
DOI: 10.1007/s00208-006-0756-5

Math. Ann. 335, 571–644 (2006) Mathematische Annalen

The multidirectional Neumann problem in R
4

Gregory C. Verchota · Andrew L. Vogel

Received: 15 June 2004 /
Published online: 5 May 2006 – © Springer-Verlag 2006

Abstract. The Neumann problem as formulated in Lipschitz domains withLp boundary data is
solved for harmonic functions in any compact polyhedral domain of R

4 that has a connected 3-
manifold boundary. Energy estimates on the boundary are derived from new polyhedral Rellich
formulas together with a Whitney type decomposition of the polyhedron into similar Lipschitz
domains. The classical layer potentials are thereby shown to be semi-Fredholm. To settle the
onto question a method of continuity is devised that uses the classical 3-manifold theory of E.
E. Moise in order to untwist the polyhedral boundary into a Lipschitz boundary. It is shown that
this untwisting can be extended to include the interior of the domain in local neighborhoods of
the boundary. In this way the flattening arguments of B. E. J. Dahlberg and C. E. Kenig for the
H 1
at Neumann problem can be extended to polyhedral domains in R

4. A compact polyhedral
domain in R

6 of M. L. Curtis and E. C. Zeeman, based on a construction of M. H. A. Newman,
shows that the untwisting and flattening techniques used here are unavailable in general for
higher dimensional boundary value problems in polyhedra.

Key words. bi-Lipschitz, homology sphere, method of continuity, polyhedral Rellich, shelling,
3-manifold, layer potentials, atomic estimate

1. Introduction

Let � be the interior of a compact polyhedron sitting in R
n. Suppose � is a

domain and that the boundary ∂� is a topological (n− 1)-manifold. When n ≥ 3
such a domain need not be a Lipschitz domain, also variously known as a strongly
Lipschitz domain [Mor66] p.72 or Lipschitz graph domain. When n ≤ 4, however,
it will necessarily satisfy the weaker definition of Lipschitz domain in terms of
bi-Lipschitz mappings by [Mor66] pp.4,77. As will be made clear below, this is
a consequence of the classical 3-manifold theory of E. E. Moise [Moi52]. It is a
remarkable topological fact that when n ≥ 6 such polyhedral domains need not
satisfy Morrey’s definition nor even the apparently weaker definition given by
V. G. Maz’ja in terms of quasi-isometries [Maz85] pp.15–16,19. See §11.2.1.
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By now there is a vast literature on solutions to boundary value problems with
corner and edge singularities. There are many different approaches to the subject.
It is widely recognized that difficulties can arise when a boundary is not given as a
graph in local coordinates. To cite just one example where work on such problems
is done, we refer the reader to the book of Kozlov, Maz’ya and Rossman [KMR01]
and its introductory discussion.

This paper and its companion [VV03] take the point of view that the approach
to boundary value problems in Lipschitz domains that has been developed over
the past few decades should be and can be extended to nongraph settings. It also
indicates possible geometric and topological obstacles to such a project. Here the
Neumann problem for Laplace’s equation will be solved in compact polyhedra
of R

4. The domains, therefore, are not necessarily Lipschitz though they will sat-
isfy the bi-Lipschitz definition given by Morrey. The phrase Lipschitz polyhedron
will mean a compact polyhedron with interior that is a Lipschitz domain (pace
Morrey, strongly Lipschitz). Morrey’s Lipschitz domains will be called bi-Lips-
chitz domains. Our initial approach to boundary value problems is to decompose
general polyhedra into Lipschitz polyhedra in which estimates are already known
to exist.

The convex hull of a finite set of points that is not contained in any hyperplane
of R

n is an n-polytope. Any finite union of n-polytopes that yields a domain for
its interior will be termed a compact polyhedral domain. With neither loss nor
gain of generality such a domain can be realized as a finite homogeneous simpli-
cial complex. The geometric structure thus provided seems indispensable for our
analysis of boundary value problems.

Consider, for example, a piecewise linear Jordan curve in the plane. The closure
of the bounded component of its complement will be a polygon. Every polygon is
a Lipschitz domain. If it is particularly twisted back upon itself it may take some
argument to prove the fact that the polygon is piecewise linearly homeomorphic to
a triangular disc. (See, for example, pp.20–21 [Bin83].) This is a global problem
from the point of view of boundary value problems.

If, however, the polygon is coned to a point in R
3 that is not in the plane, it is

unlikely that the resulting polyhedron in R
3 will be Lipschitz even though it will

be piecewise linearly (PL) homeomorphic to a tetrahedron. The global difficulty
becomes a local difficulty at the vertex.

A compact polyhedron in R
3 that yields a Jordan domain, i.e. its boundary is

homeomorphic to the 2-sphere S
2, could be non-Lipschitz and also display some

further global pathologies not possible in the plane. For example, it could be tied
into a number of knots, or contain knotted tunnels as in a Furch knotted hole ball.
When coned to a point in R

4 its local and global pathologies both contribute to
the non-Lipschitz nature of a domain that will nevertheless be PL-homeomorphic
to a 4-simplex.
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A further complication arises from the unsolved status of the PL-Schoenflies
conjecture for n ≥ 4. Compact polyhedral Jordan domains in R

4 may exist that
are not PL homeomorphic or even bi-Lipschitz homeomorphic to the 4-simplex.

Thus compact polyhedra in R
n, n ≥ 3, can not in general be approximated by

Lipschitz domains either globally or locally with any control over the Lipschitz
natures of the approximating domains. They do, however, admit a type of Whitney
decomposition locally about the boundary into Lipschitz domains with uniform
natures. After preliminary arguments in §2 such a decomposition is defined in §3
for polyhedra of R

4. The uniformity is proved in Lemma 1 and the decomposition
applied to get a priori estimates for both the Neumann and regularity (Dirichlet
data in W 1,2(∂�)) problems in 4-dimensional polyhedra (Lemma 2). That the
domains of the decomposition are Lipschitz is shown in the Appendix (§12) by a
modification of an argument from [VV03].

The Neumann estimate used in each Lipschitz domain of the decomposition is
from [JK81]. (See [Ver84] for a solution to the Neumann problem in non-starlike
Lipschitz domains. See p. 1230 of [Bro94] for the kind of argument that yields
the estimate on a disconnected boundary once local estimates are known.)

Theorem 1 (D. S. Jerison and C. E. Kenig). Let � ⊂ R
n be a bounded Lips-

chitz domain and let u be a harmonic function in �. If N(∇u) ∈ L2(∂�) then

‖N(∇u)‖2 ≤ C‖ ∂u
∂N

‖2 with C depending only on the Lipschitz nature of �.

HereN(∇u) denotes the nontangential maximal function of ∇u, whileN denotes

the outer unit normal vector to ∂� and
∂u

∂N
the normal derivative of u defined

a.e. with respect to surface measure ds. The L2 norms are with respect to surface
measure. The regularity estimate of Lemma 2 is obtained by using R. M. Brown’s
mixed (regularity and Neumann) estimate [Bro94] in each Lipschitz domain of the
decomposition. The insufficiency of the standard (unmixed) regularity estimate
[JK81] is due to a dimensional difficulty resolved in §4. A bounded domain � is
called a Lipschitz domain if for each point P of the boundary there is a rotation of
the Euclidean coordinates of R

n, a neighborhoodO of P and a Lipschitz function
φ : R

n−1 → R so that

� ∩O = {x | xn > φ(x ′)} ∩O

Suppose in addition ∂� = N ∪ D a disjoint union. Suppose there exists a finite
covering of ∂� by neighborhoods Oi as above each with an additional Lipschitz
functionψi : R

n−2 → R such that either (1) N ∩Oi = ∅ or (2) D∩Oi = ∅ or (3)
N ∩Oi = {x | x1 ≥ ψi(x

′′)}∩∂�∩Oi and D∩Oi = {x | x1 < ψi(x
′′)}∩∂�∩Oi

where x = (x ′, xn) = (x1, x
′′, xn). Finally suppose there is a number δ > 0 and,

for each i in case (3), a constant vector field αi such that αi · N ≥ δ on N ∩Oi
and αi · N ≤ −δ on D ∩ Oi . Then � together with N and D will be called a
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creased domain. Because the next theorem is about estimates and not existence,
the idea of creased domain is a bit more general than in [BS01]. See Remark 4.

Theorem 2 (R. M. Brown). Let� ⊂ R
n with ∂� = N ∪D be a creased domain

and let u be a harmonic function in �. If N(∇u) ∈ L2(∂�), then

‖N(∇u)‖2 ≤ C

(
‖ ∂u
∂N

‖N + ‖u‖D
)

with C depending only on the Lipschitz natures of �, N and D.

Here ‖‖N denotes the norm forL2(N ) and ‖‖D denotes the norm for the Sobolev
space W 1,2(D) with respect to surface measure.

It is important that these two theorems apply to all harmonic functions with
gradients in the nontangential L2 class. Otherwise our solution to the Neumann
problem in polyhedra might only be for data subject to a finite number of linear
conditions depending on a given polyhedron rather than on just the one indepen-
dent condition of mean value zero. Such a result would hardly be interesting given
that a polyhedron with its finite number of corners and edges presumably presents
only a finite number of difficulties. See Remark 5.

The Lipschitz domain estimates of Theorems 1 and 2 cannot suffice to establish
comparable estimates in a non-Lipschitz polyhedron, however. Lemma 2 contains
nontrivial error terms that arise from the data on the surfaces interior to the poly-
hedron that were introduced by the Whitney decomposition. Additional energy
estimates specifically for polyhedral domains are used to control these error terms
by either Neumann or regularity data now taken entirely on the polyhedral bound-
ary. These are called polyhedral Rellich formulas. One for vertices is given in
§2, while another for 1-dimensional edges (boundary 1-simplexes) is introduced
in §4. Theorem 3 gives the completed a priori estimates for the Neumann and
regularity problems in 4-dimensional polyhedra. Altogether §§2–4 extend and
simplify the boundary energy methods of [Ver01].

In §5.1 the classical single layer potential supplies a large class of solutions to
which Theorem 3 applies. Because the Neumann data then takes the familiar form
of the identity operator plus a singular integral operator acting on L2(∂�), the
singular integral operator being noncompact, Verchota’s method of inverting layer
potentials [Ver84] is used. This and Theorem 3 show that the boundary operator
is semi-Fredholm (1:1 and closed range). Solvability of the Neumann problem
for L2 data is thereby reduced to showing that the boundary operator is onto. The
boundary operator is known to be onto if it is defined on a Lipschitz boundary
[Ver84]. A method of continuity relating the operator from a polyhedral boundary
to one on the boundary of a Lipschitz polyhedron is therefore brought about in
§§6-8. The version of the method of continuity used (see the beginning discus-
sions in §§6 and 7) states that if a continuum of linear operators from a Banach
space to itself is such that each operator in the continuum has a bounded inverse
on its range, then if any one operator is onto so are the others.
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Given a compact polyhedral domain � with 3-manifold boundary, a suitable
Lipschitz polyhedron �Lip is provided by Theorem 12 (Appendix). In §§6 and 8
it is shown by a classical shelling procedure that there is a way to pass from � to
�Lip through a finite sequence of polyhedra so that the successive boundaries are
PL-homeomorphic. Moreover at each step there is a continuous and bi-Lipschitz
(see Remark 8) deformation, i.e. isotopy, of one polyhedral boundary to the next.
Lemma 4 then provides a continuum of operators at each step.

Disregarding the requirements of shelling makes it difficult to decide the Fred-
holm properties of the resulting boundary operators. This is demonstrated by
example in §5.2. Indeed proofs of supporting lemmas for the method of continu-
ity are not valid without the shelling hypotheses. For example, it can be shown
that the boundary operators fail to form a continuum (Lemma 4) when shelling is
violated in the manner of the example in §5.2.

The shelling procedure is also limited. For example, suppose the polyhedron
� is homeomorphic to the closed ball B

4. While it is true that the shelling here
shows that � and �Lip are PL-homeomorphic (Theorem 5), it does not follow
that one can continue to pass from polyhedron to polyhedron via PL-homeomor-
phisms until � is shown to be PL-homeomorphic to a 4-simplex. This would
resolve the PL-Schoenflies conjecture, which the authors are not about to do. A
3-dimensional shelling that is kept close to the original boundary is actually what
is used here. And even it is justified only by the deep 3-manifold results of E. E.
Moise [Moi52] together with a result on shelling convex bodies first proved by
D. E. Sanderson [San57].

The bounds on the operator inverses, also termed the bound from below,
are shown to be uniform by the results of §§5.1 and 6.2 together with either
a known compactness argument or a further geometric argument presented in
§7. Part of the justification of this second argument is that the above boundary
PL-homeomorphisms are shown to extend inside as solid PL-homeomorphisms
(Lemma 7). This then results in Lemma 8, which applies the method of conti-
nuity at each shelling stage, and also results in Theorem 5 and its corollary 3
which will be used in §10 to bi-Lipschitz flatten 4-dimensional polyhedra in local
neighborhoods of the boundary.

Finally the boundary 1-skeleton (1 dimensional edges) of the given polyhedron
is shelled off in §8. Lemma 8, applied at each step, then shows that the bound-
ary operator from the original polyhedron is an isomorphism on the appropriate
spaces (Theorem 4), settling the L2-Neumann problem.

The results of §8 on the Neumann problem and the invertibility of the classical
layer potentials are extended to infinite polyhedral cones in Theorems 6 and 7.
This is in preparation for adapting to polyhedra B. E. J. Dahlberg and C. E. Kenig’s
method for obtaining estimates on the rate of decay of harmonic functions that
have atomic Neumann data on a domain above a Lipschitz graph in R

n [DK87].
There solutions are extended by parallel projection to the region exterior to any
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n-ball containing the support of the atomic data. The atomic data permits the use
of the L2 estimates. The extended solutions are then solutions to elliptic diver-
gence equations for which decay estimates at infinity are known by the work of
J. Serrin and H. F. Weinberger [SW66].

Altogether the theorems of §8 say that any compact polyhedral domain of R
4

with a manifold boundary is a bi-Lipschitz domain in which the needed L2 esti-
mates can be obtained.Atomic estimates in this setting are therefore shown to hold
in §10. Bi-Lipschitz flattening replaces parallel projection. The analysis closely
follows that of [DK87] and the section can really only be read with a copy of
that paper in hand. The geometric differences are identified and some alternative
analytic arguments supplied.

In §11 Curtis and Zeeman’s example of a compact polyhedral domain with
manifold boundary in R

6 is discussed in detail. Because its boundary is homeo-
morphic to the 5-sphere, by another deep topological result due to Cannon and
Edwards, while its interior is not simply connected, it cannot satisfy Morrey’s
definition of Lipschitz domain. Without local bi-Lipschitz flattening at the bound-
ary the method of [DK87] does not seem practicable. The example also indicates
a lack of suitable boundary homeomorphisms for the method of continuity of
§§6–8. Its relations to other notions of Lipschitz domain and to the difficult nature
of higher dimensional polyhedra are also discussed. The Mazur manifold is briefly
discussed.

The distinctive feature of boundary value problems is the relationship between
the boundary and the domain. Without the graph hypothesis there is no single
direction from the boundary of a polyhedron into its domain, even locally. The
shape or location of the domain and its boundary becomes a concern which has
as part of its resolution here a number of geometric constructions. Therefore we
have included 20 Figures, most of which should be taken as schematics meant
to summarize and clarify relations between elementary but technical geometric
definitions.

In addition to the material on Lipschitz polyhedra, theAppendix contains some
basic facts about Sobolev spaces on polyhedral boundaries and a subsection on
notations and conventions.

Some readers might object that the paper is not longer. For example, the reg-
ularity problem for the Dirichlet problem with Sobolev data appears in several
places but is never solved. This and perhaps some other omissions from the Lips-
chitz domain inventory will be done elsewhere.

As it is, we claim some coherence. A method for obtaining boundary en-
ergy estimates on polyhedra is given. In order to use it to solve boundary value
problems, it is shown that certain geometric and topological techniques naturally
come into play on the boundary. As established in classical geometric topology
these techniques have extensions into the domain near the boundary, which here
seem both indispensable and analogous to extending L2 estimates to Hardy space
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estimates. We close with an example from the literature that illustrates why it
is at least prudent to limit the method of solution presented here for solving the
multidirectional Neumann problem to four dimensions.

Outline

I. Energy estimates on polyhedral boundaries.
§2. A preliminary argument.
§3. Spherical arches, sectors, crowns, stacks, pieces and slices.
§4. Polyhedral Rellich formulas.

II. Solving the L2 problem by globally mapping the boundary.
§5. Global approximation of polyhedral domains.

5.1 Layer potentials.
5.2 Loss of operator index.

§6. A method of continuity.
6.1 Shelling.
6.2 Isotopy.

§7. The uniform bound from below.
7.1 Elementary starring
7.2 Extending the boundary homeomorphism inside

§8. Shelling the 1-skeleton
III. Solving the Hardy space problem by locally mapping the domain.

§9. Extension of L2 estimates to infinite cones.
§10. Estimates by flattening.

IV. Topological considerations in higher dimensions.
§11. An example of Curtis and Zeeman

11.1 Newman’s construction.
11.2 Some consequences for boundary value problems.

Appendix 12.1 Approximations by Lipschitz polyhedra
12.2 Sobolev spaces
12.3 Notations and conventions

References

2. A preliminary argument

Let � ⊂ R
4 be the interior of a finite homogeneous 4-complex K . Suppose � is

a domain and that ∂� = K̇ is a 3-manifold. For any simplex κ ∈ K̇ define the
dyadic arch

Aj(κ) = {x = (1 − t)P + tQ | P ∈ κ,Q ∈ Lk(κ,K), 2−j−1 ≤ t ≤ 2−j }
(2.1)

for j = 0, 1, 2, . . . . When κ0 ∈ K̇ is a vertex the Aj are rescalings

Aj(κ
0)={2−j (x − |κ0|)+|κ0| | x ∈ A0(κ

0)}
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By Lemma 8.9 of [VV03] the interiors of these vertex arches are domains. They
decompose St(κ0,K) into geometrically similar domains from which a priori esti-
mates can be transferred back to the star. This is necessary because in general the
stars of boundary vertices are not Lipschitz domains (graph domains) for which
the estimates are known.

Fig. 1. St(κ0,K)

Let �u = 0 in � and Nα(∇u) ∈ L2(∂�). Suppose that on each Aj(κ0) we
have the estimates ∫

∂Aj

|∇u|2ds ≤ C

∫
∂Aj

(
∂u

∂N

)2

ds (2.2)

and

∫
∂Aj

|∇u|2ds ≤ C




∫
∂Aj

|∇T u|2 + u2ds


 (2.3)

where C is a constant depending only on κ0 ∈ K . By Lemma 8.8 of [VV03] and
the Poincaré inequality (2.3) may be replaced with∫

∂Aj

|∇u|2ds ≤ C

∫
∂Aj

|∇T u|2ds (2.4)

Take κ0 to be the origin. By summing in j (2.2) would yield an a priori estimate
on St(κ0, K̇) except for the integrals over portions of the arch boundaries that are
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interior to �. However, (2.2) remains uniform when u(x) is replaced by u(θx),
1
2 ≤ θ ≤ 1, so that by averaging one obtains

∫

St(κ0,K̇)\A0(κ0)

|∇u|2ds ≤ C




∫

St(κ0,K̇)

| ∂u
∂N

|2ds+
∫

St(κ0,K)

|∇u(x)|2 dx|x|




(2.5)

The solid integral with its singularity at the origin is the result of averaging the
interior boundaries of (2.2). Similarly

∫

St(κ0,K̇)\A0(κ0)

|∇u|2ds ≤ C




∫

St(κ0,K̇)

|∇T u|2ds+
∫

St(κ0,K)

|∇u(x)|2 dx|x|




(2.6)

The solid integral of (2.5) (and (2.6)) is bounded as follows. LettingW = x

|x| for

x ∈ R
n, integration by parts (see §5 of [VV03] for polyhedra) yields the second

equality in the identity∫
⋃m
i=1 Ai(κ

0)

(n− 3)|∇u|2 + 2(W · ∇u)2 dx|x|

=
∫

⋃m
i=1 Ai(κ

0)

divW |∇u|2 − 2DkWjDjuDku dx

=
∫

∂[
⋃m
i=1 Ai(κ

0)]

N ·W |∇u|2 − 2
∂u

∂N
W · ∇u ds (2.7)

Now N ·W = 0 on ∂�. Also the boundary term of (2.7) from ∂Am(κ
0) vanishes

as m → ∞. This follows because that term can be bounded by
∫
E
Nα(∇u)2 ds

with the measure of E controlled by 2−m. This in turn follows in polyhedra by
Lemma 5.3 of [VV03] and the Carleson lemma (see §4 of [VV03]). In addition
W · ∇u on St(κ0, K̇) is a tangential derivative. Thus by monotone convergence
applied to (2.7) with n = 4, (2.5) becomes∫

St(κ0,K̇)\A0(κ0)

|∇u|2ds

≤ C




∫

St(κ0,K̇)

| ∂u
∂N

|2 + |∇T u|| ∂u
∂N

|ds +
∫

A0(κ0)

|∇u|2dx


 (2.8)
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And similarly for (2.6) where C again depends only on κ0, and the solid integral,
now away from the vertex, can be considered lower order.

Remark 1. When n = 2 formula (2.7) fails to imply (2.8) from (2.5). It fails when
it is not needed. Every polygonal Jordan domain is Lipschitz. When n = 3 it
succeeds only when a more careful analysis than (2.5) is carried out, as was done
in [Ver01]. Though not apparent here, a more careful analysis is also needed when
n ≥ 4 and will be begun in the following section. Compare (2.7) with (4.1).

Thus we need estimates (2.2) and (2.4) on the archesAj(κ0), i.e. our boundary
value problems must first be solvable onA0(κ

0). But neither isA0(κ
0) a Lipschitz

domain.

3. Sperical Arches, sectors, crowns, stacks, pieces and slices

We modify the arches Aj(κ0) to be spherical. See Remark 5 at the end of this
section. Given κ0 ∈ K̇ we may assume dist(κ0,Lk(κ0,K)) = 2, take κ0 as the
origin of R

4, and define

Ãj (κ
0) = {x ∈ St(κ0,K) | 2−j−1 ≤ |x| ≤ 2−j } for j = 0, 1, 2, . . .

Each Ãj (κ0) is a rescaling of Ã0(κ
0). Therefore by the arguments of §2, it will

suffice to obtain estimates (2.2) and (2.4) on Ã0(κ
0). To do this we must now

remove in a similar dyadic fashion any κ1 ∈ K̇ that contains κ0.
If κ0 ∈ κ1 ∈ K̇ first orient κ1 along the positive x4 axis. Next minimize the

angles formed by the vectors κ1 and κ0y where y is any point in any simplex that
contains κ0 but not κ1. Define the angle θ(κ1, κ0) > 0 to be 1

4 this minimum.
Now define sectors of Ã0(κ

0) for angles 0 ≤ θ1 < θ0 ≤ θ(κ1, κ0) by

Ã(θ1, θ0) = Ã(κ1, κ0; θ1, θ0) =
{
x | cos(θ0) ≤ x4

|x| ≤ cos(θ1)

}
∩ Ã0(κ

0)

By the definition of θ = θ(κ1, κ0) each sector Ã(θ1, θ0) is contained in St(κ1,K).
The St(κ1,K) is barycenter connected, [VV03] Lemma 8.9. Therefore, given any
two points x, y in Int Ã(θ1, θ0) there is a path γ in Int St(κ1,K) connecting them.
Let x = (x ′, x4) = |x|( x′

|x′| sin φ, cosφ), y = (y ′, y4) = |y|( y′
|y′| sinψ, cosψ) and

suppose that ψ ≥ φ. Any points of γ whose angle with the x4-axis is greater than
ψ can be projected onto the cone with angle ψ by using the point (0, 3/4) ∈ κ1

as a starcenter for St(κ1,K) and projecting radially from this starcenter onto the
cone. This results in a new path, again called γ , from x to y in Int St(κ1,K) so
that the angle between any point on γ and the x4-axis is at most ψ < θ1. Now
those points of γ with norm greater max(|x|, |y|) are projected (radially from
κ0 the origin) onto the sphere with this radius and those points of γ with norm
smaller than min(|x|, |y|) are projected onto the sphere with this radius. These
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projections result in a new path, again called γ , in Int St(κ1,K). By the definition
of θ and dist(κ0,Lk(κ0,K)) = 2, if z = |z|( z′|z′| sin ν, cos ν) ∈ St(κ1,K) satisfies

ν < θ then all points of the form |z|( z′|z′| sin η, cos η) for 0 < η < θ are also in

St(κ1,K). Using this observation, any point z ∈ γ with ν < φ may be projected
along a great circle (in the variable η) to the point |z|( z′|z′| sin φ, cosφ). This results

in a path, again called γ , in St(κ1,K) which is now seen to be in the interior of
Ã(θ1, θ0). Therefore, Int Ã(θ1, θ0) is a domain.

Fig. 2. Full sectors for κ1, λ1 ∈ St(κ0, K̇) removed

A crown is defined by

Ã0(κ
0) \

⋃
κ1∈St(κ0,K̇)

Ã(κ1, κ0; 0, θ(κ1, κ0)) (3.1)

where here the sector for each κ1 has a coordinate free definition. A crown is
just a partially beveled St(κ0,K) which is barycenter connected, therefore the
interior of a crown is connected, see [VV03] section 5 and Lemma 8.9. Crowns
are Lipschitz domains by Lemma 13.

When θ1 > 0 for a given κ1 the Ã(θ1, θ0) are, by Corollary 6, Lipschitz
domains but without the uniform Lipschitz natures which are needed for esti-
mates. To begin to remedy this we create a stack of Lipschitz domains in each
sector. There are other satisfactory ways of doing this, but the following produces
a stack in which all domains in the stack are geometrically similar.

Let θ1 > 0 and divide Ã(θ1, θ0) into 2j (j ≥ 0) pieces

Ãj,l(θ1, θ0) = Ã(θ1, θ0) ∩ {2−l2−j ≤ |x| ≤ 2−(l−1)2−j }
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for l = 1, 2, . . . , 2j . For j fixed each piece scales to the preceding by a factor
of 2−j . The interior of each piece is a domain by the same argument used for the
sectors.

Pieces from stacks from different sectors do not scale, but they almost do
if we divide the full sector Ã(κ1, κ0; 0, θ(κ1, κ0)) in the same proportions as
used in producing the stacks. Define the numbers νj = ν0

∑j

k=0(2
2−k − 1) for

j = 0, 1, 2, . . . where ν0 is chosen so that νj → 1.

Remark 2.

22−j − 1 =
j∏
l=1

(22−l + 1)−1

for j = 1, 2, . . . and

(22−j − 1)−1
∞∑

k=j+1

(22−k − 1) → 1

as j → ∞.

Define ν−1 = 0 and write θ = θ(κ1, κ0). The full sector is then decomposed into
the sectors

Ã((1 − νj )θ, (1 − νj−1)θ) for j = 0, 1, 2, . . . (3.2)

each of which in turn is divided into 2j similar pieces

Ãj,l((1 − νj )θ, (1 − νj−1)θ) for l = 1, . . . , 2j (3.3)

forming the stack of similar Lipschitz domains in each sector j = 0, 1, 2, . . . .
Thus it is enough to show that uniform Lipschitz estimates hold for the bottom
members of each stack, vis. the

Bj = Ãj,2j ((1 − νj )θ, (1 − νj−1)θ) for j = 0, 1, . . . (3.4)

Each Bj is a distance 1/2 from the origin, has a radial side length of 1
2 (2

2−j − 1)

and is in a sector of angle ν0θ(22−j − 1). This suggests that each Bj be rescaled
by (22−j − 1)−1 and mapped to a cylindrical domain of I × I × S

2.

Lemma 1. Given κ0 ∈ κ1 ∈ K̇ , the angle θ(κ1, κ0) and the Lipschitz domains
(3.4) there is a Lipschitz domain ω ⊂ S

2 so that

Bj =
{
ρ(s sin φ, cosφ) ∈ R

4 | 2−1 ≤ ρ ≤ 2−1+2−j
,

s ∈ ω̄ and (1 − νj )θ ≤ φ ≤ (1 − νj−1)θ
}

(3.5)

for j = 0, 1, . . . .
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Fig. 3. The sector Ã((1 − ν3)θ, (1 − ν2)θ) shaded and the bottom pieces of each stack

Moreover, the domains (3.3) (and (3.8), (3.9) below) have uniform Lipschitz
natures over j = 0, 1, 2, . . . . In particular the constants arising from applying
the Lipschitz domain estimates of Theorems 1 and 2 are uniform over the domains
(3.3).

Proof. Fix j and fix any x ∈ Bj . Because each Bj is contained in St(κ1,K)

there are unique P = (0, P4) ∈ κ1, Q ∈ Lk(κ1,K) and 0 < t < 1 so that
x = (1 − t)P + tQ. Consequently,Q and then every point in the 2-simplex κ1Q

has the form

ρ

(
x ′

|x ′| sin φ, cosφ

)
for some ρ ≥ 0 and φ ≥ 0. (3.6)

By definition the 1-simplex κ0Q of κ1Q makes an angle greater than θ with κ1.
The third 1-simplex of κ1Q is contained in Lk(κ0,K). Thus every point of the
form (3.6) for ρ and φ restricted as in (3.5) is seen to be in Bj . Moreover, by
the definition of θ and the assumption that dist(κ0,Lk(κ0,K)) = 2 all points
of the form (3.6) with 1

4 < ρ < 5
4 and 0 < φ < θ are in St(κ1,K). Define

V = St(κ1,K) ∩ {x | 1
4 < |x| < 5

4 , cos(θ) < x4
|x| < 1}, Proj1(x) = x ′, and

Proj2(x
′) = x ′/|x ′| then

ω̄ = Proj2 ◦ Proj1(Bj ) = Proj2 ◦ Proj1(V )
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Therefore ω̄ is independent of j . This establishes (3.5).
Dilating each Bj by (22−j − 1)−1 each dilated Bj is the image under a smooth

homeomorphism Fj from

U =
{
y ∈ R

4 | 0 ≤ y4 ≤ 1

2
,
y ′

|y ′| ∈ ω̄, 1

2
ν0θ ≤ |y ′| ≤ ν0θ

}
(3.7)

so that the differentials F ′
j converge to the identity matrix as j → ∞.

In fact

Fj(y) = (y4 + 2−1(22−j − 1)−1)

×
(
y ′

|y ′| sin((2|y ′| − ν0θ)(2
2−j − 1)+ (1 − νj )θ),

cos((2|y ′| − ν0θ)(2
2−j − 1)+ (1 − νj )θ)

)

Set ω = Proj2 ◦Proj1(V \ K̇), then ω is open since V \ K̇ is open. Furthermore,
ω̄ = ω∪∂ω, i.e. s ∈ Int(ω̄) if and only if s ∈ ω. It follows that s ∈ ∂ω if and only
if there is an x ∈ V ∩K̇ with s = x ′/|x ′|.Bj is a Lipschitz domain by Corollary 6.
From the properties of the mappings Fj and the cylindrical nature of U it follows
that ω is a Lipschitz domain. The number and shape of truncated cylinders used
to cover the Lipschitz boundaries ∂Bj in the manner of [Dah79] together with the
Lipschitz norms of the functions describing the boundary in each cylinder can be
taken to be uniform in j . ��
Remark 3. Given K4 a finite homogeneous subcomplex of a combinatorial trian-
gulation T of all R

4 with K̇ a 3-manifold it follows from the 3-manifold theory
of Moise [Moi77] that for any κ1 ∈ K̇ the Lk(κ1, K̇) is a PL 1-sphere. This
PL 1-sphere separates the PL 2-sphere St(κ1, T ) into two PL 2-balls with the
PL 1-sphere as common boundary (Schoenflies theorem for n = 2). Therefore,
Lk(κ1,K) is a PL 2-ball.

Now, with κ0 the origin and κ1 lying along the x4-axis there cannot be two
pointsP,Q ∈ Lk(κ1,K)withP −Q having the same direction as κ1, sinceP ,Q
and κ1 all lie in the same 2-dimensional affine hull. Similarly, it cannot be the case
that P ′/|P ′| = Q′/|Q′|. Thus ω̄ = Proj2 ◦Proj1(Lk(κ1,K)) and Proj2 ◦Proj1

is a bi-Lipschitz homeomorphism of a PL 2-ball.

The Lipschitz domains (3.3) can therefore be written as a union of slices

Ãj,l = Ãj,l(κ
1, κ0)

=
⋃
s∈ω̄

{
ρ(s sin(φ), cos(φ)) | 2−l2−j ≤ ρ ≤ 2−(l−1)2−j

,

(1 − νj )θ ≤ φ ≤ (1 − νj−1)θ

}
(3.8)
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l = 1, . . . , 2j , j = 0, 1, 2, . . . .
In order to use the uniform estimates guaranteed by Lemma 1 it will be

necessary to vary the domains (3.8) in the variables ρ and φ. Fix a center (ρj,l, φj )
about which we dilate each slice of Ãj,l by the same amount 1 ≤ t ≤ 3

2 (will do)
in the variables ρ and φ (i.e. x4 and |x ′|) only, thereby obtaining a continuum of
Lipschitz domains

tÃj,l ⊂ | St(κ1,K)| , 1 ≤ t ≤ 3

2
(3.9)

for each j and l. We will refer to

3

2
Ãj,l = Ã∗

j,l (3.10)

as the double of Ãj,l .
By the arguments of Lemma 1, Lipschitz estimates for boundary value prob-

lems will be uniform for the domains (3.9) over all the t , j , and l. The virtue of
the next lemma is in the type of derivatives found in the solid integrals, the effect
of the above geometric constructions. The inequalities should be compared to 2.5
and 2.6; see Remark 1.

Lemma 2. Let the domain � ⊂ R
4 be the interior of a finite homogeneous com-

plexK4 with K̇ a manifold. Let the harmonic functionu satisfyNα(∇u) ∈ L2(∂�).
Let κ0 ∈ κ1 ∈ K̇ where κ0 is taken to be the origin and κ1 oriented on the positive
x4-axis. Write x = (x ′, x4) and denote the full sector of the arch Ã0(κ

0) by

D = Ã(κ1, κ0; 0, θ(κ1, κ0)) =
∞⋃
j=0

2j⋃
l=1

Ãj,l

Let D∗ = ⋃
j,l Ã

∗
j,l as in (3.10). Then

∫
D∩∂�

|∇u|2ds ≤ C

[∫
D∗∩∂�

(
∂u

∂N

)2

ds +
∫
D∗

(
x ′

|x ′| · ∇u
)2

+
(
∂u

∂x4

)2
dx

|x ′|

]
(3.11)

and ∫
D∩∂�

|∇u|2ds ≤ C

[∫
D∗∩∂�

u2 + |∇T u|2ds +
∫
D∗

(
x ′

|x ′| · ∇u
)2

+
(
∂u

∂x4

)2
dx

|x ′|

]
(3.12)

Where C depends only on K .
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Proof. Each Ãj,l has radial height comparable to 22−j − 1 and angular width
comparable to this same number since 1

2 ≤ 2−l2−j ≤ 1 for all l. Further, each Ãj,l
has distance to κ1 comparable to this number. In particular x ∈ Ãj,l implies |x ′|
is comparable to 22−j − 1. These statements remain true for the dilated domains
(3.9) for all 1 ≤ t ≤ 3

2 .
Applying the Neumann estimate of Theorem 1. to any tÃj,l yields normal

derivatives on ∂
(
tÃj,l

)
\ ∂� that are bounded combinations of precisely the

directional derivatives
x ′

|x ′| · ∇u and
∂u

∂x4
because of the spherical and conical

construction of the domain. Averaging in t and accounting for the distance to
κ1 results in (3.11) with D replaced by Ãj,l . By Lemma 1 and summing, (3.11)
follows.

R.M. Brown’s theorem is used to establish (3.12). Neumann data is used on
the surfaces interior to�while regularity data is used on ∂�. In order to apply the
theorem the geometric hypotheses of a creased domain need to be checked (see the
paragraph before Theorem 2). Given the mappings Fj ofBj toU in the preceding
proof it is enough to show that U satisfies the definition of a creased domain. Let
D be the set of points {y ∈ U | 0 < y4 <

1
2 , y

′/|y ′| ∈ ∂ω, 1
2ν0θ < |y ′| < ν0θ}

(these are all points mapped by Fj to surfaces of ∂Bj from K̇ and not from any
spherical or conical surface of ∂Bj ) and let N be the remaining boundary points
ofU (all those points mapped to spherical or conical surfaces of ∂Bj ) so y4 = 0, 1

2
or |y ′| = 1

2ν0θ, ν0θ .
To see that (3) in the definition of creased domain holds, first note that the

spherical surfaces in Bj correspond to y4 = 0 or y4 = 1/2 in N , the conical
surfaces correspond to |y ′| = 1

2ν0θ or |y ′| = ν0θ in N and simplexes from K̇

correspond to y ′/|y ′| ∈ ∂ω in D. Consider the case of a boundary point y that
is in all three types of boundary surfaces, for example y4 = 0, |y ′| = 1

2ν0θ , and
y ′/|y ′| ∈ ∂ω. In this case ∂U is a Lipschitz graph in the direction of

NH = (−e4)+ (−y ′/|y ′|)+Nω(y)

where Nω(y) provides a direction, perpendicular to y ′ and e4, in which ∂ω is a
Lipschitz graph. A vector field satisfying the definition of creased domain is given
by

(−e4)+ (−y ′/|y ′|)−Nω(y)

Let H be the hyperplane through y with normal in the direction of NH and Hω
be the hyperplane through y with normal Nω. The crease in a neighborhood O
of y consists of the points from {y | y ′/|y ′| ∈ ∂ω, ρ = 0, 1

2ν0θ < |y ′| < ν0θ}
and {y | y ′/|y ′| ∈ ∂ω, 0 < ρ < 1

2 , |y ′| = 1
2ν0θ} that are in O and is seen to be

a Lipschitz graph in Hω in the direction of (−e4) + (−y ′/|y ′|). The orthogonal
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projection ProjH fromHω ontoH shows that condition (3) of creased domain is
satisfied with the x1 direction in the direction of ProjH ((−e4)+ (−y ′/|y ′|)).

The remaining cases may all be similarly proved. ��
Remark 4. In establishing Theorem 2, as Russell Brown kindly pointed out to the
authors, the argument on p. 1230 [Bro94] does not require his creased domain
condition (1.2) on p. 1219. The application here is actually to this more restricted
class of domains, but this observation saves some work.

Remark 5. A geometrically better way to decompose St(κ0,K) into Lipschitz
polyhedra in the manner of a Whitney decomposition is to use barycentric coor-
dinates rather than spherical. For example one can take κ = κ1 in the unmodified
definition of arch (2.1) and replace the sectors (3.2) with Aj(κ1)∩A0(κ

0) which
then may be divided into 2j pieces by intersecting with

{(1 − t)κ0 + tQ | Q ∈ Lk(κ0,K) , l − 1 < (2t − 1)2j < l}
l = 1, 2, . . . , 2j . The resulting Lipschitz polyhedra replace (3.3) and have the
advantage that they are all geometrically similar even as j varies. This decom-
position also generalizes easily to higher dimensions. The difficulty is that the
boundary value estimate needed to obtain the solid integral of (3.11) must now
come from an oblique derivative problem. In contrast to Theorems 1 and 2 it is
not clear to the authors how large the space of solutions with zero oblique deriv-
ative might be. Compare, for example, the statements of Theorems 2.1 and 2.2
of [Nad86]. That the solid integrals of (3.11) and (3.12) are just so is used in the
next section.

4. Polyhedral Rellich formulas

Let κ0 ∈ κ1 ∈ K̇ and let D denote the full sector about κ1 of the arch Ã0(κ
0)

oriented with respect to the rectangular coordinates of R
4 as in Lemma 2. The

decomposition of D into Lipschitz domains necessarily led to estimates in terms
of solid integrals with singular measure |x ′|−1 dx, just as the decomposition of
vertex stars in §2 resulted in the measures |x|−1 dx. Recall the Rellich formula

(2.7). The appropriate vector field for D is now W(x) = x ′

|x ′| . Using this field in

the central integral of (2.7) in R
n, computing the left integral and integrating by

parts to obtain the right yields the Rellich formula∫

Ã((1−νj )θ,(1−ν0)θ)

(n− 4)|∇′u|2 + (n− 2)(
∂

∂xn
u)2 + 2

(
x ′

|x ′| · ∇′u
)2

dx

|x ′|

=
∫

∂Ã((1−νj )θ,(1−ν0)θ)

N · x
′

|x ′| |∇u|
2 − 2

(
x ′

|x ′| · ∇′u
)
∂u

∂N
ds (4.1)
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for j = 1, 2, . . . . Here ∇′ = ( ∂
∂x1
, . . . , ∂

∂xn−1
, 0) and the integrals are over the

union of j contiguous sectors 3.2.
The weakness of the n = 3 case of (2.7) mentioned in Remark 1 recurs here

when n = 4. In all higher dimensions the n = 3 case similarly recurs because
one must remove the (n − 3)-skeleton from the boundary in order to obtain the
Lipschitz polyhedra in which estimates are known. Thus a need for an analogous
geometric analysis and analogous Lemma 2 will recur in higher dimensions.

Define a doubling of the arch Ã0(κ
0) by Ã∗

0 = {x ∈ St(κ0,K) | 1
3 ≤ |x| ≤ 3

2 }.
Lemma 3. With the same hypotheses as Lemma 2

∫
D

(
x ′

|x ′| · ∇u)2 + (
∂u

∂x4
)2
dx

|x ′| ≤ C

[∫
∂�∩Ã∗

0

| ∂u
∂N

||∇T u|ds +
∫
Ã∗

0

|∇u|2dx
]

(4.2)

where C depends only on K .

Proof. By letting j → ∞ the polyhedral Rellich formula (4.1) holds for the full
sector D. In particular the boundary integral over surfaces that are converging to
κ1 vanish by the argument used after (2.7) for the surfaces ∂Am.

The boundary ∂D ∩ ∂� is contained in 3-simplexes each of which contains
κ1. Thus for x in that part of the boundary 0 = N ·x = N ·κ1 = N ·x ′ and x ′ ·∇u
is a tangential derivative. Consequently the boundary integral of (4.2) dominates
this part of (4.1).

ReplacingD in (4.1) by domains tD defined in the same manner as (3.9), the
integrals over the boundaries ∂(tD) ∩� may be arranged and dominated by the
second integral on the right side. ��
Theorem 3. Let K4 ⊂ R

4 be a finite homogeneous simplicial complex such that
� = Int |K| is a domain and ∂� = |K̇| is a connected manifold. Let u be a har-
monic function defined in � with nontangential maximal function of its gradient
in L2(∂�). Then there is a finite constant C depending only on K such that

∫
∂�

Nα(∇u)2ds ≤ C

∫
∂�

(
∂u

∂N
)2ds ≤ C2

∫
∂�

|∇T u|2ds

Or if u is harmonic in the domain exterior to |K|, with mean value zero over
∂�, with nontangential maximal function of its gradient in L2(∂�), and u(x)
vanishing as |x| → ∞, then the inequalities also hold.

Proof. By removing the full sectors about each boundary 1-simplex of Ã0(κ
0)

one obtains the Lipschitz domain (the crown) (3.1). Any integration of the gra-
dient squared over portions of the crown boundary can be controlled by varying
the crown, applying Theorem 1 and averaging. The result will be a solid integral



The multidirectional Neumann problem in R
4 589

of the gradient squared and a ∂�-integral of the normal derivative squared, each
over regions contained in Ã∗

0.
Combining this fact with (3.11) of Lemma 2 and Lemma 4.1 it follows that∫

Ã0(κ0)∩∂�
|∇u|2ds

≤ C

[∫
Ã∗

0(κ
0)∩∂�

(
∂u

∂N
)2+ | ∂u

∂N
||∇T u|ds +

∫
Ã∗

0(κ
0)

|∇u|2dx
]

(4.3)

The regularity estimate∫
Ã0(κ0)∩∂�

|∇u|2ds

≤ C

[∫
Ã∗

0(κ
0)∩∂�

u2 + |∇T u|2+ | ∂u
∂N

||∇T u|ds +
∫
Ã∗

0(κ
0)

|∇u|2dx
]

is obtained in the same way using Jerison and Kenig’s regularity estimate [JK81]
on the crowns.

Estimate (4.3) and its companion scale to

∫

Ãj (κ
0)∩∂�

|∇u|2ds ≤ C




∫

Ã∗
j (κ

0)∩∂�

(
∂u

∂N
)2+ | ∂u

∂N
||∇T u|ds +

∫

Ã∗
j (κ

0)

|∇u|2 dx|x|




for j = 0, 1, 2, . . . when κ0 is taken to be the origin. As in §2, the vertex Rellich
formula (2.7) for n = 4 yields∫

St(κ0,K̇)∩{|x|≤1}

|∇u|2ds

≤ C




∫

St(κ0,K̇)

(
∂u

∂N
)2+ | ∂u

∂N
||∇T u|ds +

∫
St(κ0,K)

|∇u|2dx


 (4.4)

and similarly for the regularity estimate.
Estimate (4.4) can be obtained at boundary points other than vertices. Thus

by the finiteness of the complex K and Young’s inequality applied to the mixed
boundary term on the right of (4.4)∫

∂�

|∇u|2ds ≤ C

[∫
∂�

(
∂u

∂N
)2ds +

∫
�

|∇u|2dx
]

(4.5)

Now Green’s first identity and the Poincaré inequality (see the Appendix) on the
connected boundary can be used to remove the last integral.
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The analogue of (4.4) for the regularity estimate is dealt with in similar fashion,
the Poincaré inequality applied to two terms resulting in

∫
∂�

|∇u|2ds ≤ C

∫
∂�

|∇T u|2ds (4.6)

The left sides of (4.5) and 4.6 may be replaced by the nontangential maximal
function Nα(∇u) by [VV03], Theorems 4.5 and 5.4.

When u is defined in the exterior domain, estimate (4.5) follows with |K|c in
place of � because K is a subcomplex of a locally finite triangulation of R

4 and
the preceding estimates were of a local nature about the boundary. The rest of the
argument is valid because both u and its gradient must vanish at least like |x|−2

as |x| → ∞ by the maximum principle and the mean value theorem. ��
Theorem 3 provides the required a priori estimates for the Neumann and regu-

larity problems with L2-data. Uniqueness of solutions is immediate from Green’s
first identity. The question now is existence for the Neumann problem. We give
an answer in dimension 4.

5. Global approximation of polyhedral domains

The a priori estimate of Theorem 3 shows that the Neumann problem is semi-
Fredholm in 4-dimensional polyhedra. In order to show that solutions exist for a
dense class of Neumann data, one usually constructs approximating domains with
stronger geometric properties in which solutions are already known to exist. One
requires that (1) the a priori estimate that establishes the semi-Fredholm property
in the weaker geometry remains uniform in the approximating domains and that
(2) the dense class of data is transferable under a homeomorphism between the
geometrically stronger and weaker boundaries.

Smooth domains form a subclass of Lipschitz domains. Given a Lipschitz
domain, one can prove the existence of smooth approximating domains that sat-
isfy requirement (2) and have Lipschitz natures uniformly controlled by that of
the Lipschitz domain so that requirement (1) is satisfied.

Polyhedra can be approximated by Lipschitz polyhedra as in [VV03]. How-
ever, it is not clear that the quantities of §2 and §3 describing the given polyhedron
can be made uniform over a sequence of such approximating Lipschitz polyhe-
dra, i.e. Theorem 3 may not be uniform over such approximations. This may be
related to the fact in §11 that there are compact polyhedral domains with manifold
boundary that cannot be homeomorphic to any approximating Lipschitz domain.

The requirement (2) cannot be met in general.
In dimension 4 the 3-manifold theory of Moise provides a way out of this

dilemma. As explained in §§6, 7, and 8 a continuum of piecewise linearly (PL)
homeomorphic polyhedral domains that are not generally Lipschitz can be
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constructed beginning with the given polyhedron and ending with a Lipschitz
polyhedron that carry the estimates of Theorem 3 at each stage.

Because the Neumann problem is solvable on the Lipschitz polyhedron, a
method of continuity then yields solvability on the polyhedron that was the original
object of study. Classical layer potentials, to which we now turn, are one way of
organizing this procedure. The combinatorial geometric methods of §6, 7 and 8
that realize the boundary homeomorphism requirement (2) for these potentials
can be motivated by the example in §5.2.

5.1. Layer potentials

Let �(x) = −[(n− 2)ωn]−1|x|2−n denote the fundamental solution for Laplace’s
equation in R

n (n ≥ 3) where ωn is the surface area of S
n−1. For f ∈ Lp(∂�),

p > 1, define the single layer potential by

Sf (x) =
∫
∂�

�(x −Q)f (Q)ds(Q) for x ∈ R
n

where now P andQwill denote points on ∂�while x and y will usually be in R
n.

Because Sf (x) is harmonic in x away from the support of f and because ∂�
is a finite simplicial complex one may establish many of the standard norm and
trace properties of Sf by simply looking at two boundary simplexes at a time. In
particular

∫
∂�

Nα(∇Sf )pds ≤ Cp

∫
∂�

|f |pds 1 < p < ∞ (5.1)

and

lim
x∈�±

α (P ) , x→P

∇Sf (x)

= ±1

2
NPf (P )+ p.v.

∫
∂�

∇�(P −Q)f (Q)ds(Q) a.e.ds(P )

(5.2)

where p.v.
∫
∂�

= limε→0
∫
|P−Q|>ε , �

+
α denotes nontangential cones in R

n \ �̄,
�−
α denotes nontangential cones in �, and N is the outer pointing unit normal

from �. When the inner product of ∇Sf with NP is formed in (5.2) one obtains
the bounded operators ± 1

2I + D∗ acting on f ∈ Lp(∂�), 1 < p < ∞. The
double layer potential is defined by

Df (x) =
∫
∂�

NQ · ∇�(Q− x)f (Q)ds(Q) x ∈ R
n − ∂�
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and Df can replace ∇Sf in (5.1). Also

lim
x∈�±

α (P ), x→P

Df (x) = ∓1

2
f (P )+Df (P ) (5.3)

where D is the p.v. operator adjoint to D∗. The operator D is bounded on Lp,
1 < p < ∞.

In [Ver84] it was shown, in the case � is a bounded Lipschitz domain with
connected boundary, that the operator S restricted to the boundary is invertible
from Lp(∂�) to the Sobolev spaceW 1,p(∂�), 1 < p ≤ 2, and that ± 1

2I +D∗ is
invertible onL2(∂�) (orL2 with mean value zero) Further, the operator ± 1

2I+D
was shown to be invertible on W 1,2(∂�). These results were later extended by
Dahlberg and Kenig [DK87] to all relevant p’s because of their p = 1 Hardy
space result.

Sobolev spaces on the boundary complexes of compact polyhedral domains
are defined in the Appendix 12. Equivalent definitions, when the boundary is a
manifold, and other basic theorems are also discussed there. Given these defi-
nitions the following additional properties of the layer potentials may be stated.
When f ∈ W 1,p(∂�)∫

∂�

Nα(∇Df )pds ≤ Cp

∫
∂�

|∇T f |pds 1 < p < ∞

and ∇Df will have pointwise limits a.e. on ∂�. Thus ± 1
2I +K mapsW 1,p(∂�)

continuously to W 1,p(∂�) and S maps Lp(∂�) continuously to W 1,p(∂�),
1 < p < ∞.

Because the functions Sf (x) satisfy (5.1) and decay at infinity, the polyhedral
Rellich estimates of §4 apply to them. Thus they provide a large class of solutions
to the Neumann and regularity problems.

Our main objective is the invertibility of the operators ± 1
2I +D∗ in L2(∂�)

when ∂� satisfies the hypotheses of Theorem 3. DefineLp0 (∂�) = {f ∈ Lp(∂�) |∫
∂�
f ds = 0}, 1 ≤ p ≤ ∞. Then by the arguments in [Ver84] Theorem 3 implies

1

2
I +D∗ : L2(∂�) → L2(∂�) satisfies ‖f ||2 ≤ C‖(1

2
I +D∗)f ‖2

(5.4)

and thus has closed range and is one-to-one. And

−1

2
I +D∗ : L2

0(∂�) → L2
0(∂�) satisfies ‖f ||2 ≤ C‖(−1

2
I +D∗)f ‖2

(5.5)

and thus has closed range and is one-to-one.
Given (5.4) and (5.5) we are now set up for defining the method of continuity

mentioned above. First a cautionary example.
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5.2. Loss of operator index

Consider a Lipschitz polyhedron� in R
3 that has a torus for its boundary. Suppose

that in a neighborhood of the origin� is the union of two wedges and a 3-simplex
as, for example,

{y ≤ 0, x ≥ 0, z ≥ 0, x + z ≤ 1} ∪ {x ≤ 0, y ≥ 0, z ≥ 0, y + z ≤ 1} ∪ σ
where σ has vertices the origin, (1, 0, 0), (0, 1, 0), and (0, 0, 1).

The operators (5.4) and (5.5) will be isomorphisms. Feigning ignorance of
this, suppose, in an effort to simplify, one wishes to change the domain by succes-
sively removing simplexes and then compare through a succession of comparisons
the operators in the original domain to those in the simpler. If the simplex σ is
first removed, two 2-simplexes of the boundary are thereby removed but then are
replaced in the new boundary by two newly exposed 2-simplexes. Thus an iso-
morphism between Lebesgue spaces on the boundaries can be obtained by nicely
mapping the one pair of 2-simplexes to the other pair. It only appears that no
damage has been done.

The single layer potential maps Lebesgue spaces to Sobolev spaces. When
a polyhedral boundary is a manifold, Sobolev spaces on the boundary can be
equivalently described either as spaces of weak derivatives or as completions of
the Lipschitz functions (Theorem 13, 14 below). Consider a Lipschitz function
on ∂� that is identically zero on the two 2-simplexes of σ that will be removed,
while nonzero in a boundary neighborhood of the point (0, 0, 1/2). Such a Sobo-
lev function will not be mapped by the above mapping between pairs of simplexes
to the corresponding Sobolev space on the (nonmanifold) boundary of � \ σ .

A more striking result comes by considering the space of weak derivatives
W 1,2 on the boundary of�\σ . This is a larger space ((12.2) below) that includes,
for example, functions equal to zero a.e. on the boundary of one wedge while equal
to some other constant on the boundary of the other wedge. One observation is,
like the last, that such functions cannot come from mapping the corresponding
space as defined on ∂�.

But another observation brings us back to isomorphisms between Lebesgue
spaces. Denote by κ the boundary 1-simplex with vertices the origin and (0, 0, 1).
Denote by J the set of functions Lipschitz continuous everywhere on ∂(�\σ)\κ
with continuous extensions on each wedge separately that do not agree on κ . By
Lipschitz domain theory there is no f ∈ L2(∂(�\σ)) such that Sf can equal a.e.
any of the functions of J . This is because Sf would necessarily be continuous
across each wedge boundary in a neighborhood of κ . On the other hand classical
solutions in � \ σ with Dirichlet data taken in J exist and Lipschitz domain esti-
mates taken in Lipschitz subdomains that include only one wedge at a time show
that the gradients of these solutions are nontangentially in L2 of the boundary.
They are solutions to the Neumann problem. But the classical Neumann unique-
ness (modulo constants) argument still works in the domain�\σ even though its
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boundary is not a manifold. Therefore one can now assert that the operator (5.5)
necessarily misses all the L2 Neumann data arising in this manner from the set of
Dirichlet data J . It in fact misses an infinite dimensional subspace of L2 and is no
longer Fredholm. The operators for � and � \ σ do not compare well. Without
the specific and detailed information of the example one can not conclude much
about the original operator from the operator in the altered domain.

Removing a next simplex from � \ σ might result in a vertex as the only
nonmanifold point. In this case the cokernels of the operators (5.5) for this new
domain and � will differ by a single dimension. However, the kernels will not
differ. Even in this case the index changes.

Removing the simplex σ resulted in the loss of the manifold condition because
it violated the classical shelling method of combinatorial geometry. This method
is explained and then adhered to in the following sections when mapping a non-
Lipschitz polyhedron to a Lipschitz polyhedron. It is a method that in general
does not work in higher dimensions, as indicated in §11, and has pitfalls in lower
dimensions.

6. A method of continuity

SupposeX is a Banach space and (i)Lt are linear operators onX, 0 ≤ t ≤ 1, with
(ii) t �→ Lt continuous in operator norm as a function of t and (iii) ‖x‖ ≤ C‖Ltx‖
with C independent of x ∈ X and t . It follows that if any one of the operators
is an isomorphism then all the operators are isomorphisms. This section prepares
the boundary operators ± 1

2I +D∗ to satisfy (i) and (ii) when defined on a certain
deformation of polyhedral boundaries. Hypothesis (iii) and the inequalities (5.4)
and (5.5) are discussed in the next section.

Let K4 ⊂ R
4 be a finite homogeneous simplicial complex such that � =

Int |K| is a domain with connected boundary ∂� = |K̇|. Suppose further that |K̇|
is a 3-manifold. Theorem 12 from theAppendix provides approximating Lipschitz
domains that differ from � in tubular neighborhoods about the boundary 1-skel-
eton. By exploiting the 3-manifold theory of Moise we will now begin to show
that � can be shelled back to one of these domains, and that ∂� can therefore be
isotopically deformed to a Lipschitz boundary.

Let κ0 ∈ K̇ be a vertex. Because K̇ is a triangulated 3-manifold Theorem 1
of [Moi52] pp. 96–97 says that it is a combinatorial 3-manifold, see also [Moi77]
pp.247-252 and especially the comments on p. 252. This means that Lk(κ0, K̇)

is piecewise linearly homeomorphic to the boundary complex of a 3-simplex, i.e.
is a PL 2-sphere. By the subdivision theorem (see Theorem I.2 on p.10, Ex. I.14
on p.8 and the lemma on p.19 of [Gla70]) K may be taken to be a subcomplex
of a combinatorial triangulation of R

4. Thus Lk(κ0, K̇) is a PL 2-sphere that is a
subcomplex of the PL 3-sphere Lk(κ0,R4). (In general a homogeneous n-com-
plex is said to be combinatorial if the link of every vertex is PL homeomorphic
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to the boundary complex of an n-simplex or to an (n− 1)-simplex. Any complex
that is PL homeomorphic to an n-simplex is also called a combinatorial n-ball
and any complex PL homeomorphic to the boundary of an (n+1)-simplex is also
called a combinatorial n-sphere. See p.18 of [Gla70].) Consequently, the 3-com-
plex Lk(κ0,K) is PL homeomorphic to a 3-simplex (i.e. is a PL 3-ball) by the PL
Schoenflies theorem of Alexander, Graub and Moise (see p.161 of Bing’s book
[Bin83]). By Theorems 2 and 3 of D. E. Sanderson [San57] there is a subdivision
of the ball Lk(κ0,K) which can be shelled.

Remark 6. It follows that |K4| ⊂ R
4, with K̇ a manifold, is a combinatorial 4-

manifold. This is only a local property. For example, if K̇ is homeomorphic to the
3-sphere it follows that it is a PL 3-sphere and further that K is then homeomor-
phic to the 4-ball (by M. Brown’s generalized Schoenflies theorem). But it is still
unknown whether or not K would then be a PL 4-ball, aka combinatorial 4-ball.
This is the PL Schoenflies conjecture. See pp 7 and 47 of [RS72]

6.1. Shelling

Informally a finitely triangulated n-cell (alternative term for n-ball) can be shelled
if the n-simplexes that form it can be given an order so that at each stage, as one n-
simplex after another is removed, the remaining complex is homeomorphic to the
n-ball. Thus a shellable n-cell is necessarily a combinatorial ball. The proof is by
induction on the number of simplexes, the preservation of topological properties
under induction being the purpose of shelling.

On the other hand a combinatorial n-ball in R
n is not necessarily shellable.

The tetrahedron of M.E. Rudin [Rud58] triangulated into 41 subtetrahedra is non-
shellable. Bing’s house with two rooms [Bin83] and Furch’s knotted hole ball
are other examples. When n = 3 Sanderson’s theorem says that a new triangula-
tion that is a subdivision of the given triangulation may be produced yielding a
shellable ball.

Remark 7. Suppose every |K4| ⊂ R
4 homeomorphic to a 4-ball has a subdivision

that can be shelled. Then the PL Schoenflies conjecture would be resolved. On
the other hand if K4 exists that is not a combinatorial 4-ball in R

4, it is resolved
again, negatively. Here again the 3-manifold theory is used so that K̇ is seen to sat-
isfy the conjecture’s hypothesis. However, every combinatorial n-ball does have
a subdivision that can be shelled by [BM71]. See also Ex. 7 on p.47 of [Gla70].

Formally a finite homogeneous m-subcomplex S of a combinatorial m-mani-
fold L can be shelled from L if there is an ordering of all the m-simplexes of S,
σ1, σ2, . . . so that each σi is free in L \ ⋃

j<i σj (excepting the last in the case

S = L). Anm-simplex σ is free in anm-complex with boundaryM if both σ ∩Ṁ
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and σ ∩ (M − σ)· are (m− 1)-cells. I.e. Ṁ and (M − σ)· are PL homeomorphic.
If S = L then L is necessarily an m-cell. See [RS72] pp.39–41.

Now the subdivision of Lk(κ0,K) induces a subdivision of St(κ0,K) by
joining each 3-simplex of the subdivision to κ0. St(κ0,K) cannot necessarily be
shelled fromK as the first figure in Figure 4 shows. There Lk(κ0,K) is a shellable
1-cell. But St(κ0,K) cannot be shelled from K .

The purpose is not to shell K but is more modest, especially given Remark
7. It is to shell back to a beveled subdomain of K . For any fixed 0 < ε < 1 let
Rε = Rε(κ

0,K) = {x = (1 − t)κ0 + tQ | Q ∈ Lk(κ0,K), 0 ≤ t < ε}. Then the
closure R̄ε is a rescaling of St(κ0,K) and R̄ε\Rε a rescaling of Lk(κ0,K). Now the
induced subdivision of R̄ε may be shelled from |K| resulting in a finite sequence of
domains ending with |K| \Rε . There will be a PL-homeomorphism between each
pair of successive boundaries and thus between |K̇| and Bd(|K| \Rε). Moreover
there will be PL-isotopies between successive boundaries.

6.2. Isotopy

By isotopy we essentially mean a homotopy that at each level is a PL-homeo-
morphism. Let I denote the closed unit interval [0, 1] and let X and Y denote
triangulated spaces. Almost following [RS72] p.37 an isotopy of X in Y is an
embedding F : X × I → Y × I so that for all x ∈ X, F(x, t) ∈ Y × t for each
t ∈ I . Then embeddings Ft : X → Y are defined by F(x, t) = (Ft (x), t).

When σ is a free 4-simplex in a 4-manifold-with-boundaryM , letX = Ṁ and
let Y be the nonhomogeneous complex Ṁ ∪ σ . Let F0 be the identity F0(x) =
id(x) = x. F1 : Ṁ → (M \σ)· will be defined below to be a PL homeomorphism
so that F1|Ṁ\σ = id, and we will define Ft = (1 − t)F0 + tF1. We will say that
σ is the support of the isotopy.

Remark 8. The isotopy constructed here will not be PL with respect to the prod-
uct spaces X × I → Y × I , unlike that in [RS72], though it will be bi-Lipschitz
and Ft will be PL for each t . A PL isotopy can be constructed by employing the

W

Fig. 4. St(κ0,K) cannot be shelled from K . Rε to be shelled from K
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Alexander trick as on pp. 37–38 of [RS72], but will not be suitable for the method
of continuity here. For example, consider the 2-simplex with vertices A(−1, 0),
B(1, 0), and C(0, 2) in the (x, y) plane and an isotopy deforming the base AB to
the union of the sides AC + CB. Write Ft(x, 0) = (x, ft (x)). The isotopy here
yields ft(x) = 2t (1 − |x|) for |x| ≤ 1 and t ∈ I . The Alexander trick yields
Gt(x, 0) = (x, gt (x)) with gt (x) = 1 − |x| for |1 − 2t | ≤ |x| ≤ 1, t ∈ I ;
gt (x) = 2t for |x| ≤ 1 − 2t , 0 ≤ t ≤ 1

2 ; and gt(x) = 2(t − |x|) for |x| ≤ 2t − 1,
1
2 ≤ t ≤ 1. Note that d

dx
ft (x) can converge uniformly to either f ′

0(x) or f ′
1(x),

|x| ≤ 1. But d
dx
gt (x) can converge uniformly to neither g′

0 nor g′
1.

The homeomorphism F1 will be defined as follows. Denote by M4 the remain-
der of |K| at some stage of the shelling of R̄ε . M can be triangulated. Ṁ is a
3-manifold. When a 4-simplex σ is next to be shelled fromM , σ ∩ Ṁ will consist
of j + 1 3-simplexes j = 0, 1, 2 or 3, with j = 3 occurring only at the last.
One writes σ = σ 3−jλj with σ 3−j ∈ Ṁ . It follows that St(σ 3−j , σ̇ ) = σ ∩ Ṁ
while St(λj , σ̇ ) = σ̇ \ Ṁ . Then F1 : σ ∩ Ṁ → σ̇ \ Ṁ is defined by mapping the
barycenter σ̂ 3−j to the barycenter λ̂j , fixing the vertices of σ (the vertices other
than σ 3−j when j = 3) and extending piecewise linearly.

Example 1. When j = 1 denote the vertices of σ 2 by v1, v2 and v3, and the vertices
of λ1 by w1, w2, see Figure 5.

Then σ 4 ∩Ṁ consists of the two 3-simplexes σ 2w1 and σ 2w2.F1 maps each of
the six 3-simplexes σ̂ 2vivjwk linearly (affinely) to the corresponding λ̂1vivjwk,
1 ≤ i < j ≤ 3, 1 ≤ k ≤ 2, see Figure 6.

If, for example, x = a1v2 +a2v3 +a3w2 +bσ̂ 2 with a1 +a2 +a3 +b = 1, then
F1(x) = a1v2+a2v3+a3w2+bλ̂1 = x+b(λ̂1−σ̂ 2) andFt(x) = x+tb(λ̂1−σ̂ 2),
parallel projections that fix v2v3w2. All six triangles vivjwk are fixed under F1

and form the 2-sphere σ̇ 2λ̇1 ⊂ Ṁ that is the common boundary in σ̇ 4 of σ 4 ∩ Ṁ
and F1(σ

4 ∩ Ṁ).
In general F1 projects σ ∩ Ṁ along lines parallel to the direction determined by
σ̂ 3−j and λ̂j . In a rectangular coordinate system with the x4-axis oriented in this

Fig. 5. The join σ 4 = σ 2λ1
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direction, each Ft(σ ∩ Ṁ) , t ∈ I , is a graph over the region in R
3 that has the

projection of σ̇ 3−j λ̇j into R
3 as its boundary.

By elementary starring (§7.1 below) the barycenters σ̂ 3−j and λ̂j subdivide
σ 4 into (4 − j)(j + 1) 4-simplexes each of which we will denote by τ 4. Then
the map τ ∩ Ṁ → F1(τ ∩ Ṁ) is a map of a single 3-simplex of τ onto a single
3-simplex of τ , and the isotopy Ft(τ ∩Ṁ), t ∈ I takes place entirely in τ . Further
τ ∩ σ̇ 3−j λ̇j = τ ∩ Ṁ ∩ F1(τ ∩ Ṁ).

Because σ̇ 3−j λ̇j ⊂ Ṁ is fixed by F1, Ft can be extended to the identity on
Ṁ \ σ . Denote by Ṁt the 3-manifolds Ft(Ṁ), 0 ≤ t ≤ 1. Define isomorphisms
�t : Lp(Ṁ0) → Lp(Ṁt ) by �tf = f ◦ F−1

t , 0 ≤ t ≤ 1, 1 ≤ p ≤ ∞. Let
Tt : Lp(Ṁt ) → Lp(Ṁt ) for 1 < p < ∞ denote any of the boundary layer
potentials (5.2) and (5.3) defined above. Then �−1

t Tt�t is bounded on Lp(Ṁ0),
1 < p < ∞ for all t ∈ I . Moreover we have the following version of an obser-
vation of A. McIntosh. See [MC97] or [Ken94] for example.

Lemma 4. Using the preceding definitions, with σ 4 as the support of an isotopy
F , the �−1

t Tt�t are Lipschitz continuous as functions of t ∈ I in the topology of
the operator norms ‖�−1

t Tt�t‖p for 1 < p < ∞.

Proof. When the maps Ft represent homotopies between boundaries given as
graphs of Lipschitz functions with respect to the same rectangular coordinate sys-

tem the lemma is proved by showing that the operators Ut = ∂

∂t
(�−1

t Tt�t) are

uniformly bounded on Lp(Ṁ0). The proof generalizes to any sequence of graph
boundaries if convergence of the boundaries is in the Lip norm. In these cases
Theorem IX of [CMM82] settles the issue.

Since the Ft(σ ∩ Ṁ) converge in Lip norm, the operators Ut are uniformly
bounded when restricted to be maps from Lp(Ṁ ∩ σ) to itself. When mapping
between disjoint boundary simplexes theUt are compact and uniformly bounded.
The last case occurs when κ3 ∈ Ṁ , κ ∩ σ �= ∅ is at most a 2-simplex and the Ut
are restricted to be maps from Lp(Ṁ ∩ σ) to Lp(κ) or vice versa. In this case the
Ft(Ṁ ∩ σ) ∪ κ , t ∈ I cannot be realized as graphs with respect to a rectangu-
lar coordinate system. However, it suffices to consider the singular integrals on

Fig. 6. The map F1
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Lp(τ ∩ Ṁ) and Lp(κ) where τ 4 is as above. This case is settled by the following
geometric lemma.

Denote the affine hull of a j -simplex σ j ⊂ R
n by aff σ j . Then aff σ j is the

j -dimensional affine set ([Roc70] p3) of R
n that contains σ j . If j = n − 1, an

affine set is called a hyperplane. Two convex sets are separated by a hyperplane
if one set is contained in one of the closed half-spaces determined by the hyper-
plane and the other set is contained in the opposite closed half-space.A supporting
hyperplane to a convex set is the boundary of a closed half-space that contains
the set so that the hyperplane contains a point of the boundary of the convex set.
See [Roc70]

Lemma 5. Let simplexes κ3 and τ 4 form a (nonhomogeneous) complex in R
4 so

that ∅ �= κ3 ∩ τ 4 ∈ δ2 where δ is a 2-face of τ . Consider points P ∈ Lk(δ2, τ )

and the 3-simplexes that are the joins Pδ. Then there is a vector l independent
of P so that every line with direction l intersects the 3-complex Pδ ∪ κ at most
once, i.e. all such 3-complexes are graphs with respect to the same rectangular
coordinate system.

Proof. Because κ and τ are simplexes it is possible to fix a separating hyperplane
E3 with the stronger property E ∩ |κ ∪ τ | = |κ ∩ τ |. In the case |δ| ⊂ E any
direction of E that is not a direction of aff δ will do.

Otherwise,E∩ aff δ is 1-dimensional. LetU 3 denote a supporting hyperplane
for τ with the property U ∩ |τ | = |δ|. Then E ∩ aff δ ⊂ E ∩ U a 2-dimensional
affine set. If E ∩ U ⊂ aff κ choose a distinct supporting hyperplane Ũ with the
same properties. SinceU ∩ Ũ = aff δ, (E∩U)∩(E∩ Ũ ) is 1-dimensional so that
E ∩U �= E ∩ Ũ . If now also E ∩ Ũ ⊂ aff κ then it would follow that aff κ = E.
Thus it may be assumed E ∩ U is not contained in aff κ and E ∩ U ∩ aff κ is
1-dimensional. Let l be any direction of E ∩ U that is not in the direction of
E∩ aff δ nor in the direction ofE∩U ∩ aff κ . Since l is a direction ofE it is then
not any direction of aff δ. Lines with direction l are transverse to aff κ and thus to
κ . Because l is a direction of U they are transverse to Pδ. Because l is a direction
of E, and E separates Pδ and κ , no line with this direction intersects both except
in κ ∩ τ .

This completes Lemma 4. ��

7. The uniform bound from below

The bounds from below, (5.4) and (5.5), depend on the triangulation of the poly-
hedral domain. As suggested in the last section, when beveling a vertex, the set
R̄ε has a triangulation and the rest of |K| has a compatible triangulation. Each
stage M in the shelling of R̄ε is a complex.

Given a simplex σ 4 ∈ M next to be shelled, the boundaries of Ṁt were defined
to be the 3-manifoldsFt(Ṁ). Here corresponding 4-complexesMt will be defined
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so that bounds from below that are uniform in t can be deduced from Theorem
3. More is required than using the isotopy to subdivide σ ( and thus M) because
the estimates of §4 were necessarily obtained in neighborhoods of vertices (and
edges) that were kept away from the links of these vertices. Staying away from
the link becomes problematic for the vertex Ft(σ̂ ) as t increases, as illustrated in
Figure 7.

On the other hand, each Mt (t < 1) could have a triangulation obtained by
subdividing σ andM1 could be taken to beM \σ , insuring that there are constants
Ct < ∞ for (5.4) and (5.5) for each 0 ≤ t ≤ 1. This suffices to obtain condition
(iii) in the method of continuity (stated at the beginning of the the previous sec-
tion) by a functional analytic argument that then makes the constantsCt uniformly
bounded, as long as conditions (i) and (ii) are known. See for example [Gri85]
p.111. Conditions (i) and (ii) hold for the operators�−1

t Tt�t by construction and
Lemma 4. Consequently, for the purpose of inverting the layer potentials only the
isotopic beveling off of the 1-skeleton needs to be done, and will be done in the
next section.

Nevertheless, here the uniform bound from below will be obtained directly
by geometric argument instead of relying on this functional analytic observation.
One reason for this is that there are other problems of interest such as the bihar-
monic Dirichlet problem for which the setup of boundary integral equations and
invertible linear operators does not seem available. It would therefore be advan-
tageous to know that the analogues of the Rellich estimates of §4 could be made
uniform over a deformation of polyhedral boundaries by purely geometric con-
siderations. Figure 8 suggests that this might be done by a triangulation of Mt

that is not from a subdivision of K . Figure 8 also indicates that the boundary PL
homeomorphisms extend to solid PL homeomorphisms near the boundary. This
makes explicit Remark 6. These local solid homeomorphisms will be used in §§9
and 10. In addition the results of this section will establish the global result that
K4 is PL homeomorphic to the Lipschitz polyhedron obtained by the beveling
process.

Fig. 7. Triangulating σ 4 = σ 2λ and K \ Rε . Then isotopically shelling σ 4
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Fig. 8. Extending the isotopy inside by λ̂ → Ft (σ̂ )

7.1. Elementary Starring

Following [Gla70] pp.8,13,22–24, let A be any simplex of K and choose a point
a ∈ IntA. Then St(A,K) may be subdivided into what is called a stellar sub-
division by forming the join a ∗ Ȧ ∗ Lk(A,K). The change from St(A,K) to
its stellar subdivision is called an elementary starring. Because no simplex of
Lk(A,K) is subdivided in this procedure,K itself has been subdivided to yield a
new simplicial complexL. This is called an elementary starring ofK at a ∈ IntA.
A stellar subdivision of K is a subdivision of K obtained by a finite sequence of
elementary starrings.

The regions Rε originally meant to be beveled from |K| and subsequently
removed by shelling arise by a sequence of elementary starrings that produce a
stellar subdivision of St(κ0,K). This is illustrated here in Figure 9.

The points aj are chosen in the interiors of 1-simplexesAj for j = 1, 2, 3 and
the new 1-simplexes arising from the starrings are labelled 1, 2, and 3. A different
starring order produces the same R̄ε but a different triangulation of St(κ0,K).

Lemma 6. Fix 0 < ε < 1 and κ0 ∈ K̇ . For each κ1 ∈ St(κ0,K) that contains
κ0 denote by λ0 the 0-simplex such that κ1 = κ0 ∗ λ0. For each such κ1 define
the point a = a(κ1) = (1 − ε)κ0 + ελ0. Stellar subdivide St(κ0,K) in any

Fig. 9. St(κ0,K) and Rε with choice of points for starring. Stellar subdivision ordered by the
choice of points
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order with respect to the a(κ1) obtaining a new triangulation L of |K|. Then
| Lk(κ0, L)| = R̄ε \ Rε = {x = (1 − ε)κ0 + εQ | Q ∈ Lk(κ0,K)} with a
triangulation independent of the starring order, because St(κ0, L) is isomorphic
to St(κ0,K).

Proof. Let σ 4 = κ0v1v2v3v4 ∈ St(κ0,K) and let aj = a(κ0vj ) with the vj enu-
merated in the order that the given starring sequence affects σ 4. It is enough to
observe that the starring produces the sequence of 4-simplexes containing κ0, vis.
κ0a1v2v3v4, κ0a1a2v3v4, κ0a1a2a3v4, and κ0a1a2a3a4, the last being the rescaling
of σ from the original definition of R̄ε . ��

7.2. Extending the boundary homeomorphism inside

Lemma 7. Let σ 4 be free inM4. Let σ = σ 3−jλj for some j = 0, 1, 2 or 3 and Ft
for t ∈ I be defined as in §6.2. Then there exists an isotopy h : |M|×I → |M|×I
and a subdivision M0 of M so that

(i) h is supported in St(λ̂j ,M0)

(ii) The complexes defined by Mt = ht(M0) are isomorphic for all t ∈ I
(iii) ht(Ṁ0) = Ft(Ṁ0) = Ṁt for t ∈ I
(iv) The distance of a vertex vt to Lk(vt ,Mt) is uniformly bounded away from

zero over all t and vt ∈ Ṁt .

Proof. Star first with respect to σ̂ 3−j and then λ̂j . The first starring affects only
σ , while the second further subdivides St(λj ,M) when j �= 0. Denote this new
triangulation by M0.

Recall that St(λj , σ̇ 4) = σ̇ 4 \ Ṁ . Extend the boundary PL-homeomorphism
Ft◦F−1

1 : σ̇ 4\Ṁ→Ft(σ∩Ṁ) to a solid PL-homeomorphismgt : | St(λ̂j ,M0)|→
| St(λ̂j ,M0)| as the second figure in Figure 10 indicates, by mapping λ̂j to
Ft(σ̂

3−j ), fixing the vertices of Lk(λ̂j ,M0) and extending piecewise linearly.
Do this for t ∈ [b, 1] for some 0 < b < 1 depending on σ and K . The number
b < 1 always exists because St(λ̂,M0) is star convex with respect to any point in
a small enough ball around λ̂.

For 0 ≤ t ≤ b extend Ft to the solid homeomorphism ht by extending to be
the identity on M \ σ and by extending piecewise linearly in σ 4. For b ≤ t ≤ 1
define ht = gt ◦ g−1

b ◦ hb. See Figure 11. ��

Lemma 8. Let M4 ⊂ R
4 be a finite homogeneous simplicial complex such that

Int |M| is a domain and |Ṁ| is a connected manifold. Suppose σ 4 is free in M .
Then the operators ± 1

2I +D∗ from (5.4) and (5.5) are isomorphisms on L2(Ṁ)

and L2
0(Ṁ) respectively if and only if they are isomorphisms on L2((M \σ)·) and

L2
0((M \ σ)·).
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Fig. 10. M0 by starring at σ̂ and λ̂. The solid homeomorphism gb (black) and gt (gray) for
b < t < 1

Fig. 11. hb(M0) and g−1
b ◦ hb(M0) = h1(M0) = M \ σ

Proof. The isotopyh of Lemma 7 yields finite complexesMt with |M0| = |M| and
|M1| = |M \ σ | so that Int |Mt | is a domain and |Ṁt | is a connected manifold for
all t ∈ I . Thus the domain hypotheses of Theorem 3 are met by eachMt . By con-
struction of h and (iv) of Lemma 7 the Lipschitz natures of the domains of Lemma
1, the Poincaré inequality, and the constants of Lemma 2 are uniform in t . Thus
the constants of Theorem 3 and inequalities (5.4) and (5.5) are independent of t .

In the method of continuity stated at the beginning of §6 letLt be the operators
�−1
t Tt�t of Lemma 4 with Tt the operators 1

2I + D∗ as defined on Ṁt by (5.2)
(or (5.3)) and X = L2(Ṁ). Condition (i) of the method is met by Lt and the
above considerations show (iii) is met. Lemma 4 establishes (ii). Since the�t are
isomorphisms for L2, the lemma follows for 1

2I +D∗.
The operator − 1

2I +D∗ maps L2 into L2
0. Restrict it to L2

0 and redefine it on
L2 by (− 1

2 +D∗)(A+f ) = A+(− 1
2I+D∗)f for f ∈ L2

0 and constant functions
A. The lemma now follows for the extended and then restricted operator. ��
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Remark 9. In sum, part (iv) of Lemma 7 insures that the geometry of the complexes
Mt , when isotopically shelling a free simplex of Rε from the triangulation L of
Lemma 6, leads to a uniform bound from below for the operators ± 1

2I + D∗;
but once the free simplex is removed it is to be noted that one can dispense with
triangulation M1 and revert back to L now minus the free simplex.

8. Shelling the 1-skeleton

Let κ1 ∈ K̇4 and suppose σ 4 ∈ St(κ1,K). Let σ 4 = κ1 ∗ λ2 with κ1 = v0v1

and λ2 = v2v3v4 for vertices vj (j = 0, 1, 2, 3, 4). Every point x ∈ |σ | has
unique barycentric coordinates (s0, . . . , s4) determined by x = s0v0 + · · · + s4v4

, s0 +· · ·+s4 = 1, and sj ≥ 0 for j = 0, . . . , 4. Then |σ |\Rε0(v0, σ )\Rε0(v1, σ )

is a convex linear cell derived from the previous beveling of boundary vertices of
K . Define Rε(κ1,K) = {(1 − t)P + tQ | P ∈ κ1, Q ∈ Lk(κ1,K), 0 ≤ t < ε}.
By choosing 0 < ε1 <

1
2ε0 <

1
4 one insures that the set R̄ε1(κ

1,K)\Rε0(v0,K)\
Rε0(v1,K), to be removed about κ1, has empty intersection with any other such
set constructed for the purpose of removing the 1-skeleton of K̇ . For example,
x ∈ R̄ε1(κ

1, σ ) ∩ R̄ε1(v0v2, σ ) implies s2 + s3 + s4 ≤ ε1 and s1 + s3 + s4 ≤ ε1

which imply 1 − ε0 < s0 so that x ∈ Rε0(v0, σ ).
For each 4-simplex σ ∈ St(κ1,K) define

C(σ) = R̄ε1(κ
1, σ ) \ Rε0(v0, σ ) \ Rε0(v1, σ )

a convex linear 4-cell.
We wish to order the 4-simplexes of St(κ1,K) so that theC(σ) can be removed

one at a time in a process known as cellular shelling. That is, we want an order
σ1, σ2, . . . , σN so that

C(σi) ∩

| St(κ,K)| \ Rε0(v0,K) \ Rε0(v1,K) \

⋃
j<i

C(σj )




is always a 3-ball.
By the manifold condition on K̇ and [Moi52], Lk(κ1, K̇) is a 1-sphere in the

2-sphere Lk(κ1,R4). See Thm II.2 of [Gla70] p.19. Consequently Lk(κ1,K) is
a shellable 2-ball. See [Bin83] p.80. Let σj = κ1λj where {λj }Nj=1 is a shelling
order for Lk(κ1,K). Then {C(σj )}Nj=1 will be a cellular shelling. This will follow
by inspecting a typical cell and its boundary when it is next to be shelled.

Hence, in the barycentric coordinates defined above, a C(σ) is given by the
additional restrictions

s0 ≤ 1 − ε0

s1 ≤ 1 − ε0

s2 + s3 + s4 ≤ ε1
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The boundary of C(σ) consists of the six 3-cells:
in the hyperplanes that bevel v0 and v1

s0 = 1 − ε0 (8.1)

s1 = 1 − ε0 (8.2)

in the hyperplane that bevels κ1

s2 + s3 + s4 = ε1 (8.3)

and in St(κ1, σ̇ )

s2 = 0 (8.4)

s3 = 0 (8.5)

s4 = 0 (8.6)

Fig. 12. Facet (8.1)

Facets (8.1) and (8.2) are tetrahedra, while the rest are triangular cylinders
each with five sides. There are thus fourteen 2-cells total, each contained in two
of the six 3-cells.

At any time before C(σ) is shelled, facets (8.1) and (8.2) are always exposed,
i.e. contained in the boundary, while (8.3) is never exposed. Call an exposed facet
free. When C(σ) is next to be shelled either one or two of (8.4),(8.5), and (8.6)
are free (all three for C(σN)). Each of these last three intersects both (8.1) and
(8.2) in a 2-cell. Each intersects (8.3) in a 2-cell. Consequently, when C(σ) is
next to be shelled, the union of its free facets is a 3-ball, as is the union of the
nonexposed facets. Thus the shelling of Lk(κ1,K) induces a cellular shelling of
R̄ε1(κ

1,K)\Rε0(v0,K)\Rε0(v1,K). Because the method of continuity has been
set up with respect to simplicial shelling, this cellular shelling will now be reduced
to simplicial shelling. This could be done by an explicit starring procedure, but the
number of simplexes now appears to be getting large. Instead, the argument will
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Fig. 13. Facet (8.3). Facet (8.5) intersecting facet (8.3)

Fig. 14. Facets (8.6) and (8.4)

be based on classical subdivision theorems (in which the number of simplexes
gets even larger).

Upon beveling off the boundary vertices each of the original 4-simplexes of
K either remains the same, has only vertices removed, or has vertices and 1-sim-
plexes removed. In the latter case what remains of a |σ 4| may be decomposed into
one or more of the convex cells C(σ) together with a remaining piece that has
closure that is again a convex linear cell. In this way the polyhedron |K| with its
boundary vertices beveled off can be considered a cell complex where each cell
is convex linear ( [Gla70] pp. 9–10). A first derived subdivision of this complex
is produced by introducing new vertices in the interiors of each convex linear
cell (the interior of a vertex is the vertex). By Ex. I.16 of [Gla70] the result is a
simplicial complex. Denote this new complex by K0. Then |K0| is |K| with the
original boundary vertices removed.

Suppose now that a C(σ) is next to be cellularly shelled. Denote by ĉ the new
vertex in its interior and by Bf the triangulated 3-ball of free facets of Ċ(σ ) and
by Bg the remaining 3-ball. Then Lk(ĉ, K0) = Bf +Bg. Again by [San57] there
is a subdivision ofBf that shells. By proposition I.1(b) of [Gla70] this subdivision
extends to Bg. Now ĉ joined with these subdivisions is a subdivision of C(σ) that
is still a star with respect to ĉ. By [Gla70] this subdivision extends to a subdivision
of K0.

Remark 10. Again shelling is justified by [San57]. In higher dimensions the paper
to read for shelling convex cells is [BM71] particularly Lemma 1 and Proposition
1. See also Ex. II.7 of [Gla70] p.47.
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Bf ∗ ĉ may now be shelled from the subdivision of K0. The same subdivision
arguments now allow a shelling off of Bg ∗ ĉ. Thus C(σ) can be shelled simpli-
cially. Now one can return to the subcomplex of K0 that remains and apply the
subdivision and shelling arguments to the next cell in the cellular shelling order.
Consequently R̄ε1(κ

1,K) \ Rε0(v0,K) \ Rε0(v1,K) can be shelled simplicially
and Lemmas 7 and 8 apply to the beveling off of boundary 1-simplexes.

Theorem 4. Let |K4| ⊂ R
4 be the polyhedron of a finite homogeneous simpli-

cial complex with interior � that is a domain with boundary ∂� that is also a
connected 3-manifold. Then the classical layer potentials satisfy

(i) 1
2I +D∗ : L2(∂�) → L2(∂�) is an isomorphism and

(ii) − 1
2I +D∗ : L2

0(∂�) → L2
0(∂�) is an isomorphism

Proof. Fix 0 < ε0 <
1
4 . For any κ0 ∈ K̇ apply Lemma 6 with ε = √

ε0. Apply it
again to the resulting St(κ0, L). Then Rε0(κ

0) can be shelled from |K| with the
associated isotopies of Lemma 8 supported in R1/2(κ

0). Because these supports
are disjoint over all κ0 ∈ K̇ only local triangulations of K are needed. Repeated
applications of Lemma 8 then show that the isomorphisms (i)–(ii) need only be
established for |K| with its boundary vertices beveled off.

Returning to the triangulationK , |K| with its boundary vertices removed is, as
discussed above, a cell complex that can be shelled so as to remove the remainder
of the 1-skeleton of K̇ with Lemma 8 applying at each stage. By Theorem 12,
|K| with its boundary 1-skeleton removed is a Lipschitz domain for which the
theorem is known [Ver84]. ��

A. P. Calderon’s corollary on singular integral isomorphisms [Cal85] now
applies to yield.

Corollary 1. Given K4 ⊂ R
4 as in Theorem 4 there exists an ε > 0 depending

on K so that ± 1
2I +D∗ are isomorphisms on Lp(∂�) and Lp0 (∂�) respectively

for |p − 2| < ε.

Corollary 2. The Lp-Neumann problem, for p as in Corollary 1, is solvable in
the interiors and exteriors of the polyhedral domains of Theorem 4.

Proof. Harmonic uwithN(∇u) ∈ Lp(∂�)will also have Lp Dirichlet boundary
values [Car62], [HW70], [Dah79]. Consequently, whenp ≥ 2 uniqueness follows
by Green’s first identity, while for p < 2 Green’s representation formula leads to
(± 1

2 + D)u = 0 (5.3) from which it follows by Theorem 4 that u is identically
zero outside |K| or constant inside. ��
Theorem 5. Let K4 ⊂ R

4 be a finite simplicial complex with interior a domain
and boundary a manifold. Then |K| is piecewise linearly homeomorphic to the clo-
sure of a Lipschitz domain�Lip⊂ Int |K|. In fact, |K| isotopically deforms to �Lip
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Proof. Let �Lip be |K| with its 1-skeleton beveled off and repeatedly apply
Lemma 7 as in the proof of Theorem 4, obtaining a (finite) composition of PL
homeomorphisms. A single subdivision of K and another of �Lip exists, making
the composition a PL homeomorphism, by Theorem I.6 of [Gla70] p.15. ��

Remark 11. As in Remark 6, if �̄Lip is homeomorphic to B
4 Theorem 5 does not

then imply that it is a PL 4-ball or even bi-Lipschitz homeomorphic to B
4. See

§11.2 below.

The following corollary will be useful in section 10.

Corollary 3. Let κ0 ∈ K̇ , take κ0 to be the origin in R
4, and let {σj }Nj=1 be

a shelling of R̄ε(κ0) as described in §6. Then there is a PL-homeomorphism
H : |K| → |K| \ ⋃N−1

j=1 |σj | so that H has the following homogeneity property:
There exists a ball B centered at κ0 so that for all x ∈ |K| ∩ B and s ∈ I ,
H(sx) = sH(x).

Proof. Denote by Hj the PL homeomorphism h1 (i.e. t = 1) of Lemma 7 that
corresponds to the 4-simplex σj , j = 1, . . . , N − 1. Each Hj maps κ0 to κ0 and
therefore has the homogeneity property by piecewise linearity. As does H , the
composition of these maps. ��

9. Extension of L2 Estimates to infinite cones

Given a point v ∈ R
n and a set X ⊂ R

n the infinite cone of X with vertex v is

C(v,X) = {v + t (x − v) : t ≥ 0, x ∈ X} (9.1)

Estimates for the L2-Neumann problem in infinite cones are deduced from the
completed bounded case.

First a geometric localization lemma.

Lemma 9. Let Ln−1
0 ⊂ R

n be a finite homogeneous (n − 1)-complex such that
its join with the origin is defined. Let C be the infinite cone of L0 with vertex the
origin. Let Lj = {2j x | x ∈ L0} for integers −∞ < j < ∞ and let Aj be the
closed region of C between Lj and Lj+1. Let w be a Borel measurable function
supported on L0 and let N = Nα denote a nontangential maximal function for
Int C then

∫
L0

|w|pds ≤ Cp,α

∫
Ċ∩(A−1∪A0∪A1)

M(N(w))pds, 0 ≤ p < ∞

where M is the Hardy-Littlewood maximal function on Ċ.
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Proof. The inequality holds without M and with the right hand integral over all
of Ċ because surface measure of L0 is a Carleson measure of C (see for example
Lemma 4.2 of [VV03] which holds here in the infinite case because C is a cone).
Let j < −1, and forQ ∈ Aj ∩ Ċ define T (Q) = 2−jQ ∈ A0 ∩ Ċ. By definition of
nontangential region and j < −1, there is a constant d > 0 that depends only on
L0 and α so that y ∈ �α(Q)∩L0 implies that dist(y, Ċ) and d are comparable. If
Nα(w)(Q) > 0 choose y ∈ �α(Q)∩L0 so thatw(y) ≈ Nα(w)(Q). By Corollary
5.5 of [VV03] there is a set F(y) ∈ Ċ with (1) measure greater than C−1dn−1,
(2) y ∈ �α(P ) for all P ∈ F(y) and (3) the distance of each P ∈ F(y) to Q
and therefore T (Q) is less than C d. Consequently, using the doubling of surface
measure on Ċ, (e.g. (4.4) of [VV03]), to pass from Q to T (Q)

N(w)(Q) ≤
∫
F(y)

N(w)ds ≤ C ′
∫

B(Q,Cd)

N(w)ds ≤ C ′′M(N(w))(T (Q))

Now by change of variables
∫
Aj∩Ċ

N(w)pds ≤ 2j (n−1)
∫
A0∩Ċ

M(N(w))pds (j < −1)

which sums.
For j > 1 there is a number J depending only on C and α so that nontangential

regions based at Q ∈ Aj for j > J have empty intersection with L0 so that the
same argument leads to a finite sum. ��
Theorem 6. LetK ⊂ R

4 be a finite homogeneous 4-complex such that K̇ is a man-
ifold. Let κ0 ∈ K̇ , take κ0 to be the origin and let C = C(κ0) = C(κ0,Lk(κ0,K)).
Take g ∈ Lp(Ċ) compactly supported in St(κ0, K̇). Then there is a unique har-

monic function u in Int C decaying to zero at infinity so that
∂u

∂N
= g a.e. on Ċ

and there is a constant C depending only on K so that
∫

Ċ
N(∇u)pds ≤ C

∫
Ċ

|g|pds (9.2)

where N denotes a nontangential maximal function for C whenever |p − 2| < ε,
ε > 0 depending on K .

Proof. Let �0 = Int St(κ0,K) and define nested domains �j = {2j x | x ∈ �0},
j = 1, 2, . . . . First consider g ∈ L

p

0 (Ċ). By Corollary 2 and scale invariance of

the �j there is a harmonic function uj in �j so that
∂uj

∂N
= g a.e. on ∂�j and

∫
∂�j

Nj (∇uj )pds ≤ C

∫
Ċ

|g|pds (9.3)
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uniformly in j = 1, 2, . . . whereNj denotes the nontangential maximal function
over approach regions of�j . By properties of nontangential regions (see [VV03])
for the polyhedral setting), 9.3, and exhausting by compact subdomains (see
Lemma 4.11 of [JK82]), one can pass to a subsequence of the uj + cj , where
cj is an appropriate constant, that converges uniformly on all compact subdo-
mains to a harmonic function u, and so that 9.2 holds by monotone convergence
as the subdomains expand.

By (9.2) and properties of nontangential regions it then follows that

|∇u(x)| ≤ C dist−3/p(x, Ċ) (9.4)

so that by the fundamental theorem of calculus limt→∞ u(tx) exists for any x ∈
Int C. That this limit is independent of x follows by the fundamental theorem and
(9.4) used over paths (see Theorem 8.1 of [VV03]) connecting tx with ty so that
|u(tx)− u(ty)| ≤ Ct1−3/p dist(x, y). Consequently by subtracting a constant, u
decays at infinity. To show that u has the correct Neumann data define vk = u−uk.
It suffices to show that for any �l

lim
k→∞

∫

�̄l∩Ċ

Np(∇vk) ds = 0 (9.5)

Denote by [∇vk]j the restriction of ∇vk to ∂�j ∩ Int C. Let J denote the
number from the proof of Lemma 9. By scale invariance of Lemma 9

Ij,k :=
∫
∂�j∩Int C

|∇vk|pds ≤ C ′
p

∫
Ċ∩�̄j+1\�̄j−1

Mp(N([∇vk]j ))ds

≤ Cp

∫
Ċ∩�̄j+1\�̄j−1

Mp(Nk(∇vk))ds
(9.6)

for k > j + J . By the Hardy-Littlewood maximal function theorem, (9.2) and
(9.3) (with j = k),

∑k−J
j=l+1 is uniformly bounded in k > J + l. Consequently

there exists j = j (k) with l < j ≤ k − J so that Ij,k vanishes as k increases,
i.e. the Neumann data for vk on ∂�j , j = j (k), decreases to zero. By the scale
invariance of the �j , scale invariance of Neumann estimates and Corollary 2,
(9.5) and therefore pointwise limits for u follow. If now u is a solution in C with
zero Neumann data and nontangential maximal function of the gradient in Lp,
then the same argument shows that the gradient must vanish everywhere.

To obtain solutions in Lp it now suffices to consider g = 1 on St(κ0, K̇),
g = 0 elsewhere on Ċ, and let uj be solutions in �j with Neumann data g on
�̄j ∩ Ċ and Neumann data a constant on ∂�j ∩ Int C. (Actually any Neumann
data on these latter sets that yields mean value zero and has Lp norm less than
that of g.) Then (9.3) will hold as well as the rest of the existence argument. ��

A consequence of uniqueness is invertibility of the classical layer potentials
for the cones C(κ0).
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Theorem 7. With C(κ0) as in Theorem 6 and 2 − ε < p < 2 + ε, the layer poten-
tials ± 1

2I +D∗ are isomorphisms on Lp(Ċ). The single layer potential provides
the unique solution decaying at infinity to the Neumann problem with Lp-data
and Lp-nontangential maximal function of the gradient.

Proof. Let g ∈ Lp(Ċ) be compactly supported and let u be the corresponding
unique solution from Theorem 7. Using the proof of that theorem and its nota-
tions it follows there are solutions uj in a subsequence of the �j that converge
pointwise to u and so that (9.3) holds. Each uj = Sjfj by the manifold condition
and Theorem 4 where Sj denotes the single layer potential defined on �j and
fj ∈ Lp0 (∂�j ). By scale invariance and Theorem 4

||fj ||p ≤ C||g||p (9.7)

uniformly. Fixing any x ∈ Int C and writing uj = vj + wj where wj is obtained
by restricting Sj to ∂�j ∩ Int C, wj(x) → 0. Consequently

vj (x) =
∫

Ċ
�(x −Q)fj (Q)ds(Q) (9.8)

converges to u(x) also. Since the restriction of the fj to Ċ still satisfies (9.7) there
is a weakly convergent subsequence in Lp, fj ⇀ f with f also satisfying the
inequality of (9.7). By (9.8) u is the single layer potential of f taken over Ċ.

For noncompactly supported g define gj to be the restriction of g to Ċ ∩ �̄j \
�̄j−1. There will be corresponding fj ∈ Lp(Ċ) so that (9.7) holds with gj in
place of g. Therefore the partial sums of the fj will converge to an f in Lp norm,
which will suffice to imply that Sf will have Neumann data g. Thus − 1

2I +D∗

and similarly 1
2I +D∗ are onto. Sf (x) decays at infinity by Hölder’s inequality.

To show one-to-one, suppose f ∈ Lp(Ċ) and (− 1
2I + D∗)f ≡ 0. Then by

the uniqueness of Theorem 7 Sf ≡ 0 in C. Applying Lemma 9 as in the proof of
Theorem 7 shows

∫
∂�j∩Cc |∇Sf |pds vanishes as j increases where here the �j

are defined in the complement of C. (The manifold condition insures this comple-
mentary cone meets the same conditions as C.) When p = 2 therefore, the second
inequality of Theorem 3, the vanishing of Sf on Ċ, and the scale invariance of the
�j imply that ∇Sf vanishes outside C as well. It follows that f is identically zero
and − 1

2I +D∗ is an isomorphism on L2(Ċ). Similarly for 1
2I +D∗ and another

use of Calderon’s Corollary finishes the proof. ��

10. Estimates by flattening

By definition Lipschitz domains can be locally flattened. Dahlberg and Kenig
[JK82] used this property, together with Serrin and Weinberger’s [SW66] decay
estimates on solutions to divergence form elliptic equations, in order to reduce the
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study of harmonic functions in bounded domains to a study in unbounded annular
regions of R

n. Theorem 5 above says that a compact polyhedral domain of R
4 can

be locally flattened by a PL-homeomorphism. Recall the infinite cone of X with
vertex v

C(v,X) = {v + t (x − v) | t ≥ 0, x ∈ X} (10.1)

from section 9. The next lemma expresses what is meant here by locally flattening
a polyhedron |K4| ⊂ R

4.

Lemma 10. Let κ0 ∈ K̇4 (a 3-manifold) and take X = St(κ0,K) in (10.1). Then
there is a PL-homeomorphism h : C(κ0, X) → R

4+ which is moreover bi-Lips-
chitz, i.e. there is a numberm > 0 so thatm|x−y| ≤ |h(x)−h(y)| ≤ m−1|x−y|
for all x, y ∈ C(κ0, X).

Proof. Take κ0 to be the origin and let the ball B, the homeomorphism H and
the shelling {σj }Nj=1 of R̄ε(κ0) be as in Corollary 3. ThenH has the homogeneity
property and is a homeomorphism from B ∩X onto a subset of σN that contains
σN ∩B ′ for a smaller concentric ball B ′. ExtendH toH : C(κ0, X) → C(κ0, σN)

by H(x) = t−1H(tx) for t small enough depending on x. Since the boundary of
C(κ0, σN) can be realized as a graph over R

3, projection parallel to the x4-axis
yields the PL-homeomorphismh from C(κ0, X) to R̄4+. The bi-Lipschitz property
follows from that of H (which follows from the finiteness of K). ��
Remark 12. By the preceding constructions it is not hard to see that h actually
extends to a PL bi-Lipschitz homeomorphism of all of R

4.

Recall the definition of atom. A bounded measurable function a defined on ∂� =
|K̇| is called an atom if

(i) it is supported in a surface ball B(Q, r) ∩ ∂�
(ii) ||a||∞ ≤

[∫
B(Q,r)∩∂� ds

]−1
and

(iii)
∫
∂�
ads = 0.

The atomic Hardy space is defined by

H 1
at (∂�)={g | g =

∞∑
j=1

λjaj , aj is an atom j = 1, 2, . . . and
∑

|λj |<∞}

with the norm

||g||at = inf
{∑

|λj | | g =
∑

λjaj , aj an atom j = 1, 2, . . .
}

By (ii)H 1
at is a subspace ofL1(∂�). If a harmonic function u has atomic Neumann

data
∂u

∂N
= a a.e. on ∂� then the key estimate to obtain is

||N(∇u)||L1 ≤ C
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with C independent of a. When r in (i) and (ii) is larger than some fixed r0 > 0,
then the estimate follows by the L2-theory above, C depending also on r0. Thus
it suffices to take r0 so small that it may always be assumed supp a ⊂ St(κ0, K̇)

for some κ0 ∈ K̇ with

dist(supp a,Lk(κ0, K̇)) >
1

3
dist(κ0,Lk(κ0, K̇))

In this setting and following [DK87] we first obtain the key estimate in the
corresponding infinite cones C(κ0) = C(κ0,Lk(κ0,K)).

Let u be any harmonic function in a cone C(κ0) from Theorem 6 and let h be
the biLipschitz map for C(κ0) of Lemma 10. Define v = u ◦h−1 in R

4
+. Then (for

any 2 − ε < p < 2 + ε) v is in the space W 1,2
loc (R

4
+) and is a (weak) solution to

div(A∇v) = 0 (10.2)

where the matrix A = [aij ] is formed from the Jacobian determinant Jh and the
differential matrix h′ by A(x) = [(Jh)−1h′h′T ] ◦ h−1(x) for x ∈ R

4
+. Here h′T

denotes the transpose matrix. Define the reflection x∗ = (x1, x2, x3,−x4). We also
define A for x ∈ R

4
− by extending the definition of the aij by aij (x) = aij (x∗)

when 1 ≤ i, j ≤ 3 or i = j = 4 and aij (x) = −aij (x∗) otherwise. With these
definitions it follows that the function ṽ(x) = v(x∗) satisfies div(A∇ṽ) = 0
for x ∈ R

4
−. The matrix A in R

4
+ ∪ R

4
− is symmetric, has bounded (piecewise

constant) entries and satisfies the ellipticity conditions

〈A(x)ξ, ξ〉 ≥ C(K)|ξ |2 > 0

ξ ∈ R
4 \ {0}, i.e. satisfies any condition imposed in [SW66].

Lemma 11. Let C(κ0) be as in Theorem 6, p ≥ 3/2, and suppose u is harmonic
in C(κ0) with N(∇u) ∈ Lp(Ċ). Then u ∈ W 1,2

loc (C̄).
Proof. Let v = u ◦ h−1 as above where h : C → R

4
+ is the bi-Lipschitz homeo-

morphism of Lemma 10. Let D ⊂ R
4+ be any closed unit cube with one face

contained in {x4 = 0} and let Dt be its translation by t > 0 in the x4 direction.
By the divergence theorem, justified by (9.2), and Hölder’s inequality

∫
Dt

|∇v|2dx ≤ C

∫
Dt

∇v · A∇v dx = C

∫
∂Dt

vN · A∇v ds

≤ C2

(∫
∂Dt

|∇v|p
)1/p (∫

∂Dt

|v|p′
)1/p′

(10.3)

Here C depends only on the ellipticity of A. For each t , v can be adjusted by
an additive constant and Sobolev embedding invoked to bound (independently of
t by the congruence of the ∂Dt ) the p-norm by the p-norm of ∇v. When these
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latter norms are independent of t , the lemma follows by monotone convergence
and the fact that h is bi-Lipschitz.

The p-norms of (10.3) are uniformly bounded by the p-norm of a nontan-
gential maximal function of ∇v. This maximal function at each boundary point
h(Q) is dominated byNα(∇u)(Q), if α is chosen small enough depending on the
bi-Lipschitz constant. By an argument of [FS72] adapted to the polyhedral setting
(Lemma 4.4 of [VV03]), the functionsNα(∇u) for all 0 < α < 1 are in Lp if any
one is. ��

Remark 13. The above standard argument is given here because it depends on the
existence of h. In higher dimensions the result is not so clear. See §11.

Corollary 4. Let u be as in Lemma 11 and let G ⊂ ∂R4
+ be a nonempty open set

of R
3. Suppose ∂u

∂N
vanishes a.e. on h−1(G). Then v = u ◦ h−1, extended to be ṽ

in R
4
−, is a solution of (10.2) in the domain R

4
+ ∪ R

4
− ∪G.

The next theorem is the analogue of Theorem 2.12 of [DK87]. Because polyhe-
dral domains have no local uniform Lipschitz nature it will be necessary to again
exploit their property of being decomposable into geometrically similar domains.

Theorem 8. Let C = C(κ0) = C(κ0,Lk(κ0,K)) be as in Theorem 6 and g ∈
H 1
at (Ċ). Then there is a unique harmonic function u modulo constants in Int C so

that N(∇u) ∈ L1(Ċ) and
∂u

∂N
= g a.e. nontangentially on Ċ. Moreover

||N(∇u)||L1(Ċ) ≤ C||g||H 1
at (Ċ) (10.4)

Proof. In order to obtain (10.4) it is enough to take g = a an atom. By dilation
invariance of estimates it suffices to consider supp(a) ⊂ B1(Q) ∩ Ċ for some
Q ∈ Ċ and ||a||∞ ≤ 1. Let R0 = dist(supp(a), κ0). Given κ0 ∈ κj ∈ St(κ0, K̇)

let, by an abuse of notation, κj also denote C(κ0, κj ), i.e. a j-dimensional edge (j-
face) of Ċ. SupposeQ ∈ Ċ and let κ1 be the closest 1-face toQ. It may be assumed
for any Q ∈ Ċ, not the vertex, that dist(Q, κ0) is much larger than dist(Q, κ1)

by introducing a new triangulation (independent of Q) if necessary. There is a
number d0 depending only on C(κ0) (and not supp(a)) so that R0 > d0 implies
that the distance of supp(a) to each 1-face other than κ1 is greater than 1000.

We describe four geometric cases in which nested domains �j ⊂ �j+1 are
defined so that in each case ∂�0 ∩ Ċ contains the support of the atom, and the
rings �j+1 \ �j are approximately a distance 2j from �0, i.e. a standard set up
for atomic estimates is realized in each case.
Case I: R0 ≤ d0.
Define �j = {x ∈ Int C | dist(κ0, x) < 2j+1 max(R0, 4)}, j = 0, 1, 2, . . . .
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Fig. 15. 1-faces of Ċ with d0 > R0 ≈ dist(Q, κ0) >> dist(Q, κ1). Case I with 4 < R0 < d0.

Fig. 16. Rescaled St(κ0, K̇) with range of supp(a) (gray) when R0 > d0.
Case II: St(κ0,K) = �0 ⊃ �Lip ⊃ supp(a) when R0 >> d0

When R0 > d0 redefine St(κ0,K) by dilating it so that supp(a) ∩ { 1
4κ

0 +
3
4Q | Q ∈ Lk(κ0, K̇)} �= ∅. Recall A0(κ

0) = {(1 − t)κ0 + tQ | Q ∈
Lk(κ0,K) and 2−1 ≤ t ≤ 1} and the arches Aj(κ1) = {x = (1 − t)P + tQ |
P ∈ κ1,Q ∈ Lk(κ1,K), 2−j−1 ≤ t ≤ 2−j }, j = 0, 1, 2, . . . . Let J denote the
smallest j such that supp(a) ∩ Aj(κ1) �= ∅.

Case II: R0 > d0 and J = 0, 1, or 2.

Define �0 = Int St(κ0,K) and �j = {κ0 + 2j (x − κ0) | x ∈ �0}, j = 1, 2, . . . .
Define�Lip ⊂ A0(κ

0) by beveling off each 1-simplex of the boundary containing
κ0 at level t = 2−4 (as in Lemma 13).
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When J > 2 define

�0 = �0(J ) =
{
(1 − t)κ0 + tQ | Q ∈ Lk(κ0,K), |t − 3

4
| < 2−J+1

}

∩ Int
∞⋃

l=J−1

Al(κ
1) (10.5)

geometrically similar domains as J varies.
Case III: R0 > d0, J > 2 and dist(supp(a), κ1) ≤ 10.
Define �j (j = 1, . . . , J − 4) by (10.5) with J − j in place of J . Define
�J−3 = Int St(κ0,K) and �j (j ≥ J − 2) by dyadic scalings of St(κ0,K).

Fig. 17. Case III: supp(a) ⊂ �0 and �J−3 = St(κ0,K) with | supp(a)| ∼ |�0|

Case IV: R0 > d0, J > 2 and dist(supp(a), κ1) > 10.
Define the �j as in Case III and define �Lip = �0 \ ⋃∞

l=J+2Al(κ
1). Letting rj

denote the distance from�j+1 \ �̄j to supp(a) and ν > 0 the constant of [SW66]
the estimate ∫

�j+1\�j
N(∇u)2ds ≤ Cr1−n−2ν

j (10.6)

follows in each of the cases with C independent of R0 and dist(supp(a), κ1) as
on p.445 of [DK87] (see also the remarks following this proof). Here the L2 esti-
mate in compact polyhedra of Theorem 3 is used. Corollary 4 justifies the use of
[SW66]. In addition, for Cases II and IV the bounded domain estimates of [DK87]
are used in the domains�Lip. The complete proof follows pp.443–445, p.447 and
the first two sentences of p.448 of [DK87]. ��
We make some comments on the proof of [DK87] in order to isolate estimates
that will be useful again, and to indicate alternate arguments that will be useful
when solving problems in polyhedra for which invertible potentials may not be
available.
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Fig. 18. Case IV: �0 (white) with | supp(a)| << |�Lip| ∼ |�0|

C1 The standard Lipschitz domain device of estimating

|∇u(x)| ≤
∫

B∩Ċ

N(∇u)ds (10.7)

where B is centered on the boundary with radius like R = dist(x, Ċ), can be used
in polyhedra (see [VV03] Lemma 4.4, for example). Thus whenu is a solution with
unit Neumann data, |∇u(x)| ≤ CR−3/2 by Jensen’s inequality and Theorem 6.
Integrating to infinity in the direction κ0x and subtracting from u the constant
yields |u(x)| ≤ CR−1/2. The subtracted constant can be shown to be independent
of x. Consequently |u(x)| ≤ C for all x with dist(x, Ċ) ≥ 1 as on p. 443 of
[DK87] without the single layer representation. (This also works for R

3 by using
p < 2 as in Theorem 6). The sub-mean value argument of [DK87] p. 443 now
holds for the operator L = div(A∇) where A is defined in R

4 as above. See also
the second and third inequalities on p.447.

C2 The analysis of the Serrin-Weinberger estimate on p.444 of [DK87] goes
through for the operator L above. The sequence of six equalities on p.444 can be
pulled back to C and the approximating domains of Lemma 5.3 [VV03] used in
place of the parallel graph domains.

C3 For the uniqueness part of the argument on p.447, let w be harmonic in
Int C with N(∇w) ∈ L1 and with vanishing normal derivative. Then there is no
translation of w in Int C that remains a solution in Int C. To proceed, designate
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some point on Ċ to be the origin of R
4 and let ψ denote a smooth cutoff function

ψ(x) ≡ 1 for |x| < R, ψ ≡ 0 for |x| > 2R, and R|∇u| + R2|∇∇u| ≤ C

where C can always be taken independent of R. For y ∈ R
4
+ define W(y) =

W(R; y) = ψ ◦h−1(y) w ◦h−1(y) with h as in Lemma 10. For t > 0 and y4 ≥ 0
define Wt(y) = W(y ′, y4 + t) where y ′ = (y1, y2, y3). Define the matrix At(y)
for y4 ≥ 0 as Wt was defined. Next extend At to y4 < 0 by the same similarity
transformation used before Lemma 11 to extend A. Define Lt = div(At∇) in
R

4 and denote by Gt(x, y) ≥ 0 the fundamental solution for Lt in R
4 [LSW63].

Extend by reflection Wt(y) = Wt(y
∗) for y4 < 0.

Now by definition of fundamental solution, the Lipschitz continuity ofWt and
changes of variables

(w ◦ h−1)t (x)

=
∫

R4
At(y)∇yGt(x, y) · ∇Wt(y) dy

=
∫

{y4=0}

[
Gt(x, ·)+Gt(x

∗, ·)]

×
[
(ψ ◦ h−1)t

∂

∂νt
(w ◦ h−1)t + ∂

∂νt
(ψ ◦ h−1)t (w ◦ h−1)t

]
ds(y)

−
∫

{y4>0}

[
Gt(x, ·)+Gt(x

∗, ·)]

× [
(Jh)−1

t ((�ψ) ◦ h−1)t (w ◦ h−1)t + 2At∇(ψ ◦ h−1)t · ∇(w ◦ h−1)t
]
dy

(10.8)

where x ∈ h(BR(0) ∩ Int C) and new uses of the subscript t stand for translation
and νt represents the conormal derivative with respect to At in R

4
+.

Because h is bi-Lipschitz, distances and volumes are essentially preserved
so that the analysis of [DK87] holds as R goes to infinity. For the same reason
the nontangential maximal function again justifies taking limits in t . The elliptic-
ity constants of the Lt are uniform in t so that away from the poles the Gt are
uniformly bounded. See [GW82]. A related lemma will be useful below.

Lemma 12. Let Gt(x, y) be the fundamental solutions for the operators Lt =
div(At∇) and let G(x, y) be the fundamental solution for L = div(A∇). Then
there is a sequence of t’s converging to zero so thatGt(x, y) converges toG(x, y)
pointwise and weakly in W 1,p(BR(x)) for all R > 1 and 1 ≤ p < 4/3.

Proof. By the uniform ellipticity of the Lt , the resulting uniform bounds of
[GW82] ((1.6), (1.12) and (1.38) pp. 3,4,9) and a diagonalization argument there
is convergence of a sequence to some G(x, y) in the manners described. That G
is the fundamental solution for L follows first because for any C∞

0 function

φ(x) =
∫
At(y)∇yGt(x, y) · ∇φ(y) dy →

∫
A(y)∇G(x, y) · ∇φ(y) dy
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by the weak Lp convergence and the fact that At converges to A pointwise a.e.
and in any Lqloc (q < ∞). Next, the pointwise convergence of the Gt shows
G ≥ 0, and the fact that G is in the above W 1,2 spaces allow one to conclude by
uniqueness that G is the fundamental solution for L. ��

C4 The following corollary to the proof of Theorem 8 will be useful.

Corollary 5. Let � = Int St(κ0,K), identify κ0 with the origin, let a be an atom
with the property that Q ∈ supp(a) implies 2Q ∈ St(κ0, K̇). Then there is a

harmonic function u in � so that
∂u

∂N
= a nontangentially and

∫
∂�

N(∇u)ds ≤ C (10.9)

with C independent of a.

Proof. By finiteness ofK we take� to be of unit size. Let C = C(κ0) and let v be
the solution with Neumann data a from Theorem 8. Letw be the L2 solution with

data
∂v

∂N
on Lk(κ0,K) and zero elsewhere on ∂�. Define u = v − w. Estimate

(10.9) follows because ∫
Lk(κ0,K)

|∇v|2ds ≤ C

independently of a. To see this latter estimate, choose θ > 0 depending only on
� so that the integral over points a distance greater than θ from Ċ is controlled by
(10.7) and theL1(Ċ) bound onN(∇u). The remainder of the integral is controlled
by an integral of N(∇u)2 over points of Ċ that are approximately a distance no
more than θ from Lk(κ0, Ċ), thus a unit distance from supp(a). This integral is
just a scaling of estimate (10.6). ��
Theorem 9. Let K4 ⊂ R

4 be a finite homogeneous complex with connected
boundary K̇ with that is a 3-manifold. Let � = Int |K|. Given g ∈ H 1

at (∂�)

there is, up to constants, a unique harmonic function u in � such that

(i)
∂u

∂N
= g a.e. nontangentially

(ii) N(∇u) ∈ L1(∂�).

Further, there is a constant C = C(K) independent of g so that

(iii) ‖N(∇u)‖1 ≤ C‖g‖H 1
at

Proof. To establish (iii) it suffices to consider g = a an atom such that for any
κ0 ∈ K̇ either: I. supp(a) ⊂ {κ0 + 2

3 (x − κ0) | x ∈ St(κ0, K̇)} or II. supp(a) ∩
{κ0 + 1

2 (x − κ0) | x ∈ St(κ0, K̇)} = ∅. Now the proof consisting of p.459 and



620 G.C. Verchota, A.L. Vogel

most of p.460 from [DK87] may be adapted to use these two cases and establish
(iii). See additional comments below.

For uniqueness in the bounded domain case here, we supply a different proof
based on the representation in the middle of p.447 of [DK87] that was used for
uniqueness in the unbounded case. See comment C3 above.

Suppose u satisfies (i) and (ii) with g = 0. Let κ0 ∈ K̇ and take h as in
Lemma 10. Let L = div(A∇) be the elliptic operator in all of R

4 derived from
h as described above and let v(x) = u ◦ h−1(x) for x ∈ h(Int St(κ0,K)). Thus
we may take v to be a W 1,2

loc solution to Lv = 0 in a neighborhood of the origin
of R

4
+. We may suppose this neighborhood to be large. Let G(x, y) denote the

fundamental solution for L in R
4. We may suppose the origin to be on St(κ0, K̇)

and Lk(κ0,K) to be far from the origin. Let ψ denote a cutoff function as in
comment C3 above with R = 1. Define W = ψ ◦ h−1u ◦ h−1 and the remaining
quantities of comment C3. Then by Lemma 12 the limit in t may be taken yielding

u ◦ h−1(x) =
∫

{y4=0}

[
G(x, ·)+G(x∗, ·)] ∂

∂ν
(ψ ◦ h−1) u ◦ h−1 ds

−
∫

{y4>0}

[
G(x, )+G(x∗, )

] [
(Jh)−1(�ψ ◦ h−1)u ◦ h−1

+2A∇(ψ ◦ h−1) · ∇(u ◦ h−1)
]
dy (10.10)

for x ∈ h(B1(0)∩�). From which it follows, by the bounds uniform in the poles
of G [GW82] and support properties, that u ◦ h−1 is W 1,2 in a neighborhood of
h(0) in R

4+. Now reflection yields a W 1,2 solution for Lv = 0 in a neighbor-
hood of R

4 so that u ◦ h−1 is Hölder continuous [DG57] [Nas58] there, so that u
must be Hölder continuous in�. By the strong maximum principle forL, [GT77]
p.198, applied in an open neighborhood of a maximum of u ◦ h−1 and the strong
maximum principle for harmonic functions in � it follows that u is a constant.

��

C5 The polyhedral L2-Neumann theory of section 8 and integration by parts as
in section 5 of [VV03] justify the integrations of pp. 459-460 [DK87] here.

C6 When proving Case II of Theorem 9 as on p.459 of [DK87], (10.10) and the
bounds G(x, y) ≤ C|x − y|2−n yield

sup
B1

|u| ≤
∫
B2

|u| + |∇u|

This coupled with the Cacciopolli calculation
∫
B1/2

|∇u|2 ≤
∫
B1

|u||∇u|
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and Poincaré, readily yields the reverse Hölder inequality on the bottom of p.459.
(The boundary integral of (10.10) may be converted to solid integrals of ∇u and
u by the fundamental theorem of calculus and averaging.)

C7 The case I argument of p.460 follows here from Corollary 5.

11. An example of Curtis and Zeeman.

In [CZ60] a certain 4-manifold with boundary X is identified that embeds as a
finite simplicial complex in R

4. This manifold is then doubly suspended into R
6.

Consequences for the polyhedral version of the Schoenflies theorem, under the
assumption that a homology (n − 2)-sphere doubly suspends to a topological
sphere (homeomorphic to S

n), are then discussed. The space X and many of its
properties were originally investigated by M. H.A. Newman [New48] with further
consequences and explanations in Curtis and Wilder [CW59]. The assumed dou-
ble suspension theorem was anticipated then, but is now established by Edwards
and Cannon [Can79]. Thus the double suspension of X meets the definition of
polyhedral domain considered here. The purpose here is to make more explicit
Newman’s construction and to elaborate on its consequences for boundary value
theory in compact polyhedra in dimensions greater than 4.

11.1. Newman’s construction

To begin, a homogeneous 2-complex P 2 with a nontrivial fundamental group
π1(P ) is constructed in R

4 as follows (see the top of p. 155 in [CW59]). In the
xy-plane let A denote the triangle (1-complex without boundary) with vertices
and orientation (0, 0), (−1, 1) and (−1,−1). Let A−1 denote the opposite orien-
tation. Let B similarly denote (0, 0), (1, 1) and (1,−1). See Figure 20. Next the

Fig. 19. The boundary of the disc identified to A and B
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Fig. 20. The image of the torn annular region afixed to the figure eight formed by A and B

boundary of a 2-disc is divided into 5 arcs and each in succession is identified to
A or B by the formula A−2BAB reading left to right. See Figure 19. A mapping
(continuous) of the disc into R

4 under these identifications is realized in several
stages. It is helpful to first consider an annular subset of the disc that contains the
disc boundary and then later to plug the hole. Also, one constructs as much as
possible in R

3 and then uses the 4th dimension to repair tears.
To these ends consider the oriented 1-complex (with six 1-simplexes) given by

the successive vertices (0, 0, 1), (−7,−7, 1), (−7, 6, 1), (−1, 0, 1), (−6,−5, 1),
(−6, 4, 1) and (−2, 0, 1) in R

3. Form the convex hull of each of these 1-simplexes
with the side of the triangle A to which it is parallel. The result is a 2-complex
of six 4-gons attached to A twice in A−1 orientation. Similarly attach the com-
plex of three 1-simplexes (1, 0, 1), (6, 5, 1), (6,−4, 1), (2, 0, 1) to B; (−3, 0, 1),
(−5, 2, 1), (−5,−1, 1), (4, 0, 1) toA; and (3, 0, 1), (5, 2, 1), (5,−1, 1), (4, 0, 1)
to B. See Figure 20. Each of the 4-gons can be subdivided into two 2-simplexes.
Next each of the four 1-complexes defined above in the plane z = 1 is joined
to the point C = (0, 0, 2) resulting in fifteen more 2-simplexes. Altogether there
is now a complex of 45 2-simplexes that can be considered to be contained in
the image of the 2-disc under the proposed identification map, with C the image
of center of the 2-disc. This complex would be the image of the 2-disc except
that it is torn in four places. The eight edges of these tears have all been put in
the xz-plane. Let O denote the origin. The first 1-complex defined above in the
z = 1 plane has lead to a subcomplex of eighteen 2-simplexes. Its beginning edge
is O,(0, 0, 1),C and its ending edge is O,(−2, 0, 1),C. This last edge is to be
connected to the beginning edge O,(1, 0, 1),C of the subcomplex that was first
attached to B. This can be done in R

4 without unwanted intersections by joining
these two edges to the point (0, 0, 1, 1) in (x, y, z, w)-coordinates. The edges
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O,(2, 0, 1),C and O,(−3, 0, 1),C are joined to (0, 0, 1, 2); O,(−4, 0, 1),C and
O,(3, 0, 1),C to (0, 0, 1, 3). The last edge O,(4, 0, 1),C and O,(0, 0, 1),C must
be joined in the w < 0 half-space. The point (0, 0, 1,−1) serves the purpose.

The resulting complex of 61 2-simplexes P+ is the desired image of the disc
under the identification of its boundary by A−2BAB. Except for its boundary
P+ resides in the half space z > 0 of R

4. In the same way a complex of 101
2-simplexes P− is realized in z ≤ 0 as the image of another 2-disc under the
identification B−5ABAB. The union P+ ∪ P− is the 2-complex P .

Let 〈A,B〉 denote the free group on the two generators A and B (see pp.199–
203 of [Lee00]). Let R denote the smallest normal subgroup of 〈A,B〉 contain-
ing the relators A−2BAB and B−5ABAB. Then the quotient group 〈A,B〉/R is
what is meant by the group presentation 〈A,B | A−2BAB,B−5ABAB〉 (p.201
[Lee00]). It is the Seifert-VanKampen theorem ([Lee00] Chapter 10, [Mas91]
Chapter IV, [Bre93]) that shows that π1(P

2) has precisely this group presentation.
As elements of the quotient group the relators satisfy the relationsA−2BAB = 1,
and B−5ABAB = 1, or equivalently

A3 = B5 = (AB)2 (11.1)

Newman remarks then that π1(P ) must be nontrivial because these relations
are a subset of relations that can be used to present the alternating group A5

(icosahedral group), i.e. the argument is 0 �= A5 ⊂ π1(P ). Indeed, according to
[CM57] p.14, A5 is presented by the relations A3 = B5 = (AB)2 = 1 where A
is the permutation cycle (245) and B the cycle (12345). In fact the group with
relations (11.1) is precisely the group of order 120 that is the fundamental group
of Poincaré’s original homology sphere [Sav02] p.2.

Thus P is a finite homogeneous 2-complex realized in R
4 with nontrivial fun-

damental group. By subdivision, P may be considered to be a subcomplex of a
combinatorial triangulation of R

4.
Next homology groups for P are calculated. Because P is path connected

H0(P ) = Z the integers ([Mas91] p.148). To compute H1(P ) [New48] and
[CW59] observe that π1(P ) is a perfect group. This means that it is its own com-
mutator subgroup. IfG is a group its commutator subgroup [G,G] is the smallest
subgroup that contains {xyx−1y−1 | x, y ∈ G}. It is a theorem that [G,G] is
normal and that G/[G,G] is abelian, the abelianization of G. Therefore, if G
is perfect its abelianization is the trivial group. That π1(P ) is perfect is seen in
terms of group presentation by including, as Newman does, the commutator rela-
tion AB = BA to (11.1). It follows that A = B = 1 so that the abelianization
of π1(P ) is the trivial group. By a theorem of W. Hurewicz for path connected
spaces ([Bre93] p.174, [Lee00] p.305) H1(P ) is the abelianization of π1(P ), i.e.
trivial.

That H2(P ) is trivial is the next observation. Newman argues this directly by
showing that the group of 2-cycles Z2(P ) is trivial. (H2(P ) is the quotient group
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Z2(P )/B2(P ) where B2(P ) is the group of 2-dimensional bounding cycles, i.e.
boundaries of singular 3-chains in P , [Mas91] pp.158-160. Z2(P ) would be all
singular 2-chains with empty boundary.) First he claims that a 2-chain can only
be a cycle if it is of the form mP+ + nP− for m, n ∈ Z. The boundary of such a
chain is thenm(−A+ 2B)+ n(−3B + 2A). (Here the boundary of P+ is written
additively −2A+B+A+B = −A+2B and similarly forP−.) The only solution
for m and n making this sum empty is m = n = 0. Thus Z2(P ) and H2(P ) are
trivial.

Remark 14. The above argument appears to be a repetition of the H1(P ) = 0
argument. This can be seen by considering an alternative argument using the
machinery of CW-complexes. See [Mas91] p.226 for a precise description of CW
constructions by the attaching of open n-cells. Here P is obtained from the fig-
ure-eight A ∪ B by attaching two open 2-cells (the interiors of the two 2-discs).
The important theorem is Theorem 2.1 on p.227 of [Mas91]. It states that if a
spaceX∗ is obtained from a spaceX by attaching a number, say k, of n-cells, then
the relative homology groups Hq(X∗, X) (pp.169–170 [Mas91]) are (1) trivial
when q �= n and (2) isomorphic to ⊕k

Z when q = n. This allows one to compute
homology groups from the homology sequence of the pair (X∗, X). It is a theorem
that every such sequence is exact (the image of each map is identical to the kernel
of the following map). See p.171 [Mas91] for the definition and theorem. In the
case here the relevant part of the homology sequence is

0→H2(A ∪ B) → H2(P ) → H2(P,A ∪ B)→H1(A ∪ B) → H1(P )→0

The zeros arise from conclusion (1) above. Conclusion (2) yields Z ⊕ Z for the
relative homology. It is known that H1(A ∪ B) = Z ⊕ Z and that H2(A ∪ B) =
0. (Since A ∪ B is obtained from a single point by attaching two open 1-cells
Massey’s Theorem 2.1 also yields these two conclusions by the same procedure.
See also Lemma 4.1 on p.233 of [Mas91] for the last.) It has been established
above that H1(P ) = 0. Thus the sequence reduces to

0 → H2(P ) → Z ⊕ Z → Z ⊕ Z → 0

By exactness the third map is onto, so by linear algebra it is also 1-1. Thus by
exactness the second map is the zero map and by exactness again H2(P ) = 0.
Nothing here has anything to do with how the discs were attached toA∪B except
for the previous fact H1(P ) = 0.

In sum P is a finite homogeneous 2-complex realized as a subcomplex of a
combinatorial triangulation T of R

4 that satisfies π1(P ) �= 0 = H1(P ) = H2(P )

and H0(P ) = Z.
The 4-complex X

4
is constructed as in [CW59] to be a regular neighborhood

of P . (Newman [New48] uses the same method but in R
5.) This means that X
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will be a finite homogeneous 4-complex in R
4 that contains P in its interior, will

be a PL 4-manifold with boundary M3 and will have P as a (PL) deformation
retract (strong deformation retract). See the definition of regular neighborhood
on p.20 and Lemma 1.6.2 on p.18 of [Rus83]. Since P will be contained in the
interiorX ofX it will also be a deformation retract forX. Therefore it will follow
by [Mas91] p.45 that the fundamental groups of X and X are both isomorphic
to the fundamental group of P . In addition, the deformation retraction induces,
via the inclusion map, isomorphisms of the homology groups Hn(X) and Hn(X)
withHn(P ) for n = 0, 1, 2, . . . [Mas91] p.168. A more precise description of the
construction of X will make the calculations of the corresponding groups for M
accessible.

Whitehead’s theorem [Rus83] p.20 states that X can be constructed by first
taking a barycentric (or derived) subdivision T ′ of T in order to ensure that any
simplex of T ′ with all its vertices in the induced subdivision P ′ of P is contained
in P ′ (P ′ is said to be full in T ′). Taking a second derived subdivision T ′′, X is
defined to be the minimal subcomplex of T ′′ containing all simplexes of T ′′ that
intersect P ′′ (i.e. |P |).

An alternative to taking a second subdivision (see chapter 3 [RS72]) is to define
a simplicial map f from T ′ to the unit interval [0, 1] by defining f = 0 on all
vertices of P ′, f = 1 on all other vertices of T ′ and then extending piecewise
linearly. BecauseP ′ is full in T ′f −1(0) = P ′. Using this [New48] and [CW59] set
X = f −1([0, 1/2]), M = f −1(1/2), introduce new vertices on the 1-simplexes
of T ′ where they intersectM and employ elementary starring as in Lemma (6) to
obtain a subdivision T ′′ in which X again has all the properties mentioned above
that characterize a regular neighborhood of P .

The required retraction φ : X → P and homotopy to the identity ([Mas91]
p.45) are induced by f . This is done by observing that every point x ∈ X \ P
is determined by T ′ to be in the join of a unique smallest simplex from P and a
unique smallest simplex from f −1(1) so that there are unique p ∈ P , q ∈ f −1(1)
and 0 < t ≤ 1/2 so that x = (1 − t)p+ tq. Then φ(x) = p and φ(p) = p. Also
if σ ∈ T ′ (not T ′′) then φ(|σ | ∩ |X|) = |σ ∩ P ′|.

As in Proposition I.2 of [CW59] it can now be shown that π1(M) �= 0. Con-
sider a closed path γ in P ′. For each edge (1-simplex) σP in γ one may choose
an edge σM in M so that φ(σM) = σP . This is possible because by fullness there
are at least two vertices in Lk(σp, T ′) ∩ f −1(1) that join with σP to give rise to
an edge in M . Let σP , τP be edges in γ with σP ∩ τP = v a vertex. These edges
in M might be disconnected. Let vσ be the vertex of σM that is mapped by φ to
v and similarly define vτ . By construction of T ′′ both vσ and vτ are contained
in Lk(v, T ′′) a PL 3-sphere. Because P is also full in T ′′ no 2-simplex of P is
contained in this sphere, i.e. P cannot separate the sphere. Therefore vσ and vτ
can be connected by a path γv in Lk(v, T ′′) ⊂ X that does not intersect P ′. In fact
this path is in M since vertices of Lk(v, T ′′) are either in P ′ or M .
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Now φ does not necessarily map γv to v. However, every vertex of γv comes
from | St(v, T ′)| which φ maps to St(v, P ′). This latter star contains φ(γv) and is
contractible to v. In this way the edges σM and τM are connected by a γv inM so
that the image of the union under φ homotopically deforms in P to σP ∪ τP . It
has therefore been shown that every path γ in P gives rise to a path γM in M so
that φ(γM) homotopically deforms to γ in P . Thus the homomorphism, induced
by φ, between the fundamental groups of M and P is onto. Therefore π1(M) is
at least as large as π1(P ), i.e. π1(M) �= 0.

The homology calculations for M3 are done as in [CW59] by applying the
Mayer-Vietoris exact sequence (Theorem 5.1 on p.207 of [Mas91]), Alexander
duality (Theorem 6.6 on p.374 of [Mas91]), and some simplifying observations
about cohomology. By regular neighborhood theory (see parts 2. and 3. of The-
orem 1.6.4 [Rus83]) X is compactly contained in the interior of another regular
neighborhood, f −1([0, 3/4]) for example, X′ and it in turn in the interior of
another X′′, all homeomorphic and having the same relations and properties with
respect to P . One now considers these embedded in S

4 and defines Y to be the
complement of X. Then M ′ (homeomorphic to M) is a deformation retract for
Y ∩X′′. In this way the requirements in the Mayer-Vietoris theorem for open sets
and nonempty intersections can be met even as one writes

→ Hn+1(S
4) → Hn(M) → Hn(X)⊕Hn(Y ) → Hn(S

4) →
By the known homologies of the sphere, exactness and the above computations
for X it follows that Hn(M) ≈ Hn(Y ) for n = 1, 2. Alexander duality yields
H1(Y ) ≈ H 2(X) and H2(Y ) ≈ H 1(X) (see the top of p.372 [Mas91] for a
clarifying note). These last are cohomologies rather than the homologies already
computed. It is the purpose of the Universal Coefficient Theorem for cohomolo-
gies (Theorem 4.4 and Corollary 4.6, pp. 314–315 [Mas91]) to express them back
in terms of homologies. Here this yields the (split) exact sequence

0 → Ext(Hn−1(X),Z) → Hn(X) → Hom(Hn(X),Z) → 0 (11.2)

Hom indicates the group of homomorphisms fromHn(X) into Z. For n = 1 or 2
this must be the trivial group. Again Massey makes the helpful comment (p.313)
that if the first group in theExt functor is free abelian then the group indicated by
Ext is trivial also. It follows that H1(M) = H2(M) = 0. (See also page 100 of
[RS72]). SinceM is connectedH0(M) = Z. A general result is that any compact,
connected, orientable n-manifold N has Hn(N) = Z and Hq(N) = 0 for all
q > n (see comment (e) on p.148 [Mas91]) which finishes the homology compu-
tations for M . The above general result follows from Poincaré duality (Theorem
4.1, p.360 [Mas91] and bottom p.358) and the (split) exact sequence (11.2) again.

In sum, the homology of the 3-manifold M is the homology of S
3, but M is

not simply connected. Such manifolds are variously termed homology spheres or
Poincaré manifolds. The double suspension�2M3 that was the object of study in
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[CZ60] can be constructed in R
6 as a finite homogeneous 5 complex by first join-

ing each simplex ofM to the points (0, 0, 0, 0,±1) in R
5 (the suspension points)

and the repeating the procedure in R
6. The same can be done to X

4
so that �2M

is the boundary of the finite homogeneous 6-complex �2X. If the suspension
points of �X are removed one is left with an open ended cylinder that has X as a
deformation retract. Therefore, the interior of�X hasX as a deformation retract.
Likewise, by two stages, the interior of �2X has X as a deformation retract, and
consequently shares its properties of being connected but not simply connected.

However, the boundary �2M is homeomorphic to S
5. This fact follows from

theorems of J. W. Cannon in this case because X4 is not contractible. (See p.108
of [Can79] where the theorem is proved and the differences between the cases
considered by R. D. Edwards and Cannon are discussed.)

Remark 15. �M is not a manifold. If it were, then a neighborhood of a suspension
point would be homeomorphic to R

4. This neighborhood could then be taken to be
contained in the star of the suspension point by considering the image of a small
ball of R

4 under the homeomorphism. Removing the suspension point from the
neighborhood would result in a simply connected domain since this is true for R

4.
Therefore the star with the suspension point removed would also be simply con-
nected because any path can be rescaled in order to fit into the neighborhood. But
the link of the suspension point is a deformation retract of the star sans suspension
point. Therefore the link would be simply connected. But the link here isM which
is not simply connected. More generally, n-manifold implies simply connected
vertex links when n > 2. See the parenthetic remark on p.121 of [Thu97].

Putting K6 = �2X, K is a finite homogeneous 6-complex in R
6. Its interior

is a domain and its boundary is a manifold, in fact a sphere. But the domain is
not homeomorphic to the open ball because it is not simply connected; neither
is |K| homeomorphic to the closed ball. Therefore K cannot be a manifold with
boundary whereas all such constructions in R

4 by [Moi52] must be. The fail-
ure of K to be manifold with boundary under these circumstances follows from
a consequence of M. Brown’s generalized Schoenflies Theorem due to Cantrell
([Rus83] p.49 and [Bin83] p.61). (Manifold with boundary implies local collar
implies collar implies ball).

11.2. Some consequences for boundary value problems

11.2.1. Obtaining atomic estimates in compact polyhedral domains of R
n that

have manifold boundaries becomes not so clear when n ≥ 5. The local flattening,
as in §10, cannot be done in general, given the example in §11.1, by definition of
manifold with boundary.
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When failing to satisfy the topological manifold with boundary condition such
domains a fortiori cannot be bi-Lipschitz domains. They are however NTA do-
mains because that property follows when the boundary is a manifold [VV03].

A definition of Lipschitz domain that generalizes Morrey’s bi-Lipschitz defi-
nition is found in [Maz85] p.19. There the defining local homeomorphisms of the
domain have a much more tenuous relation with the boundary. Each boundary
point of a bounded domain � is required to have a neighborhood U of R

n so that
U ∩ � maps quasi-isometrically onto an open half-ball. A quasi-isometric map
T : �1 → �2 between domains is defined to have a Jacobian that preserves its
sign in �1, be a homeomorphism onto �2 , and to satisfy

lim sup
x→y

|x − y|
|T x − Ty| + lim sup

x→y

|T x − Ty|
|x − y| ≤ L (11.3)

for each y ∈ �1 and someL independent of y. Such a domain can be called infini-
tesimally Lipschitz. An infinitesimally Lipschitz domain need not have a manifold
boundary. The slit domain � = {z ∈ C | |z| < 1,−π < arg(z) < π} and the
map T (z) = |z|1/2z1/2 provide an example. Any open set containing � serves as
the neighborhood U . T does not satisfy a Lipschitz condition on � while it does
satisfy (11.3).

Infinitesimally Lipschitz domains that do have manifold boundaries need not
be NTA or, more particularly, uniform domains. The above example can be mod-
ified by requiring |arg(z)| < π − f (|z|) < π with, for example, f ′ continuous
and f ′(0) = f (0) = 0 so that and inward pointing cusp can replace the slit.

On the other hand, while compact polyhedral domains with manifold boundary
are NTA domains, the Curtis-Zeeman example shows they need not be infinites-
imally Lipschitz. No neighborhood of a suspension point of the Curtis-Zeeman
polyhedron when intersected with the interior can be simply connected. (Any non-
trivial path in the nonsimply connected interior can be homotopically mapped to
the suspension point neighborhood.) More generally, the infinitesimally Lipschitz
and bi-Lipschitz conditions are equivalent in this context.

Theorem 10. Let the domain� ⊂ R
n be the interior of a finite homogeneous sim-

plicial complex Kn with a boundary that is a manifold. If � is an infinitesimally
Lipschitz domain then it is a bi-Lipschitz domain and therefore K is a manifold
with boundary.

Proof. Let U be a neighborhood of the boundary point P so that T : U ∩ � →
Int B

n is a quasi-isometry. T −1 immediately extends to a Lipschitz map from B
n

onto the closure of U ∩ � because of the convexity of B
n. By showing that T

extends continuously to a subset of ∂�, the extended T −1 will be shown to be 1:1
and a bi-Lipschitz homeomorphism will be obtained.

Because � is a uniform domain [VV03] there is a constant C depending only
on K so that whenever x, y ∈ � there is a piecewise linear arc in � with end-
points x and y that has arc length bounded by C|x − y|. This together with
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(11.3) and the Rademacher-Stepanov theorem is enough to show that whenever
xj → Q ∈ U ∩ ∂�, arcs connecting xj and xk, for j and k large enough, are
contained in U and consequently T (xj ) will converge to a unique T (Q). ��

Thus compact polyhedral domains with manifold boundaries but with closures
that are not manifolds with boundary are neither Lipschitz, nor bi-Lipschitz, nor
infinitesimally Lipschitz domains.

11.2.2. Working with just the boundary of a compact polyhedral domain also
becomes problematic because of the above example. Defining a method of con-
tinuity as in §6 by homeomorphically mapping a polyhedral boundary piecewise
linearly to the boundary of a Lipschitz polyhedron is not possible in general.

To see this suppose h : �2M → ∂�Lip is a PL-homeomorphism onto the
boundary of a Lipschitz polyhedron. By radial projection the new link of the sus-
pension point v, in the new triangulation induced by h, is homeomorphic to�M ,
i.e. the link of v is, by Remark 15, not a manifold. However, hmaps this link and
star of v isomorphically ([Gla70] pp.12–13) onto the star of h(v) in ∂�Lip. There-
fore this homeomorphic image is given as a graph over R

5 and can be parallel
projected homeomorphically to a starlike image in R

5 with respect to the point
h(v). Thus �M is seen to be homeomorphic to S

4 by radial projection in R
5, a

contradiction. Another way of saying this is that the boundary of any Lipschitz
polyhedron is a combinatorial manifold, while �2M is not.

It is interesting to note that attempting the method of continuity by mapping
a polyhedral boundary to the boundary of a Lipschitz polyhedron with Lipschitz
maps instead of PL is also not possible. By a theorem of L. C. Siebenmann and D.
P. Sullivan ([SS79] p.504), any locally finite simplicial complex that is a Lipschitz
n-manifold with respect to its barycentric metric has the property that the link of
any simplex has the same homotopy as a sphere of the appropriate dimension. Here
�2M is finite and its barycentric metric is uniformly equivalent to the induced
metric from R

6. (See the remark on p.95 of [Gla70].) Lipschitz n-manifold means
that every point admits a neighborhood that can be mapped homeomorphically
to R

n by a locally Lipschitz map (or to Int B
n by a uniformly Lipschitz map). If

�2M could be mapped as proposed then it would be a Lipschitz manifold. The
link of any 1-simplex from the suspension circle is M which does not have the
homotopy of S

3.

11.2.3. Juha Heinonen directed us to a lemma of O. Martio, S. Rickman and
J. Väisälä [MRV71] p.9 which when applied here says that if a closed subset of
zero Hausdorff (n− 2)-measure is removed from S

n then the remaining space is
still simply connected. Consequently the Cannon-Edwards homeomorphism from
�2M onto S

5 maps the suspension circle (a finite 1-complex) onto a set of positive
Hausdorff 3-measure! This is because �2M without the suspension circle is the
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cylinder M × (−1, 1)2 which is not simply connected. Again this shows that the
homeomorphism cannot be Lipschitz.

11.2.4. As a contrast to Theorem 5, in dimensions greater than 4 it cannot be
expected that the approximating Lipschitz domains of Theorem 12 or [VV03]
have boundaries that are topologically homeomorphic to the boundaries of the
polyhedral domains they approximate. As in 11.1 the interior of �2X is not sim-
ply connected and thus contains a closed path that cannot be shrunk inside that
domain. The beveling process that produces the approximating Lipschitz domain
�Lip can be done so as to contain the same path. That path cannot be shrunk
inside the smaller domain. But Lipschitz boundaries can be collared, so if ∂�Lip
is homeomorphic to S

5 it will follow by M. Brown’s generalized Schoenflies that
�Lip is an open ball, a contradiction.

11.2.5. A perhaps more appealing example, from the point of view of analysis,
may be derived from the Mazur 4-manifold (with boundary) [Maz61] which B.
Mazur denotes W�. W� is a finite homogeneous 4-complex. By part(3) of Cor-
ollary 1 on p.224 of [Maz61] it embeds piecewise linearly in R

4. Its boundary,
denoted M�, is a nonsimply connected homology 3-sphere. Among the ways in
which it differs from Newman’s construction, however, is the fact that W� × I is
piecewise linearly homeomorphic to I 5. Consequently �� = Int�2W� is topo-
logically an open 6-ball while ∂�� = �2M� is again topologically a 5-sphere,
but from these two facts alone it does not follow that �2W� is a 6-ball. Nor can
the argument in the last paragraph of §11.1 be applied to show that it is not a
6-ball. Remark 15 holds for �M�. The arguments of §§11.2.2 and 11.2.3 apply
also to�2M�. Thus ∂�� is noncombinatorial and�� is not any kind of Lipschitz
domain. If one were to first bevel off the suspension circle the result would be
the combinatorial ball W� × I 2. Consequently one could complete the beveling
process by shelling in the manner of §§6 and 8, justified by Bruggesser and Mani
[BM71], and the result, unlike §11.2.4, would be an approximating Lipschitz
domain with boundary at least homeomorphic to ∂��.

11.2.6. Our understanding is that it is unknown whether or not the double suspen-
sion of the Mazur manifold is a manifold with boundary. In addition we know of no
example of a noncombinatorial manifold with boundary that can be constructed as
a finite homogeneous n-complex in R

n. (The Alexander horned 2-sphere together
with its bounded complementary domain in R

3 is a manifold with boundary with
wild boundary. See [Bin83] p.41.) From the point of view of boundary value prob-
lems either an example or a nonexistence theorem would be welcome. By Remark
6 nonexistence holds for n ≤ 4.
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12. Appendix

12.1. Approximations by Lipschitz polyhedra

Here we provide two slight modifications of the Lipschitz approximations to
polyhedral domains used in [VV03] Theorem 6.1. First we have a modification to
beveling which provides a way to bevel off a different amount from the various
boundary skeletons.

Let K be a finite homogeneous n-complex geometrically realized in R
n with

� = Int |K| a domain. Let ε = (ε0, . . . , εn−2) with 0 < εn−2 < εn−3 < · · · <
ε1 < ε0 < 1/n. For σn ∈ K and σ ∩ K̇ = ∅ we define Cε(σ ) = σ . For σn ∈ K
and κj ∈ σ ∩ K̇n−2 let λ = Lk(κ, σ ). Define

Rε(κ, σ ) = {(1 − t)P + tQ | P ∈ κ,Q ∈ λ, 0 ≤ t < εj }
and defineCε(σ ) to be σ with all suchRε(κ, σ ) removed. ThenCε(σ ) is a convex
n-cell whose boundary consists of portions of σ̇ along with points contained in
the union over κ of the sets

hε(κ, σ ) = {(1 − εj )P + εjQ | P ∈ κ,Q ∈ λ, }
The surface measures of these sets are εn−1−j

j ‖λn−1−j‖(1− εj )j‖κj‖, so no more
than order ε0. Set�ε = Int

(⋃
σ∈K Cε(σ )

)
. Then ∂�ε∩� is contained in the union

of the sets hε(κ, σ ) above. To see this suppose that σn, τ n ∈ K and x ∈ σ ∩τ = η

has been removed inRε(κj , σ ), we argue that x is removed from τ . If x ∈ K̇ then
x ∈ K̇n−2 and is removed. Otherwise η ∩ κ �= ∅ and η ∩ λ �= ∅ since x /∈ λ by
construction and now x /∈ K̇ so x /∈ κ . τ is the join of η∩ κ and Lk(η∩ κ, τ ) and
this link contains η∩ λ so that x has the same unique representation in Rε(κj , σ )
as it does inRε(η∩κ, τ ). The former representation yields x = (1−a)P +aQ for
a < εj which must also be the unique representation in the latter. Since η∩κ = γ l

with l ≤ j we have εj ≤ εl so a < εl and x is removed in Rε(η ∩ κ, τ ).
Theorem 11. Let K be a finite homogeneous n-complex geometrically realized
in R

n with � = Int |K| a domain. Then �ε defined above is a Lipschitz domain.

Proof. The proof is the same as in [VV03] Theorem 6.1. ��
In case |K̇| is a manifold we need not bevel off κn−2 ∈ K̇ since such sim-

plexes κ are shared by exactly two (n − 1)-simplexes from K̇ . Thus any point
x ∈ κ \ |K̇n−3| already has a neighborhood in which the boundary is a Lipschitz
graph.

Theorem 12. Let K be a finite homogeneous n-complex (n ≥ 3) geometrically
realized in R

n with� = Int |K| a domain and |K̇| a manifold. Then�ε obtained
by beveling off all κ ∈ K̇n−3, as above but now ε = (ε0, . . . , εn−3), is a Lipschitz
domain.
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Proof. As in [VV03], if x ∈ σn is removed in Rε(κ, σ ) and x ∈ τn then also x
is removed from τ . The only boundary points x ∈ ∂�ε for which a local Lips-
chitz representation of the boundary is not found by the argument in the proof of
[VV03] Theorem 6.1 are those points x ∈ ∂�ε ∩ (K̇n−2 \ K̇n−3) which are also
in some bevel surface hε(κ, νn). Now x ∈ (K̇n−2 \ K̇n−3) implies that there is a
unique γ n−2 ∈ K̇n−2 containing x and thus any n-simplex σn ∈ K containing x
must also have γ ∈ σ . The beveling process then produces a convex (n− 2)-cell
Cε(γ ) with nonempty interior containing x in its boundary. Let N1 be a direction
from x into the interior of Cε(γ ), for any hε(κ, σ ) containing x let the normal to
hε(κ, σ

n) into σ be N(κ, σ ) then N1 ·N(κ, σ ) > δ > 0 for some fixed δ = δ(K)

depending on K . Let σn−1, τn−1 ∈ K̇ be the two (n− 1)-simplexes from K̇ that
contain γ n−2, they exist by the manifold condition, and let their interior pointing
normals be Nσ and Nτ . Then the direction of the sum N2 = Nσ +Nτ provides a
direction from x into�ε . SinceN1 ·Nσ = 0 andN1 ·Nτ = 0 we haveN1 ·N2 = 0,
therefore 1

δ
N1 + N2 provides a direction into �ε from any point in ∂�ε near x.

That the boundary is a locally a graph then follows as in the proof of [VV03]
Theorem 6.1. ��

The next lemma shows that the crowns of §3 are Lipschitz domains.

Lemma 13. For κ0 ∈ K̇ fixed, the interior of the crown, see (3.1),

A = Ã0(κ
0) \

⋃
κ1∈St(κ0,K̇)

Ã(κ1, κ0; 0, θ(κ1, κ0))

is a Lipschitz domain.

Proof. Let x ∈ ∂A and let κ0 be the origin. Recall that A ⊂ St(κ0,K). Write
θ = θ(κ1, κ0). If x ∈ Int St(κ0,K) then we have the cases

i) |x| = 1 or |x| = 1/2 and x is not in any conical surface around any κ1 (i.e. in

local coordinates about any κ1,
x4

|x| < cos θ ). Then in a small ball centered

at x the boundary of A is simply a spherical cap.
ii) 1/2 < |x| < 1. Then a small ball centered at x intersects the boundary in a

single conical surface. (By definition of the angles θ , all conical surfaces in
a crown are a positive distance apart.)

iii) |x| = 1/2 or |x| = 1 and x is in a conical surface. Let Nx be the normal to
the cone at x (points toward κ1), and Nr the normal to the sphere that is also
outer toA. The sum provides a direction that is transverse to the boundary in
a neighborhood of x so that the boundary is locally a Lipschitz graph in this
direction.

When x ∈ ∂A ∩ K̇ , we have the cases

1) x is not in any conical or spherical surface. Then either x ∈ Int σ 3 for a
unique σ 3 ∈ K̇ , or there are exactly two simplexes σ 3, τ 3 ∈ St(κ0, K̇) with
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σ 3 ∩ τ 3 = γ 2 and x ∈ Int γ 2. For if x were in three 3-simplexes of St(κ0, K̇)

then the manifold condition (see Lemma 8.7 [VV03]) would imply that x is in
a 1-simplex containing κ0. But all of these have been removed. Likewise when
x ∈ γ 2 it is in the interior of γ 2 because two of the 1-simplexes of γ̇ 2 contain
κ0 and are removed while the third is in Lk(κ0,K) and has been removed by
the sphere. So in this latter case the sum of the normals to σ 3 and τ 3 provides
a direction in which the boundary is locally a Lipschitz graph. In the first case
the boundary is locally flat.

2) |x| = 1 or |x| = 1/2, x is not in any conical surface and either x ∈ σ 3 or
x ∈ σ 3 ∩ τ 3 = γ 2. In the latter case, the normal to the sphere at x is in the
affine hull of γ 2 (since κ0 ∈ γ 2) and so is perpendicular to the normals for
σ 3 and τ 3. The sum of the three normals provides a direction in which the
boundary is locally a Lipschitz graph. The former case is simpler.

3) x is in one of the spherical surfaces, one of the conical surfaces and either
x ∈ Int σ 3 or x ∈ Int(σ 3 ∩ τ 3) = Int γ 2. Let the conical surface correspond to
κ1. LetNc be the normal to the conical surface,Ns the normal to the spherical
surface,Nσ the normal to σ andNτ the normal to τ . Because x is on the conical
surface, any simplex that contains both x and κ0 must also contain κ1 by the
way θ was defined. Therefore in the latter case κ1 ∈ γ 2. The triangle xκ1 is
contained in γ 2 so that Nc and Ns are in the affine hull of γ 2. They are also
perpendicular to each other. Now,Nσ andNτ are perpendicular to bothNc and
Ns so that the sum of all four of these normals provides a direction in which
the boundary is locally the graph of a Lipschitz function in a neighborhood of
x. The first is case simpler.

4) x is as in case 3 but not on a spherical surface. The argument is as for case 3.

This completes the proof. ��

The same arguments also establish.

Corollary 6. Each sector (see §3) Ã(κ1, κ0; θ1, θ0) is a Lipschitz domain when
θ1 > 0.

12.2. Sobolev spaces

When� is the domain above the graph of a compactly supported Lipschitz func-
tion φ : R

n−1 → R (|φ(x) − φ(y)| ≤ M|x − y| for all x, y ∈ R
n−1), Sobolev

spacesW 1,p(∂�) of functions with weak first derivatives inLp(∂�), 1 ≤ p ≤ ∞,
can be defined by flattening. One can say that f ∈ W 1,p(∂�) if and only if

f̃ (x) = f (x, φ(x)) ∈ W 1,p(Rn−1)



634 G.C. Verchota, A.L. Vogel

The later space is defined by the requirement that there exist functions g̃j ∈
Lp(Rn−1) so that for all ψ̃ ∈ C∞

0 (R
n−1)∫

Rn−1

∂

∂xj
ψ̃f̃ dx = −

∫
Rn−1

ψ̃g̃j dx 1 ≤ j ≤ n− 1 (12.1)

In this case an equivalent definition without flattening is that f ∈ Lp(∂�) is in
W 1,p(∂�) if there exist functions gj,k ∈ Lp(∂�) so that for all ψ ∈ C∞

0 (R
n)∫

∂�

(NjDk −NkDj)ψf ds = −
∫
∂�

ψgj,kds 1 ≤ j < k ≤ n (12.2)

Here N = (N1, . . . , Nn) is the outer unit normal vector to � and (D1, . . . , Dn)

is the gradient operator for R
n. In terms of Lipschitz functions φ√

1 + |∇φ(x)|2N = (∇φ(x),−1) and ds =
√

1 + |∇φ(x)|2dx
To show that (12.1) and (12.2) yield the same function spaces one flattens (12.2)
and makes use of the fact that the Lipschitz functions φ can be approximated
uniformly by a sequence of smooth functions φm (mollifications of φ) so that
∇φm → ∇φ pointwise a.e. and in Lp norm (p < ∞), and ‖∇φm‖∞ ≤ M for
all m. It follows that a.e. −Nng̃j = gj,n for j = 1, . . . , n − 1 and that the

(
n

2

)
functions gj,k satisfy

(
n−1

2

)
compatibility conditions

gj,k = ∂φ

∂xj
gk,n − ∂φ

∂xk
gj,n 1 ≤ j < k ≤ n− 1

An isomorphism between the respective normed spaces follows.
Now let Kn ⊂ R

n be a finite homogeneous n-complex so that IntK = � is
a domain and K̇ is a manifold. We define W 1,p(K̇) for 1 ≤ p ≤ ∞ by using
condition (12.2). With the compatibility

Nlgj,k = Nkgj,l −Njgk,l j, k, l = 1, . . . , n

and the norm

‖f ‖1,p = ‖f ‖p +
∑

1≤j<k≤n
‖gj,k‖p (12.3)

W 1,p(K̇) is a Banach space. Let Lip(1, K̇) denote the Banach space of Lipschitz
functions f defined on K̇ for which there is an M < ∞ so that (i) ‖f ‖∞ ≤ M

and (ii) |f (x) − f (y)| ≤ M|x − y| for all x, y ∈ K̇ . The smallest M , the
Lipschitz constant, that works in (i) and (ii) may be taken to be the norm of f .
The Whitney extension theorem (which holds for any closed set of R

n) [JW84]
p.47, says thatLip(1, K̇) extends continuously toLip(1,Rn) and thatLip(1,Rn)

restricts to Lip(1, K̇) (i.e. Lip(1,Rn)|K̇ = Lip(1, K̇)) with the bounds on both
the extension and restriction operators independent of K̇ . In addition Lip(1,Rn)
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is isomorphic to W 1,∞(Rn) and any function in the latter space can be modified
on a set of measure zero to belong to the former, [Ste70] p.173. The directional
derivativesNjDk−NkDj are tangential derivatives in the interior of each (n−1)-
simplex σ ∈ K̇ . Denote the standard unit basis vectors of R

n by e1, . . . , en. Define
Tjk = T σjk = −Nkej +Njek whereN = N(σ) is the above normal direction to σ
in R

n. If a function f is differentiable in the (n−1)-dimensional Euclidean space
Int σ at a point x then we will write Tjk · ∇f (x) for its directional derivative and
∇T f for its gradient in Int σ . With K as above

Theorem 13. Lip(1, K̇) and W 1,∞(K̇) are isomorphic when K̇ is a manifold.

Proof. First let f ∈ Lip(1, K̇) and consider any simplex σn−1 ∈ K̇ . Let h(σ)
denote the (n− 1)-dimensional hyperplane of R

n containing σ . By extending f
to R

n and restricting to h(σ) it follows by the Whitney extension theorem and the
theorem of Denjoy, Rademacher and Stepanov [Ste70] p.250 that f is differen-
tiable a.e. (Rn−1) on h(σ) with ‖∇T f ‖∞ ≤ M . Our goal is then to show that gjk
in (12.2) may be supplied by Tjk · ∇f .

By mollifying f in h(σ) as above, the Gauss divergence theorem is justified
in each (n−1)-simplex of K̇ so that by dominated convergence in σ and uniform
convergence in σ̇∫

K̇

Tjk · ∇ψf ds = −
∫
K̇

ψTjk · ∇f ds +
∑

σn−1∈K̇

∫
σ̇ n−1

T σjk ·N(σ̇ )ψf dsn−2

Here dsn−2 is Lebesgue measure on σ̇ and N(σ̇ ) is the outer unit normal to the
domain Int(σ ) in h(σ). Thus f ∈ W 1,∞(K̇) if the summation vanishes.

Since K̇ is a manifold each (n− 2)-simplex κ ∈ K̇ appears precisely twice in
the summation. (See Lemma 8.7 [VV03] for example. More generally as long as
K is a homogeneous n-complex it follows (p.17 [Gla70]) that the mod-2 boundary
of K̇ is empty, i.e. each κ appears an even number of times in the summation.)
Let σ and τ denote the two (n− 1)-simplexes of K̇ so that σ ∩ τ = κ . Then with
the normals restricted to κ

T σjk ·N(σ̇ )+ T τjk ·N(τ̇ ) = 0 (12.4)

To see this confine κ to the set {(0, x2, . . . , xn−1, 0)} ⊂ R
n. Let σ = σ 0κ where

σ 0 has coordinates (s1, s2, . . . , sn−1, 0) with s1 > 0, and let τ = τ 0κ where
τ 0 has coordinates (t1, . . . , tn) with tn = 0 only if t1 < 0. Then we may take
N(σ) = en and N(τ) = (t21 + t2n)

−1/2(tne1 − t1en), while N(σ̇ ) restricted to κ
is −e1 and N(τ̇ ) restricted to κ is −(t21 + t2n)

−1/2(t1e1 + tnen). Now the Tjk may
be computed and (12.4) follows.

Next suppose f ∈ W 1,∞(K̇). Then (12.2) implies that f satisfies the require-
ments to be in the Sobolev spaceW 1,∞(Int σ) for each σn−1 ∈ K̇ , [Ste70] p.180,
where Int σ is a domain of R

n−1 = h(σ). (Any compactly supported test function
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for Int σ can be extended to a test function for R
n with support still intersecting K̇

only in σ .) Thus by Stein’sp = ∞ result [Ste70] p.181, f extends toW 1,∞(Rn−1)

and so can be modified on a set of (n − 1)-dimensional measure zero to be in
Lip(1,Rn−1) thence Lip(1, σ ). Call the modifications f̃ (σ ).

If σn−1 ∩ τn−1 = κn−2 then the respective modifications agree on the interior
points of κ . This follows first because the pointwise derivatives of the modifica-
tions must agree a.e. (Rn−1) with the respective gjk on the interiors of the σ and
τ by uniqueness of weak derivatives in Euclidean space. Second, given any point
x ∈ Int κ the manifold condition implies that for all r small enough the balls
B(x, r) intersect K̇ only in σ and τ . Thus for any Tjk transverse to κ integration
by parts as above, (12.2) and (12.4) yield

0 =
∫
κ

[f̃ (σ )− f̃ (τ )]ψdsn−2

for all ψ supported in these balls, establishing the claim. Now by continuity and
the fact that all boundary stars are barycenter connected [VV03] the modifica-
tions must agree at all points in common yielding a modification on all of K̇
which we again call f . The Lipschitz constantM for f will be bounded by a con-
stant depending on K (e.g. see the quantities of section 8 [VV03]) times ‖f ‖1,∞
because of the finiteness of K . ��
Remark 16. The inclusion W 1,∞ ⊂ Lip(1, K̇) requires the manifold condition
and cannot be obtained by using only that the mod-2 boundary of K̇ is empty. For
example, if 4 facets have intersection κ the definition (12.2) and the above argu-
ment lead to the existence of 2 continuous functions each defined and continuous
on a pair of the facets but not necessarily equal on κ . See §5.2.

Another natural way to define Sobolev spaces 1 ≤ p < ∞ on K̇ is to define
them as the completion in the norms (12.3) of Lip(1, K̇). The two methods yield
the same spaces when K̇ is a manifold.

Lemma 14. Let Kn be as above with K̇ a manifold and f ∈ W 1,p(K̇), 1 ≤ p ≤
∞. Let ε > 0. Then there exists a constant C depending only on K such that for
a.e. y, t ∈ K̇ satisfying |y − t | < ε

|f (y)− f (t)| ≤ C

[∫
BCε(y)∩K̇

|∇T f (z)|
|z− y|n−2

ds(z)+
∫
BCε(t)∩K̇

|∇T f (z)|
|z− t |n−2

ds(z)

]

Proof. It suffices to take ε very small. Then there is a simplex κ ∈ K̇ such that
y, t ∈ St(κ, K̇), κ is a simplex of largest dimension for which this is true, and
dist(y, κ) is of order ε. (See, for example, the quantities of §8 [VV03].) Suppose
y is contained in the (n−1)-simplex σ and likewise t in another τ . Consider only
the case when σ ∩ τ is not an (n − 2)-simplex. By the manifold condition there
is a shortest sequence of (n − 1)-simplexes of St(κ, K̇) , σ1, . . . , σN , such that
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σj ∩ σj+1, σ ∩ σ1, and σN ∩ τ are all (n− 2)-simplexes (see Lemma 8.8 [VV03]
for example). There is a shortest piecewise linear path through this sequence of
simplexes connecting the barycenters of each of the (n − 2)-simplexes with the
barycenters of theN + 2 (n− 1)-simplexes. Choose the origin in κ so that it is of
order ε from y. Then the barycenter path may be scaled inside St(κ, K̇) to be in
an approximately ε-neighborhood of the origin. An (n− 2)-disc with radius like
the distance of y to the rescaled barycenter of σ can be centered at the latter point
so the line segments from y to the center and the barycentric path both meet the
disc at an angle at least π/4. An (n− 2)-disc with radius like ε can be centered at
the rescaled barycenter of σ ∩ σ1 and contained in that simplex. Similar discs of
about ε radius can be placed at all the rescaled barycenters except possibly that
of τ . Now connect y by the line segments to the first disc and then each point of
that disc, in the nicest diffeomorphic manner, to the next (it does not matter at this
first stage that the resulting paths might cross), etc. until each path is similarly
connected to t . K̇ is always locally Lipschitz (a wedge) about the union of these
paths since they stay away from the (n− 3)-skeleton. Consequently the Sobolev
function, in a neighborhood of the paths, admits classical smooth approximations
by locally flattening to R

n−1. Applying the fundamental theorem of calculus along
each path, integrating the results over a disc of radius ε and taking the limit of the
approximations yields the lemma. The constant depends on the fact that there are
only a finite number of stars, unscaled barycenter paths, etc. ��
Remark 17. The proof of the preceding lemma relies on the properties: (a) each
(n − 2)-simplex of K̇ is shared by exactly two (n − 1)-simplexes from K̇ and
(b) St(κ, K̇) is barycenter connected for every simplex κ ∈ K̇ , see Lemma 8.8
[VV03]. Therefore the lemma is also true for some polyhedra Kn with nonmani-
fold boundaries K̇ , as the single suspension �M = K̇ in Remark 15.

The family of paths constructed in the proof can almost be derived from the
curve families on S. Semmes’s generalization of simplicial complexes. See The-
orem B.6 [Sem96] pp. 274–275. There it is assumed that upper gradients in the
manner of Heinonen and Koskela [Hei01] exist (Theorem B.10 pp. 275-276). For
boundary value problems it is still the definition of Sobolev space in terms of
weak derivatives (12.2) and (12.3) that is most useful, as §5.2 indicates. That our
paths are kept away from the (n − 3)-skeleton is therefore used to show these
weak derivatives form an upper gradient.

Theorem 14. Let K be as above with K̇ a manifold. Then Lip(1, K̇) is dense in
W 1,p(K̇), 1 ≤ p ≤ ∞.

Proof. By Theorem 13Lip(1, K̇) ⊂ W 1,p(K̇). Given a function in the latter space
it is possible to regularize it. Choose a radial decreasing function ψ ∈ C∞

0 (R
n)

supported in the unit ball with integral equal to 1 over any hyperplane through the
origin. For ε > 0 put

ψε(x) = ε1−nψ(x/ε) (12.5)
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For all x and y in an approximately ε-neighborhood of K̇ define

ψKε (x, y) = ψε(x − y)∫
K̇
ψε(x − t)ds(t)

This function is Lipschitz near the boundary and allows x and y derivatives to be
interchanged modulo a nice term when one defines the regularization of f

fε(x) =
∫
K̇

ψKε (x, y)f (y)ds(y)

for x ∈ K̇ . The (j, k)-derivative (12.2) of fε becomes the regularization of gj,k
plus a remainder term∫

K̇

(T xj,k · ∇x + T
y

j,k · ∇y)ψKε (x, y)f (y)ds(y) (12.6)

Using the definition of ψKε for the x-derivatives and Theorem 13 for the y-deriv-
atives, it is seen that the integral over K̇ in the variable y of the integral kernel
(12.6) is zero. The integral kernel vanishes when both x and y are taken on K̇
outside an ε-neighborhood of the boundary (n−2)-skeleton. For each fixed x ∈ K̇
it vanishes in y outside an ε-ball centered at x. For ε = 1 the kernel may be dom-
inated by �(x − y) where � is defined like ψ so that in general the kernel is
dominated by ε−1�ε(x − y) where �ε is as in (12.5). Denote by K̇(n− 2, ε) an
ε-neighborhood of the (n− 2)-skeleton of K̇ . Then (12.6) is dominated by

ε−1
∫
K̇(n−2,ε)

�ε(x − y)

∣∣∣∣∣∣∣
f (y)−

∫

Bε(x)∩K̇

f (t)ds(t)

∣∣∣∣∣∣∣
ds(y)

The ball may be doubled and centered at y, Lemma 14 applied and the integrals
in t taken, resulting in∫

K̇(n−2,ε)
�ε(x − y)

[
ε−1

∫
BCε(y)∩K̇

|∇T f (z)|
|z− y|n−2

ds(z)

+
∫

BCε(y)∩K̇

|∇T f (z)|ds(z)
]
ds(y)

Raising this to the p < ∞, using Jensen’s inequality and integrating in x and then
y yields

C

∫
K̇(n−2,Cε)

|∇T f (z)|pds(z)

which vanishes in ε.
Since the regularizations of f and the gj,k converge as usual the theorem

follows. ��
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Local and global Poincaré inequalities on K̇ a manifold follow from Lemma
14. The global one also follows by the standard contradiction argument.

Corollary 7. LetKn be as above K̇ a manifold and f ∈ W 1,p(K̇) for 1 ≤ p < ∞
then for ε > 0 (with a new constant C depending only on K)



∫

Bε(x)∩K̇

∣∣∣∣∣∣∣
f (y)−

∫

Bε(x)∩K̇

f (t)dt

∣∣∣∣∣∣∣

p

dy




1/p

≤ Cε




∫

BCε(x)∩K̇

|∇T f (y)|pdy




1/p

and 

∫

K̇

∣∣∣∣∣∣∣
f (y)−

∫

K̇

f (t)dt

∣∣∣∣∣∣∣

p

dy




1/p

≤ Cε



∫

K̇

|∇T f (y)|pdy




1/p

12.3. Notations and Conventions

Domains of R
n will generally be denoted by�, ∂� denoting the boundary. Points

of R
n are denoted by x, y, P and Q with P and Q usually on the boundary of a

domain.

x = (x ′, xn) with x ′ ∈ R
n−1 and xn ∈ R.

〈x, y〉 = x · y = xjyj denotes the inner product. Repeated indices indicate
summation over 1 ≤ j ≤ n.
R
n
+ = {x ∈ R

n | xn > 0}.
B
n = {x ∈ R

n | |x| ≤ 1}.
S
n−1 = {x ∈ R

n | |x| = 1}.
B(x, r) = {y ∈ R

n | |x − y| < r}.
I = [0, 1] the closed unit interval.
The complement of a set A ⊂ R

n is denoted by Ac. The closure by A. The
interior by IntA. A \ B = A ∩ Bc.
dist(x, y) = |x−y| and dist(A,B) denotes the infimum of distances between
points from the sets A and B.
dx denotes Lebesgue measure in R

n.
ds will denote (n− 1)-dimensional surface measure, i.e. Lebesgue measure.
a.e. means almost everywhere with respect to Lebesgue measure.
Lp spaces will be with respect to these Lebesgue measures, ‖‖p denotes the
norm.
L
p

0 denotes the subspace of Lp consisting of functions with mean value zero.
Sobolev spaces of functions with distributional gradients (∇ or ∇T ) in Lp will
be denoted W 1,p.
I also denotes the identity on these Banach spaces.
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∫
A

denotes the integral average over the measurable set A.

Dj = ∂

∂xj
denote partial derivatives.

∇ = (D1, . . . , D − n) the gradient operator, div is the divergence operator
∇·, and div∇ = � the Laplacian.
�(x) = (2 − n)−1ω−1

n |x|2−n denotes the fundamental solution for �; ωn the
surface measure of S

n−1.
Generally u or v will denote solutions, usually harmonic functions.
N = NQ the outer unit normal vector to a domain at the boundary point Q,
when it exists.
∂u

∂N
(Q) the normal derivative at Q.

∇T u(Q) the tangential components of the gradient at a boundary point Q.

Generally a domain will be the interior of a finite homogeneous 4-complex in
R

4. Simplexes realized in R
n will be denoted by σ , τ , κ etc. with σ j denoting

the dimension 0 ≤ j ≤ n, the exponent often suppressed when the dimension
is understood. The convex hull of any set of n + 1 points not contained in any
(n − 1)-plane (hyperplane) of R

n determines an n-simplex σn. Any subset of
j + 1 of these points likewise determines a j -simplex or j -face σ j , 0 ≤ j ≤ n.
One writes σ j ∈ σn. The 0-faces are also called the vertices and will also be
denoted by letters v, w etc. If {v0, . . . vj } ⊂ R

n are the vertices of σ j , every
point x in the convex hull of these vertices has unique barycentric coordinates
determined by x = ∑j

k=0 ckvk, 0 ≤ ck ≤ 1. The barycenter of σ j is defined by

σ̂ j = ∑j

k=0

1

j + 1
vk.

A homogeneous m-complex K = Km will be a finite collection of simplexes
in R

n so that

1. If σ ∈ K and τ is a face of σ then τ ∈ K .
2. If σ , τ ∈ K then σ ∩ τ �= ∅ is a face of both σ and τ .
3. Every simplex of K is contained in some m-simplex of K .

K is variously thought of as a set of sets or a set of points. In the latter case
one writes |K| called the geometric realization or polyhedron with the relative
topology inherited from R

n.
If K is an n-complex in R

n then K̇ denotes the (n − 1)-complex that is the
boundary complex ofK , i.e. the subcollection of (n− 1)-simplexes that are each
precisely in one n-simplex of K . If � = Int |K|, then ∂� and |K̇| coincide.

The j -skeleton of a complex is the subcomplex formed by the j -simplexes of
the complex.

Let K be a complex and σ ∈ K . The star of σ in K is written St(σ,K) and
is the complex of all simplexes of K containing σ together with their faces. The
link of σ in K is the complex Lk(σ,K) = {τ ∈ St(σ,K) | τ ∩ σ = ∅}.
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The join of two simplexes is written σ ∗τ or στ especially when the simplexes
are vertices as in v0v1 · · · vn = σn. JoinsK∗L betweens complexes are essentially
convex combinations between the simplexes of Kk and Ll that result in a well
defined complex of dimension k + l + 1 containing K and L as subcomplexes
(see [Gla70] p.6). As examples, a σ 4 can be realized from its faces as a σ 0 ∗ σ 3

or σ 1σ 2. If σ ∈ K , a homogeneous complex, then St(σ,K) = σ ∗ Lk(σ,K).
∅ ∗K = K .

An m-manifold Mm is a separable metric space such that every point is con-
tained in an open set homeomorphic to R

m. If every point is contained in an open
set either homeomorphic to R

m or to the closed half space R
m+ thenM is a manifold

with boundary.
M ⊂ R

n will be called triangulated if there is a complexKm so that |K| = M .
A complex L is a subdivision of K if |L| = |K| and every simplex of L is

contained in a simplex of K .
A piecewise linear (PL) homeomorphism h from one complex K to another

L is a homeomorphism from K to L so that there are subdivisions K ′ of K and
L′ of L with h linear (affine) on each σ ∈ K ′ and so that h(σ) ∈ L′. The identity
homeomorphism will be denoted by id.

For 0 < α < 1 fixed the nontangential approach region in a domain � at a
boundary point Q is the set �α(Q) = {x ∈ � | dist(x, ∂�) > α|x −Q|}. Given
a polyhedral domain � it is possible to fix α small enough so that each Q is in
the closure of the corresponding �α(Q).

The nontangential maximal function of a function F in� at a boundary point
Q is

Nα(F )(Q) = sup
x∈�α(Q)

|F(x)|

and the nontangential limit of F at Q is

F(Q) = lim
x→Q

x∈�α(Q)

F (x)

if it exists. For more details on the above see [Gla70], [Rus83], [VV03].
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