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Abstract We study the standard Dirichlet form and its energy measure, called the
Kusuoka measure, on the Sierpinski gasket as a prototype of “measurable Riemannian
geometry”. The shortest path metric on the harmonic Sierpinski gasket is shown to
be the geodesic distance associated with the “measurable Riemannian structure”. The
Kusuoka measure is shown to have the volume doubling property with respect to
the Euclidean distance and also to the geodesic distance. Li–Yau type Gaussian off-
diagonal heat kernel estimate is established for the heat kernel associated with the
Kusuoka measure.
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1 Introduction

The main purpose of this paper is to present a prototype of a theory which could
be called “measurable Riemannian geometry” on metric spaces. Our prototype is the
standard Dirichlet form on the Sierpinski gasket, which is a typical example of self-
similar sets (see Fig. 1). The Brownian motion on the Sierpinski gasket has been
constructed as a scaling limit of random walks independently by Kusuoka [10] and
Goldstein [3]. Then analytical counterpart of the Brownian motion has been developed
through the works [6], [11] and [7]. In particular, they have identified the Dirichlet form
(E,F), where E is the bilinear form whose domain is F , associated with the Brownian
motion. This form (E,F) is called the standard Dirichlet form on the Sierpinski gasket.
See Sect. 2. Moreover, in [11], Kusuoka has revealed a structure of the Dirichlet form
(E,F) which is analogous to the Riemannian geometry. Precisely, he has shown the
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782 J. Kigami

Fig. 1 The Sierpinski gasket

existence of a measure ν, a non-negative symmetric matrix Z and a operator ˜∇ such
that, for any u, v ∈ F ,

E(u, v) =
∫

K

(˜∇u, Z˜∇v)dν,

where Z and˜∇u,˜∇v are ν-measurable (matrix or vector-valued) functions defined on
ν-a.e. x ∈ K . See Sect. 2 for the brief review of those results. The measure ν is now
called the Kusuoka measure. Obviously ν, Z and ˜∇ correspond to the Riemannian
volume, the Riemannian metric and the gradient operator, respectively, but they are
only defined in measurable sense. This is the reason why (ν, Z ,˜∇) is sometimes called
the “measurable Riemannian structure” on the Sierpinski gasket. Later in [8], it has
been shown that ˜∇ can be replaced by the natural gradient operator for differentiable
functions if we use the harmonic functions as a coordinate. The Sierpinski gasket with
harmonic functions as a coordinate is called the harmonic Sierpinski gasket, or the
Sierpinski gasket with the harmonic coordinate. See Fig. 2. We will give the details
on the harmonic Sierpinski gasket in Sect. 4.

There is still one missing piece in the above mentioned measurable analogy of the
Riemannian geometry. Namely, we have not found the counterpart of the geodesic
distance. In Sect. 5, we will propose that the proper distance in this case is the shortest
path distance d∗ on the harmonic Sierpinski gasket, i.e., the minimum of lengths of
rectifiable curves between points. We will show the existence of the shortest path (i.e.,
geodesic) for any two points. Moreover, if γ : [0, 1] → K is the geodesic between x
and y, then we will see that

d∗(x, y) =
1
∫

0

(

dγ

dt
, Z

dγ

dt

)

dt
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Measurable Riemannian geometry on the Sierpinski gasket 783

Fig. 2 The harmonic Sierpinski
gasket

in Sect. 5. This justifies that d∗ is the geodesic distance associated the measurable
Riemannian structure (ν, Z ,˜∇).

Secondly, we will show that the Kusuoka measure (i.e., the Riemannian volume)
has the volume doubling property with respect to the Euclidean distance in Sect. 3 and
then to the shortest path metric in Sect. 6. This fact will be the key to show the Li–Yau
type Gaussian estimate of the heat kernel, which will be shown in Sect. 6, associated
with the measurable Riemannian structure on the Sierpinski gasket.

Let p(t, x, y) be the canonical heat kernel on a complete Riemannian manifold
with non-negative Ricci curvature. In [13], Li and Yau have shown

c1

V (
√

t, x)
exp

(

−c2
d(x, y)2

t

)

≤ p(t, x, y)

≤ c3

V (
√

t, x)
exp

(

−c4
d(x, y)2

t

)

, (1.1)

where d is the geodesic distance and V (r, x) is the Riemannian volume of a ball
{y|d(x, y) < r}. (1.1) is called the Li–Yau type Gaussian estimate. Such an estimate
has been shown to be equivalent to the Poincarè inequality and the volume doubling
property by Grigor’yan [4] and Saloff-Coste [15].

Let pν(t, x, y) be the heat kernel on the Sierpinski gasket associated with the
measurable Riemannian structure or, more precisely, the Dirichlet form (E,F) on
L2(K , ν). In Sect. 6, pν(t, x, y) will be shown to satisfy the Li–Yau type Gaussian
estimate (1.1), where we replace d and V (r, x) by the harmonic shortest path metric
d∗ and ν({y|d∗(x, y) < r}), respectively.

Note that the diffusion process corresponding to this heat kernel is the time change
of the Brownian motion on the Sierpinski gasket, which corresponds to the Dirichlet
form (E,F) on L2(K , µ∗), where µ∗ is the normalized Hausdorff measure on the
original Sierpinski gasket. (The Kusuoka measure ν and the normalized Hausdorff
measure µ∗ are mutually singular. See Kusuoka [11].) In [1], Barlow and Perkins
have shown that the heat kernel pµ∗(t, x, y) associated with the Brownian motion on
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784 J. Kigami

the Sierpinski gasket satisfy the following estimate:

c1t−dS/2 exp

⎛

⎝−c2

( |x − y|dw
t

)

1
dw−1

⎞

⎠ ≤ pµ∗(t, x, y)

≤ c3t−dS/2 exp

⎛

⎝−c4

( |x − y|dw
t

)

1
dw−1

⎞

⎠ (1.2)

for any t ∈ (0, 1] and any x, y in the Sierpinski gasket, where dS = log 9/ log 5 is
called the spectral dimension and dw = log 5/ log 2 is called the walk dimension. The
estimate (1.2) is called the sub-Gaussian estimate since dw > 2 and hence the heat
diffuses slower than the Gaussian case. In comparison with (1.2), our result (1.1) tells
that the diffusion process regain the Gaussian scaling between time and space under
the Kusuoka measure ν and the harmonic shortest path metric d∗ which are more
natural than the normalized Hausdorff measure µ∗ and the Euclidean distance from
the viewpoint of the measurable Riemannian structure.

Finally we will mention several papers related to measurable Riemannian structure.
In [14], Metz and Sturm have obtained a weak Gaussian upper estimate of the heat
kernel on the Sierpinski gasket with respect to the Kusuoka measure. See Sect. 6
for details. In [17], Teplyaev has studied gradient operator on post critically finite
self-similar set and obtained some continuity results of gradient of certain functions.
Recently, he has introduced the notion of fractals with finitely ramified cell structure
and constructed the measurable Riemannian structure on them in [16]. It is not known
that the results in this paper can be extended to this class or not.

2 Measurable Riemannian structure on the Sierpinski gasket

In this section, we first define the Sierpinski gasket and then introduce analytical
objects which can be thought of as measurable analogies with those in the Riemannian
geometry.

Let N ≥ 2. Choose {p1, . . . , pN } ⊂ R
N−1 so that |pi − p j | = 1 for any i and j

with i 	= j . Note that {p1, . . . , pN } is the set of vertices of a regular N -simplex.

Definition 2.1 Define Fi : R
N−1 → R

N−1 by Fi (x) = (x − pi )/2 + pi for i =
1, . . . , N . Let K be the self-similar set associated with the family of contractions
{Fi }i=1,...,N , that is, K is the unique non-empty compact set which satisfies

K =
N
⋃

i=1

Fi (K ).

We call K the N -Sierpinski gasket.

The 2-Sierpinski gasket is the closed interval [p1, p2]. (We assume that p1 < p2.)
See Fig. 1 for the 3-Sierpinski gasket.
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Measurable Riemannian geometry on the Sierpinski gasket 785

The followings are standard notations.

Definition 2.2 (1) Let S = {1, . . . , N }. Define Σ = SN = {i1i2 . . . |in ∈ S for any
n ∈ N} Also define Wm = Sm = {w1 . . . wm |w1, . . . , wm ∈ S} for any m =
0, 1, . . ., where W0 = {∅}, and set W∗ = ∪m≥0Wm . For w ∈ W∗, we define
|w| = m if w ∈ Wm .

(2) For w = w1 . . . wm ∈ W∗, define Fw = Fw1 ◦ . . . ◦ Fwm and Kw = Fw(K ). Also
we set Σw = {i1i2 . . . |i1i2 . . . ∈ Σ, i1 . . . im = w1 . . . wm}.

(3) Let V0 = {p1, . . . , pN }. Set Vm = ∪w∈Wm Fw(V0) for any m ≥ 0 and V∗ =
∪m≥0Vm .

Note that Vm ⊆ Vm+1 for any m ≥ 0 and that the closure of V∗ under the Euclidean
metric is the Sierpinski gasket. The map π in the following proposition determines
the structure of the Sierpinski gasket as a quotient of Σ .

Proposition 2.3 There exists a continuous surjective map π : Σ → K such that
{π(ω)} = ∩m≥0 Kω1...ωm for any ω = ω1ω2 . . . ∈ Σ . Define σi : Σ → Σ for i ∈ S
by σi (i1i2 . . .) = i i1i2 . . .. Then π ◦ σi = Fi ◦ π for any i ∈ S. Moreover,

#(π−1(x)) =
{

2 if x ∈ V∗\V0,

1 otherwise.

Now we define a quadratic form (E,F) on the Sierpinski gasket, which corresponds
to the Riemannian energy from the viewpoint of “measurable Riemannian geometry”.

Definition 2.4 Let C(K ) be the collection of real-valued continuous functions on K .
For u, v ∈ C(K ), define

Em(u, v) =
(

N + 2

N

)m
∑

p,q∈Vm .p∼q

(u(p)− u(q))(v(p)− v(q)),

where p ∼ q if and only if p, q ∈ Fw(V0) for some w ∈ Wm .

It is known that Em is non-negative definite symmetric quadratic form on C(K ) and
that Em(u, u) ≤ Em+1(u, u) for any u ∈ C(K ) and m ≥ 0.

Definition 2.5 Let F = {u|u ∈ C(K ), limm→∞ Em(u, u) < +∞}. For u, v ∈ E ,
define E(u, v) = limm→∞ Em(u, v).

Theorem 2.6 If µ is a Borel regular probability measure on K which satisfies that
µ(O) > 0 for any non-empty open subset of K and that µ(F) = 0 for any finite set
F, then (E,F) is a local regular Dirichlet form on L2(K , µ) and the corresponding
diffusion process possesses a jointly continuous heat kernel pµ(t, x, y).

The above theorem has been proven in [9, Theorem 3.4.6] except the existence of
a jointly continuous heat kernel pµ(t, x, y), which we will prove in Sect. 6.
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786 J. Kigami

Remark The above results, the construction of (E,F) and Theorem 2.6, are true for
more general class of self-similar sets called post critically self-similar sets. See [9]
for details.

Next we introduce a counterpart of “Riemannian volume”, which is called the
Kusuoka measure, defined by Kusuoka [11]. It turns out to be the energy measure of

the quadratic form (E,F) as well. Set ei =
⎛

⎜

⎝

δ1i
...

δNi

⎞

⎟

⎠
∈ R

N for i = 1, . . . , N , where

δkl is Kronecker’s delta defined by

δkl =
{

1 if k = l,

0 otherwise.

Let (·, ·) be the standard inner product of R
N : (x, y) =∑N

i=1 xi yi for x =∑i=1 xi ei

and y =∑N
i=1 yi ei . We define |x | = √

(x, x) for any x ∈ R
N .

Definition 2.7 Define

M0 =
{

x

∣

∣

∣

∣

∣

x =
N
∑

i=1

xi ei ∈ R
N ,

N
∑

i=1

xi = 0

}

.

Let P : R
N → M0 be the orthogonal projection. Define pi = Pei/

√
2 for i =

1, . . . , N . Note that |pi − p j | = 1 if i 	= j and {p1, . . . , pN } is the collection
of vertices of a regular N -simplex. For any i , we choose { fi,1, . . . , fi,N−2} so that
(pi/|pi |, fi,1, . . . , fi,N−2) is an orthonormal base of M0. Then define a linear map
Ti : M0 → M0 by

Ti pi = N

N + 2
pi and Ti fi, j = 1

N + 2
fi, j

for any j = 1, . . . , N − 2.

Remark Restricting the inner product (·, ·) on R
N , we have a natural inner product on

M0, which is also denoted by (·, ·).
Hereafter, we regard M0 as R

N−1 in a natural manner and identify p1, . . . , pN in
Definition 2.7 with those in Definition 2.1.

Lemma 2.8 Let L(M0) be the collection of linear operators form M0 to itself. Let
(a1, . . . , aN−1) be an orthonormal base of M0. For any X ∈ L(M0), define the
Hilbert-Schmidt norm ‖X‖HS by

‖X‖HS =
√

√

√

√

N
∑

i=1

|Xai |2.
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Measurable Riemannian geometry on the Sierpinski gasket 787

Then ‖ · ‖HS is a norm on L(M0). If (xi j )1≤i, j≤N−1 is the matrix representation of X

with respect to the orthonormal base (a1, . . . , aN−1), then ‖X‖HS =
√

∑

i, j (xi j )2.

In particular, ‖X‖HS = ‖tX‖HS. Moreover, ‖X‖HS is independent of the choice of a
orthonormal base (a1, . . . , aN−1).

For a liner operator X : M0 → M0, the adjoint operator of X with respect to the
inner product (·, ·) is denoted by tX .

Lemma 2.9 Let I : M0 → M0 be the identity. Then

N
∑

i=1

Ti
t(Ti ) = N

N + 2
I.

The next proposition is due to Kusuoka [11, (1.6)]

Proposition 2.10 For w = w1 . . . wm ∈ W∗, define Tw = Tw1 . . .Twm . Then, there
exists a unique Borel regular probability measure ν on Σ such that

ν(Σw) = 1

N − 1

(

N + 2

N

)|w|
(‖Tw‖HS)

2

for any w ∈ W∗. Moreover ν is non-atomic.

Define π∗ν(A) = ν(π−1(A)) for any Borel set A ⊆ K . Then by Proposition 2.3,
π∗ν is a Borel regular probability measure on K and π∗ν(Kw) = ν(Σw) for any
w ∈ W∗. Moreover, since ν(V∗) = 0, (K , π∗ν) may be identified with (Σ, ν) from
measurable point of view. So, we abuse the notation and use ν to denote π∗ν. This ν
on K is called the Kusuoka measure on the Sierpinski gasket, which corresponds to
“Riemannian volume”.

Next we introduce “Riemannian metric” Z(·). Kusuoka has shown the following
results in [11, (1.7)].

Proposition 2.11 Define Zm(w) = Tw t(Tw)/‖Tw‖2
HS for w ∈ Wm. Then Z(ω) =

limm→∞ Zm(ω1 . . . ωm) exists for ν-a.e. ω = ω1ω2 . . . ∈ Σ . Moreover, rankZ(ω) =
1 and Z(ω) is the orthogonal projection onto its image for ν-a.e. ω ∈ Σ .

Let Z∗(x) = Z(π−1(x)). Since ν(V∗) = 0, the above proposition implies that
Z∗(x) is well-defined, that rankZ∗(x) = 1 and that Z∗(x) is the orthogonal projection
onto its image for ν-a.e. x ∈ K . This Z∗(·) plays the role of “Riemannian metric” on
the Sierpinski gasket. For ease of notation, we use Z(·) instead of Z∗(·).
Remark Let π−1(x) = {ω, τ } for x ∈ V∗. Then both Z(ω) and Z(τ ) exist and
Z(ω) = Z(τ ). (This fact can be easily shown by the discussion in the proof of
Lemma 3.5.) Hence Z(x) is well-defined on V∗.

Now we have “Riemannian energy” E(·, ·), “Riemannian volume” ν and
“Riemannian metric” Z(·). The following theorem by Kusuoka [11, (5.1)] gives the
legitimacy of such analogy with the Riemannian geometry.
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788 J. Kigami

Theorem 2.12 There exists ˜∇ : F → {Y |Y : K → M0,Y is ν-measurable} such
that

E(u, v) =
∫

K

(˜∇u, Z˜∇v)dν

for any u, v ∈ F .

The definition of ˜∇ will be given in Definition 4.11 by using the language of the
harmonic Sierpinski gasket.

Remark In terms of the theory of Dirichlet forms, (˜∇u, Z˜∇u)dν is the energy measure
of u associated with the quadratic form (E,F), that is, if dµu = (˜∇u, Z˜∇u)dν, then
µu is the unique Radon measure on K which satisfies

∫

K

f dµu = 2E(u f, u)− E(u2, f )

for any f ∈ F . See [2] for the general theory of Dirichlet forms. Comparing with
Theorem 2.6, we notice that µu is thoroughly determined by (E,F) and it does not
depends on the measure µ. Note that the measure µ has no role in the definition of
(E,F).
Remark Kusuoka has given the definition of the Kusuoka measure and the
“Riemannian metric” Z(·) and the associated results in the last half of this section
not only for the Sierpinski gasket but also for a class of finitely ramified self-similar
sets. See [11] and [12] for details.

3 Volume doubling property of the Kusuoka measure

In this section, we will show that the Kusuoka measure has the volume doubling
property with respect to the Euclidean distance.

Definition 3.1 Let (X, d) be a metric space. Define Br (x, d) = {y|y ∈ X, d(x, y) <
r} for any x ∈ X and any r > 0. A Borel measure µ on X is said to have the volume
doubling property with respect to the distance d if and only if there exists c > 0 such
that µ(B2r (x, d)) ≤ cµ(Br (x, d)) for any r > 0 and any x ∈ X .

Theorem 3.2 The Kusuoka measure on the N-Sierpinski gasket has the volume dou-
bling property with respect to the Euclidean distance.

The rest of this section is devoted to proving the above theorem.

Lemma 3.3 (1) Let a = (a1, . . . , aN ) be a base of M0. For any X ∈ L(M0), define

‖X‖b,a =
N
∑

i=1

|Xai |.
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Measurable Riemannian geometry on the Sierpinski gasket 789

Then ‖ · ‖b,a is a norm on L(M0).
(2) Let D be a subset of M0. For any X ∈ L(M0), define

‖X‖d,D = diam(X (D)) = sup
x,y∈D

|X x − X y|.

If D has an interior point with respect to the topology of M0, then ‖X‖d,D is a
norm on L(M0).

Lemma 3.4 For x ∈ M0, define Br (x) = {y|y ∈ M0, |x − y| < r} for r > 0. Let D1
and D2 be subsets of M0. If there exist x1, x2 ∈ M0 and positive real numbers r and
R such that D1 ⊆ BR(x1) and Br (x2) ⊆ D2, then for any X ∈ L(M0),

r‖X‖d,D1 ≤ R‖X‖d,D2 .

Lemma 3.5 There exists c > 0 such that

ν(Kwi( j)n ) ≤ cν(Kw j (i)n )

for any i, j with 1 ≤ i < j ≤ N, any w ∈ W∗ and any n ≥ 0.

Proof We may assume that i = 1 and j = 2 without loss of generality. Let fi =
(pi , fi,1, . . . , fi,N−2). We write ‖ · ‖i = ‖ · ‖b,fi . Then

‖Twi( j)n ‖ j =
(

N

N + 2

)n

|TwTi p j | +
(

1

N + 2

)n N−2
∑

k=1

|TwTi f j,k |.

Note that T1 p2 = −T2 p1. Let x∗ = T1 p2. If g(t) = (α + βt)(γ + δt)−1 for
α, β, γ, δ>0, then supt∈[0,1] g(t) = max{g(0), g(1)}. Hence we see that

‖Tw1(2)n ‖2

‖Tw2(1)n ‖1
= |Twx∗| + N−n ∑N−2

k=1 |TwT1 f2,k |
|Twx∗| + N−n

∑N−2
k=1 |TwT2 f1,k |

≤ max

{

1,
‖Tw1‖2

‖Tw2‖1

}

. (3.1)

Now let J be the convex hull of {p1, . . . , pN }. (Note that J is an N -simplex.) Since T1 J
and T2 J is congruent [i.e., T1 J = f (T2 J ) for some isometry f of M0], Lemma 3.4
implies that

‖Tw1‖d,J

‖Tw2‖d,J
= ‖Tw‖d,T1J

‖Tw‖d,T2J
(3.2)

is uniformly bounded with respect to w ∈ W∗. Since ‖ · ‖HS, ‖ · ‖b,· and ‖ · ‖d,· are all
equivalent, (3.1) and (3.2) implies that

‖Tw1(2)n ‖HS

‖Tw2(1)n ‖HS

is uniformly bounded with respect to w ∈ W∗ and n ≥ 0. By the definition of the
Kusuoka measure, this immediately deduce the lemma. ��
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790 J. Kigami

For the moment, we briefly review the notions and results in [5], which are needed
to complete the proof of Theorem 3.2. The notion of a gauge function gives the sizes
of Kw’s and the scale associated with a gauge function is the collection of Kw’s whose
sizes are about the same.

Definition 3.6 (1) A function g : W∗ → (0, 1] is called a gauge function on Σ if
and only if it satisfies the following two conditions (G1) and (G2):

(G1) g(wi) ≤ g(w) for any i ∈ S and any w ∈ W∗.
(G2) max{g(w)|w ∈ Wm} → 0 as m → ∞.

(2) Let g : W∗ → (0, 1] be a gauge function. Define Λs(g) for s ∈ (0, 1] by

Λs(g) = {w|w = w1 . . . wm ∈ W∗, g(w1 . . . wm−1) > s ≥ g(w)},

where g(w1 . . . wm−1) is regarded as 2 for w = ∅. Then {Λs(g)}0<s≤1 is called a
scale induced by the gauge function g.

(3) Let S = {Λs(g)}0<s≤1 be the scale induced by a gauge function g. Define

Ks(x) =
⋃

w∈Λs (g),x∈Kw

Kw and Us(x) =
⋃

w∈Λs (g),Kw∩Ks (x) 	=∅
Kw.

S is called locally finite if

sup
(w,s)∈W∗×(0,1]

#{v|v ∈ Λs(g), Kv ∩ Kw 	= ∅} < +∞.

(4) A distance d(·, ·) on K is said to be adapted to the scale {Λs(g)} induced by a
gauge function g if and only if there exist positive constants c1 and c2 such that

Bc1r (x, d) ⊆ Ur (x) ⊆ Bc2r (x, d)

for any x ∈ K and any r ∈ (0, 1].
Remark In [5], the definition of “adaptedness” is a little more general than the version
in here.

The set Us(x) is a kind of “ball of radius s” associated with the scale. It can be
regarded as a real ball if there exists some distance which is adapted to the scale.

Definition 3.7 (1) A function f : W∗ → (0,∞) is called elliptic if and only if it
satisfies the following two conditions (EL1) and (EL2);

(EL1) There exists c1 > 0 such that f (wi) ≥ c1 f (w) for anyw ∈ W∗ and i ∈ S.
(EL2) There exist k ∈ N and c2 ∈ (0, 1) such that f (wv) ≤ c2 f (w) for any

w ∈ W∗ and any v ∈ Wk .

The scale induces by a gauge function g is called elliptic if and only if g is elliptic.
Also a Borel regular probability measure µ on K is called elliptic if and only if
the map w → µ(Kw) is elliptic.
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Measurable Riemannian geometry on the Sierpinski gasket 791

(2) Let S be the scale induced by a gauge function g. A function of f : W∗ → (0,∞)

is said to be gentle with respect to S if and only if there exists cG > 0 such that
f (w) ≤ cG f (v) for any s ∈ (0, 1] and any w, v ∈ Λs(g) with Kw ∩ Kv 	= ∅. A
Borel regular probability measure µ on K is said to be gentle with respect to S if
and only if the map w → µ(Kw) is gentle with respect to S.

The following theorem is what we need to prove Theorem 3.2. See [5, Sect. 1.3]
for the proof.

Theorem 3.8 Let µ be a Borel regular probability measure on K . Also let S be the
scale induced by an elliptic gauge function g. Assume that a distance d is adapted to
the scale S. Then µ has the volume doubling property with respect to d if and only if
the following three conditions (EL), (LF) and (GE) are satisfied;

(EL) µ is elliptic.
(LF) The scale S is locally finite.
(GE) µ is gentle with respect to the scale S.

Proof of Theorem 3.2 Let S0 be the scale induced by the gauge function g(w) =
(1/2)|w|, which is obviously elliptic. Then the Euclidean metric is adapted to the scale
S0. By Theorem 3.8, it is sufficient to prove that S0 is locally finite, ν is elliptic and ν
is gentle with respect to S0.

Since the N -Sierpinski gasket is post critically finite, S0 is locally finite. Next we
show that ν is elliptic. Let J be the convex hull of {p1, . . . , pN }. Then, by Lemma 3.4,

‖Tw‖d,J

‖Twi‖d,J
= ‖Tw‖d,J

‖Tw‖d,Ti(J)

is uniformly bounded with respect to i = 1, . . . , N and w ∈ W∗. Since ‖ · ‖d,· and
‖ · ‖HS are equivalent, there exists c1 > 0 such that

‖Twi‖HS ≥ c1‖Tw‖HS (3.3)

for any i = 1, . . . , N and any w ∈ W∗. This shows (EL1). Let ‖X‖ be the operator
norm of X ∈ L(M0), i.e., ‖X‖ = supx∈X,x 	=0 |X x |/|x |. Note that ‖Ti‖ = N/(N +2).
Hence if w, v ∈ W∗, then ‖Twv‖ ≤ ‖Tw‖(N/(N + 2))|v|. Since ‖ · ‖ and ‖ · ‖HS are
equivalent, there exists c > 0 such that

‖Twv‖HS ≤ c

(

N

N + 2

)|v|
‖Tw‖HS. (3.4)

This implies (EL2). Thus ν is elliptic.
Finally we prove that ν is gentle with respect to S0. Note that Λs = Wm for some

m. Hence if w(1), w(2) ∈ Λs, w(1) 	= w(2) and Kw(1) ∩ Kw(2) 	= ∅, then there exist
i, j ∈ {1, . . . , N }, n ≥ 0 and w ∈ W∗ such that w(1) = wi( j)n and w(2) = w j (i)n .
By Lemma 3.5, we obtain that ν(Kw(1)) ≤ cν(Kw(2)), where c is independent ofw(1)
and w(2). Therefore, ν is gentle with respect to S0. ��

123



792 J. Kigami

4 Harmonic Sierpinski gasket

In this section, we introduce the harmonic Sierpinski gasket, which is the Sierpinski
gasket parametrized by harmonic functions. The harmonic Sierpinski gasket turns out
to be a geometrical realization of the measurable Riemannian structure given in Sect. 2.

First we give the definition of harmonic functions. See [9] for the proofs of the
following Propositions 4.1 and 4.3.

Proposition 4.1 Let ρ : V0 → R. Then there exists a unique ψ : K → V0 such that
ψ |V0 = ρ and

E(ψ,ψ) = min{E(u, u)|u ∈ F , u|V0 = ρ}.

Definition 4.2 We denote ψ in the above proposition by ψρ and call it the harmonic
function with boundary value ρ. In particular, define ψp = ψχp for p ∈ V0, where

χp(x) =
{

1 if x = p,

0 otherwise.

Proposition 4.3 For any ρ : V0 → R, ψρ = ∑

p∈V0
ρ(p)ψp. In particular, the

collection of harmonic functions is N-dimensional vector space.

The harmonic functions {ψp}p∈V0 can be a system of coordinates of the Sierpinski
gasket. See [8] for the proof of the next proposition.

Proposition 4.4 Define Φ : K → M0 by

Φ(x) = 1√
2

⎛

⎜

⎝

⎛

⎜

⎝

ψp1(x)
...

ψpN (x)

⎞

⎟

⎠
− 1

N

⎛

⎜

⎝

1
...

1

⎞

⎟

⎠

⎞

⎟

⎠
.

If K H = Φ(K ), then Φ is a homeomorphism between K and K H . Moreover, define
Hi : M0 → M0 by

Hi (x) = Ti (x − pi )+ pi

for i = 1, . . . , N. Then K H = ∪N
i=1 Hi (K H ) and Φ ◦ Fi = Hi ◦ Φ for any i =

1, . . . , N.

Definition 4.5 K H is called the harmonic N -Sierpinski gasket.

By Proposition 4.4, K H is the self-similar set associated with the collection of
contractions on M0, {H1, . . . , HN }.

Now we define the gradient operator ∇ on the Sierpinski gasket as the usual
gradient on the harmonic Sierpinski gasket through Φ. Note that we can naturally
define the gradient (i.e., ∇) of a smooth function on an open subset of M0. More
precisely, if we fix an orthonormal base of M0 and regard M0 as R

N−1, then ∇u =
t(∂u/∂x1, . . . , ∂u/∂xN−1). The following proposition has been shown in [8].
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Proposition 4.6 Let U be an open subset of M0 which contains K H . If v1, v2 ∈ C1(U )
and v1|K H = v2|K H , then (∇v1)|K H = (∇v2)|K H .

By the above proposition, the gradient (i.e., ∇) of a “smooth function” on K H is
well-defined by the restriction of the gradient on an open subset of M0. Through Φ,
we define C1-functions on K and the gradient (i.e., ∇) of them.

Definition 4.7 Define

C1(K ) = {u|u = (v|K H ) ◦Φ,where v is a C1-class function

on some open subset of M0 containing K H .}

Also, for u ∈ C1(K ), define ∇u = (∇v|K H ) ◦Φ, where v is the same as in the above
definition of C1(K ).

In fact, the gradient operator ∇ has been shown to be the natural one from the
viewpoint of the “Riemannian structure” as well. The main part of the following
theorem has been obtained in [8].

Theorem 4.8 C1(K ) is a dense subset of F under the norm ‖u‖ = √E(u, u)+‖u‖∞.
Moreover, ˜∇u = Z∇u for any u ∈ C1(K ) and

E(u, v) =
∫

K

(∇u, Z∇v)dν (4.1)

for any u, v ∈ C1(K ).

To give a proof of the above theorem, we translate the definition of the Kusuoka
gradient ˜∇ into the language of the harmonic Sierpinski gasket.

Definition 4.9 (1) Define U0 = {p1, . . . , pN } and Bw = Hw(U0) for any w =
w1 . . . wm ∈ W∗, where Hw = Hw1 · · · Hwm . Also, for any m ≥ 0, set Um =
∪w∈Wm Bw.

(2) Let u : K → R. For any w ∈ W∗, ∇wu is the gradient of the affine function on
M0 whose values at the points of Bw coincide with those of u◦Φ−1. Moreover,
define ∇mu : K → R

N−1 by (∇mu)|Kw = ∇wu.

Note that U0 = V0 by the convention after Definition 2.7. We also see Um = Φ(Vm).
Strictly speaking, ∇mu should be thought of as a ν-measurable function since the
values on Vm may not be well-defined. The following proposition has been obtained
by Kusuoka in [11].

Proposition 4.10 For any u ∈ F , Z∇mu converges as m → ∞ for ν-a.e. x ∈ K .

Now, the definition of the ˜∇ appearing in Theorem 2.12 can be given in the
following way.

Definition 4.11 For u ∈ F , the ν-a.e. limit of Z∇mu as m → ∞ is denoted by ˜∇u.
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794 J. Kigami

Proof of Theorem 4.8 The fact that C1(K ) is dense subset of F and (4.1) have been
shown in [8]. We need to prove ˜∇u = Z∇u. It is easy to see that (∇u, Z∇u)dν
is the energy measure of u with respect to the Dirichlet form as well. Hence we
have (∇u, Z∇u) = (˜∇u, Z˜∇u) for ν-a.e. x ∈ K . Recall that rankZ = 1 and Z
is the orthogonal projection onto its image. Note that ˜∇u is in the image of Z by
definition. Combining these facts, we obtain Z∇u = ±˜∇u, where ± depends on
x ∈ K . It follows that Z∇ψ = ˜∇ψ for any harmonic function ψ . Choose a harmonic
function ψ so that ψ 	= 0. Let U = {x |x ∈ K , Z∇u 	= ˜∇u}. Then on U , we
have Z∇(u + ψ) = Z∇u + Z∇ψ = −˜∇u + Z∇ψ on U . On the other hand,
Z∇(u + ψ) = ±˜∇(u + ψ) on U . If the plus sign holds, then Z∇u = 0, which
contradicts to the definition of U . Hence Z∇(u+ψ) = −˜∇(u+ψ) on U . This implies
ψ = −ψ and this is also a contradiction. Therefore ν(U ) = 0 and Z∇u = ˜∇u for
ν-a.e. x ∈ K . ��

5 Geodesic distance on the Sierpinski gasket

In the previous sections, we have introduced “Riemannian metric” Z , “Riemannian
volume” ν, the “Riemannian energy” (E,F) and the gradient operator ∇ on the
Sierpinski gasket and have obtained, in Theorem 4.8, the relation between these ob-
jects which is analogous to that in the Riemannian geometry. There have still been one
missing element, namely, the geodesic distance associated with “Riemannian struc-
ture”. In this section, we will introduce the harmonic shortest path metric on the
Sierpinski gasket, which is the counterpart of the geodesic distance.

The next theorem shows that there exists a geodesic distance on K H .

Theorem 5.1 Define

h∗(p, q) = inf{�(γ )|γ is a rectifiable curve in K H between p and q}

for p, q ∈ K H , where �(γ ) is the length of the curve. Then for any p, q ∈ K H ,
there exists a continuous curve γ∗ : [0, 1] → K H such that γ∗ is C1 on (0, 1),
γ∗(0) = p, γ∗(1) = q, Z(Φ−1(γ∗(t))) exists and dγ∗

dt ∈ Im Z(Φ−1(γ∗(t))) for any
t ∈ (0, 1) and

h∗(γ∗(a), γ∗(b)) =
b
∫

a

(

dγ∗
dt
, Z(Φ−1(γ∗(t)))

dγ∗
dt

)

dt (5.1)

for any a, b ∈ [0, 1] with a ≤ b. In particular, the infimum in the definition of
h∗(p, q) can be replaced by the minimum, which is attained by γ∗. γ∗ is called a
geodesic between p and q.

(5.1) connects h∗(·, ·) with the measurable Riemannian structure.
If N = 2, then K H = K is an interval and the above theorem is trivial. We will

give a proof of this theorem for N = 3. One may show the case of N > 3 with the
same ideas and more complicated arguments.
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We need several steps to show Theorem 5.1. The following result is a well-known
fact in the convex geometry.

Theorem 5.2 Let C and D be compact subsets of R
2 with C ⊆ D. Assume that C is

convex and that ∂D is a rectifiable Jordan curve. Then �(∂C) ≤ �(∂D).

Remark In the above theorem, since C is a compact convex set, its boundary ∂C is a
rectifiable Jordan curve.

Definition 5.3 (1) Define Jw = Hw(J ), where J is the convex hull of U0, i.e., the
regular triangle with vertices U0. Also define K H,w = Hw(K H ).

(2) Let p, q ∈ Bw with p 	= q. We define p̂q by p̂q = Φ(p∗q∗), where p∗ = Φ−1(p)
and q∗ = Φ−1(q) and xy is the line segment between x and y.

We now study the curve p̂1 p2, which can be regarded as a graph of a function defined
on p1 p2. To see this, we introduce a new coordinate system on M0 which identify p1 p2
as [0, 1]. Set e1 = p2 − p1 and e2 = (p3 − (p1+ p2)/2)/(

√
3/2). Note that (e1, e2) is

an orthonormal base of R
2. Associating (s, t) ∈ R

2 to the point p1+se1+te2 ∈ M0, we
have a new coordinate (s, t) of M0. More precisely, ((p − p1, e1), (p − p1, e2)) ∈ R

2

is the coordinate of p ∈ M0. If we identify p1 p2 as [0, 1] in the natural manner, p̂1 p2
may be regarded as a graph of a function defined on [0, 1] as follows.

Theorem 5.4 (1) Z(x) exists for any x ∈ p̂1 p2.
(2) Define θ : p̂1 p2 → [0, 1] by θ(p) = (p − p1, e1). Then θ is bijective. Denote the

inverse of θ by γ and define η(t) = (γ (t)− p1, e2). Then η : [0, 1] → [0,+∞)

is concave, C1 but not C2. Moreover, dγ
dt =

(

1
dη
dt

)

∈ Im Z(Φ−1(γ (t))) for any

t ∈ [0, 1] and

�( p̂1 p2) =
1
∫

0

(

dγ

dt
, Z(Φ−1(γ (t)))

dγ

dt

)

dt. (5.2)

Remark The results in Theorem 5.4 have been announced by Teplyaev in [18]. Since
a preprint with a proof, which was cited in [18], is not available at this moment, we
will give our version of proof for the sake of readers.

Proof In the new coordinates,

T1 =
⎛

⎝

1
2

√
3

10√
3

10
3

10

⎞

⎠ and T2 =
⎛

⎝

1
2 −

√
3

10

−
√

3
10

3
10

⎞

⎠ .

Let

A =
{

f

∣

∣

∣

∣

f ∈ C1([0, 1]), f (0) = f (1) = 0,

f ′(0) = 1√
3
, f ′(1) = − 1√

3
, f ′(t1) ≥ f ′(t2) if t1 ≤ t2

}

.
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796 J. Kigami

Define d( f, g) = sup0≤t≤1 | f (t)− g(t)| + sup0≤t≤1 | f ′(t)− g′(t)| for any f, g ∈ A.
Then (A, d) is a complete metric space. Now, for any f ∈ A,

H1

(

t

f (t)

)

=
⎛

⎝

1
2 t +

√
3

10 f (t)
√

3
10 t + 3

10 f (t)

⎞

⎠

and

H2

(

t

f (t)

)

=
⎛

⎝

1
2 t −

√
3

10 f (t)+ 1
2

−
√

3
10 t + 3

10 f (t)+
√

3
10

⎞

⎠ .

Set h(t) = 1
2 t +

√
3

10 f (t). Then h(0) = 0, h(1) = 1
2 and h′(t) = 1

2 +
√

3
10 f ′(t) ≥ 2

5 .
Therefore, by the inverse function theorem, the inverse of h exists and belongs to

C1([0, 1
2 ]). Define F(s) =

√
3

10 h−1(s) + 3
10 f (h−1(s)). Then F ∈ C1([0, 1

2 ]). In the

same manner, we may define F(s) for s ∈ [ 1
2 , 1] by H2

(

t
f (t)

)

=
(

s
F(s)

)

. It follows

that

F ′(s) = √
3

(

1 − 4

5 + √
3 f ′(h−1(s))

)

(5.3)

for s ∈ [0, 1
2 ]. Using (5.3) and its counterpart on s ∈ [ 1

2 , 1], we easily see that
F ∈ A. Thus if G( f ) = F , then G is a well-defined map from A to itself. Moreover,
d(G( f1),G( f2)) ≤ 3

4 d( f1, f2). By the contraction principle, there exists a unique
fixed point of G, which is denoted by η. Let Gη = {(t, η(t))|t ∈ [0, 1]}. Then Gη =
H1(Gη)∪ H2(Gη) and hence Gη = p̂1 p2. Obviously, η ∈ C1([0, 1]) and η is concave.
Assume that η ∈ C2([0, 1]) ∩ A. We have

η′′(h1(t)) = 120η′′(t)
(

5 + √
3η′(t)

)3 and η′′(h2(t)) = 120η′′(t)
(

5 − √
3η′(t)

)3 (5.4)

for any t ∈ [0, 1], where h1(t) = 1
2 t +

√
3

10 η(t) and h2(t) = 1
2 t −

√
3

10 η(t) − 1
2 .

Letting t = 0 and 1, we see that η′′(0) = η′′(1) = η′′(1/2) = 0. Also by (5.4),
if η′′(t) = 0, then η′′(h1(t)) = η′′(h2(t)) = 0. Set hw = hw1 ◦ · · · ◦ hwm for
w = w1 . . . wm ∈ W∗({1, 2}), where W∗({1, 2}) = ∪k≥0{1, 2}k . Then η′′(hw(0)) = 0

for any w ∈ W∗({1, 2}). Note that Tw0 =
(

hw(0)
η(hw(0))

)

and that {Tw0}w∈W∗({1,2}) is

dense in p̂1 p2. Hence {hw(0)}w∈W∗({1,2}) is dense in [0, 1]. Therefore, η′′(t) = 0 for
any t ∈ [0, 1]. Since η(0) = η(1) = 0, we have η(t) = 0 for any t ∈ [0, 1]. This
contradiction implies that η /∈ C2([0, 1]).

123



Measurable Riemannian geometry on the Sierpinski gasket 797

Next, let ω = ω1ω2 . . . ∈ {1, 2}N. Set ω(m) = ω1 . . . ωm ∈ {1, 2}m and Tω(m) =
(

am bm

cm dm

)

. Then,

Hω(m)

(

x
y

)

=
(

am bm

cm dm

)(

x
y

)

+
(

hω(m)(0)
η(hω(m)(0))

)

and hω(m)(t) = amt + bmη(t) + hω(m)(0). Since h′
1(t) and h′

2(t) are no less than
2
5 for any t ∈ [0, 1], we see that h′

ω(m)(t) = am + bmη
′(t) ≥ ( 2

5 )
m . In particular,

hω(m)(
1
2 ) = am > 0 because η′( 1

2 ) = 0. Moreover, it follows that am + bms > 0 for
any s ∈ [− 1√

3
, 1√

3
]. Hence

|bm/am | ≤ √
3 (5.5)

for any m. On the other hand, set Bm = bm/am,Cm = cm/am and Dm = dm/am .
Then η′(hω(m)(t)) = Cm+Dmη

′(t)
1+Bmη′(t) . Let τ(ω) = limm→∞ hω(m)(0). Note that τ(ω) =

limm→∞ hω(m)(t) for any t ∈ [0, 1]. Since η′ is continuous, it follows that

lim
m→∞

Cm + Dmη
′(t)

1 + Bmη′(t)
= η′(τ (ω))

for any t ∈ [0, 1]. In particular, limm→∞ Cm = η′(τ (w)). Hence,

Cm + Dmη
′(t)

1 + Bmη′(t)
− Cm = η′(t)Dm − Cm Bm

1 + Bmη′(t)
→ 0

as m → ∞. Choosing t so that η′(t) = (2
√

3)−1 and using (5.5), we have

lim
m→∞ Dm − Cm Bm = 0. (5.6)

Now, let Zm = Zm(ω(m)). Then

Zm = 1

1 + B2
m + C2

m + D2
m

(

1 + B2
m Cm + Bm Dm

Cm + Bm Dm C2
m + D2

m

)

.

By (5.6),

1

1 + η′(τ (ω))2

(

1 η′(τ (ω))
η′(τ (ω)) η′(τ (ω))2

)

= lim
m→∞

1

1 + C2
m

(

1 Cm

Cm C2
m

)

= lim
m→∞

1 + B2
m

1 + B2
m + C2

m + D2
m

(

1 Cm

Cm C2
m

)

= lim
m→∞ Zm

Thus Z(Φ−1(γ (τ (ω)))) exists and

(

1
η′(τ (ω))

)

∈ Im Z(Φ−1(γ (τ (ω)))). Since there

exists ω ∈ {1, 2}N such that t = τ(ω) for any t ∈ [0, 1], we have shown (1) and
γ ′(t) ∈ Im Z(Φ−1(γ (t))) for any t ∈ [0, 1]. Now, (5.2) is obvious. ��
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Lemma 5.5 Let p, q ∈ Bw with p 	= q. Then pq ∪ p̂q is a closed curve. Moreover,
if Dpq is the bounded domain whose boundary is pq ∪ p̂q, then Dpq is convex. In
particular, p̂q is rectifiable.

Proof Note that η in Theorem 5.4 is convex. Hence Dp1 p2 is convex. Since Dp,q is
an affine image of Dp1,p2 , we immediately verify the lemma. ��
Lemma 5.6 Let p, q ∈ Bw with p 	= q. Then the following minimum is attained by
p̂q.

min{�(γ )|γ is a rectifiable curve between p and q contained in K H,w.}

Moreover,
2

5
‖Tw‖d,J ≤ �( p̂q) ≤ 2‖Tw‖d,J. (5.7)

Proof Let γ be a rectifiable curve between p and q which is contained in K H,w.
We may assume that γ does not have self-intersection without loss of generality. Let
D be the bounded domain whose boundary is pq ∪ γ . Then Dpq ⊆ D. Hence by
Theorem 5.2, it follows that �(pq ∪ p̂q) ≤ �(pq ∪ γ ). Therefore �( p̂q) ≤ �(γ ).

Note that J is a regular triangle with vertices U0 = {p1, p2, p3}. Suppose that
p = Hw(p1) and q = Hw(p2). Let x = Hw(p3). Then by the triangle inequality,

‖Tw‖d,J = diam(Jw) ≤ �(px)+ �(xq) ≤ 2‖Tw‖d,J. (5.8)

Since Dpq ⊂ Jw, Theorem 5.2 implies that �( p̂q) ≤ �(px)+ �(xq). Hence by (5.8),
�( p̂q) ≤ 2‖Tw‖d,J. Let y′ be the midpoint of Φ−1(p) and Φ−1(q) and let y = Φ(y).
Then y ∈ p̂q and the line xy passes the center of the triangle J . If z is the intersection of
the lines xy and pq, then |zy| = 2|zx |/5. Hence �(py)+�(yq) = 2(�(px)+�(xq))/5.
On the other hand, the triangle pyq is contained in Dpq . Again by Theorem 5.2,
�(py)+ �(yq) ≤ �( p̂q). Using (5.8), we obtain (5.7). ��
Proof of Theorem 5.1 First assume that p, q ∈ Um for some m ≥ 0. Define

Pm(p, q) = {(qi )
k
i=0|q0 = p, qk = q, there exists w ∈ Wm such that

pi , pi+1 ∈ Bw for any i = 0, . . . , k − 1
}

.

Set �((qi )
k
i=0) = ∑k−1

i=0 �(q̂i qi+1). Since {(qi )
k
i=0 ∈ Pm(p, q)|qi 	= q j if i 	= j} is a

finite set, there exists (xi )
n
i=0 ∈ Pm(p, q) that attains the minimum of �((qi )

k
i=0). We

use γ∗ to denote the rectifiable curve x̂0x1 ∪ · · · ∪ x̂n−1xn .
Now let γ be a rectifiable curve in K H between p and q. If γ ∩Um = {y0, . . . , yl},

then (yi )
l
i=0 ∈ Pm(p, q). Using Lemma 5.6, we see that �(γ ) ≥ �((yi )

l
i=0). Hence

�(γ ) ≥ �(γ∗). Therefore, γ∗ attains the minimum of �(γ ) among rectifiable curves in
K H between p and q. By a suitable parametrization, we verify that γ∗ : [0, h∗(p, q)]→
K H and h∗(γ∗(s), γ∗(t)) = |s − t | for any s, t ∈ [0, h∗(p, q)]. Thus there exists a
geodesic between p and q if p, q ∈ Um .
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Next assume that p ∈ U0 and q /∈ ∪m≥1Um . Then there exists ω = ω1ω2 . . . ∈ Σ
such that q = ∩m≥1 K H,ω1...ωm . Making use of induction, we obtain q1, q2, q3, . . .

satisfying that qm ∈ Bω1...ωm , γm+1|[0,h∗(p,qm )] = γm for any m ≥ 0, where γk

is a geodesic between p and qk . Set T = limm→∞ h∗(p, qm). By Lemma 5.6,
h∗(qm, qm+1) ≤ 2‖Tw‖d,J for some w ∈ Wm+1. Since the maximum eigenvalue
of Ti is 3/5, we see that ‖Tw‖d,J ≤ c(3/5)m , where c is independent ofw ∈ W∗. Thus
we see that h∗(qm, qm+1) ≤ 2c(3/5)m . Hence T is finite. Define γ∗ : [0, T ] by letting
γ∗|[0,h∗(p,qm )] = γm and γ∗(T ) = q. Then γ∗ is the geodesic between p and q, and
T = h∗(p, q). By the similar arguments, we can construct a geodesic between p and
q for any p, q ∈ K H .

By the above construction, a geodesic between p and q is a combination of { p̂i pi+1}
where {pi } ∈ ∪m≥0Um and pi , pi+1 ∈ Bw for some w. Therefore, by Theorem 5.4,
we have (5.1). ��
Definition 5.7 Define d∗(x, y) = h∗(Φ(x),Φ(y)) for any x, y ∈ K . d∗(·, ·) is called
the harmonic shortest path metric on the N -Sierpinski gasket.

Proposition 5.8 Define l(w) = ‖Tw‖HS for any w ∈ W∗. Then l is a gauge function
and is elliptic.

Proof By Lemma 2.9, we have
∑N

i=1 ‖Twi‖2
HS = N

N+2‖Tw‖2
HS. Hence we have (G1).

(G2) is immediately deduced from (3.4). Also (3.3) and(3.4) imply for l being elliptic.
��

Definition 5.9 We use S∗ to denote the scale induced by the gauge function l(·).
By the last proposition, S∗ is elliptic. Next, we define a pseudo-distance associated

with the scale S∗.

Definition 5.10 For x, y ∈ K , a sequence of words (w(1), . . . , w(m)) is called a
chain between x and y if and only if x ∈ Kw(1), Kw( j) ∩ Kw( j+1) 	= ∅ for any
j = 1, . . . ,m − 1 and y ∈ Kw(m). Define

DS∗(x, y) = inf

⎧

⎨

⎩

m
∑

j=1

‖Tw( j)‖HS

∣

∣

∣

∣

∣

∣

(w(1), . . . , w(m)) is a chain between x and y

⎫

⎬

⎭

for any x, y ∈ K .

Obviously, DS∗ is a pseudo-distance, i.e., DS∗(x, y)≥0, DS∗(x, x)=0, DS∗(x, y)=
DS∗(y, x) and DS∗(x, z) ≤ DS∗(x, y)+ DS∗(y, z).

The next theorem shows that DS∗ and d∗ are equivalent.

Theorem 5.11 There exist positive constants c1 and c2 such that

c1 DS∗(x, y) ≤ d∗(x, y) ≤ c2 DS∗(x, y) (5.9)

for any x, y ∈ K . In particular, DS∗(·, ·) is a distance on K . Moreover, d∗(·, ·) and
DS∗(·, ·) are adapted to the scale S∗.
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We write D∗(·, ·) = DS∗(·, ·).

Proof Since ‖ · ‖HS and ‖ · ‖d,J is equivalent, (5.7) implies that there exist positive
constants c3 and c4 such that

c1‖Tw‖HS ≤ �( p̂q) ≤ c2‖Tw‖HS, (5.10)

for any w ∈ W∗ and any p, q ∈ Bw with p 	= q. Let x, y ∈ K . Set p = Φ(x) and
q = Φ(y). Let γ∗ be the geodesic between p and q. First we assume that p, q ∈ Um

for some m ≥ 0. Then there exist w(1), . . . , w(k) ∈ Wm and q0, . . . , qk ∈ Um

such that q0 = p, qk = q, qi , qi+1 ∈ Bw(i+1) for i = 0, . . . , k − 1 and γ∗ =
q̂0q1 ∪ . . . ∪ q̂k−1qk . Since (w(i))ki=1 is a chain between x and y, (5.10) implies that

c1 D∗(x, y) ≤ c1
∑k

i=1 ‖Tw‖HS ≤ ∑k
i=1 �(q̂i−1qi ) = h∗(p, q) = d∗(x, y). Next let

(w(i))ki=1 be a chain between x and y. We may assume that Kw(i) ∩ Kw(i+1) is a
finite set for any i . Then K H,w(i) ∩ K H,w(i+1) = Bw(i) ∩ Bw(i+1) for any i . Choose
qi ∈ Bw(i) ∩ Bw(i+1) for any i = 1, . . . , k − 1. Also set q0 = p and qk = q. Then
h∗(p, q) ≤ ∑k

i=1 �(q̂i−1qi ) ≤ c2
∑k

i=1 ‖Tw(i)‖HS. This immediately implies that
d∗(x, y) ≤ c2 D∗(x, y). Therefore we obtain (5.9) for any x, y ∈ V∗.

For general x and y, we choose ω and τ which satisfy π(ω) = x and π(τ) =
y. Then there exist {xm}m≥1 and {ym}m≥0 such that xm ∈ Fω1...ωm (V0), and ym ∈
Fτ1...τm (V0). Using the same arguments as in the proof of Theorem 5.1, we obtain that
d∗(xm, xm+1) ≤ c(3/5)m and d∗(ym, ym+1) ≤ c(3/5)m . Therefore, d∗(xm, ym) →
d(x, y) as m → ∞. Also D∗(x, xm) ≤ ‖Tω1...ωm ‖HS and D∗(y, ym) ≤ ‖Tτ1...τm ‖HS.
Hence D∗(xm, ym) → D∗(x, y) as m → ∞. Thus (5.9) holds for any x, y ∈ K .

Now we show that d∗ and D∗ are adapted to S∗. Let y /∈ Us(x). If γ∗ is a geodesic
between p = Φ(x) and q = Φ(y), then there existw ∈ Λs and q1, q2 ∈ Bw with q1 	=
q2 such that γ∗ ∩ K H,w = q̂1q2. Hence d∗(x, y) = h∗(p, q) ≥ �(q̂1q2) ≥ c1‖Tw‖HS.
Therefore there exists c3 > 0 such that d∗(x, y) ≥ c3s. This immediately implies that
Bc3s(x, d∗) ⊆ Us(x). On the other hand, if y ∈ Us(x), then there exists c4 > 0 such
that D∗(x, y) ≤ c4s. Therefore, Us(x) ⊆ Bc4s(x, D∗). By (5.9), it follows that d∗ and
D∗ are adapted to S∗. ��

Remark The harmonic shortest path metric d∗ is not equivalent to the so called “harmo-
nic metric” dH on K introduced in [8], which is defined by dH (x, y) = |Φ(x)−Φ(y)|.
In fact, let xn = (F1)

n(p2) and let yn = (F1)
n(p3). Then dH (xn, yn) = |(H1)

n(p2 −
p3)|. Since p2 − p3 is orthogonal to p1, we have dH (xn, yn) = 5−n|p2 − p3|. On the
other hand, ‖T(1)n ‖HS = √

(3/5)2n + 5−2n . Hence there exist positive constants α1
and α2 such that, for any n, α1(3/5)n ≤ d∗(xn, yn) ≤ α2(3/5)n .

6 Gaussian heat kernel estimate

In this section, we will show the Li–Yau type Gaussian estimate of the heat kernel
pν(t, x, y) using the geodesic distance d∗. As we mentioned in the introduction, such
an estimate holds for the heat kernels on a class of the Riemannian manifolds.
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First we establish the continuity of the heat kernel. The next theorem is the repetition
of Theorem 2.6. As we mentioned after Theorem 2.6, we only need to prove the
existence of jointly continuous hear kernel.

Theorem 6.1 If µ is a Borel regular probability measure on K which satisfies that
µ(O) > 0 for any non-empty open subset of K and that µ(F) = 0 for any finite set
F, then (E,F) is a local regular Dirichlet form on L2(K , µ) and the corresponding
diffusion process possesses a jointly continuous heat kernel pµ(t, x, y).

Proof Let g(x, y) be Green’s function associated with (E,F0), where F0 = {u|u ∈
F , u|V0 = 0}. (See [9, Sect. 3.8] for the existence and the continuity of Green’s func-
tion.) Since the non-negative self-adjoint operator HD associated with the quadratic
form (E,F0) on L2(K , µ) has compact resolvent, there exist a complete orthonormal
system of L2(K , µ), {ϕD

n }n≥1, and {λD
n }n≥1 such that ϕD

n ∈ F0, HDϕ
D
n = λD

n ϕ
D
n and

0 < λD
n ≤ λD

n+1 for any n ≥ 1. Let gx (y) = g(x, y) for any x, y ∈ K . Then gx ∈ F0
and E(gx , u) = u(x) for any u ∈ F0. Note that Green’s function is the integral kernel
of H−1

D . Hence

∫

K

gx (y)ϕD
n (y)µ(dy) = ϕD

n (x)

λD
n

This shows that gx =∑n≥1
ϕD

n (x)
λD

n
ϕn , where the infinite sum converges in L2(K , µ).

This implies

g(x, x) = E(gx , gx ) =
∑

n≥1

(

ϕD
n (x)

)2

λD
n

.

Integrating this, we obtain
∑

n≥1

1

λD
n
< +∞. (6.1)

Since the non-negative self-adjoint operator H associated with the closed form (E,F)
on L2(K , µ) has compact resolvent, there exist a complete orthonormal system of
L2(K , µ), {ϕn}n≥1, and {λn}n≥1 such that ϕn ∈ F , Hϕn = λnϕn and 0 ≤ λn ≤ λn+1
for any n. Also, we see that ϕ1 ≡ 1, λ1 = 0 and λn > 0 for any n ≥ 2. By
[9, Theorem 4.1.7], it follows that λD

n − N ≤ λn ≤ λD
n . This along with (6.1) shows

that
∑

n≥2

1

λn
< +∞. (6.2)

Now, since (E,F) is a resistance form,

|ϕn(x)− ϕn(y)|2 ≤ R(x, y)E(ϕn, ϕn) = R(x, y)λn

for any x, y ∈ K . Since
∫

K ϕndµ = 0 for n ≥ 2, ϕn is continuous and K is arcwise
connected, there exists p ∈ K such that ϕn(p) = 0. Hence, |ϕn(x)|2 ≤ R(x, p)λn for
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any x ∈ K and any n ≥ 2. Therefore,

‖ϕn‖2∞ ≤ Cλn (6.3)

for any n ≥ 2, where C = supx,y∈K R(x, y) < +∞. On the other hand, for any
T > 0, there exists cT > 0 such that e−λn t ≤ cT /(λn)

2 for any t ∈ [T,∞) and
any n ≥ 2. Combining this and (6.3), we see that |e−λn tϕn(x)ϕn(y)| ≤ CcT /λn for
any x, y ∈ K and any n ≥ 2. By (6.2), the sum

∑

n≥1 e−λn tϕn(x)ϕn(y) converges
uniformly on (t, x, y) ∈ [T,∞)× K × K . Hence if

pµ(t, x, y) =
∑

n≥1

e−λn tϕn(x)ϕn(y),

then pµ(t, x, y) is continuous on (0,∞)× K × K . It is easy to see that pµ(t, x, y)
is the heat kernel. ��
Remark The essence of the above proof is that (E,F) is the resistance form and that the
associated self-adjoint operator has compact resolvent. Therefore, Theorem 6.1 is true
for Dirichlet forms derived from a regular harmonic structure on a post critical finite
self-similar set. See [9] on the post critically finite self-similar sets. Moreover, with
proper (technical) assumptions, it is even true for a resistance form on a general set.

The second step to the heat kernel estimate is the volume doubling property. Recall
that the Kusuoka measure ν has the volume doubling property with respect to the
Euclidean distance, which is, unfortunately, not the right one to describe the behavior
of the heat kernel.

Theorem 6.2 The Kusuoka measure ν has the volume doubling property with respect
to the harmonic shortest path metric d∗.

Proof Let w(1), w(2) ∈ Wm with w(1) 	= w(2) and Kw(1) ∩ Kw(2) 	= ∅. Then, there
exist n ≥ 0, i, j ∈ S and w ∈ W∗ such that w(1) = wi( j)n and w(2) = w j (i)n .
Hence by the arguments in the proof of Lemma 3.5, ‖Tw(1)‖HS ≤ c‖Tw(2)‖HS, where
c is a constance which is independent of w(1), w(2) and m. This implies that S∗ is
gentle with respect to S0. Using [5, Theorem 1.4.3], we obtain that ν is gentle with
respect to S∗. Note that d∗ is adapted to S∗ by Theorem 5.11. As ν is elliptic, S∗ is
locally finite and ν is gentle with respect to S∗, ν has the volume doubling property
with respect to d∗ by Theorem 3.8. ��

Finally we are ready to show the Li–Yau type Gaussian estimate of the heat kernel
pν(t, x, y) associated with the Dirichlet form (E,F) on L2(K , ν).

Theorem 6.3 There exist positive constants c1, c2, c3 and c4 such that

c1

ν(B√
t (x, d∗))

exp

(

−c2
d∗(x, y)2

t

)

≤ pν(t, x, y)

≤ c3

ν(B√
t (x, d∗))

exp

(

−c4
d∗(x, y)2

t

)

for any t ∈ (0, 1] and any x ∈ K .
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Proof Since we are in the recurrent case, [5, Proposition 3.3.1] ensures all the pre-
requisites of [5, Theorem 3.2.3]. By Theorem 6.2, we have the condition (b) in the
statement of [5, Theorem 3.2.3], which immediately deduces the desired heat kernel
estimate. ��
Remark In [14], Metz and Strum have obtained the following weak upper Gaussian
estimate of the averaged heat kernel:

1

ν(A)ν(B)

∫

A

∫

B

pν(t, x, y)ν(dx)ν(dy)

≤ 1√
ν(A)ν(B)

exp

(

−c2
infx∈A,y∈B |Φ(x)−Φ(y)|2

t

)

for any compact sets A and B with ν(A), ν(B) > 0. Note that they have used the
Euclidean distance on the harmonic Sierpinski gasket called the harmonic metric,
which is not equivalent to the harmonic shortest path distance d∗. Recall the remark
at the end of Sect. 5.
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