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Abstract We study the tangent space at a monomial point M in the Hilbert scheme
that parameterizes all ideals with the same Hilbert function as M over an exterior
algebra.
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1 Introduction

Throughout the paper k stands for an infinite field. Let E be the exterior algebra over
k with basis x1, . . . , xn .

In [9] we showed that the Hilbert scheme, that parameterizes all ideals with a fixed
Hilbert function over E, is connected.Now, we introduce the notion of flips and show
in Theorem 2.6 that the basic flips form a basis of the tangent space at a monomial
point in the Hilbert scheme. We have proved that the same property holds for toric
Hilbert schemes [10, Corollary 5.2].

Flips over polynomial rings were studied in [1]. Our results and proofs are com-
pletely different because it turns out that flips have different properties over exterior
algebras than over polynomial rings. Some of the differences are listed below:

1. Over an exterior algebra, Theorem 3.4 says that the tangent space at a monomial
point in the Hilbert scheme has a basis consisting of directions tangent to defor-
mations built using Gröbner basis. Such a nice structure of the tangent space is
surprising since it does not hold in the polynomial case.

2. The underlying reason for (1) is: over an exterior algebra, Theorem 3.3 yields
that flips can be described either using Gröbner basis theory (3.1) or using
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homomorphisms (2.3). Example 3.6 shows that in the polynomial case there are
flip homomorphisms that do not come from Gröbner flips.

3. There are fewer flips in the exterior algebra case. A flip over a polynomial ring may
not be a flip over an exterior algebra. In Example 4.2 we give the striking example
that (cd) is a flip of (ab) over a polynomial ring, but it is not a flip over an exterior
algebra.

4. Over an exterior algebra, Theorem 2.6 says that the basic flips form a basis of the
tangent space at a monomial point in the Hilbert scheme. This property does not
hold in the polynomial case.

Thus, the properties of flips and the structure of the Hilbert scheme differ in the poly-
nomial and the exterior algebra cases. In Sect. 5, we present an example of the structure
of the Hilbert scheme over an exterior algebra on five variables.

Reeves and Stillman [11] proved that the lexicographic point is smooth on the
Hilbert scheme in the polynomial case. There is no lexicographic point on the toric
Hilbert scheme, but there is another distinguished point—the toric ideal; we proved in
[10] that the toric ideal is a smooth point on the toric Hilbert scheme. The following
problem is open:

Question Is the lexicographic point smooth on the Hilbert scheme over an exterior
algebra?

We make use of Gröbner basis theory over exterior algebras, cf. [2]. In Sects. 3 and
4 we study flips from the points of view of Gröbner basis theory and Combinatorics. In
Thoerem 4.4 we show that a monomial ideal (or its corresponding simplicial complex)
has a flip if and only if the ideal is not a power of the maximal ideal; the analogues
problem in the toric case “Find a criterion whether a given triangulation of the convex
hull of a set of n points in Nd \ 0 has a (toric) flip” is completely open.

2 Flips and tangent spaces

We use the following description of the tangent space:

Proposition 2.1 Let I be a graded ideal in E. The tangent space at the point I to the
Hilbert scheme is Hom(I, E/I )0.

Proof Let f1, . . . , fr be a minimal set of graded generators of I . Consider the ideal

Iε = ( f1 + εg1, . . . , fr + εgr )

where g1, . . . , gr are graded polynomials in E such that deg(gi ) = deg( fi ) for 1 ≤
i ≤ r , and ε is a parameter. Such an ideal Iε corresponds to an element in the tangent
space if and only if E[ε]/Iε is flat over k[ε]/ε2. We will study when E[ε]/Iε is flat
over k[ε]/ε2.

Since (ε) is the only nonzero graded ideal in k[ε]/ε2, we have that E[ε]/Iε is flat
over k[ε]/ε2 if and only if TorA

1 (k[ε]/ε, E[ε]/Iε) vanishes. Let u1, . . . , ur be graded
polynomials in E and

∑
1≤i≤r fi ui = 0 be a graded syzygy. We need to check when
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the syzygy can be lifted, that is, when there exist graded polynomials h1, . . . , hr such
that u1 + εh1, . . . , ur + εhr yield the syzygy

∑

1≤i≤r

( fi + εgi )(ui + εhi ) = 0 .

We get that

∑

1≤i≤r

( fi + εgi )(ui + εhi ) =
∑

1≤i≤r

fi ui + ε

⎛

⎝
∑

1≤i≤r

fi hi +
∑

1≤i≤r

gi ui

⎞

⎠

+ε2

⎛

⎝
∑

1≤i≤r

gi hi

⎞

⎠

= ε

⎛

⎝
∑

1≤i≤r

fi hi + gi ui

⎞

⎠

vanishes if and only if
∑

1≤i≤r fi hi + gi ui = 0. Therefore, the desired h1, . . . , hr

exist if and only if
∑

1≤i≤r gi ui ∈ I .
We showed that TorA

1 (k[ε]/ε, E[ε]/Iε) vanishes if and only if
∑

1≤i≤r gi ui ∈ I
for every choice of graded polynomials u1, . . . , ur such that

∑
1≤i≤r fi ui = 0 is a

graded syzygy, if and only if the map

ϕ : I −→ E/I

fi �−→ gi for 1 ≤ i ≤ r

is a homomorphism in Hom(I, E/I )0. ��
The ring E is Nn-graded (or multigraded) so that for each 1 ≤ i ≤ n the multide-

gree of xi is the i’th standard vector. A monomial in the exterior algebra is a product
xi1 . . . xir with 1 ≤ i1 < · · · < ir ≤ n. For a monomial m denote by m its multidegree.

Throughout this section M stands for a monomial ideal generated by monomials
m1, . . . , mr .

Definition 2.2 Let M be a monomial ideal generated by monomials m1, . . . , mr . We
say that a non-trivial sequence s = {s1, . . . , sr } is a flip of M if the following conditions
(2.2.1), (2.2.2), and (2.3) are satisfied:

(2.2.1) for each i the element si is either zero or a ±monomial not in M .
(2.2.2) there exists a vector v such that mi − si = v for each i such that si �= 0.

(2.3) φ : M −→ E/M defined by φ(mi ) = si for each 1 ≤ i ≤ r is a homo-
morphism of (total) degree 0. (Here we think of the si ’s as monomials in
E/M .)

In this case we say that φ is a flip homomorphism. A flip homomorphism corresponds
to an element in the tangent space at M on the Hilbert scheme via the construction in
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the proof of Proposition 2.1. If we need to emphasize v, then we say that the sequence
s is a v-flip.

Example 2.4 Consider the exterior algebra A with basis a, b, c, d and the ideal M =
(ab, bc, acd). We have the flip homomorphisms φ1 and φ2 defined by

φ1(ab) = ad φ2(ab) = 0

φ1(bc) = 0 φ2(bc) = cd

φ1(acd) = 0 φ2(acd) = 0.

Their sum φ = φ1 + φ2 is defined by

φ(ab) = ad, φ(bc) = cd, φ(acd) = 0

and is a flip homomorphism as well. Thus, the flips are not linearly independent in the
tangent space at the point M on the Hilbert scheme.

Let s = {s1, . . . , sr } and s′ = {s′
1, . . . , s′

r } be different flips. We say that s > s′
if for each 1 ≤ i ≤ r we have that s′

i is either si or 0. Assume that the monomials
m1, . . . , mr are ordered by the degree-lex order so that m1 	 · · · 	 mr . We say that
a flip s is a basic flip if it is a minimal element among the flips and the first non-zero
si is a monomial (that is, its coefficient is 1 and not −1). Furthermore, we define the
support of a flip s to be supp(s) = { j | s j �= 0 }. Note that a basic v-flip has minimal
support among the v-flips.

The next result shows that the basic v-flips form a basis of the vector space spanned
by the v-flips:

Proposition 2.5

1. Every v-flip is a linear combination with coefficients ±1 of basic v-flips with disjoint
support.

2. If s and s′ are basic v-flips, then supp(s) ∩ supp(s′) = ∅. The basic v-flips are
linearly independent.

Proof 1. Let s = {s1, . . . , sr } be a non-minimal element among the v-flips. There
exists a smaller v-flip s′ = {s′

1, . . . , s′
r }. Set s′′ = s − s′. Thus,

s′′
i =

{
si if si �= s′

i , (i.e. s′
i = 0)

0 otherwise.

Clearly, s′′ satisfies (2.2.1) and (2.2.2). It also satisfies (2.3) because φ′′ = φ − φ′ is a
homomorphism. Now, we have that s = s′ +s′′ is a sum of v-flips. Since both v-flips s′
and s′′ are smaller than s, we can assume by induction hypothesis that the proposition
holds for them. Note that supp(s′) ∩ supp(s′′) = ∅. Therefore, the proposition holds
for s.
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2. Set T = { i | si = s′
i �= 0 }. Define a sequence s′′ by

s′′
i =

{
si if si = s′

i �= 0, (i.e. i ∈ T )

0 otherwise.

We will show that s′′ is a v-flip. Clearly, s′′ satisfies (2.2.1) and (2.2.2). We have to
check that (2.3) holds. Let u p, uq be ± monomials such that uqm p − u pmq = 0 is
a graded syzygy. We have to check that φ′′(uqm p − u pmq) = 0 in E/M . Thus, we
have to show that uqs′′

p − u ps′′
q ∈ M .

If p, q ∈ T , then uqs′′
p−u ps′′

q = uqsp−u psq ∈ M . If p, q /∈ T , then uqs′′
p−u ps′′

q =
0 ∈ M . Suppose that p ∈ T and q /∈ T . If sq = 0, then uqs′′

p −u ps′′
q = uqsp −u psq ∈

M . If s′
q = 0, then uqs′′

p −u ps′′
q = uqs′

p −u ps′
q ∈ M . Suppose that sq �= 0 and s′

q �= 0.
By (2.2.2) it follows that sq = −s′

q �= 0 and char(k) �= 2. Then

2(uqs′′
p − u ps′′

q ) = 2uqsp = 2uqsp − u psq + u psq = 2uqsp − u psq − u ps′
q

= (uqsp − u psq) + (uqs′
p − u ps′

q) ∈ M.

Thus, s′′ is a v-flip. Since s and s′ are basic v-flips, and s′′ is a smaller v-flip, it follows
that T = ∅.

Set P = { i | si = −s′
i �= 0 }. Define a sequence s̃ by

s̃i =
{

si if si = −s′
i �= 0, (i.e. i ∈ P)

0 otherwise.

We will show that s̃ is a v-flip. Clearly, s̃ satisfies (2.2.1) and (2.2.2). We have to check
that (2.3) holds. Let u p, uq be ± monomials such that uqm p − u pmq = 0 is a graded
syzygy. We have to check that φ̃(uqm p −u pmq) = 0 in E/M . Thus, we have to show
that uq s̃p − u ps̃q ∈ M .

If p, q ∈ P , then uq s̃p−u ps̃q = uqsp−u psq ∈ M . If p, q /∈ P , then uq s̃p−u ps̃q =
0 ∈ M . Suppose that p ∈ P and q /∈ P . If sq = 0, then uq s̃p −u ps̃q = uqsp −u psq ∈
M . If s′

q = 0, then uq s̃p − u ps̃q = −uqs′
p + u ps′

q ∈ M . Suppose that sq �= 0 and
s′

q �= 0. By (2.2.2) it follows that sq = s′
q �= 0 contradicting to T = ∅.

Thus, s̃ is a v-flip. Since s and s′ are basic v-flips, and s̃ is a smaller v-flip, it follows
that P = ∅.

As both T = ∅ and P = ∅, the desired property supp(s) ∩ supp(s′) = ∅ holds. ��
Theorem 2.6 Let M be a monomial ideal. The basic flips form a basis of the tangent
space at the point M on the Hilbert scheme.

Note that in the toric case, considered in [8,10], all flips are basic flips. Thus,
Theorem 2.6 is the analogue of Corollary 5.2 in [10], which shows that the (toric) flips
form a basis of the tangent space at a monomial point on the toric Hilbert scheme.

Proof We will show that the flips span the tangent space Hom(M, E/M)0. Let M be
generated by monomials m1, . . . , mr . We will show that every element in
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Hom(M, E/M)0 is a sum of flips. Since Hom(M, E/M)0 is multigraded, it suffices
to show that if φ is a homomorphism of multidegree −v, then it is a sum of v-flips.
For each 1 ≤ i ≤ r , denote by si the standard monomial of degree m̄i −v (if it exists),
or if no such standard monomial exists then set si = 0. Therefore, φ(mi ) = αi si for
some αi ∈ k. We will show that

1. some of the coefficients αi vanish
2. some of the coefficients αi can take any value
3. the remaining coefficients can be arranged in sets, so that the coefficients in each

set are equal up to sign and the signs are uniquely determined. We call such a set
an e-set.

Let u p, uq be ± monomials or zero, and let p > q. We say that u p, uq is a syzygy
pair if uqm p − u pmq = 0 is a graded syzygy of M . Note that φ is a homomorphism
if and only if for every syzygy pair u p, uq we have

uqφ(m p) − u pφ(mq) = uqαpsp − u pαqsq ∈ M .

This property holds if and only if the following conditions are satisfied:

(i) Suppose that uqsp = ± u psq /∈ M . Then αp = ± αq and the sign is uniquely
determined.

(ii) Suppose that (i) does not hold. If u psq /∈ M then αq = 0. If u psq ∈ M then αq

can take any value. If uqsp /∈ M then αp = 0. If uqsp ∈ M then αp can take
any value.

Therefore, the coefficients αi satisfy (1), (2), and (3). Hence the vector space
Hom(M, E/M)−v ∼= { (α1, . . . , αr ) ∈ kr | φ is a homomorphism } is spanned by all
the tuples (α1, . . . , αr ) of one of the following two types:

(a) Choose a coefficient αi that can take any value by (ii). Set αi = 1 and set all other
α’s to be zero.

(b) Fix an e-set. Set one coefficient in this e-set to be 1. Then the α’s in this e-set are
±1 and are uniquely determined by (i). Set all other α’s to be zero.

Note that a homomorphism φ ∈ Hom(M, E/M)−v is a v-flip if an only if each αi is
±1 or 0. Therefore, each homomorphism obtained by (a) or (b) is a v-flip. We have
shown that Hom(M, E/M)−v is spanned by the v-flips.

By Proposition 2.5, it follows that the basic flips form a basis of Hom(M, E/M)0.
��

Example 2.7 We illustrate how Theorem 2.6 works in a simple example. Consider
the exterior algebra A with basis a, b, c, d and the ideal L = (ab, ac, ad). If φ ∈
Hom(L , A/L)0, then there exist coefficients β j ∈ k such that

φ(ab) = β1bd + β2cd + β3bc

φ(ac) = β4bd + β5cd + β6bc

φ(ad) = β7bd + β8cd + β9bc .
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Flips and the Hilbert scheme over an exterior algebra 551

The syzygies aab = 0, aac = 0, and aad = 0 yield no conditions on the coefficients.
The syzygy bab = 0 yields β2 = 0. The syzygy cac = 0 yields β4 = 0. The syzygy
dad = 0 yields β9 = 0.

Furthermore, the syzygy bac+cab = 0 yields β1 = β5. The syzygy bad+dab = 0
yields β3 = −β8. The syzygy cad +dac = 0 yields β6 = β7. Thus, the tangent space
is defined by the linear equations:

β2 = 0, β4 = 0, β9 = 0, β1 − β5 = 0, β6 − β7 = 0, β3 + β8 = 0 .

Set γ = β1 = β5, ν = β3 = −β8, and µ = β6 = β7. We get that

φ(ab) = γ bd + νbc
φ(ac) = γ cd + µbc
φ(ad) = µbd − νcd

Choosing γ = 1, ν = µ = 0, we obtain the flip φ1 defined by φ1(ab) = bd,

φ1(ac) = cd , φ1(ad) = 0. Choosing ν = 1, γ = µ = 0, we obtain the flip φ2
defined by φ2(ab) = bc , φ2(ac) = 0 , φ2(ad) = −cd. Choosing µ = 1, ν = γ = 0,
we obtain the flip φ3 defined by φ3(ab) = 0 , φ3(ac) = bc , φ3(ad) = bd.

Thus, φ = γφ1 + νφ2 + µφ3 is a linear combination of basic flips.
The tangent space at L has a basis consisting of the flips corresponding toφ1, φ2, φ3.

In particular, the tangent space is three dimensional. ��

3 Flips from the point of view of Gröbner basis theory

We use the notation introduced in the previous section.

Definition Let s = {s1, . . . , sr } be a sequence that satisfies conditions (2.2.1) and
(2.2.2). Consider the binomial ideal

J = (
mi − si | 1 ≤ i ≤ r

)
.

We say that J is a Gröbner flip if the following property holds:

(3.1) J is graded (by total degree) and M is an initial ideal of J .

Lemma 3.2 Let s = {s1, . . . , sr } be a sequence that satisfies conditions (2.2.1) and
(2.2.2). Let u p, uq be ± monomials such that uqm p − u pmq = 0 is a graded syzygy.

1. If sq �= 0 and sp �= 0, then uqsp = ± u psq .
2. If uqsp �= u psq and s satisfies either (2.3) or (3.1), then uqsp, u psq ∈ M.

Proof First, we will show that if one of sp and sq vanishes, uqsp �= u psq , and s sat-
isfies either (2.3) or (3.1), then uqsp, u psq ∈ M. By symmetry, we may assume that
sq = 0. If (2.3) holds, then φ(0) = φ(uqm p − u pmq) = uqsp ∈ M. If (3.1) holds,
then uq(m p − sp) − u p(mq − sq) = −uqsp ∈ J , so uqsp is in the initial ideal M .
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For the rest of the proof, suppose that sq �= 0 and sp �= 0.
1. We will prove that uqsp = ±u psq . Since uqm p −u pmq = 0, we get uq +m p =

u p + mq , so uq − u p = mq − m p. By (2.2.2) we have that mq − sq = m p − s p.
Therefore, mq − m p = sq − s p. Hence,

uq − u p = mq − m p = sq − s p.

We conclude that uq + s p = u p + sq . Therefore, uqsp = ± u psq .
2. Now, suppose that uqsp = −u psq �= 0 and {s1, . . . , sr } satisfy either (2.3) or

(3.1). Since uqsp �= u psq by assumption, it follows that char(k) �= 2.
First, assume that (2.3) holds. In this case,

φ(0) = φ(uqm p − u pmq) = uqsp − u psq = 2uqsp ∈ M.

Therefore, uqsp = −u psq ∈ M as desired.
Now, assume that (3.1) holds. We have that

uq(m p − sp) − u p(mq − sq) = −uqsp + u psq ∈ J ,

so its initial term is in the initial ideal M . It follows that uqsp = −u psq ∈ M as
desired. ��
Theorem 3.3 Let M be a monomial ideal generated by monomials m1, . . . , mr . Let
s = {s1, . . . , sr } be a sequence of zeros and ± monomials not in M. Consider the bino-
mial ideal J = (

mi − si | 1 ≤ i ≤ r
)

and φ : M −→ E/M defined by φ(mi ) = si

for each i . The ideal J is a Gröbner flip if and only if φ is a flip homomorphism.

Proof First, we assume that J is a Gröbner flip and we will prove that φ is a well-
defined homomorphism. For every ±monomials u p, uq such that uqm p−u pmq = 0 is
a graded syzygy we have that φ(uqm p −u pmq) = uqsp −u psq ∈ M by Lemma 3.2. It
follows that φ ∈ Hom(M, E/M)0. Conditions (2.2.1) and (2.2.2) are clearly satisfied.
Therefore, φ is a flip homomorphism.

Now, we assume that φ is a flip homomorphism and we will prove that J is a
Gröbner flip. Properties (2.2.1) and (2.2.2) hold. Let v be the vector considered in
(2.2.2). We have to prove (3.1). Choose a vector w such that v · w > 0. Moreover,
since for each i the monomials mi and si have the same total degree, it follows that
we can choose the vector w with strictly positive integer coordinates. Consider the
weight order ≺w defined by w. Then, for each i we have in≺w(mi − si ) = mi . Hence,
M ⊆ in≺w(J ). We will show that

{
mi − si | 1 ≤ i ≤ r

}
is a Gröbner basis of J . For

every ±monomials u p, uq such that uqm p − u pmq = 0 is a graded syzygy we have
that the following holds. By Lemma 3.2 it follows that

uq(m p − sp) − u p(mq − sq) = −uqsp + u psq

either vanishes, or is equal to a multiple of uqsp if sp �= 0, or is equal to a multiple
of u psq if sq �= 0. By symmetry, we can assume that uq(m p − sp) − u p(mq − sq)
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is a multiple of uqsp and sp �= 0. We want to show that uqsp reduces to zero. By
Lemma 3.2, we have that uqsp ∈ M . Let mt divide uqsp.

We will show that st = 0, so uqsp reduces to zero as desired. Suppose that st �= 0.
Then, by (2.3) we have that v = mt − st = m p − s p. Set m = ∏

{ j |v j >0} x
v j
j . Since

m divides mt , it follows that m divides uqsp. However, gcd(m, sp) = 1. Hence, m

divides uq . Note that uq = mq

gcd(mq , m p)
. As m divides both uq and m p, it follows

that m2 divides mq . This contradicts the fact that mq �= 0. Therefore, st = 0. ��
Set Ẽ = E ⊗ k[t]. Let M̃ be an ideal in Ẽ such that Ẽ/M̃ is flat as a k[t]-module.

For α ∈ k, the quotient Ẽ/M̃ ⊗(k[t]/(t −α)) is denoted (Ẽ/M̃)α and is called the fiber
over α. For any α, β ∈ k we say that the fibers (Ẽ/M̃)α and (Ẽ/M̃)β are connected
by a deformation over A1

k . Two ideals M and M ′ in E are connected by a sequence of
deformations over A1

k if E/M and E/M ′ are connected by a sequence of deformations
over A1

k . Initial ideals and Gröbner basis theory can be used to built deformations, cf.
[4, Sect. 15]. An immediate corollary of Theorems 2.6 and 3.3 is the following result:

Theorem 3.4 The tangent space at a monomial point in the Hilbert scheme (over an
exterior algebra) has a basis consisting of directions tangent to deformations built
using Gröbner basis.

It should be noted that unfortunately this result does not hold over polynomial rings.

Example 3.5 Consider the exterior algebra A with basis a, b, c, d and the ideal L =
(ab, ac, ad) from Example 2.7. The sequence {bc, 0,−cd} is a flip because L is the
initial ideal of the binomial ideal (ab − bc, ac, ad + cd) with respect to the lexico-
graphic order. We have the flip homomorphism φ defined by

φ(ab) = bc , φ(ac) = 0 , φ(ad) = −cd.

Example 3.6 The definitions of a flip homomorphism and a Gröbner flip can be intro-
duced over a polynomial ring (over k) along the lines of [1]. We remark that the same
proof as in Theorem 3.3 shows (in the polynomial ring case) that if J is a Gröbner
flip, then φ is a flip homomorphism. However, there is a simple example that the
property in Theorem 3.3 does not hold in a polynomial ring if we do not require that
the monomials m1, . . . , mr are square-free. Let S be the polynomial ring k[x, y, z]
and M = (xy2, y4). Consider φ defined by φ(xy2) = xz2 and φ(y4) = 0. This is a
well-defined homomorphism because there is only one minimal syzygy on the gen-
erators, and we have that φ(y2xy2 − xy4) = y2xz2 − 0 = xy2z2 vanishes in S/M .
Now, consider the binomial ideal J = (xy2 − xz2, y4). Let ≺ be a monomial order
such that in≺(xy2 − xz2) = xy2. Considering the s-pair xy2 − xz2, y4 we get

y2(xy2 − xz2) − xy4 + z2(xy2 − xz2) = −xz4 ∈ J ,

but xz4 /∈ M . Thus, M is not an initial ideal of J . In this case, the homomorphism flip
φ does not come from a Gröbner flip. ��
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Theorem 3.7 Let J = (
mi − si | 1 ≤ i ≤ r

)
be a Gröbner flip. Fix a monomial

order ≺ such that si 	 mi for each i with si �= 0. Denote by Mflip the initial ideal
of J with respect to this order. There exist only two monomial ideals that are initial
ideals of J , and these two initial ideals are M and Mflip. The ideal J has a universal
Gröbner basis consisting of {mi − si | 1 ≤ i ≤ r and si �= 0} and some monomials.

Proof Let T be the set of all vectors w such that w · v > 0, and let P be the set of all
vectors w′ such that w′ · v < 0.

Let w ∈ T . With respect to the order defined by the weight vector w we have that
the set { mi − si | 1 ≤ i ≤ r } is a Gröbner basis since M is the initial ideal by (3.1).

Let w′ ∈ P . Consider the order defined by the weight vector w′. We will show that
every new element produced by the Buchberger algorithm is a monomial. First, note
that if an s-pair consists of a monomial and a binomial, and if the reduction set consists
of monomials and binomials, then the remainder is either zero or a (scalar multiple
of a) monomial. Now consider an s-pair that consists of two binomials m p − sp and
mq − sq ; let uqsp − u psq be the graded syzygy for this s-pair. We would like to apply
Lemma 3.2. Set m′

i = si for each i such that si �= 0, and set m′
i = mi for each i such

that si = 0. Let M ′ be the monomial ideal generated by m′
1, . . . , m′

r . Furthermore, set
s′

i = mi for each i such that si �= 0, and set s′
i = 0 for each i such that si = 0. We can

apply Lemma 3.2 to the set {s′
1, . . . , s′

r } since this set satisfies (2.2.1) and (2.2.2) for
the monomials {m′

1, . . . , m′
r }. Now,

uq(m p − sp) − u p(mq − sq) = uq(s′
p − m′

p) − u p(s
′
q − m′

q)

either vanishes or is ±2u pm′
q by Lemma 3.2(1); when we reduse this using the reduc-

tion set of monomials and binomials we get a remainder that is either zero or a (scalar
multiple of a) monomial. Thus, every new element produced by the Buchberger algo-
rithm is a monomial. Therefore, the initial ideal of J is the same with respect to every
weight vector in P . Furthermore, the Gröbner basis has the desired form.

We showed that M and Mflip are all the initial ideals of J , and that J has a universal
Gröbner basis of the desired form. ��
Remark 3.8 In [9] we prove that the Hilbert scheme, that parameterizes all ideals
with a fixed Hilbert function over E , is connected. The binomial ideals used in our
constructions are Gröbner flips. ��

4 Flips from a combinatorial point of view

In this section we consider flips as operations on simplicial complexes via the
Stanley–Reisner theory. We use the notation introduced in the previous sections. Let
M be a monomial ideal generated by monomials m1, . . . , mr . Let s = {s1, . . . , sr } be
a flip. Consider the binomial ideal J = (

mi − si | 1 ≤ i ≤ r
)

which is a Gröbner flip.
Fix a monomial order ≺ such that si 	 mi for each i with si �= 0. Denote by Mflip the
initial ideal of J with respect to this order. We say that the monomial ideal Mflip is a
flip of M . Let � and �flip be the corresponding Stanley–Reisner simplicial complexes
of the ideals M and Mflip. We say that �flip is a flip of �.
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Example 4.1 Consider the exterior algebra A with basis a, b, c, d and the ideal M =
(abc). The corresponding Stanley–Reisner simplicial complex� is obtained by remov-
ing the triangle abc from the tetrahedra on vertices a, b, c, d. Any simplicial complex
obtained from this tetrahedra by removing one triangle is a flip of �. Other examples
of flips are given in Examples 2.4 and 3.5. ��
Example 4.2 A similar concept is introduced in [1], but Altmann and Sturmfels work
over a polynomial ring. Their definition of a flip is different: a flip by the definition
in [1] may not be a flip according to our definition. We present a simple example. It
is well known that two square-free monomial ideals have the same Hilbert function
over the exterior algebra A on n variables x1, . . . , xn if and only if they have the same
Hilbert function over the polynomial ring B = k[x1, . . . .xn]. However, we will show
that the flips over A and over B do not coincide for a square-free monomial ideal.
Let � be a simplicial complex on n vertices, and I� be its Stanley–Reisner monomial
ideal. By (2.3), it follows that if {s1, . . . , sr } is a flip over A, then {|s1|, . . . , |sr |} is a
flip over B (here, | · | means that we remove the sign). However, a flip over B may not
lead to a flip over A. For example, if I� = (ab), then cd is a flip over B, but it is not a
flip over A. The point is that a monomial ideal has some new minimal syzygies over
the exterior algebra in addition to the minimal syzygies over a polynomial ring. ��
Proposition 4.3 Let � be a simplicial complex with Stanley–Reisner monomial ideal
M. Let Mflip be a flip of M. The ideal M is a flip of Mflip; equivalently, � is a flip of
�flip.

Proof After renumbering if necessary, we can assume that si �= 0 for 1 ≤ i ≤ q and
si = 0 for q < i ≤ r . Apply Theorem 3.7: let tq+1 = mq+1, . . . , tr = mr , tr+1, . . . , tp

be monomials such that

{ mi − si | 1 ≤ i ≤ q } ∪ { tq+1, . . . , tp }

is a universal Gröbner basis of J . It follows that M = (m1, . . . , mq , tq+1, . . . , tp) and
Mflip = (s1, . . . , sq , tq+1, . . . , tp) are the two initial ideals of J . Conditions (2.2.1)
and (2.2.2) are clearly satisfied. Hence, M is a flip of Mflip. ��

Theorem 2.6 leads to Theorem 4.4 which provides a criterion on which simplicial
complexes are flippable. The analogues problem in the toric case “Find a criterion
whether a given triangulation of the convex hull of a set of n points in Nd \ 0 has
a (toric) flip” is completely open; in particular, the problem is open for unimodular
triangulations.

Theorem 4.4 Let M be a monomial ideal. It has a flip if and only if M is not a power
of the maximal ideal (x1, . . . , xn).

Proof By Theorem 2.6 it follows that M does not have a non-trivial flip if and only if
M is an isolated point on the Hilbert scheme. By [9], the Hilbert scheme is connected.
Therefore, M does not have a non-trivial flip if and only if M is the only point on the
Hilbert scheme.
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If M is a power of the maximal ideal (x1, . . . , xn), then clearly M is the only point
on the Hilbert scheme.

Suppose that M is the only point on the Hilbert scheme. Let p be the minimal
degree in which M has a minimal monomial generator. Changing coordinates and
then taking initial ideal, we obtain a monomial ideal with the same Hilbert function,
so it has to coincide with M . It follows that M contains any monomial of degree p.
Hence M = (x1, . . . , xn)p. ��

The following result is a corollary of our proof in [9].

Theorem 4.5 Every two simplicial complexes with the same f -vector (equivalently,
the corresponding Stanley–Reisner monomial ideals have the same Hilbert function)

are connected by a sequence of flips and algebraic shiftings.

In the spirit of the Baues conjecture, one could consider the question whether every
two simplicial complexes with the same f -vector are connected by a sequence of flips.

Example 4.6 Consider the exterior algebra A with basis a, b, c, d. The ideals (ac) and
(bd) are not connected by a flip by Remark 4.2. However, they are connected by the
following sequence of two flips: (ab) is a flip of (ac), and (bd) is a flip of (ab). ��.

In view of Theorem 4.5, the question whether every two simplicial complexes with
the same f -vector are connected by a sequence of flips comes to:

Question 4.7 Is it true that every monomial ideal is connected by a sequence of flips
to its generic initial ideal (with respect to a fixed order)?

5 An example

In this section we present an example computed using the computer algebra system
Macaulay 2 [7]. We plan to write an expository paper which will include the techniques
used in these computations, as well as other examples.

Let A be the exterior algebra over an infinite field k on letters a, b, c, d, e. We con-
sider the Hilbert scheme H parametrizing all ideals of A with the same Hilbert function
as a generic quadric. This Hilbert function is 1, 5, 9, 5, 0. There are 210 monomial
ideals on H. Up to S5-action, there are only four monomial ideals:

L = (ab, acd, ace, bcde)

B = (ab, acd, bcd)

C = (ab, acd, bce)

D = (ab, acd, cde).

The ideal L is lexicographic, B is Borel-fixed, the orbits of C and D contain no
Borel-fixed ideals. There are 60 ideals in each of the orbits of L , C , and D. There are
30 ideals in the orbit of B. Each of the ideals L , C , D has a 16 dimensional tangent
space, and B has a 17 dimensional tangent space. So each of L , C , D has 16 basic
flips, and B has 17 basic flips.
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The Hilbert scheme H has two components X1 and X2, of dimensions dimX1 = 16,
and dimX2 = 9. Both X1 and X2 are smooth and rational, and the intersection X1 ∩ X2
has dimension 8.

Every ideal on X2 which is not on the intersection X1 ∩ X2 is generated by a
quadric which is not a product of linear forms. In particular, the general element of
X2 is generated by such a quadric. It follows that any monomial ideal on X2 is in the
intersection X1 ∩ X2.

The ideals L , C, D are smooth points on H, which lie on X1, but not on X2. Thus,
there are 180 smooth monomial ideals on X1, not on X2.

The ideal B is on the intersection X1 ∩ X2. Thus, there are 30 monomial ideals on
X1 ∩ X2.

The ideal B has 5 basic flips which lie in X1 ∩ X2, and 12 basic flips which do not
lie on X2. Each of L , C, D has 2 basic flips which lie in X1 ∩ X2, and 14 basic flips
which do not lie on X2.

In each of the orbits of L , C, D, we have that every two monomial ideals in the
orbit are connected by a sequence of flips. This property does not hold for the orbit of
B. The ideals in this orbit break into five groups with six ideals in each group, so that
every two monomial ideals in the same group are connected by a sequence of flips.

Every monomial ideal has a flip that is an ideal in the orbit of L . Therefore, the
total set of monomial ideals on H is connected by flips.
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