

Proof Firstly

∫

X

c2Y n−1Ln−1 =
∫

X

[Sing]Y n−1Ln−1 + const.Y n−1Ln+1

=
∫

X

[Sing]Y n−1Ln−1

since Ln+1 = 0 (L is the pull-back of a divisor from the n-dimensional base).
The locus Sing is supported over the discriminant locus ∆, while Ln−1 is the

pull-back of a line 
 in P
n . Since we can assume 
 is generic, it will intersect ∆ in

precisely deg∆ points, with each point in ∆sm. In this way we reduce the lemma to
computing an intersection number in a good singular fibre. This computation will
be invariant under deformation, so we can assume that the good singular fibre is the
compactified Jacobian J̄0C of a curve C with a single node.

The restriction of Sing to J̄0C is of course the singular locus s which comes from
identifying s0 and s∞. The restriction of Y to J̄0C is the generalized theta divisor Θ .
In the Jacobian J0C of a smooth curve C , Θn−1 is cohomologous to (n − 1)!C , with
C embedded in J0C by the Abel–Jacobi map. In fact this relation remains true for a
curve with a single node, which can also be embedded in its compactified Jacobian
by a generalization of the Abel–Jacobi map. Then C intersects the singular locus s at
precisely one point, the node of C .

Combining the above observations we find

∫

X

[Sing]Y n−1Ln−1 = deg∆

∫

J̄0C

[s]Θn−1 = (n − 1)!deg∆.
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210 J. Sawon

Remark 4 One could also observe that the restriction of the generalized theta divisor
Θ to the singular locus s induces a principal polarization on s, and thus

∫

Xt

[s]Θn−1 =
∫

s

(Θ|s)n−1 = (n − 1)!.

There is then no need to mention compactified Jacobians.

These calculations now yield a formula for the degree of ∆.

Theorem 1 Let X → P
n be a Lagrangian fibration by principally polarized abelian

varieties, by which we mean that there is a divisor Y on X which restricts to (a multiple
of) a principal polarization on the generic fibre. If X has good singular fibres then

deg∆ = 1

2
bΘn (X)

1
n

= 24
(

n!
√

Â[X ]
) 1

n
.

Proof We simply substitute the results of Lemmas 1, 2, and 4 into the equation pre-
ceding Lemma 1. Note that even if Y restricts to a non-trivial multiple mΘ of a theta
divisor on each fibre, the factor m will ultimately cancel out.

Remark 5 The hypotheses imply that X is projective, as Y + kL will be ample for
sufficiently large k. However, we expect that the formula will hold more generally,
when the generic fibre is only abstractly a principally polarized abelian variety, without
any reference to a global divisor on X . The reason is that there are ways to deform a
Lagrangian fibration until it admits a section (see [24,25]) without changing the local
structure of the fibration, and in particular, without changing the discriminant locus
∆. Now a Lagrangian fibration is projective if and only if it admits a rational section
or multi-section (Proposition 3.2 of [21]). In particular, our Lagrangian fibration with
a section will contain an ample divisor Y , which should then induce the principal
polarization of the generic fibre.

5 The Beauville–Mukai system

In this section we verify our formula for the Beauville–Mukai integrable system [3]
described in Sect. 2, whose total space is a deformation of the Hilbert scheme S[n] of
n points on a K3 surface S. In [22] the author calculated various Rozansky–Witten
invariants; in particular

bΘn (S[n]) = 12n(n + 3)n .
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Discriminant locus of a Lagrangian fibration 211

Applying Theorem 1, the discriminant locus of a fibration on S[n] (or on any defor-
mation of S[n]) should therefore have degree

deg∆ = 6(n + 3).

For n = 1 it is well-known that a generic elliptic K3 surface has exactly 24 singular
fibres. For n ≥ 2 we have the Beauville–Mukai system coming from a genus n curve
C contained in S, which is a fibration over |C | ∼= P

n . There is a map S → (Pn)∨
which for generic S is an embedding (or branched double cover when n = 2). The
discriminant locus ∆ ⊂ |C | parametrizes singular curves in the linear system, i.e.,
it parametrizes hyperplanes in (Pn)∨ whose intersection with S is singular. In other
words, ∆ ⊂ P

n is the variety dual to S ⊂ (Pn)∨ (or dual to the branch curve of
S → (P2)∨ when n = 2).

Consider a pencil of hyperplanes Ht ⊂ (Pn)∨, with t ∈ P
1. Generically there will

be deg∆ singular hyperplane sections of S in this pencil, and each one will have a
single node. The union ∪t∈P1 Ht ∩ S of these hyperplane sections gives a divisor in
S × P

1 whose corresponding line bundle is O(C, 1). If this divisor is given locally by
f = 0, then the singularities of Ht ∩ S are given by f = 0 and d f = 0, where the
derivative is taken only in the direction of S. Globally, we have a section of the rank
three vector bundle

O(C, 1) ⊕ T ∗S(C, 1)

which vanishes precisely at the singular points. Therefore

deg∆ = c3(O(C, 1) ⊕ T ∗S(C, 1))[S × P
1]

= 6(n + 3),

where we have used the fact that C2 = 2n−2. Thus we have a verification of Theorem 1
in this case.

6 Non-principal polarizations

Let us illustrate how to modify our theorem for non-principal polarizations. Let X be
an irreducible holomorphic symplectic manifold fibred over P

n , and let Y be a divisor
on X which on a generic fibre restricts to a polarization of type (d1, . . . , dn) with
d1|d2| · · · |dn . We first generalize the notion of a good singular fibre to this case: in
fact there is more than one model.

A singular fibre Xt , with t ∈ ∆sm, should look like a generic semi-stable degene-
ration of an abelian variety with polarization of type (d1, . . . , dn). In other words, Xt

should be a semi-stable degeneration that occurs over a generic point of the boundary
of an Igusa [13] and Mumford [18,19] compactification of the moduli space of abelian
varieties. For non-principal polarizations, the boundary consists of several irreducible
(codimension one) components, thus we expect to find several different models which
we now describe explicitly.
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212 J. Sawon

The normalization X̃t of Xt will look like a collection of k P
1-bundles over an

abelian variety of dimension n − 1. The singular fibre itself is obtained by gluing
the zero and infinity sections in a chain, as shown (with s1

0 also glued to sk∞, with a
translation).

sk∞

P
1 ↪→

sk−1∞ ∼= sk
0

...
...

...
...

s1∞ ∼= s2
0

P
1 ↪→

s1
0

Note that the singular locus Sing(Xt ) consists of k irreducible components, each
isomorphic to the abelian variety of dimension n − 1. Moreover the polarization of a
nearby smooth fibre, which is of type (d1, . . . , dn), will degenerate to a divisor Yt in
Xt . Suppose that Yt induces a polarization of type (d ′

1, . . . , d ′
n−1) on each irreducible

component of Sing(Xt ). Compatibility requires that di |d ′
i for i = 1, . . . , n − 1, and

d1d2 · · · dn−1dn = d ′
1d ′

2 · · · d ′
n−1k.

In particular, this implies that k must divide dn . For example, in the case of abelian
surfaces with polarization of type (1, p), with p prime, there are two possible dege-
nerations: one is irreducible whereas the other consists of p irreducible components
(see Propositions 4.5 and 4.7 in [11]).

Definition 2 We say a Lagrangian fibration X → P
n by abelian varieties with

polarization of type (d1, . . . , dn) has good singular fibres if the generic singular fibre
Xt for t ∈ ∆sm looks like the picture described above. Note that ∆ may consist of
several irreducible components and the model for the generic singular fibre Xt may
differ over each component (e.g. k and (d ′

1, . . . , d ′
n−1) need not be the same over every

component).
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Discriminant locus of a Lagrangian fibration 213

Let L be the pullback of a hyperplane in P
n , and Y the relative theta divisor. As

before, we have

⎛
⎝

∫

X

(σ σ̄ )n

⎞
⎠

n−1 ⎛
⎝

∫

X

c2Y n−1Ln−1

⎞
⎠

n

=
⎛
⎝

∫

X

Y n Ln

⎞
⎠

n−1 ⎛
⎝

∫

X

c2(σ σ̄ )n−1

⎞
⎠

n

.

Lemma 1 becomes
∫

X

Y n Ln = n!d1d2 · · · dn−1dn .

Lemma 2 remains unchanged

(∫
X c2(σ σ̄ )n−1

)n

(∫
X (σ σ̄ )n

)n−1 = 24n(n!)2

nn

√
Â[X ].

The exact sequence of Lemma 3 also remains unchanged, because although the singular
locus Sing(Xt ) of each generic singular fibre now consists of k irreducible components,
the local description of f : X → P

n near these singularities does not change. Therefore
our expression for the second Chern class of X is still valid, and Lemma 4 becomes

∫

X

c2Y n−1Ln−1 =
∫

X

[Sing]Y n−1Ln−1

= deg∆

∫

Xt

[Sing(Xt )]Y n−1
t

= k(n − 1)!d ′
1d ′

2 · · · d ′
n−1deg∆

= (n − 1)!d1d2 · · · dndeg∆

because Sing(Xt ) consists of k irreducible components, each isomorphic to an abelian
variety of dimension n − 1, and Yt intersects each component in a polarization of type
(d ′

1, . . . , d ′
n−1).

Combining these formulae we obtain the following result.

Theorem 2 Let X → P
n be a Lagrangian fibration by abelian varieties with polari-

zation of type (d1, . . . , dn), by which we mean that there is a divisor Y on X which
restricts to a polarization of this type on the generic fibre. If X has good singular fibres
then

deg∆ = 1

2

(
bΘn (X)

d1 · · · dn

) 1
n

= 24

(
n!

√
Â[X ]

d1 · · · dn

) 1
n

.
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Remark 6 One could always change the polarization of X to mY with m ≥ 2, and this
would multiply all the di by the factor m. Our formula then appears to be inconsistent;
however, our models for singular fibres implicitly assume that Y is a primitive divisor.
This suggests that we should assume d1 = 1. Indeed if d1 > 1 then Y is not primitive
when restricted to a fibre, and in some circumstances one can use the methods described
in [24,25] to deform X → P

n so that Y = d1Y ′ globally, without changing the fibration
locally. Changing to the new polarization Y ′, we could then assume that d1 = 1.

7 Generalized Kummer varieties

The generalized Kummer varieties Kn were introduced by Beauville [2]. Debarre [5]
exhibited a fibration on Kn ; see also Example 3.8 in [23]. The fibres have polarization
of type (1, . . . , 1, n + 1) and this fibration has good singular fibres. In [22] the author
calculated

bΘn (Kn) = 12n(n + 1)n+1.

Theorem 2 therefore gives

deg∆ = 6(n + 1).

For n = 1 this gives twelve. This is correct because the Kummer K3 surface K1
will be an elliptic fibration whose singular fibres each consist of two irreducible com-
ponents; more precisely, they are of Kodaira type I2 and so there will indeed be twelve
of them.

For n ≥ 2 one begins with an abelian surface A with polarization of type (1, n +1).
Thus A is polarized by a genus n + 2 curve C with C2 = 2(n + 1). The relative
Jacobian of the family of curves linear equivalent to C is a fibration over |C | ∼= P

n

whose generic fibre is an abelian variety of dimension n + 2. There is a map from the
total space of this fibration to A (the Albanese map), and the kernel of this map gives a
fibration on Kn . More precisely, the kernel is isomorphic to the generalized Kummer
variety Kn( Â) constructed from the dual abelian surface Â, and it inherits the map to
P

n which makes it a Lagrangian fibration.
As with the Beauville–Mukai system, ∆ ⊂ P

n parametrizes hyperplanes in (Pn)∨
whose intersection with A ⊂ |C |∨ ∼= (Pn)∨ is singular (with the obvious modifications
for small n, when A is not necessarily embedded). We can therefore use the same
method to calculate the degree of ∆, and we obtain

deg∆ = c3(O(C, 1) ⊕ T ∗ A(C, 1))[A × P
1]

= 6(n + 1)

which agrees with the value obtained from Theorem 2.
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8 Fibrations on fourfolds

Suppose X → P
2 is an irreducible holomorphic symplectic fourfold which admits a

Lagrangian fibration by abelian surfaces with polarization of type (d1, d2), and write
d2 = d1d. Moreover, let’s follow Remark 6 and assume d1 = 1. In this dimension, if
the base is smooth then Matsushita’s results imply it must be P

2. If the fibration has
good singular fibres then Theorem 2 yields

deg∆ = 1

2

(
bΘn (X)

d

) 1
2 =

(
1152

√
Â[X ]

d

) 1
2

.

We will use Guan’s bounds [9] on the Betti numbers of X to restrict the possible values
of d and deg∆.

Theorem 3 (Guan [9]) Let X be an irreducible holomorphic symplectic fourfold. The
Betti numbers of X are bounded and can only take the following values:

– b2 = 23 and b3 = 0,
– b2 = 8 and b3 = 0,
– b2 = 7 and b3 = 0 or 8,
– b2 = 6 and b3 = 0, 4, 8, 12, or 16,
– b2 = 5 and b3 = 0, 4, 8, . . . or 36,
– b2 = 4 and b3 = 0, 4, 8, . . . or 60,
– b2 = 3 and b3 = 0, 4, 8, . . . or 68.

The fourth Betti number is determined by Salamon’s relation

b4 = 46 + 10b2 − b3

and therefore

c4[X ] = χ(X) = 48 + 12b2 − 3b3.

The relation

Â[X ] = 1

720
(3c2

2[X ] − c4[X ]) = χ(OX ) = 3

between the Chern numbers allows us to write
√

Â[X ] solely in terms of c4[X ], giving

1152
√

Â[X ] = 1008 − 1

3
c4[X ] = 992 − 4b2 + b3.

We can use this to bound the degree of the discriminant locus.

Theorem 4 Let X be an irreducible holomorphic symplectic fourfold which admits
a Lagrangian fibration X → P

2 by abelian surfaces with polarization of type (1, d),
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by which we mean that there is a divisor Y on X which restricts to a polarization of
type (1, d) on the generic fibre. If X has good singular fibres then deg∆ is at most 32
and d is at most 1036.

Proof Firstly, b2 must be at least four since L corresponds to an isotropic element
of H2(X, Z) with respect to the Beauville–Bogomolov form, and this is a lattice of
signature (3, b2 − 3). We substitute the possible values of b2 and b3 (as allowed by
Guan’s Theorem) into

1152
√

Â[X ] = 992 − 4b2 + b3.

The largest value is 1036 when b2 = 4 and b3 = 60. Moreover, 1152
√

Â[X ] is always
an integer and the formula for deg∆ shows that it must be divisible by d. Thus d is at
most 1036. Moreover

deg∆ =
(

1152
√

Â[X ]
d

) 1
2

≤
(

1036

d

) 1
2 ≤ √

1036 < 33.

Remark 7 In our two examples we have d = 1 and deg∆ = 30 for the Beauville–
Mukai system on S[2], and d = 3 and deg∆ = 18 for the generalized Kummer fourfold
K2.

Next we explain how a certain assumption on the polarization Y leads to much
stronger restrictions on deg∆ and d. The divisor Y can be thought of as a relative theta
divisor on the family of abelian surfaces X → P

2, and we write Yt for the restriction
of Y to the fibre Xt , for t ∈ P

2. In a generic smooth fibre Xt , Yt will be a smooth curve
of genus d + 1. Our assumption on Y will be that Yt is always smooth for t �∈ ∆.

Remark 8 In the principally polarized case d = 1 this means that no smooth fibre Xt

is a product of elliptic curves, as otherwise the corresponding theta divisor Yt would
consist of two elliptic curves joined at a node. In the moduli space of principally
polarized abelian surfaces A◦(1, 1) there is a divisor corresponding to products of
elliptic curves. Our assumption then means that the image of P

2\∆ in A◦(1, 1) does
not meet this divisor. Although this is a strong restriction, it is satisfied for a generic
Beauville–Mukai integrable system, for in that case {Yt |t ∈ P

2} is a complete linear
system of curves in a generic K3 surface and hence every curve Yt must be irreducible.

A similar interpretation is possible for d > 1. Each smooth abelian surface Xt

contains a (d − 1)-dimensional linear system of theta divisors. Hence there is a P
d−1-

bundle over A◦(1, d) whose total space P parametrizes pairs consisting of an abelian
surface and a theta divisor. There is a divisor in P corresponding to pairs for which the
theta divisor is singular, and our assumption is that the image of P

2\∆ in P does not
meet this divisor. The author does not know whether the generic Lagrangian fibration
on the generalized Kummer fourfold satisfies this hypotheses.

Remark 9 Without this assumption on Y , we would need to find some way to
understand and control the intersection of the image of P

2\∆ with the divisors in
the corresponding moduli spaces. This appears to be a difficult problem.

123



Discriminant locus of a Lagrangian fibration 217

Fig. 1 Good singular fibre (left) and smooth fibre (right)

Now Yt will always be singular for t ∈ ∆; we can describe the generic situation.
For t ∈ ∆sm, Xt is a good singular fibre and Yt will be a curve with d nodes. This
singular curve Yt could have one or more irreducible components. One possibility is
shown in Fig. 1, with Yt consisting of d irreducible components, each of genus one,
in a cyclic configuration (recall that the ‘top’ of Xt is also glued to the ‘bottom’ of
Xt ). Another possibility is shown in Fig. 2, with Yt irreducible. Note that the d nodes
come from d vanishing cycles in the smooth fibre, as indicated in Figs. 1 and 2. If d is
not a prime number, other configurations are possible (with the number of irreducible
components dividing d), but the singular curve will always have d nodes.

Recall that L is the pullback under X → P
2 of a generic line in P

2. Let Z be the
surface in X given by the complete intersection of the divisors Y and L . Then Z is a
fibration by genus d + 1 curves over P

1, with deg∆ singular fibres which look like the
singular curves Yt described above (for t ∈ ∆sm).

123



218 J. Sawon

Fig. 2 Good singular fibre (left) and smooth fibre (right)

Lemma 5 The holomorphic Euler characteristic of Z is given by the formula

χ(OZ ) = d(deg∆ − 6)

12
.

In particular, 12 must divide d(deg∆ − 6).

Proof Since Z is the complete intersection of Y and L we can resolve its structure
sheaf on X

0 → OX (−Y − L) → OX (−Y ) ⊕ OX (−L) → OX → OZ → 0.

Riemann–Roch now gives

χ(OZ ) = χ(OX ) − χ(OX (−Y ) ⊕ OX (−L)) + χ(OX (−Y − L))

=
∫

X

(1 − exp(−Y ) − exp(−L) + exp(−Y − L))TdX

=
∫

X

(
Y L − Y 2 L + Y L2

2
+ 4Y 3L + 6Y 2 L2 + 4Y L3

24

)
TdX .

The degree four part of TdX is irrelevant, and we can use Lemma 3 to write

TdX = 1 + 1

12
c2 + · · ·

= 1 + 1

12
[Sing] + const.L2 + · · ·

Substituting this and using L3 = 0 and Y 2 L2 = 2d gives

χ(OZ ) =
∫

X

(
1

12
[Sing]Y L + 1

6
Y 3L + 1

4
Y 2 L2

)

= 1

12
d.deg∆ + 1

6
Y 3L + 1

2
d.
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On the other hand, we can compute directly on Z using Noether’s formula

χ(OZ ) =
(

c2
1 + c2

12

)
[Z ].

By adjunction

c2
1[Z ] = K 2

Z = (O(Y + L)|Z )2 = (Y + L)2Y L = Y 3L + 4d

where we have once again used L3 = 0 and Y 2L2 = 2d. The topological Euler
characteristic c2[Z ] can be computed from the fact that Z is a genus d+1 fibration over
P

1 with deg∆ singular fibres. Each singular fibre has d nodes, so its Euler characteristic
is d greater than a smooth fibre, and thus

c2[Z ] = 2(2 − 2(d + 1)) + d.deg∆ = −4d + d.deg∆.

Therefore

χ(OZ ) = 1

12
d.deg∆ + 1

12
Y 3L .

Comparing our two formulae for χ(OZ ) gives Y 3L = −6d, which can be substi-
tuted back in to complete the proof.

Our final restriction arises because the fibration Z → P
1 cannot have too few

singular fibres.

Lemma 6 The degree of the discriminant locus cannot be one or two, i.e.,

deg∆ ≥ 3.

Proof Beauville [4] proved a generalization of the Szpiro inequality: a non-trivial
family S → B of semi-stable genus g curves with s singular fibres must have less than

(4g + 2)(s + 2g(B) − 2)

critical points. Applying this to Z → P
1 gives

d.deg∆ < (4(d + 1) + 2)(deg∆ − 2)

and rearranging gives

deg∆ >
8d + 12

3d + 6
= 2 + 2d

3d + 6
> 2.

We can now state our final result.
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Theorem 5 Let X be an irreducible holomorphic symplectic fourfold which admits a
Lagrangian fibration X → P

2 by abelian surfaces with polarization of type (1, d), by
which we mean that there is a divisor Y on X which restricts to a polarization of type
(1, d) on the generic fibre. Moreover, assume that X has good singular fibres and that
Yt is smooth for t �∈ ∆. Then the only possible values for the pair (d, deg∆) are

– (1, 30), (4, 15), (9, 10), (25, 6), (36, 5), or (100, 3) when (b2, b3) = (23, 0),
– (60, 4) when (b2, b3) = (8, 0),
– (3, 18), (12, 9), (27, 6), or (108, 3) when c4[X ] = 108 (which implies that

(b2, b3) = (7, 8), (6, 4), or (5, 0)),
– (28, 6) or (112, 3) when c4[X ] = 0 (which implies that (b2, b3) = (5, 36) or

(4, 32)).

Proof As in the proof of Theorem 4, b2 must be at least four. We substitute the possible
values of b2 and b3 (as allowed by Guan’s Theorem) into

1152
√

Â[X ] = 992 − 4b2 + b3.

Since

deg∆ =
(

1152
√

Â[X ]
d

) 1
2

we need only consider integers d which divide 1152
√

Â[X ] and give a quotient which is
a perfect square. Lemmas 5 and 6 can then be used to eliminate many of the possibilities
(the author used Maple for this), leaving the values stated in the theorem.

Remark 10 In our two examples we have (d, deg∆, b2, b3) = (1, 30, 23, 0) for the
Beauville–Mukai system on S[2], and (d, deg∆, b2, b3) = (3, 18, 7, 8) for the
generalized Kummer fourfold K2, although as stated earlier, the author does not know
whether K2 satisfies the hypotheses that Yt be smooth for t �∈ ∆.

We suspect that further work will eliminate many (perhaps all) of the other values
above. In particular, it is hard to imagine there could be any examples with d large.
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