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Abstract Let µ = (µ1, . . . , µd) be such that each µi is a signed measure on Rd

belonging to the Kato class Kd,1. A Brownian motion in Rd with drift µ is a diffusion
process in Rd whose generator can be informally written as 1

2�+ µ · ∇. When each
µi is given by Ui (x)dx for some function Ui , a Brownian motion with drift µ is a
diffusion in Rd with generator 1

2�+U ·∇. In Kim and Song (Ill J Math 50(3):635–688,
2006), some properties of Brownian motions with measure-value drifts in bounded
smooth domains were discussed. In this paper we prove a scale invariant bound-
ary Harnack principle for the positive harmonic functions of Brownian motions with
measure-value drifts in bounded Lipschitz domains. We also show that the Martin
boundary and the minimal Martin boundary with respect to Brownian motions with
measure-valued drifts coincide with the Euclidean boundary for bounded Lipschitz
domains. The results of this paper are also true for diffusions with measure-valued
drifts, that is, when � is replaced by a uniformly elliptic divergence form operator∑d

i, j=1 ∂i (ai j∂ j ) with C1 coefficients or a uniformly elliptic non-divergence form

operator
∑d

i, j=1 ai j∂i∂ j with C1 coefficients.
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136 P. Kim, R. Song

1 Introduction

The boundary Harnack principle in Lipschitz domains was first proved independently
for the Laplacian� in [1,14,26]. Later the boundary Harnack principle was extended
to uniformly elliptic operators with bounded coefficients in [8,16] (see [4] for an
extension to more general domains using probabilistic methods).

The main purpose of this paper is to prove a boundary Harnack principle in bounded
Lipschitz domains for diffusions with measure-valued drifts. We will concentrate on
Brownian motions with measure-valued drifts. The assumption on the drift is that each
component of the drift belongs to the Kato class Kd,1 (see below for the definition).
Our main results generalize the corresponding results of [8,16] where only bounded
drifts were considered.

In this paper, we always assume that d ≥ 3. Suppose µ = (µ1, . . . , µd) is such
that each µi is a signed measure on Rd belonging to the Kato class Kd,1, that is

lim
r↓0

sup
x∈Rd

∫

|x−y|≤r

|µi |(dy)

|x − y|d−1 = 0, 1 ≤ i ≤ d.

Informally, a Brownian motion in Rd with drift µ is a diffusion process in Rd with
generator 1

2� + µ · ∇. When each µi is given by Ui (x)dx for some function Ui , a
Brownian motion with drift µ is a diffusion in Rd with generator 1

2�+ U · ∇ and it
is a solution to the SDE

d Xt = dWt + U (Xt ) · dt.

To recall the precise definition of a Brownian motion with drift µ in Kd,1, we
fix a non-negative smooth radial function ϕ(x) in Rd with supp[ϕ] ⊂ B(0, 1) and∫
ϕ(x)dx = 1. For any positive integer n, we put ϕn(x) = 2ndϕ(2n x). For 1 ≤ i ≤ d,

define

Ui
n(x) =

∫

ϕn(x − y)µi (dy).

Put Un(x) = (U 1
n (x), . . . ,U

d
n (x)). The following definition is taken from [6].

Definition 1.1 Suppose µ = (µ1, . . . , µd) is such that each µi is a signed measure
on Rd belonging to the Kato class Kd,1. A Brownian motion with drift µ is a family
of probability measures {Px : x ∈ Rd} on C([0,∞),Rd), the space of continuous
Rd -valued functions on [0,∞), such that under each Px we have

Xt = x + Wt + At

where

(a) At = limn→∞
∫ t

0 Un(Xs)ds uniformly in t over finite intervals, where the con-
vergence is in probability;
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Boundary Harnack principle for Brownian motions with measure-valued drifts 137

(b) there exists a subsequence {nk} such that

sup
k

t∫

0

|Unk (Xs)|ds < ∞

almost surely for each t > 0;
(c) Wt is a standard Brownian motion in Rd starting from the origin.

In this paper, we will fix a µ = (µ1, . . . , µd) with each µi ∈ Kd,1 and use X to
denote a Brownian motion with drift µ defined above. The existence and uniqueness
of X were established in [6]. In fact, X was shown to be a Feller process.

Bass and Chen raised the following question in [6]: do the Harnack principle and
the boundary Harnack principle hold for the positive harmonic functions of X? Recall
that a non-negative function f on a domain D is said to be harmonic in D with respect
to X if for every relatively compact open subset B of D with B ⊂ D,

f (x) = Ex [ f (XτB )], x ∈ D

where τB = inf{s > 0 : Xs /∈ B}.
In [21], we showed that X has a density q(t, x, y)which is continuous on (0,∞)×

Rd × Rd and that there exist positive constants Ci , i = 1, . . . , 9 such that

C1e−C2t t−
d
2 e− C3|x−y|2

2t ≤ q(t, x, y) ≤ C4eC5t t−
d
2 e− C6|x−y|2

2t (1.1)

and

|∇x q(t, x, y)| ≤ C7eC8t t−
d+1

2 e− C9|x−y|2
2t (1.2)

for all (t, x, y) ∈ (0,∞) × Rd × Rd . We also showed that, for every bounded C1,1

domain D, X D (the process obtained by killing X upon exiting from D) has a density
q D which is continuous on (0,∞)× D× D and that for any T > 0, there exist positive
constants Ci , i = 10, . . . , 14, such that

C10ψD(t, x, y)t−
d
2 e− C11|x−y|2

t ≤ q D(t, x, y) ≤ C12ψD(t, x, y)t−
d
2 e− C13|x−y|2

t

(1.3)
and

|∇x q D(t, x, y)| ≤ C14

(

1 ∧ ρ(y)√
t

)

t−
d+1

2 e− C13|x−y|2
t (1.4)

for all (t, x, y) ∈ (0, T ] × D × D, where a ∧ b := min{a, b}, ρ(x) is the distance
between x and ∂D and

ψD(t, x, y) :=
(

1 ∧ ρ(x)√
t

)(

1 ∧ ρ(y)√
t

)

.

(See Sect. 4 of [18] for estimates of heat kernels of the Schrödinger-type equations for
X D .) By using these estimates, we established in [21] that the Harnack principle holds
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138 P. Kim, R. Song

for the positive harmonic functions of X and that the boundary Harnack principle
holds for the positive harmonic functions of X in bounded C1,1 domains.

However, the boundary Harnack principle established in [21] is not scale invari-
ant and the domains are assumed to be bounded C1,1. The purpose of this paper is
to prove a scale invariant version of the boundary Harnack principle for bounded
Lipschitz domains and to identify the Martin boundary.

A nice framework for the potential theory of strong Markov processes without the
duality assumption was proposed in [13]. In this paper, we first show that Brownian
motions with measure-valued drifts fit nicely into this framework. Then we revisit the
Green function estimates obtained in [21] and show that, in fact, the Green function
for a Brownian motion with measure-valued drift is uniformly comparable to that of
a Brownian motion in small sets. Using an argument similar to that of the proof of
Theorem 2.2 in [9], we prove that the comparability of Green functions implies the
comparability of harmonic measures.

Bass and Burdzy [3,5] introduced a probabilistic method, the so-called box method,
to prove the boundary Harnack principle. In this paper, by using this method and com-
bining the uniform comparability of harmonic measures with the results of [21], we
prove a Carleson type estimate and a scale invariant boundary Harnack principle for
Brownian motions with measure-valued drifts in bounded Lipschitz domains.

Finally, we apply the Carleson type estimate and the boundary Harnack principle
together with the results of [21] to identify the Martin boundary with respect to Brown-
ian motions with measure-valued drifts in bounded Lipschitz domains. Unlike the case
of symmetric processes, identifying the Martin boundary with the Euclidean boundary
is very delicate in the present case. We show that if D is a bounded Lipschitz domain,
there exists a homeomorphism between the Martin compactification and D which is an
identity map in D. Unlike [21], there are no sharp estimates on the Green functions of
Brownian motions with measure-valued drifts in bounded Lipschitz domains. Instead
we use the Carleson type estimate and the boundary Harnack principle. The scale
invariant property of our boundary Harnack principle is critical in our arguments.

The content of this paper is organized as follows. In Sect. 2, we prove some basic
properties of Brownian motion with measure-valued drift in arbitrary bounded open
sets. In Sect. 3, we use the estimates of [21] to prove that the harmonic measures
with respect to X are uniformly (under scaling and translation) comparable to the
corresponding harmonic measures with respect to Brownian motion if the domain
D is shrunk small enough. In Sect. 4, we prove a scale invariant boundary Harnack
principle. Section 5 deals with Martin boundary and the Martin representation. We
prove that the Martin boundary and the minimal Martin boundary of killed Brownian
motion with measure-valued drift can all be identified with the Euclidean boundary if
the domain is bounded and Lipschitz. In the final section we briefly indicate that all
the results remain valid for diffusions with measure-valued drifts, that is, when � is
replaced by a uniformly elliptic divergence form operator

∑d
i, j=1 ∂i (ai j∂ j ) with C1

coefficients or a uniformly elliptic non-divergence form operator
∑d

i, j=1 ai j∂i∂ j with

C1 coefficients.
In this paper, we will use the following convention: the values of the constants

M1,M2, . . . will remain the same throughout this paper, while the values of the
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Boundary Harnack principle for Brownian motions with measure-valued drifts 139

constants C1,C2, . . . might change from one appearance to another. The labeling
of the constants C1,C2, . . . starts anew in the statement of each result. In this paper,
we use “:=” to denote a definition, which is read as “is defined to be”.

2 Some properties of Brownian motions with measure-valued drifts
in bounded domains

Throughout this paper we assume that µ = (µ1, . . . , µd) is fixed with each µi being
a signed measure on Rd belonging to Kd,1 and that X is a Brownian motion with
drift µ. In this section, we will study some basic properties of X which will be needed
later.

We know from (1.1) that there exist c1, c2 and c3 such that for every positive t0
and δ,

sup
t≤t0,|x−y|>δ

q(t, x, y) ≤ c1ec2t0 sup
t≤t0,|x−y|>δ

t−
d
2 e−c3

|x−y|2
t

≤ c1ec2t0 sup
t≤t0

t−
d
2 e−c3

δ2
t < ∞. (2.1)

Since

lim
t0↓0

sup
t≤t0

t−
d
2 e−c3

δ2
t = 0,

we have
lim
t0↓0

sup
t<t0,|x−y|>δ

q(t, x, y) = 0. (2.2)

Moreover, using (2.1), we get

sup
t≤t0,x∈Rd

Px (|Xt − x | ≥ δ) ≤ c1ec2t0 sup
t≤t0,x∈Rd

∫

|x−y|≥δ
t−

d
2 e−c3

|x−y|2
t dy

= c4ec2t0 sup
t≤t0

∞∫

δ

t−
d
2 rd−1e−c3

r2
t dr ≤ c5ec2t0

∞∫

δ√
t0

ud−1e−c3u2
du

for some c4 = c4(d) and c5 = c5(d). Thus

lim
t0↓0

sup
t≤t0,x∈Rd

Px (|Xt − x | ≥ δ) = lim
t0↓0

sup
t≤t0,x∈Rd

Px (Xt ∈ Rd \ B(x, δ)) = 0. (2.3)

For any open set D, we use τD to denote the first exit time of D, i. e., τD = inf{t >
0 : Xt /∈ D}. Using (2.3) we can easily prove the next lemma.
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Lemma 2.1 For any δ > 0, we have

lim
s↓0

sup
x∈Rd

Px (τB(x,δ) ≤ s) = 0.

Proof For any t > 0 and any Borel set A in Rd , we put Nt (x, A) = Px (Xt ∈ A).
Then by an extended version of the strong Markov property (see [7, pp. 43–44]), we
have for every x ∈ Rd ,

Px (τB(x,δ) ≤ s) ≤ Px

(

τB(x,δ) ≤ s, Xs ∈ B

(

x,
δ

2

))

+ Px

(

Xs ∈ B

(

x,
δ

2

)c)

≤ Ex

[

Ns−τB(x,δ)

(

XτB(x,δ) , B

(

x,
δ

2

)c)

; τB(x,δ) ≤ s

]

+ Px

(

Xs ∈ B

(

x,
δ

2

)c)

Now the conclusion of the lemma follows from (2.3). ��
Recall that, a point z on the boundary ∂D of an open set D is said to be a regular

boundary point if Px (τD = 0) = 1. An open set D is said to be regular if every point
in ∂D is a regular boundary point.

Proposition 2.2 Suppose D is an open subset of Rd and z ∈ ∂D. If there is a cone A
with vertex z such that A ∩ B(z, r) ⊂ Dc for some r > 0, then z is a regular boundary
point of D.

Proof Without loss of generality, we may assume that z = 0. For n ≥ 1, put rn = r/n.
Under P0, we have

∞⋂

m=1

∞⋃

n=m

{Xrn ∈ A ∩ B(0, r)} ⊂ {τD = 0}.

Hence

P0(τD = 0) ≥ P0

( ∞⋂

m=1

∞⋃

n=m

{Xrn ∈ A ∩ B(0, r)}
)

≥ lim sup
n→∞

P0
(
Xrn ∈ A ∩ B(0, r)

)

≥ lim sup
n→∞

c1

∫

A∩B(0,r)

r
− d

2
n e− c2 |x |2

rn dx

≥ lim sup
n→∞

c1

∫

A∩B(0,n)

e−c2|y|2 dy > 0.

The assertion of the proposition now follows from Blumenthal’s zero-one law (Prop-
osition I.5.17 in [7]). ��
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Boundary Harnack principle for Brownian motions with measure-valued drifts 141

This result implies that all bounded Lipschitz domains, and in particular, all bounded
C1,1 domains, are regular. Repeating the argument in the second part of the proof of
Theorem 1.23 in [11], we immediately get the following result.

Proposition 2.3 Suppose that D is a domain in Rd and f is a bounded Borel function
on ∂D. If z is a regular boundary point of D and f is continuous at z, then

lim
D�x→z

Ex [ f (XτD ); τD < ∞] = f (z).

Proof We omit the details. ��
Given an open set D ⊂ Rd , we define X D

t (ω) = Xt (ω) if t < τD(ω) and X D
t (ω) =

∂ if t ≥ τD(ω), where ∂ is a cemetery state. The process X D is called a killed Brownian
motion with drift µ in D. Throughout this paper, we use the convention f (∂) = 0.

Let

k D(t, x, y) := Ex
[
q(t − τD, XτD , y) : τD < t

]

and q D(t, x, y) := q(t, x, y)− k D(t, x, y).

Then q D(t, x, y) is the transition density of X D i.e., for every t > 0 and Borel set A,

Px (X
D
t ∈ A) =

∫

A

q D(t, x, y)dy. (2.4)

For the proof of (2.4), see [3, pp. 121–122] where only the strong Markov property
was used.

Using some standard arguments (for example, [3,11]), we can show the following.

Theorem 2.4 For every t > 0, q D(t, x, y) is jointly continuous on D × D. For every
t > 0 and s > 0,

q D(t + s, x, y) =
∫

D

q D(t, x, z)q D(s, z, y)dz. (2.5)

For every (t, x, y) ∈ (0,∞)× D × D, q D(t, x, y) is strictly positive. If z is a regular
boundary point of D, then for any t > 0 and y ∈ D,

lim
D�x→z

q D(t, x, y) = 0. (2.6)

Proof First, we show that k D(t, x, · ) is continuous in D for each (t, x) ∈ (0,∞)× D.
Suppose (t0, x0, y0) ∈ (0,∞) × D × D and yn converges to y0 in D. Let δ0 :=
dist(y0, ∂D). Choose n0 large such that dist(yn, ∂D) > 1

2δ0 for every n ≥ n0. Given
ε > 0, using (2.2), we can choose s > 0 small such that

sup
n≥n0

Ex0

[
q(t0 − τD, XτD , yn) : t0 − s < τD < t0

]
<
ε

2
.
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142 P. Kim, R. Song

So using (2.1), the continuity of q and the bounded convergence theorem, we get

lim
n→∞ Ex0

[
q(t0 − τD, XτD , yn) : t0 − s ≥ τD

] = 0.

Now assume (t0, x0, y0) ∈ (0,∞)× D × D and xn converges to x0 in D. Let

h(s, x) := Ex
[
EXs [q(t0 − s − τD, XτD , y0) : τD < t0 − s]] , s < t0.

We know from (2.1) that EXs [q(t0 − s − τD, XτD , y0) : τD < t0 − s] is bounded. So
by using the continuity of q, h(s, · ) is continuous in D for every s < t0. Now using
the Markov property, we have

∣
∣
∣k D(t0, x, y0)− h(s, x)

∣
∣
∣

= ∣
∣Ex

[
q(t0 − τD, XτD , y0) : τD ≤ s

]

+ Ex
[
EXs [q(t0 − s − τD, XτD , y0) : τD < t0 − s]; s < τD < t

]− h(s, x)
∣
∣

≤ Ex
[
q(t0 − τD, XτD , y0) : τD ≤ s

]

+ Ex
[
EXs [q(t0 − s − τD, XτD , y0) : τD < t0 − s]; τD ≤ s

]
,

which is less than

2 c1ec2t0

(

sup
t≤t0

t
d
2 e−c3

δ20
t

)

Px (τD ≤ s).

By Lemma 2.1, the quantity above converges to zero uniformly on any compact subset
K of D as s → 0. Thus, given ε, by choosing s0 small first and then choosing n0 large,
we get for n ≥ n0

∣
∣
∣k D(t0, xn, y0)− k D(t0, x0, y0)

∣
∣
∣

≤ 2 sup
m≥0

∣
∣
∣k D(t0, xm, y0)− h(s0, xm)

∣
∣
∣+ |h(s0, xn)− h(s0, x0)| < ε.

Since q(t, x, y) is continuous, we can now conclude that q D(t, x, y) is continuous in
x ∈ D and in y ∈ D. (2.5) can be proved using the Markov property and the continuity
of q D(t, x, · ) (see [11, p. 35]).

We will prove the joint continuity of q D(t, · , · ) by using (2.5) and (1.1). Assume
(t0, x0, y0) ∈ (0,∞)× D × D and (xn, yn) converges to (x0, y0) in D × D. By (2.5),
we have

q D(t0, xn, yn) =
∫

D

q D
(

1

2
t0, xn, z

)

q D
(

1

2
t0, z, yn

)

dz.

It follows from (1.1) that q D
( 1

2 t0, xn, z
)

q D
( 1

2 t0, z, yn
)

is bounded. So by the bounded
convergence theorem, we have the joint continuity of q D(t, · , · ).
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Boundary Harnack principle for Brownian motions with measure-valued drifts 143

Finally, for (t0, x0, y0) ∈ (0,∞) × D × D, choose a smooth domain G such that
x0, y0 ∈ G ⊂ D. Then q D(t0, x0, y0) ≥ qG(t0, x0, y0) > 0 by (1.4).

By Proposition 2.3, the last assertion of the theorem can be proved using the argu-
ment in the last paragraph of the proof of Theorem 2.4 of [11]. We omit the details.

��
In the remainder of this section we assume that D is a bounded domain in Rd . The

next lemma is basically Lemma 6.1 in [21].

Lemma 2.5 There exist positive constants C1 and C2 depending on D only via its
diameter such that

q D(t, x, y) ≤ C1e−C2t , (t, x, y) ∈ (1,∞)× D × D.

Proof With the help of (1.1), one can repeat the argument in the proof of Lemma 6.1
in [21] to arrive at the result with the constants depending on D only via its diameter.
We omit the details. ��

Combining the result above with (1.1) we know that there exist positive constants C1
and C2 depending on D via its diameter such that for any (t, x, y) ∈ (0,∞)× D × D,

q D(t, x, y) ≤ C1t−
d
2 e− C2 |x−y|2

2t . (2.7)

Therefore the Green function

G D(x, y) :=
∞∫

0

q D(t, x, y)dt

is finite for x �= y and

G D(x, y) ≤ C3
1

|x − y|d−2 (2.8)

for some C3 = C3(diam(D)) > 0.

Theorem 2.6 G D(x, y) is strictly positive and jointly continuous on (D×D)\{(x, y) :
x = y}. G D(x, y) is infinite if and only if x = y. For any y ∈ D,

lim
x→y

G D(x, y) = lim
x→y

G D(y, x) = ∞. (2.9)

Moreover, if z is a regular boundary point of D, then for any y ∈ D,

lim
D�x→z

G D(x, y) = 0.

Proof Suppose (xn, yn) converge to (x0, y0) with x0 �= y0 and there exist disjoint
compact sets K1 and K2 such that xn ∈ K1 and yn ∈ K2. Let δ :=dist(K1, K2). Then
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by (2.7), there exist C1 and C2 depending on D only via its diameter such that for any
t ∈ (0,∞)

q D(t, xn, yn) ≤ C1t−
d
2 e− C2δ

2

2t =: f (t).

Since f (t) is in L1((0,∞)), the dominated convergence theorem and Theorem 2.4
give the joint continuity on (D × D) \ {(x, y) : x = y}. The strict positivity of
G D(x, y) follows from the strict positivity of q D(t, x, y).

Fix x0 ∈ D and choose a smooth domain G such that B
(
x0,

1
2ρ(x0)

) ⊂ G ⊂ D.
Then by (1.3), there exists positive constants c1 and c2 such that

q D(t, x0, y) ≥ qG(t, x0, y) ≥ c1

(

1 ∧ ρ(x0)
2

t

)

t−
d
2 e− c2 |x0−y|2

t ,

t < 1 and y ∈ B

(

x0,
1

4
ρ(x0)

)

.

So

G D(x0, x0) ≥ c1

ρ(x0)
2∧1∫

0

t−
d
2 dt = ∞.

Also, by Fatou’s lemma,

lim inf
y→x0

G D(x0, y) ≥ lim inf
y→x0

c1

ρ(x0)
2∧1∫

0

t−
d
2 e− c2 |x0−y|2

t dt

≥ c1

ρ(x0)
2∧1∫

0

t−
d
2 lim inf

y→x0
e− c2 |x0−y|2

t dt

= c1

ρ(x0)
2∧1∫

0

t−
d
2 dt = ∞.

The other claim in (2.9) can be proved similarly.
The last assertion follows easily from the last assertion of Theorem 2.4. ��
Therefore G D satisfies the condition (i), (ii), (iii) and (vi) in [12] and hence the Riesz

representation (see [12, p. 28] and [13, pp. 186–187]) holds. To make the statement
above precise, we first recall some definitions.

Definition 2.7 Suppose that U is an open subset of Rd . A Borel function u defined
on Rd is said to be

123
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(1) harmonic in U with respect to X if

u(x) = Ex

[
u(XU

τB
)
]
, x ∈ B, (2.10)

for every bounded open set B with B ⊂ U ;
(2) regular harmonic in U with respect to X if it is harmonic for XU and for each

x ∈ U ,

u(x) = Ex
[
u(XτU )

] ;

(3) superharmonic in U with respect to X if u is non-negative and

u(x) ≥ Ex

[
u(XU

τB
)
]
, x ∈ B,

for every bounded open set B with B ⊂ U ;
(4) excessive for XU if u is non-negative and

u(x) ≥ Ex

[
u(XU

t )
]

= Ex [u(Xt ) : τU > t ] and

u(x) = lim
t↓0

Ex

[
u(XU

t )
]
, t > 0, x ∈ U,

(5) a potential for XU if it is excessive for XU and for every sequence {Un}n≥1 of
open sets with Un ⊂ Un+1 and ∪nUn = U ,

lim
n→∞ Ex

[
u(XU

τUn
)
]

= 0, for every x ∈ U with u(x) < ∞.

It is well known that u is excessive for XU if and only if f is lower-semicontinuous
in U and superharmonic in U with respect to X . (See Theorem 4.5.3 in [10] for the
Brownian motion case, and the proof there can adapted easily to the present case.)

Harmonic functions with respect to X are continuous if they are locally bounded.

Proposition 2.8 Assume that U is an open subset of Rd . Then any locally bounded
harmonic function u in U is continuous. In particular, for any bounded Borel function
f in ∂U, Ex [ f (XτU )] is continuous and regular harmonic in U.

Proof Fix x ∈ U and choose smooth compact open subsets D1 and D2 with x ∈ D1 ⊂
D1 ⊂ D2 ⊂ D2 ⊂ U . Let L := ‖u‖L∞(D2)

< ∞.We assume that {xn}n≥1 ⊂ D1 and
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xn → x . By (2.10) and the Markov property,

|u(xn)− u(x)| =
∣
∣
∣Exn [u(XτD2

)] − Ex [u(XτD2
)]
∣
∣
∣

≤ 2 L sup
z∈D1

Pz(τD2 ≤ t)+
∣
∣
∣Exn

[
EXt [u(XτD2

)] : τD2 > t
]

−Ex

[
EXt [u(XτD2

)] : τD2 > t
]∣
∣
∣

= 2 L sup
z∈D1

Pz(τD2 ≤ t) +
∣
∣
∣Exn

[
E

X
D2
t

[u(XτD2
)]
]

− Ex

[
E

X
D2
t

[u(XτD2
)]
]∣
∣
∣

≤ 2 L sup
z∈D1

Pz(τD2 ≤ t) + L
∫

D2

∣
∣
∣q D2(t, xn, y)− q D2(t, x, y)

∣
∣
∣ dy

Given ε > 0, by Lemma 2.1, there exists t0 > 0 such that

sup
z∈D1

Pz(τD2 ≤ t0) <
ε

8L
.

By (1.3),

∫

D2

∣
∣
∣q D2(t0, xn, y)− q D2(t0, x, y)

∣
∣
∣ dy

=
⎛

⎜
⎝

∫

D2∩{dist(y,∂D2)<δ}
+

∫

D2\{dist(y,∂D2)≥δ}

⎞

⎟
⎠
∣
∣
∣q D2(t0, xn, y)− q D2(t0, x, y)

∣
∣
∣ dy

≤ c1|D2|δt−
d+1

2
0 +

∫

D2∩{dist(y,∂D2)≥δ}

∣
∣
∣q D2(t0, xn, y)− q D2(t0, x, y)

∣
∣
∣ dy,

for some c1. Now we choose δ small so that c1|D2|Lδt−
d+1

2
0 < ε

4 . The convergence
of the second term in the last equation above follows from the uniform continuity of
q D2(t0, · , · ) on D1 × (D2 ∩ {dist(y, ∂D2) ≥ δ}) (see Theorem 3.1 in [21]). Thus we
have proved the Proposition. ��

Now we state some properties of Green functions. Since X D is a transient diffusion,
it satisfies the conditions in [23]. Thus, combining Theorem 1 in [23], the results in
[12, p. 28], Corollary 2 to Theorem 2, Proposition 11 and Theorems 5–6 in [13], we
have

Theorem 2.9 (1) For each y, x → G D(x, y) excessive for X D. Moreover, for every
open subset U of D, we have

Ex [G D(X
D
TU
, y)] = G D(x, y), (x, y) ∈ D × U (2.11)
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where TU := inf{t > 0 : X D
t ∈ U }. In particular, for every y ∈ D and ε > 0,

G D( · , y) is regular harmonic in D \ B(y, ε) with respect to X D.
(2) For every Radon measure ν on D,

G Dν(x) :=
∫

D

G D(x, y)ν(dy)

is a potential for X D. Conversely, if u is a potential for X D, then there exists a
unique Radon measure ν on D such that u = G Dν.

(3) If f is an excessive function for X D which is not identically zero, then there
exists a unique Radon measure ν on D and a harmonic function h for X D such
that f = G Dν + h.

The proof of the next proposition can be found in the proofs of Theorems 2–3 in
[23]. We put the proof here for reader’s convenience.

Proposition 2.10 If h is a nonnegative harmonic for X D and U is an open subset of D
with U ⊂ D, then there exists a Radon measure ν supported on ∂U such that h = G Dν

in U. In particular, every nonnegative harmonic function for X D is continuous.

Proof Note that from Proposition 2.8, we know that every bounded harmonic function
is continuous. Since h is the increasing limit of Ex [h(X D

τV
)∧ k] for every open subset

V of D with V ⊂ D, h is lower semicontinuous. Thus h is excessive. Let TU :=
inf{t > 0 : X D

t ∈ U }. Since h is excessive, Corollary 1 to Theorem 2 in [13] implies
that there exists a Radon measure ν supported on U such that Ex [h(X D

TU
)] = G Dν(x)

for all x ∈ D. Since

G Dν(x) =
∫

U

G D(x, y)ν(dy)+
∫

∂U

G D(x, y)ν(dy) =: h1(x)+ h2(x), x ∈ D

and h1 and h2 are excessive (Theorem 2.9), h1 and h2 must be harmonic with respect
to X in U . Let K be a compact subset of U . By the harmonicity of h1, we have

Ex [h1(X
D
TK c )] =

∫

∂U

G D(x, y)ν(dy).

But, by Corollary 1 to Theorem 2 in [13], ν can not charge the interior of K . Since K is
an arbitrary compact subset of U , we get that h1 is identically zero and ν is supported
by ∂U . Therefore we have shown h(x) = Ex [h(X D

TU
)] = G Dν(x) for x ∈ U . Now

the continuity of h follows from the continuity of G D . ��

3 Green function estimates and comparison of harmonic measures

In this section, we assume that D is a bounded C1,1 domain. Recall that a bounded
domain D in Rd is said to be a C1,1 domain if there is a localization radius r0 > 0
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and a constant � > 0 such that for every Q ∈ ∂D, there is a C1,1 function φ = φQ :
Rd−1 → R satisfying φ(0) = |∇φ(0)| = 0, ‖∇φ‖∞ ≤ �, |∇φ(x) − ∇φ(z)| ≤
�|x − z|, and an orthonormal coordinate system C SQ with origin at Q such that

B(Q, r0) ∩ D = B(Q, r0) ∩ {y = (y1, . . . , yd−1, yd)

:= (ỹ, yn) in C SQ : yd > φ(ỹ)}.

The pair (r0,�) is called the characteristics of the C1,1 domain D. The main objective
of this section is to show that the harmonic measures with respect to X are uniformly
(under scale and translation) comparable to the corresponding harmonic measures
with respect to Brownian motion if the domain D is shrunk small enough.

Let pD(t, x, y) be the density of Brownian motion killed upon exiting D. It is
known that for any T > 0, there exist positive constants Mi , i = 1, . . . , 5, depending
on T and D such that

M1ψD(t, x, y)t−
d
2 e− M2 |x−y|2

t ≤ pD(t, x, y)≤ M3ψD(t, x, y)t−
d
2 e− M4|x−y|2

t (3.1)

and

|∇x pD(t, x, y)| ≤ M5t−
d+1

2 e− M4|x−y|2
t (3.2)

for all (t, x, y) ∈ (0, T ]× D × D. (3.1) was proved in [15,28] and (3.2) was proved in
[17]. By taking M4 smaller if necessary, we can assume that M4 ≤ 1/2. Differentiating
with respect to x in the equation

pD(t, x, y) =
∫

D

pD
(

t

2
, x, z

)

pD
(

t

2
, z, y

)

dz

and using the above estimates on pD(t, x, y) and ∇x pD(t, x, y) we get

|∇x pD(t, x, y)| ≤ 2d+1 M3 M5

∫

D

t−
d+1

2 e− 2M4 |x−z|2
t ρ(y)t−

d+1
2 e− 2M4|z−y|2

t dz

≤ 2d+1 M3 M5ρ(y)
∫

Rd

t−
d+1

2 e− 2M4 |x−z|2
t t−

d+1
2 e− 2M4|z−y|2

t dz

:= M6ρ(y)t
− d+2

2 e− M4|x−y|2
t .

In the last equality above, we have used the semigroup property of the Gaussian kernel.
Combining this with (3.2) we see that, for any T > 0, there exists a positive constant
M7 such that

|∇x pD(t, x, y)| ≤ M7

(

1 ∧ ρ(y)√
t

)

t−
d+1

2 e− M4 |x−y|2
t , (3.3)
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for all (t, x, y) ∈ (0, T ] × D × D. Since pD(t, x, y) ≤ p(t, x, y), there exists a
positive constant M8 depending only on d such that

pD(t, x, y) ≤ M8t−
d
2 e−M4

|x−y|2
t , (t, x, y) ∈ (0,∞)× D × D. (3.4)

By combining this with (3.2), Lemma 2.5 (works for pD) and the semigroup property,
we can easily get that there exists positive constant M9 depending on D such that

|∇x pD(t, x, y)| ≤ M9t−
d+1

2 e−M4
|x−y|2

t , (t, x, y) ∈ (0,∞)× D × D. (3.5)

For any z ∈ Rd and r ∈ (0, 1), put Dz
r := z + r D and let ρDz

r
(x) be the distance

between x and ∂Dz
r . By the translation and scaling property of pD , we see that the

constants in (3.4)–(3.5) are invariant under translation and Brownian scaling. Thus we
have

pDz
r (t, x, y) ≤ M8t−

d
2 e−M4

|x−y|2
t , (t, x, y) ∈ (0,∞)× Dz

r × Dz
r (3.6)

and

|∇x pDz
r (t, x, y)| ≤ M9t−

d+1
2 e−M4

|x−y|2
t , (t, x, y) ∈ (0,∞)× Dz

r × Dz
r . (3.7)

We will suppress indices above from Dz
r when it is clear from the context.

By taking scale and translation invariance into consideration in the proof of The-
orem 4.2 of [21], we have observed at the beginning of Sect. 5 of [21] that for any
T > 0, there exist positive constants t0 and M j , 10 ≤ j ≤ 14, independent of z and
r and depending on µ only via the rate at which max1≤i≤d M1

µi (r) goes to zero, such
that

M10t−
d
2ψDz

r
(t, x, y)e− M11 |x−y|2

2t ≤ q Dz
r (t, x, y) ≤ M12t−

d
2ψDz

r
(t, x, y)e− M13 |x−y|2

2t

(3.8)
and

|∇x q Dz
r (t, x, y)| ≤ M14

(

1 ∧ ρDz
r
(y)√
t

)

t−
d+1

2 e− M13|x−y|2
2t (3.9)

for all (t, x, y) ∈ (0, t0 ∧ (r2T )] × Dz
r × Dz

r . We now show the scale and translation
invariant version of the Green function estimate of X D when D is a bounded C1,1

domain.
First we show the lower bound of G Dz

r
, which is a direct consequence of the lower

estimates of q Dz
r in (3.8). In the next theorem we will take T = diam(D)2, and let t0

be the corresponding constant in (3.8). Recall from [21] that

Mν(r) := sup
x∈Rd

∫

|x−y|≤r

|ν|(dy)

|x − y|d−1 , Nν(t) := sup
x∈Rd

t∫

0

∫

Rd

s− 1
2 p(s, x, y)|ν|(dy)ds.
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Theorem 3.1 Let D be a bounded C1,1 domain in Rd . There exists a constant C1 =
C1(D, µ) > 0 depending on µ only via the rate at which max1≤i≤d Mµi (r) goes to

zero such that for r ≤
√

t0
diam(D) , z ∈ Rd and x, y ∈ Dz

r ,

G Dz
r
(x, y) ≥ C1

(

1 ∧ ρDz
r
(x)

|x − y|
)(

1 ∧ ρDz
r
(y)

|x − y|
)

1

|x − y|d−2 .

Proof It is easy to see that diam(Dz
r )

2 = r2 diam(D)2. For r ≤
√

t0
diam(D) , by (3.8), we

have

G Dz
r
(x, y) ≥

diam(Dz
r )

2
∫

0

q Dz
r (t, x, y)dt

≥ M10

diam(Dz
r )

2
∫

0

(

1 ∧ ρDz
r
(x)√
t

)(

1 ∧ ρDz
r
(y)√
t

)

t−
d
2 e− M11|x−y|2

2t dt

≥ M10

|x − y|d−2

∞∫

1

u
d−4

2

(

1 ∧
√

uρDz
r
(x)

|x − y|

)(

1 ∧
√

uρDz
r
(y)

|x − y|

)

e− 1
2 M11udu

≥ C1

(

1 ∧ ρDz
r
(x)

|x − y|
)(

1 ∧ ρDz
r
(y)

|x − y|
)

1

|x − y|d−2

where C1 = M10
∫∞

1 u
d−4

2 e− 1
2 M11udu ��

The following lemmas will be needed in proving the upper bound of the Green
functions.

Lemma 3.2 For any a, r > 0, x0 ∈ Rd and measure µ on Rd , there exists constant
C1 = C1(a, d) such that

sup
u∈B(x0,r)

∞∫

0

∫

B(x0,r)

s− d+1
2 e− a|u−z|2

4s µ(dz)ds ≤ C1(a, d) Nµ

(
r2

a

)

.

Proof Fix a, r > 0, x0 ∈ Rd and a measure µ on Rd . Since

sup
u∈B(x0,r)

r2
2∫

0

∫

B(x0,r)

s− d+1
2 e− a|u−z|2

4s µ(dz)ds ≤
(

2

a

) d−1
2

(2π)
d
2 Nµ

(
r2

a

)

,
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we only need to show that

sup
u∈B(x0,r)

∞∫

r2
2

∫

B(x0,r)

s− d+1
2 e− a|u−z|2

4s µ(dz)ds ≤ c(a, d) Nµ

(
r2

a

)

.

Since {z : |x0 − z| < r} ⊂ {z : |u − z| < 2r} for every u ∈ B(x0, r), we have

sup
u∈B(x0,r)

∞∫

r2
2

∫

B(x0,r)

s− d+1
2 e− a|u−z|2

4s µ(dz)ds

≤ sup
u∈B(x0,r)

∞∫

r2
2

∫

|u−z|<2r

s− d+1
2 e− a|u−z|2

4s µ(dz)ds

≤
∞∫

r2
2

sup
u∈B(x0,r)

∫

|u−z|<2r

s− d+1
2 e− a|u−z|2

4s µ(dz)ds ≤

⎛

⎜
⎜
⎝

∞∫

r2
2

s− d+1
2 ds

⎞

⎟
⎟
⎠ (2r)d−1 Mµ(2r)

In the last inequality above, we used the fact that for any signed measure ν,

sup
x∈Rd

|ν|(B(x, r)) ≤ rd−1 Mµ(r)

(see (2.1) in [21]). Using the change of variable l = r2

s , we have

∞∫

r2
2

s− d+1
2 ds = r−d+1

2∫

0

l
d−3

2 dl.

On the other hand, we have

r2
a∫

0

∫

Rd

s− 1
2 p(s, x, y)µ(dy) ds =

∫

Rd

r2
a∫

0

s− 1
2 p(s, x, y)ds µ(dy)

≥
∫

|x−y|≤2r

2
d−1

2 (2π)−
d
2 |x − y|−d+1

∞∫

a|x−y|2
2r2

u
d−3

2 e−udu µ(dy)

≥ 2
d−1

2 (2π)−
d
2

⎛

⎝

∞∫

2a

u
d−3

2 e−udu

⎞

⎠
∫

|x−y|≤2r

|x − y|−d+1µ(dy).
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Thus

Mµ(2r) ≤ C0(a, d)Nµ

(
r2

a

)

.

Therefore
⎛

⎜
⎜
⎝

∞∫

r2
2

s− d+1
2 ds

⎞

⎟
⎟
⎠ (2r)d−1 Mµ(2r) ≤ C1(a, d)Nµ

(
r2

a

)

.

��
The proof of the next lemma is almost identical to the proof of Lemma 3.1 of [27],

so we skip the proof.

Lemma 3.3 For any a > 0, there exist positive constants C1,C2 depending only on
a and d such that for any measure µ on Rd

t∫

0

∫

D

s− d
2 e− a|x−z|2

2s (t − s)−
d+1

2 e− a|z−y|2
t−s µ(dz)ds

≤ C1t−
d
2 e− a|x−y|2

2t sup
u∈D

t∫

0

∫

D

s− d+1
2 e− a|u−z|2

4s µ(dz)ds

and

t∫

0

∫

D

s− d+1
2 e− a|x−z|2

2s (t − s)−
d+1

2 e− a|z−y|2
t−s µ(dz)ds

≤ C2t−
d+1

2 e− a|x−y|2
2t sup

u∈D

t∫

0

∫

D

s− d+1
2 e− a|u−z|2

4s µ(dz)ds

for all (t, x, y) ∈ (0,∞)× D × D.

Combining Lemmas 3.2 and 3.3, we have the following lemma.

Lemma 3.4 For any a > 0, there exist positive constants L3, L4 depending only on
a and d such that for any r, t > 0, measure µ on Rd and an open subset D with
diam(D) < 2r ,

t∫

0

∫

D

s− d
2 e− a|x−z|2

2s (t − s)−
d+1

2 e− a|z−y|2
t−s µ(dz)ds ≤ L3 Nµ

(
r2

a

)

t−
d
2 e− a|x−y|2

2t

(3.10)
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and

t∫

0

∫

D

s− d+1
2 e− a|x−z|2

2s (t − s)−
d+1

2 e− a|z−y|2
t−s µ(dz)ds ≤ L4 Nµ

(
r2

a

)

t−
d+1

2 e− a|x−y|2
2t

(3.11)

Using Lemma 3.4 and the estimates (3.6)–(3.7), we can show the global upper
estimate of q D if the diameter of D is sufficiently small.

Theorem 3.5 There exists constant r0 > 0 depending on M4, M8 and M9 such that
for any r ≤ r0 and z ∈ Rd

q Dz
r (t, x, y) ≤ 2 M8 t−

d
2 e− M4 |x−y|2

2t (3.12)

and

|∇x q Dz
r (t, x, y)| ≤ 2 M9 t−

d+1
2 e− M4|x−y|2

2t (3.13)

for all (t, x, y) ∈ (0,∞)× Dz
r × Dz

r .

Proof By Theorems 4.5 of [21], without loss of generality, we may assume that
µ(dx) = U (x)dx where U is smooth and bounded. By the translation and scal-
ing property, we can also assume that z = 0 and the diameter of D is 2, so that there
exist x1 such that D ⊂ B(x1, 1). Let Dr = r D and Br = B(r x1, r) so that Dr ⊂ Br .
By Theorem 6 of [2] we get that for every (t, x, y) ∈ (0,∞)× Dr × Dr ,

q Dr (t, x, y) = pDr (t, x, y)+
t∫

0

∫

Dr

q Dr (s, x, z)U (z) · ∇z pDr (t − s, z, y)dz ds.

Following the same argument in the proof of Theorem 4.2 of [21], using (3.6)–(3.7)
and Lemma 3.4 above instead of using (4.1)–(4.3) and Lemma 4.1 of [21], we get that
for (t, x, y) ∈ (0,∞)× Dr × Dr

q Dr (t, x, y) ≤ M8t−
d
2 e− M4 |x−y|2

2t

∞∑

k=0

(

M8L3(d,M4)

d∑

i=1

N 1
Ui

(
r2

M4

))k

and

|∇x q Dr (t, x, y)| ≤ M9t−
d+1

2 e− M4 |x−y|2
2t

∞∑

k=0

(

M9L4(d,M4)

d∑

i=1

N 1
Ui

(
r2

M4

))k

.

Choose r0 small such that

M8L3(d,M4)

d∑

i=1

N 1
Ui

(
r0

2

M4

)

<
1

2
and M9L4(d,M4)

d∑

i=1

N 1
Ui

(
r0

2

M4

)

<
1

2
.
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Then for any r ≤ r0, we have

q Dr (t, x, y) ≤ 2M8t−
d
2 e− M4|x−y|2

2t and |∇x q Dr (t, x, y)| ≤ 2M9t−
d+1

2 e− M4|x−y|2
2t .

��

Using the above estimates we can prove the upper bound on the Green functions
when D is shrunk small enough.

Theorem 3.6 Let D be a bounded C1,1 domain in Rd . Then there exists a constant
r1 = r1(D, µ) > 0 depending on µ only via the rate at which max1≤i≤d Mµi (r) goes
to zero such that for r ≤ r1, z ∈ Rd , x, y ∈ Dz

r ,

G Dz
r
(x, y) ≤ C1

(

1 ∧ ρ(x)

|x − y|
)(

1 ∧ ρ(y)

|x − y|
)

1

|x − y|d−2

where C1 only depends on d, diam(D) and the constants in (3.8) and (3.12), and

|∇x G Dz
r
(x, y)| ≤ C2

(

1 ∧ ρ(x)

|x − y|
)(

1 ∧ ρ(y)

|x − y|
)

1

|x − y|d−1

where C2 only depends on d, diam(D) and the constants in (3.9) and (3.13).

Proof Recall that r0 is the constant r0 from Theorem 3.5, and t0 is the constant t0
used in (3.8) and (3.9). Let r1 := √

t0 ∧ r0 and l := diam(D). Note that for every
x, y ∈ Dz

r , |x − y| ≤ rl. We fix r ≤ r1 and suppress indices. Using (3.8), we have

r2∫

0

q D(t, x, y)dt ≤ M12

r2∫

0

(

1 ∧ ρ(x)√
t

)(

1 ∧ ρ(y)√
t

)

t−
d
2 e− M13|x−y|2

2t dt

= M12

|x − y|d−2

∞∫

|x−y|2
r2

u
d−4

2

(

1 ∧
√

uρ(x)

|x − y|
)(

1 ∧
√

uρ(y)

|x − y|
)

e− 1
2 M13udu

≤ M12

|x − y|d−2

(

1 ∧ ρ(x)

|x − y|
)(

1 ∧ ρ(y)

|x − y|
) ∞∫

0

u
d−4

2 (u ∨ 1)e− 1
2 M13udu.

(3.14)
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On the other hand, by the Chapman–Kolmogorov equation, (3.8) and Theorem 3.5, if
t > r2 we have

q D(t, x, y) =
∫

D

∫

D

q D
(

r2

2
, x, z

)

q D(t − r2, z, w)q D
(

r2

2
, w, y

)

dz dw

≤ 2M2
12 M8ψD(r

2, x, y)
∫

D

∫

D

(
r2

2

)−d

×(t − r2)−
d
2 e− M13|x−z|2

r2 e
− M4 |z−w|2

2(t−r2) e− M13|w−y|2
r2 dz dw

≤ 2M2
12 M8l2ψD(|x − y|2, x, y)

∫

Rd

∫

Rd

(
r2

2

)−d

×(t − r2)−
d
2 e− M13|x−z|2

r2 e
− M4 |z−w|2

2(t−r2) e− M13|w−y|2
r2 dz dw

≤ C0 M2
12 M8l2ψD(|x − y|2, x, y)t−

d
2 e− C1|x−y|2

2t

where C0 = C0(d) and C1 = C1(M4,M13). Since

∞∫

r2

t−
d
2 e− C1|x−y|2

2t dt = 1

|x − y|d−2

|x−y|2
r2∫

0

u
d−4

2 e− 1
2 C1udu,

we have

∞∫

r2

q D(t, x, y)dt ≤ C0 M2
12 M8l2 1

|x − y|d−2

(

1 ∧ ρ(x)

|x − y|
)

×
(

1 ∧ ρ(y)

|x − y|
) ∞∫

0

u
d−4

2 e− 1
2 C1udu. (3.15)

Combining (3.14) and (3.15), we have proved the upper estimate for the Green func-
tions.

The upper estimate for ∇x G Dz
r
(x, y) is similar. So we skip the proof here. ��

Let G0
D be the Green function of the Brownian motion W in D. By the Green

function estimates for Brownian motions, Theorem 3.1 and 3.6 imply that:

Theorem 3.7 Let D be a bounded C1,1 domain in Rd . Then there exist constants
r1 = r1(D, µ) > 0 and C = C(D, µ) > 1 depending on µ only via the rate at which
max1≤i≤d Mµi (r) goes to zero such that for r ≤ r1, z ∈ Rd , x, y ∈ Dz

r ,

C−1 G0
Dz

r
(x, y) ≤ G Dz

r
(x, y) ≤ C G0

Dz
r
(x, y).
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Now we show that the uniform comparability of Green functions (Theorem 3.7)
implies the uniform comparability of the corresponding harmonic measures.

Theorem 3.8 Let D be a bounded C1,1 domain in Rd . Then there exist constants
R = R(D, µ) > 0 and C = C(D, µ) > 1 depending on µ only via the rate at which
max1≤i≤d Mµi (r) goes to zero such that for r ≤ R, z ∈ Rd and x ∈ Dz

r

C−1 Px

(
WτDz

r
∈ dy

)
≤ Px

(
XτDz

r
∈ dy

)
≤ C Px

(
WτDz

r
∈ dy

)
.

In particular, there exist constants r2 = r2(d, µ) > 0 and M15 = M15(d, µ) > 1
depending only on µ only via the rate at which max1≤i≤d Mµi (r) goes to zero such
that for r ≤ r2, z ∈ Rd and x ∈ Bz

r := B(z, r)

M−1
15 Px

(
WτBz

r
∈ dy

)
≤ Px

(
XτBz

r
∈ dy

)
≤ M15 Px

(
WτBz

r
∈ dy

)
. (3.16)

Proof The idea of the proof is similar to that of Theorem 2.2 in [9]. Fix a bounded
C1,1 domain D and constants R := r1 = r1(D, µ) > 0 and c = c(D, µ) > 1 in
Theorem 3.7. We also fix r ≤ R and z ∈ Rd and suppress indices on Dz

r . Let ϕ ≥ 0
is a continuous function on ∂D and let

u(x) := Ex [ϕ(XτD )],

which is harmonic for X D and continuous on D by Propositions 2.3 and 2.8. Choose
increasing smooth domains Dn with Dn ⊂ Dn+1 and ∪n Dn = D. Denote Tn :=
inf{t > 0 : Xt ∈ Dn}. Let un(x) := Ex [u(X D

Tn
)]. Then by Proposition 2.10, there

exist Radon measures νn supported on ∂Dn such that

un(x) = G Dνn(x) =
∫

∂Dn

G D(x, y)νn(dy).

Recall that G0
D is the Green function of the killed Brownian motion in D. Let

vn(x) := G0
Dνn(x) =

∫

∂Dn

G0
D(x, y)νn(dy).

Then by Theorem 3.7,

c−1vn(x) ≤ un(x) ≤ cvn(x), x ∈ Dn .

Since D is regular for X (see Proposition 2.2), using Proposition 2.3, the remainder
of the argument is almost identical to the corresponding argument on the proof of
Theorem 2.2 in [9] (with b1 ≡ 0 there). So we omit it. ��
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It is well known that the harmonic measure Px (WτD ∈ dy) is mutually absolutely
continuous with respect to the surface measure on ∂D if D is a bounded C1,1 domain.
So immediately we have the following from Theorem 3.8.

Corollary 3.9 The harmonic measure Px (XτD ∈ dy) is mutually absolutely continu-
ous with respect to the surface measure on ∂D if D is a bounded C1,1 domain.

4 Boundary Harnack principle in bounded Lipschitz domains

In this section, we will use the comparability of harmonic measures obtained in the last
section to prove a scale invariant version of the boundary Harnack principle for X in
bounded Lipschitz domains. Recall that a bounded domain D is said to be Lipschitz if
there is a localization radius r0 > 0 and a constant� > 0 such that for every Q ∈ ∂D,
there is a Lipschitz function φQ : Rd−1 → R satisfying |φQ(x)−φQ(z)| ≤ �|x − z|,
and an orthonormal coordinate system C SQ with origin at Q such that

B(Q, r0) ∩ D = B(Q, r0)∩{y =(y1, . . . , yd−1, yd)=:(ỹ, yd) in C SQ : yd>φQ(ỹ)}.

The pair (r0,�) is called the characteristics of the Lipschitz domain D.
One of the properties of Lipschitz domain is that it satisfies the uniform exterior

cone condition. Recall that an open set D in Rd is said to satisfy the uniform exterior
cone condition if there exist constants η > 0, r and a cone

C := {x = (x1, . . . , xd) ∈ Rd : xd < 0, (x2
1 + · · · + x2

d−1)
1
2 < η|xd |} (4.1)

such that for every Q ∈ ∂D, there is a cone CQ with vertex Q, isometric to C, such
that CQ ∩ B(Q, r) ⊂ Dc. If D is a bounded Lipschitz domain with its characteristics
(r0,�), then it satisfies the uniform exterior cone condition with η = η(d,�), r = r0.
Moreover, by choosing r0 smaller if necessary, one can choose cones Cz := z + C
in C SQ for each Q ∈ ∂D and z ∈ B(Q, r0) ∩ ∂D such that Cz ∩ B(Q, r0) ⊂
Dc ∩ B(Q, r0).

In the remainder of this section, we assume D is a bounded Lipschitz domain and
fix its characteristics (r0,�) and the constant η. The constant r1 will be the constant
from Corollary 5.8 in [21] and the constant r2 will be the constant from Theorem 3.8.
Without loss of generality, we also assume that � ≥ 1.

For every Q ∈ ∂D and x ∈ B(Q, r0) ∩ D, we define

δQ(x) := xd − φQ(x̃),

where (x̃, xd) is the coordinate of x in C SQ . Since D is Lipschitz, there exists a
constant c = c(d,�) ≥ 1 such for every Q ∈ ∂D and x ∈ B(Q, r0) ∩ D we have

c−1 δQ(x) ≤ ρ(x) ≤ δQ(x) (4.2)

Using (3.16), we can obtain the following result.
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Lemma 4.1 Suppose that Q ∈ ∂D. If l ≥ 1, then for every x ∈ D ∩ B(Q, r0/2) with
4lδQ(x) < r0 ∧ r2,

Px

(
XτB(x,2lδQ (x))

∈ D
)

≤ c < 1

where c = c(d,�).

Proof Fix Q ∈ ∂D and an orthonormal coordinate system C SQ with origin at Q such
that

B(Q, r0) ∩ D = B(Q, r0) ∩ {y =(y1, . . . , yd−1, yd)=:(ỹ, yd) in C SQ : yd>φQ(ỹ)}.

For any x ∈ B(Q, r0) ∩ D, we have x = (x̃, φQ(x̃) + δQ(x)) in C SQ . Note that
for any x ∈ D ∩ B(Q, r0) with 4lδQ(x) < r0 ∧ r2 we have B(x, 2lδQ(x)) ∩ D ⊂
B(Q, r0)∩ D. Let Qx := (x̃, φQ(x̃)) in C SQ . Since 4lδQ(x) < r0, there exists a cone
CQx := Qx + C with vertex Qx satisfying

CQx ∩ ∂B(x, 2lδQ(x)) ⊂ CQx ∩ B(Qx , r0) ⊂ Dc.

So by Theorem 3.8 (note that 4lδQ(x) < r2),

Px

(
XτB(x,2lδQ (x))

/∈ D
)

≥ Px

(
XτB(x,2lδQ (x))

∈ ∂B(x, 2lδQ(x)) ∩ CQx

)

≥ M−1
15 Px

(
WτB(x,2δQ (x))

∈ ∂B(x, 2δQ(x)) ∩ CQx

)

= M−1
15 P0

(
WτB(0,2) ∈ ∂B(0, 2) ∩ C(0,...,0,−1)

)
,

which is strictly positive since

|∂B(0, 2)| ≤ c |∂B(0, 2) ∩ C(0,...,0,−1)|.

��
The above lemma and the Harnack principle (Corollary 5.8 of [21]) imply the

following Carleson type estimate.

Theorem 4.2 There exists c0 > 0 such that for any Q ∈ ∂D and any x = Q +
(0, δQ(x)) ∈ D in C SQ with δQ(x) <

1
10

( r0
�

∧ r1 ∧ r2
)
, and any nonnegative function

u which is harmonic with respect to X in B(x, 4δQ(x))∩ D and vanishes continuously
on B(x, 4δQ(x)) ∩ ∂D, we have

u(y) ≤ c0 u(x), for every y ∈ B(x, 2δQ(x)) ∩ D.

Proof The proof of this theorem is similar to that of Theorem III.1.7 in [3]. Fix Q ∈ ∂D
and an orthonormal coordinate system C SQ with origin at Q such that

B(Q, r0) ∩ D = B(Q, r0)∩{y =(y1, . . . , yd−1, yd)=:(ỹ, yd) in C SQ : yd>φQ(ỹ)}.
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Also we fix x = Q + (0, δQ(x)) ∈ D in C SQ with δQ(x) <
1
6

( r0
�

∧ r1 ∧ r2
)

and a
nonnegative function u which is harmonic with respect to X in B(x, 4δQ(x))∩ D and
vanishes continuously on B(x, 4δQ(x)) ∩ ∂D. Note that

B(x, 4δQ(x)) ∩ D ⊂ B(Q, r0) ∩ D.

For each y ∈ B(x, 2δQ(x)) ∩ D, let ξy := (ỹ, φQ(ỹ)+ δQ(x)) in C SQ . Since

|ỹ|2 + |φQ(ỹ)+ δQ(x)|2 ≤ 6δQ(x)
2 + 8�2δQ(x)

2 < r2
0 ,

ξy is in B(Q, r0) ∩ D. Since ρ(y) ≤ |y − x | + δQ(x) < 3δQ(x) < r1, using the
Harnack principle (Corollary 5.8 of [21]), (4.2) and a standard chain argument, we
can show that there exist σ > 0 such that

u(y) ≤ c1

(
δQ(y)

δQ(x)

)−σ
u(ξy) (4.3)

(see Exercise 4 in Chap. 3 of [3]). Also, since |x −ξy | ≤ |x − y|+|y−ξy | ≤ 5δQ(x) <
r1 and δQ(x) = δQ(ξy), using the Harnack principle (Corollary 5.8 of [21]) and (4.3),
we have

u(y) ≤ c2

(
δQ(y)

δQ(x)

)−σ
u(x).

So

δQ(y) ≤ c3

(
u(y)

u(x)

)− 1
σ

δQ(x). (4.4)

We will prove this lemma by contradiction. Lemma 4.1 implies that for every
y ∈ B(x, 2δQ(x)) ∩ D, there exists ε < 1 such that

u(y) ≤ Ey

[
u(XτB(y,2δQ (y))

) : XτB(y,2δQ (y))
∈ D

]
≤
(

sup
∂B(y,2δQ(y))

u

)

ε.

Therefore, if there exists x1 ∈ B(x, 2δQ(x)) ∩ D such that u(x1) ≥ Mu(x) (M will
be chosen later so that |xn − Q| < r0/2), there exists x2 ∈ ∂B(x1, 2δQ(x1)) such that

u(x2) = sup
∂B(x1,2δQ(x1))

u ≥ u(x1)

ε
≥ M

ε
u(x).

Recursively one can choose a sequence {xn}n≥1 with |xn+1 − xn| = 2δQ(xn) and

u(xn) ≥ M

εn−1 u(x), (4.5)
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which implies that u(xn) → ∞. But, by (4.4)–(4.5),

|xn − x | ≤ |xn − x1| + |x1 − x | ≤
∞∑

j=1

2δQ(x j )+ 2δQ(x)

≤
⎛

⎝
∞∑

j=1

2c3

(
u(x j )

u(x)

)− 1
σ + 2

⎞

⎠ δQ(x) ≤
⎛

⎝2c3 M− 1
σ

∞∑

j=1

ε
j−1
σ + 2

⎞

⎠ δQ(x),

which is less than 4δQ(x) if we choose a M with

M >

⎛

⎝c3

∞∑

j=1

ε
j−1
σ

⎞

⎠

σ

.

The above argument also implies that δQ(xn) → 0. This contradicts the fact that u
vanishes continuously on B(x, 4δQ(x)) ∩ ∂D. ��

To prove a scale invariant version of the boundary Harnack principle, we shall fol-
low the “box method” of Bass and Burdzy [3,5]. We adopt the following notation from
[3,5]: for every Q ∈ ∂D with an orthonormal coordinate system C SQ with origin at
Q such that B(Q, r0) ∩ D = B(Q, r0) ∩ {y in C SQ : yd > φQ(ỹ)}, we let

�Q(a, R) := {y in C SQ : φQ(ỹ)+ a > yd > φQ(ỹ), |ỹ| < R},
∂s�Q(a, R) := {y in C SQ : φQ(ỹ)+ a

2
> yd ≥ φQ(ỹ), |ỹ| = R},

∂u�Q(a, R) := {y in C SQ : φQ(ỹ)+ a = yd , |ỹ| < R}
∪ {y in C SQ : φQ(ỹ)+ a ≥ yn ≥ φQ(ỹ)+ a

2
, |ỹ| = R}.

The proofs of the next three lemmas are similar to those of Lemmas 3.1.5–6 and
Theorem 3.1.7 in [3] (also see [4,5]). But one has to be more careful since we do not
have the scaling property and we use Theorem 3.8 only for small balls. We spell out
the details of the proofs of these lemmas for the reader’s convenience.

Lemma 4.3 There exist c1 = c1(D) and c2 = c2(D) > 0 such that for any r, R, a <
1
4 (r0 ∧ r1 ∧ r2), Q ∈ ∂D, and y ∈ �Q(a, r), we have

Py

(
Xτ�Q (a,R)

∈ ∂s�Q(a, R)
)

≤ c1 e− c2(R−r)
a

Proof We split into two cases. First we assume that R − r > 12a. We define {Sn}n≥1,
a sequence of stopping times:

S1 := inf{t > 0 : |Xt − X0| ≥ 2a} and Sn+1 := Sn + S1 ◦ θSn .

123



Boundary Harnack principle for Brownian motions with measure-valued drifts 161

Fix y ∈ �Q(a, r). Since

Py

(
Xτ�Q (a,R)

∈ ∂s�Q(a, R)
)

≤ Py

(

τ�Q(a,R) > S[ R−r
4a

]

)

,

it is enough to show that there exists ε ∈ (0, 1) such that for every n ≤ 1
4a (R − r),

Py
(
τ�Q(a,R) > Sn+1

) ≤ ε Py
(
τ�Q(a,R) > Sn

)
. (4.6)

In fact, (4.6) implies that there exist c1 = c1(D) and c2 = c2(D) > 0 such that

Py

(
Xτ�Q (a,R)

∈ ∂s�Q(a, R)
)

≤ cεn ≤ c1 e− c2(R−r)
a .

Now we prove (4.6). By the strong Markov property,

Py
(
τ�Q(a,R) > Sn+1

)

≤ Ey
[
PXSn

(
τ�Q(a,R) > S1

) : τ�Q(a,R) > Sn
]
.

If n ≤ 1
4a (R − r) and τ�Q(a,R) > Sn , then X Sn ∈ �Q

(
a, R+r

2

)
. If z ∈ �Q

(
a, R+r

2

)
,

with l := a
δQ(z)

≥ 1 we have 4lδQ(z) = 4a < (r0 ∧ r1 ∧ r2). So by Lemma 4.1, we
have

Pz
(
τ�Q(a,R) > S1

) ≤ Pz
(
X S1 ∈ D

) ≤ ε < 1.

Therefore (4.6) is true.

If R − r ≤ 12a, choose c1 larger if necessary so that c1 e− c2(R−r)
a ≥ 1. ��

Lemma 4.4 There exist c = c(D) > 0 and σ = σ(D) > 0 such that for every
r < 1

4 (r0 ∧ r1 ∧ r2), a < 2r , Q ∈ ∂D, and y ∈ �Q(r, a), we have

Py

(
Xτ�Q (2r,8r) ∈ ∂u�Q(2r, 8r)

)
≥ c

(
δQ(y)

r

)σ
.

Proof Fix Q ∈ ∂D, r < 1
4 (r0 ∧ r1 ∧ r2) , a < 2r and y ∈ �Q(r, a). (4.2) says

that there exists a constant c1 = c1(D) ≥ 1 such that c−1
1 δQ(x) ≤ ρ(x) ≤ δQ(x)

for all x ∈ D ∩ B(Q, r0). Let y0 = y and choose yi above y0 in C SQ such that
|yi − yi−1| = ρ(yi−1)/4. Let n and m be the smallest integers such that δQ(yn) > 2r
and m ≥ 8c1, respectively. We see that

δQ(ym) = δQ(y0)+ |y0 − y1| + · · · + |ym−1 − ym | ≥ 2δQ(y0).
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By induction, we get δQ(ykm) ≥ 2kδQ(y0). Let k be the smallest integer such
2kδQ(y0) > 2r . Then by the choices of n, m and k, we get

n ≤ mk ≤ (8c1 + 1) log2

(
4r

δQ(y0)

)

≤ − 9c1

ln 2
ln
δQ(y0)

4r
. (4.7)

On the other hand,

δQ(yn) = δQ(yn−1)+ |yn−1 − yn| ≤ 2r + ρ(yn−1)

4
≤ 2r + δQ(yn−1)

4
≤ 5r

2
.

So 2r ≤ δQ(yn) ≤ 5r
2 . Let

A j :=
j⋃

i=0

B

(

yi ,
ρ(yi )

4

)

.

Since a + δQ(yn) < 5r .

Py

(
Xτ�Q (2r,8r) ∈ ∂u�Q(2r, 8r)

)
≥ Py

(
XτAn

∈ ∂An \�Q(2r, 8r)
)
.

By Theorem 3.8, we also have

Pyn

(
XτAn

∈ ∂An \�Q(2r, 8r)
)

≥ Pyn

(

Xτ
B
(

yn ,
1
4 ρ(yn )

) ∈ ∂B

(

yn,
1

4
ρ(yn)

)

\ (An−1 ∪�Q(2r, 8r))

)

≥ M−1
15 Pyn

(

Wτ
B
(

yn ,
1
4 ρ(yn )

) ∈ ∂B

(

yn,
1

4
ρ(yn)

)

\ (An−1 ∪�Q(2r, 8r))

)

≥c2>0.

Now, since δQ(yn) <
5
2r < r1, using the Harnack principle (Corollary 5.8 of [21])

and a standard chain argument we can show that

Py
(
XτAn

∈ ∂A \�Q(2r, 8r)
) ≥ c2 cn

3 .

Therefore, with (4.7) we conclude that

Py

(
Xτ�Q (2r,8r) ∈ ∂u�Q(2r, 8r)

)
≥ c2 cn

3 ≥ c

(
δQ(y)

r

)σ
.

��
Lemma 4.5 There exists c = c(D) > 0 such that for every r < 1

4 (r0 ∧ r1 ∧ r2),
Q ∈ ∂D and y ∈ �Q(r, r), we have

Py

(
Xτ�Q (2r,8r) ∈ ∂s�Q(2r, 8r)

)
≤ c Py

(
Xτ�Q (2r,8r) ∈ ∂u�Q(2r, 8r)

)
.
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Proof We fix r < 1
4 (r0 ∧ r1 ∧ r2) and Q ∈ ∂D. Let

�1 :=
{

Xτ�Q (2r,8r) ∈ ∂s�Q(2r, 8r)
}
, �2 :=

{
Xτ�Q (2r,8r) ∈ ∂u�Q(2r, 8r)

}

and � := �Q(2r, 8r). We define a decreasing sequence {ri }i≥1 by

ri := 2r

⎛

⎝3

4
− 1

40

i∑

j=1

1

j2

⎞

⎠ > r.

Note that r < · · · < ri+1 < ri < · · · < r1 <
3r
2 . We also define

Ai := �Q(2
−i+1r, ri ) \�Q(2

−i r, ri ) and li := sup
y∈Ai

Py(�1)

Py(�2)
.

We claim that supi≥1 li < ∞. First, by Lemma 4.4, we get l1 < ∞. Let τi :=
τ�Q(2−i+1r,ri−1)

and y ∈ Ai . We then have:

Py(�1) ≤ Py(Xτi ∈ ∂s�Q(2
−i+1r, ri−1))

+ Py(Xτi ∈ ∂u�Q(2
−i+1r, ri−1);�1) := Ji,1 + Ji,2.

Since ri−1 − ri ≤ r
20i2 , by Lemma 4.3, Ji,1 is bounded above by

c1e
−c2

r/(20i2)
2−i r ≤ c1e

−c3
2i

i2 ≤ c4
2−iσ

i2 ≤ c5

i2

(
δQ(y)

r

)σ
,

which is, in turn, bound above by c
i2 Py(�2) by Lemma 4.4. On the other hand, using

the strong Markov property (twice), Ji,2 is bounded above by

Ey

[
PXτi

(�1) : ∂u�Q(2
−i+1r, ri−1)

]

≤ li−1 Py

(
Xτi ∈ ∂u�Q(2

−i+1r, ri−1); �2

)
≤ li−1 Py(�2).

Therefore

Py(�1) ≤ c

i2 Py(�2) + li−1 Py(�2).

Divide the above by Py(�2) and take the supremum over y ∈ Ai . We get

li ≤ c

i2 + li−1,

which implies that supi≥1 li < ∞. ��
The following is the main result of this section.
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Theorem 4.6 (Scale invariant boundary Harnack principle) There exist constants
M, c > 1 and r3 > 0, depending on µ only via the rate at which max1≤i≤d Mµi (r)
goes to zero such that for every Q ∈ ∂D, r < r3 and any nonnegative functions u and
v which are harmonic with respect to X in D ∩ B(Q,Mr) and vanish continuously
on ∂D ∩ B(Q,Mr), we have

u(x)

v(x)
≤ c

u(y)

v(y)
for any x, y ∈ D ∩ B

(

Q,
r

1 +�

)

. (4.8)

Proof Let A := 10
√

1 +�2, M := 10A and r3 := 1
M (r0 ∧ r1 ∧ r2). Fix r < r3

and Q ∈ ∂D with an orthonormal coordinate system C SQ with origin at Q such that

B(Q, r0)∩D = B(Q, r0)∩{y in C SQ : yd > φQ(ỹ)}. Note that if y ∈ B
(

Q, r
1+�

)
∩

D, then

yd − φQ(ỹ) ≤ yd +�|ỹ| < r

1 +�
+�

r

1 +�
= r.

So B
(

Q, r
1+�

)
∩ D ⊂ �Q(r, r). Let � := �Q(2r, 8r), ∂s� := ∂s�Q(2r, 8r) and

∂u� := ∂u�Q(2r, 8r). Assume x, y ∈ �Q(r, r) and let a = Q + (0̃, Ar). By the
Harnack principle (Corollary 5.8 of [21]),

sup
∂u�

u ≤ c1u(a) and inf
∂u�

v ≥ c2v(a). (4.9)

If z ∈ �,

|a − z| ≤ |a − Q| + |Q − z| ≤ Ar + |(z̃, φQ(z̃))− (Q̃, 0)| + 2r

≤ Ar + 8r
√

1 +�2 + 2r < 2Ar.

So � ⊂ B(a, 2Ar). Clearly B(a, 4Ar) ⊂ B(Q,Mr). Thus by Theorem 4.2,

sup
∂s�

u ≤ c3u(a). (4.10)

Therefore by (4.9), (4.10) and Lemma 4.5, for every x ∈ �Q(r, r),

u(x) = Ex
[
u(Xτ�) : Xτ� ∈ ∂s�

]+ Ex
[
u(Xτ�) : Xτ� ∈ ∂u�

]

≤ c3u(a)Px
(
Xτ� ∈ ∂s�

)+ c1u(a)Px
(
Xτ� ∈ ∂u�

)

≤ c4
u(a)

v(a)
v(a)Px

(
Xτ� ∈ ∂u�

)

≤ c5
u(a)

v(a)
Ex

[
v(Xτ�) : Xτ� ∈ ∂u�

] ≤ c5
u(a)

v(a)
v(x).
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The above argument also implies that

v(y)

u(y)
≤ c5

v(a)

u(a)
.

Therefore

u(x)

v(x)
≤ c5

u(a)

v(a)
≤ c2

5
u(y)

v(y)
.

��

5 Martin kernel and Martin boundary

By using Green function estimates, we proved in [21] that, for any bounded C1,1

domain D, both the Martin boundary and the minimal Martin boundary with respect
to X in D coincide with the Euclidean boundary. In this section, we will extend this
result to bounded Lipschitz domains by using the results of the previous sections.

Fix x0 ∈ D throughout this section and define

MD(x, y) :=
{

G D(x,y)
G D(x0,y)

, if x ∈ D and y ∈ D \ {x0} ,
1{x0}(x), if y = x0.

By Theorem 2.9 (1), we know that for each y ∈ D \ {x0} and ε > 0, MD( · , y) is
a harmonic function with respect to X in D \ B(y, ε) and

MD(x, y) = Ex

[
MD(X

D
τD\B(y,ε)

, y)
]
, x ∈ D \ B(y, ε). (5.1)

Using the Riesz decomposition theorem (Theorem 2.9 (2)–(3)), Proposition 2.10,
the Harnack inequality (Corollary 5.8 in [21]) and the Hölder continuity of harmonic
functions (Theorem 5.5 in [21]), one can follow the arguments in [22] (see also Sect. 2.7
of [3] or [25]) to show that the process X D has a Martin boundary ∂M D satisfying the
following properties.

(M1) D ∪ ∂M D is a compact metric space;
(M2) D is open and dense in D ∪ ∂M D and its relative topology coincides with its

original topology;
(M3) MD(x, · ) can be extended to ∂M uniquely in such a way that, MD(x, y)

converges to MD(x, w) as y → w ∈ ∂M D, the function MD(x, w) is jointly
continuous on D × ∂M D, and MD(·, w1) �= MD(·, w2) if w1 �= w2;

The Harnack inequality (Corollary 5.8 in [21]) and the harmonicity of MD( · , y)
in D \ {y} imply the harmonicity of MD( · , w) in D for w ∈ ∂M D.

Proposition 5.1 For every w ∈ ∂M D, x �→ M(x, w) is harmonic with respect to X
in D.
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Proof Fix w ∈ ∂M D and relatively compact open sets U ⊂ U ⊂ U1 ⊂ U1 in D.
Let δ := 1

2 dist(U, ∂U1). Choose a sequence {yn}n≥1 in D \ U1 converging to w in
D ∪ ∂M D so that

MD(x, w) = lim
n→∞ MD(x, yn).

Since MD( · , yn) is harmonic in a neighborhood of U for every n ≥ 1, we have

Ex

[
MD(X

D
τU
, yn)

]
= MD(x, yn), x ∈ U.

Using the Harnack inequality (Corollary 5.8 in [21]) and a Harnack chain argument,
we have for every z ∈ ∂U ,

MD(z, yn) = G D(z, yn)

G D(x0, yn)
≤ c1

G D(x0, yn)

G D(x0, yn)
= c1, n ≥ 1,

for some c1 = c1(δ, D) > 0. Thus by the bounded convergence theorem,

lim
n→∞ Ex

[
MD(X

D
τU
, yn)

]
= Ex

[
MD(X

D
τU
, w)

]
= MD(x, w), x ∈ U.

��
Since MD(x0, y) = 1 for every y ∈ D ∪ ∂M D \ {x0}, using Theorem 5.5 and

Corollary 5.8 in [21] we can show that, for any compact subset K of D, the family
{MD(·, w) : w ∈ ∂M D} is uniformly bounded and equicontinuous on K . One can then
apply the Ascoli-Arzelà theorem to prove the existence of minimal Martin boundary
∂m D. We omit the details since the proof will be almost identical to the classical case
(see Sect. 2.7 of [3]). Thus, by combining the above argument with Theorem 2.9, we
have that for every excessive function f of X D , there are a unique Radon measure ν1
on D and a unique finite measure ν2 on ∂m D such that

f (x) =
∫

D

G D(x, y)ν1(dy)+
∫

∂m D

MD(x, z)ν2(dz), (5.2)

and f is harmonic in D with respect to X if and only if ν1 = 0. When f is harmonic
in D with respect to X , the measure ν2 above is called the Martin measure of f .

From now on we shall assume that D is a bounded Lipschitz domain. First, we will
use Carleson estimate (Theorem 4.2) to show that there exists a continuous map from
the Martin compactification ∂M D ∪ D onto the Euclidean closure D.

Lemma 5.2 There exists a continuous map ι from ∂M D ∪ D onto D which is an
identity map in D.

Proof Note that D ∪ ∂M D is a compact metric space. We will show that if a sequence
{yn}n≥1 in D converges to a point w in ∂M D, it converges in D. Assume that a subse-
quence {ynk }k≥1 of {yn}n≥1 converges to y0 ∈ D. Let U and U0 be relatively compact
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open sets with y0 ∈ U0 ⊂ U0 ⊂ U ⊂ U ⊂ D \{x0}. Choose k0 large so that ynk ∈ U0
for every k ≥ k0 and let δ :=dist(U0, ∂U ). Suppose x ∈ D \U . By the harmonicity of
G D( · , ynk ) on D \ U0 and Theorem 2.6, we can use the Carleson estimate (Theorem
4.2) and a Harnack chain argument (Corollary 5.8 in [21]) with G D( · , ynk ) on D \U0.
Thus for every a ∈ D ∩ ∂U ,

MD(a, ynk ) = G D(a, ynk )

G D(x0, ynk )
≤ c1

G D(x0, ynk )

G D(x0, ynk )
= c1, k ≥ k0, (5.3)

for some c1 = c1(δ, D). Therefore, using (5.1) and the bounded convergence theorem,
we have for every x ∈ D \ U

MD(x, w) = lim
k→∞ MD(x, ynk ) = lim

k→∞ Ex

[
MD(X

D
τD\U

, ynk )
]

= Ex

[
MD(X

D
τD\U

, w)
]
.

(5.3) implies that MD(a, w) ≤ c1 for a ∈ D ∩ ∂U . So we have for every y ∈ ∂D \U ,

lim
x→y

MD(x, w) ≤ c1 lim
x→y

Px (τD\U < τD) = 0, y ∈ ∂D \ U .

If there exists a subsequence of {yn}n≥1 converging to a point in D different from y0,
the above argument says that the Martin kernel would vanish continuously on ∂D.
But that implies that MD( · , w) ≡ 0 by the maximum principle (Lemma 7.2 in [21]),
which is impossible. Therefore y0 ∈ D must be unique. Moreover, y0 must be in ∂D
otherwise we could choose U in D and also argue that the Martin kernel would vanish
continuously on ∂D.

Since {yn}n≥1 is bounded in D, the above argument shows that every subsequence
of {yn}n≥1 has a further subsequence converging to a unique point in D. So the map ι
defined by ι(w) = y0 is continuous.

Now we show that ι is onto. Fix a point z0 ∈ ∂D and choose a sequence {yn}n≥1
in D converging to a z0 in D. Since {yn}n≥1 is a sequence in the compact met-
ric space D ∪ ∂M D, there exists a subsequence {ynk }k≥1 of {yn}n≥1 converges to a
w0 ∈ D ∪ ∂M D. By the continuity of ι, ι(w0) = z0. ��

From the proof of the above lemma, we have the following corollary.

Corollary 5.3 Suppose w0 ∈ ∂M D. For every open subset V � ι(w0), we have,

MD(x, w0) = Ex

[
MD(X

D
τD\V

, w0)
]
.

If z ∈ ∂D is different from ι(w0), then

lim
D�x→z

MD(x, w0) = 0.
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Lemma 5.4 For eachw0 ∈ ∂M D, the support of the Martin measure ν for MD( · , w0)

is contained in ι−1(ι(w0)).

Proof Let z0 := ι(w0) and ν be the Martin measure ν for MD( · , w0). For any closed
subset U of ∂M D such that U ∩ ι−1(z0) = ∅, define

h(x) =
∫

U

MD(x, w)ν(dw) for x ∈ D.

We will show that h ≡ 0, which implies that the support of ν is contained in ι−1(z0).
If z ∈ ∂D is different from z0 = ι(w0), then by Corollary 5.3,

h(x) ≤
∫

∂M D

MD(x, w)ν(dw) = MD(x, w0) → 0 as x → z. (5.4)

On the other hand, for any w ∈ U , by Corollary 5.3, limx→z0 MD(x, w) = 0. Let
δ := dist(z0, ι(U )). By the Carleson estimate (Theorem 4.2) and a Harnack chain argu-
ment (Corollary 5.8 in [21]) we get that for every x ∈ B

(
z0,

1
3δ
)

and y ∈ {z ∈ D :
dist(z, ι(U )) < 1

3δ},

G D(x, y)

G D(x0, y)
≤ c1

G D(x0, y)

G D(x0, y)
= c1

for some c1 = c1(δ, D). Thus, for any w ∈ U and x ∈ B
(
z0,

1
3δ
)
, MD(x, w) is

bounded above by c1. Therefore by the bounded convergence theorem, we get

lim
x→z0

h(x) = lim
x→z0

∫

U

MD(x, w)ν(dw) = 0. (5.5)

Combining (5.4), (5.5) and Maximum principle, we conclude that h ≡ 0 ��
The next lemma is a consequence of the scale invariant version of the boundary

Harnack principle (Theorem 4.6).

Lemma 5.5 There exists constant c1 > 1 such that for every Q ∈ ∂D and any non-
negative functions u and v which are harmonic with respect to X in D and vanish
continuously on ∂D \ {Q}, we have

u(x)

u(x0)
≤ c1

v(x)

v(x0)
for any x ∈ D. (5.6)

Proof Recall the constants M, c > 1 and r3 > 0 in Theorem 4.6 and the Lipschitz
constant �. We fix M , c > 1, r3 > 0, � and a point Q on ∂D throughout this
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proof. We also fix an orthonormal coordinate system C SQ with origin at Q such that

B(Q, r0)∩ D = B(Q, r0)∩{y in C SQ : yd > φ(ỹ)}. Let r < r3
4 , Qr :=

(
0̃, r

2(1+�)
)

,

�r :=
{

y in C SQ : φ(ỹ)+ r

2(1 +�)
> yd > φ(ỹ), |ỹ| < 2Mr

}

,

∂s�r :=
{

y in C SQ : φ(ỹ)+ r

2(1 +�)
≥ yd > φ(ỹ), |ỹ| = 2Mr

}

,

∂u�r :=
{

y in C SQ : φ(ỹ)+ r

2(1 +�)
= yd , |ỹ| ≤ 2Mr

}

.

Choose r smaller if necessary so that x0 /∈ �r . For |ỹ| = 2Mr , we have |(ỹ, φ(ỹ))| >
Mr . So u and v are harmonic with respect to X in D ∩ B((ỹ, φ(ỹ)),Mr) and vanish
continuously on ∂D ∩ B((ỹ, φ(ỹ)),Mr) where |ỹ| = 2Mr . Therefore by Theorem
4.6,

u(x)

v(x)
≤ c

u(y)

v(y)
for any x, y ∈ ∂s�r with x̃ = ỹ. (5.7)

We claim that there exists c3 such that for every x ∈ ∂s�r ∪ ∂u�r

c−1
3

u(x)

u(Qr )
≤ v(x)

v(Qr )
≤ c3

u(x)

u(Qr )
. (5.8)

If x ∈ ∂u�r , the Harnack principle (Corollary 5.8 in [21]) implies that there exists
constant c2 > 1 such that

c−1
2 <

u(x)

u(Qr )
,
v(x)

v(Qr )
< c2. (5.9)

Thus (5.8) is true for every x ∈ ∂u�r . Now we assume that x ∈ ∂s�r . Let xr :=(
x̃, φ(x̃)+ r

2(1+�)
)

. Since xr ∈ ∂s�r , (5.7) implies that

c−1 u(x)

u(xr )
≤ v(x)

v(xr )
≤ c

u(x)

u(xr )
. (5.10)

On the other hand, xr is also in ∂u�r . Thus, by (5.9),

c−1
2 <

u(xr )

u(Qr )
,
v(xr )

v(Qr )
< c2. (5.11)

(5.10)–(5.11) imply that (5.8) is true for each x ∈ ∂s�r and c3 is independent of
the choice of x ∈ ∂s�r . Therefore (5.8) is true for every x ∈ ∂s�r ∪ ∂u�r . More-
over, by applying the maximum principle (Lemma 7.2 in [21]), (5.8) is true for every
x ∈ D \�r . In particular, u(x0)

u(Qr )
≥ c−1

3
v(x0)
v(Qr )

. Therefore

u(x)

u(x0)
= u(x)

u(Qr )

u(Qr )

u(x0)
≤ c2

3
v(x)

v(Qr )

v(Qr )

v(x0)
= c2

3
v(x)

v(x0)
, x ∈ D \�r .
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Since c3 is independent of r , by letting r ↓ 0, the above inequality is true for every
x ∈ D. ��
Lemma 5.6 ι is one to one. Moreover ∂m D = ∂M D.

Proof Fix z0 ∈ ∂D. (5.2) and Lemma 5.4 imply that for each w ∈ ι−1{z0}, there is a
unique Martin measure νw for MD( · , w) such that

MD(x, w) =
∫

ι−1(z0)∩∂m D

MD(x, a)νw(da).

Therefore ι−1(z0) ∩ ∂m D �= ∅. Fix w0 ∈ ι−1(z0) ∩ ∂m D and let w1, w2 ∈ ι−1(z0).
Since MD(x, w1) and MD(x, w0) are harmonic with respect to X in D (Proposition
5.1) and vanish continuously on ∂D \ {z0} (Corollary 5.3), from Lemma 5.5 we know
that there exists c3 such that

MD(x, w1) ≤ c3
MD(x0, w1)

MD(x0, w0)
MD(x, w0) = c3 MD(x, w0).

The minimal harmonicity of MD( · , w0) implies that MD(x, w1) = c3 MD(x, w0).
But they agree on x = x0. So MD( · , w1) = MD( · , w0). The same argument shows
that MD( · , w2) = MD( · , w0), thus MD( · , w2) = MD( · , w1), which implies that
w1 = w2. Therefore ι is one to one. The above argument also says that every w ∈
ι−1(∂D) is a minimal Martin boundary point. Since ι is onto and ι(∂M D) = ∂D
(Lemma 5.2), every w ∈ ∂M D is a minimal Martin boundary point of X D . Therefore
∂m D = ∂M D ��

Lemmas 5.2 and 5.6 imply there exists a homeomorphism between ∂m D ∪ D and
D which is an identity map in D. Therefore we arrive the following result.

Theorem 5.7 There is a one-to-one correspondence between the minimal Martin
boundary ∂m D and the Euclidean boundary ∂D.

6 Extensions to non-symmetric diffusions with measure-valued drifts

In this section, we will briefly indicate that the results of this paper remain valid for
non-symmetric diffusions with measure-valued drifts. To give a precise definition of a
diffusion with drift µ in Kd,1, we let ϕ(x) and ϕn(x) be as in Section 1. For 1 ≤ i ≤ d
and n = 1, 2, . . . , define

Ui
n(x) =

∫

ϕn(x − y)µi (dy).

Put Un(x) = (U 1
n (x), . . . ,U

d
n (x)). Let L be either L1 or L2 where

L1 := 1

2

d∑

i, j=1

∂i (ai j∂ j ) and L2 := 1

2

d∑

i, j=1

ai j∂i∂ j

with A := (ai j ) being C1 and uniformly elliptic.
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Definition 6.1 Suppose µ = (µ1, . . . , µd) is such that each µi is a signed measure
on Rd belonging to the Kato class Kd,1. A diffusion with drift µ is a family of proba-
bility measures {Px : x ∈ Rd} on C([0,∞),Rd), the space of continuous Rd -valued
functions on [0,∞), such that under each Px we have

Zt = x + Yt + At

where

(a) At = limn→∞
∫ t

0 Un(Zs)ds uniformly in t over finite intervals, where the con-
vergence is in probability;

(b) there exists a subsequence {nk} such that

sup
k

t∫

0

|Unk (Zs)|ds < ∞

almost surely for each t > 0;
(c) Yt is a diffusion in Rd starting from the origin with generator L .

When A is symmetric, the existence and uniqueness of Z were established in [6] (see
Remark 6.1 in [6]). In [21], we discussed Brownian motions with the drifts µ ∈ Kd,1.
when A is symmetric, all of results can be extended to diffusions with the drift µ
due to the estimates on the density and its gradients for the diffusion Y (see [24] for
divergence case and [17] for non-divergence case) and the continuities of the density
and its gradients. We state the extensions of the main results in [21] without proofs
since they will be almost the same.

Z has a transition density r(t, x, y) which is continuous on (0,∞)× Rd × Rd and
that there exist positive constants Ci , i = 1, . . . , 9 such that

C1e−C2t t−
d
2 e− C3|x−y|2

2t ≤ r(t, x, y) ≤ C4eC5t t−
d
2 e− C6|x−y|2

2t (6.1)

and

|∇xr(t, x, y)| ≤ C7eC8t t−
d+1

2 e− C9|x−y|2
2t (6.2)

for all (t, x, y) ∈ (0,∞)× Rd × Rd .
In fact, when we deal with Z D (the process obtained by killing Z upon exiting

from D) for a bounded domain D, the symmetry assumption is unnecessary by the
following simple reduction; Let bi j := 1

2 (ai j + a ji ) and note that

d∑

i, j=1

ai j∂i∂ j =
d∑

i, j=1

bi j∂i∂ j =
d∑

i, j=1

∂i (bi j∂ j )−
d∑

i, j=1

(∂i bi j )∂ j
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and

d∑

i, j=1

∂i (ai j∂ j ) =
d∑

i, j=1

ai j∂i∂ j +
d∑

i, j=1

(∂i ai j )∂ j

=
d∑

i, j=1

∂i (bi j∂ j )+
d∑

i, j=1

1

2
∂i (ai j − a ji )∂ j .

Let Yt be the diffusion in Rd with generator

1

2

d∑

i, j=1

∂i (bi j∂ j ).

Since, for any bounded domain D,

(
d∑

i=1

1

2
∂i bi1|D, . . . ,

d∑

i=1

1

2
∂i bid |D

)

and

(
d∑

i=1

1

4
∂i (ai1 − a1i )|D, . . . ,

d∑

i=1

1

4
∂i (aid − a1d)|D

)

are in Kd,1, we construct Zt with a drift which is either

(

µ1 + 1

2

d∑

i=1

∂i bi1|Ddx, . . . , µd + 1

2

d∑

i=1

∂i bid |Ddx

)

or

(

µ1 + 1

4

d∑

i=1

∂i (ai1 − a1i )|Ddx, . . . , µd + 1

4

d∑

i=1

∂i (aid − a1d)|Ddx

)

as in the Definition 6.1. Then the generator of the killed diffusion process Z D in D
can be informally written as L + µ · ∇ where L is either

1

2

d∑

i, j=1

∂i (ai j∂ j ) or
1

2

d∑

i, j=1

ai j∂i∂ j .

with A := (ai j ) being C1 and uniformly elliptic but not necessarily symmetric.
Using the estimates on the density and its gradients for the diffusion Y D for diver-

gence case (see [24]) and the continuities of the density and its gradients, the proof of
the following estimates is the same as the one in [21]: for every bounded C1,1 domain
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D, Z D has a density r D which is continuous on (0,∞) × D × D and that for any
T > 0, there exist positive constants Ci , i = 10, . . . , 14, such that

C10ψD(t, x, y)t−
d
2 e− C11|x−y|2

t ≤ r D(t, x, y) ≤ C12ψD(t, x, y)t−
d
2 e− C13|x−y|2

t

(6.3)
and

|∇xr D(t, x, y)| ≤ C14

(

1 ∧ ρ(y)√
t

)

t−
d+1

2 e− C13|x−y|2
t (6.4)

for all (t, x, y) ∈ (0, T ] × D × D.
With these estimates (6.1)–(6.4) in hand, the arguments of this paper can be gener-

alized to the present setting with obvious modifications. We omit all the details.

Remark 6.2 In the forthcoming papers [19,20], we will discuss on the intrinsic ultra-
contractivity of the semigroup of Z D and the dual processs of Z D , respectively.
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