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Abstract. Let f : A
2 → A

2 be a polynomial automorphism of dynamical degree δ ≥ 2 over
a number field K . We construct height functions defined on A

2(K) that transform well relative
to f , which we call canonical height functions for f . These functions satisfy the Northcott
finiteness property, and a K-valued point on A

2(K) is f -periodic if and only if its height is
zero. As an application, we give an estimate on the number of points with bounded height in an
infinite f -orbit.
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Introduction and the statement of the main results

One of the basic tools in Diophantine geometry is the theory of height functions.
On Abelian varieties defined over a number field, Néron and Tate developed the
theory of canonical height functions that behave well relative to the [n]-th power
map (cf. [10, Chap. 5]). On certain K3 surfaces with two involutions, Silverman
[15] developed the theory of canonical height functions that behave well rela-
tive to the two involutions. For the theory of canonical height functions on some
other projective varieties, see for example [2], [17], [8]. In this paper, we show
the existence of canonical height functions on the affine plane for polynomial
automorphisms of dynamical degree ≥ 2.

Consider a polynomial automorphism f : A
2 → A

2 given by

f

(
x

y

)
=
(
p(x, y)

q(x, y)

)
,

where p(x, y) and q(x, y) are polynomials in two variables. The degree d of f
is defined by d := max{degp, deg q}. The dynamical degree δ of f is defined by
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δ := lim
n→+∞

(
deg f n

) 1
n ,

which is an integer with 1 ≤ δ ≤ d. We generally assume that d ≥ 2.
For any polynomial (auto)morphism f : A

2 → A
2, we write f : P

2 → P
2 for

the extension of f to P
2. Recall that a polynomial automorphism f : A

2 → A
2 is

said to be regular if the unique point of indeterminacy of f is different from the
unique point of indeterminacy of f −1. Then regular polynomial automorphisms
are precisely the polynomial automorphisms with δ = d. In the space of poly-
nomial automorphisms of degree d, regular polynomial automorphisms, which
include the Hénon maps, constitute general members.

The other extreme is polynomial automorphisms of dynamical degree δ = 1.
Such automorphisms are precisely triangularizable automorphisms, i.e., polyno-
mial automorphisms f : A

2 → A
2 that are conjugate, in the group of polynomial

automorphisms, to polynomial automorphisms of the form

f

(
x

y

)
=
(
ax + P(y)

by + c

)
,

where ab �= 0 and P(y) is a polynomial in y. For more details, see the survey of
Sibony [13] and the references therein. See also §3.

Over a number field, Silverman [16] studied arithmetic properties of quadratic
Hénon maps, and then Denis [3] studied arithmetic properties of Hénon maps and
some classes of polynomial automorphisms. Marcello [11], [12] studied arithme-
tic properties of some other classes of polynomial automorphisms of the affine
spaces, including regular polynomial automorphisms.

Our first result shows the existence of height functions that behave well relative
to polynomial automorphisms of A

2.

Theorem A. Let f : A
2 → A

2 be a polynomial automorphism of dynamical
degree δ ≥ 2 over a number fieldK . (This is equivalent to saying that f is a poly-
nomial automorphism that is not triangularizable.) Let h : A

2(K) → R be the
naive logarithmic height function. Then there exists a function ĥ : A

2(K) → R

with the following properties:1

(i) ĥ �� h;
(ii) ĥ ◦ f + ĥ ◦ f −1 = (

δ + 1
δ

)
ĥ.

We call any function ĥ satisfying (i) and (ii) a canonical height function for f .
Then ĥ enjoys the following uniqueness property: if ĥ′ is also a canonical height
function for f and satisfies ĥ′ = ĥ+O(1), then ĥ′ = ĥ.

Recall that a point x ∈ A
2(K) is said to be f -periodic if f m(x) = x for some

positive integerm. Property (i) in Theorem A implies that ĥ satisfies the Northcott

1 Here �� in (i) means that there are positive constants a1, a2 and constants b1, b2 so that
a1h+ b1 ≤ ĥ ≤ a2h+ b2.
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finiteness property. Namely, for any positive number M and positive integer D,
the set

{x ∈ A
2(K) | [K(x) : K] ≤ D, ĥ(x) ≤ M}

is finite. This leads to the following corollary, which shows that the set of K-val-
ued f -periodic points is not only a set of bounded height but also characterized
as the set of height zero with respect to a canonical height function for f .

Corollary B. With the notation and assumptions as in Theorem A,

(1) ĥ(x) ≥ 0 for all x ∈ A
2(K).

(2) ĥ(x) = 0 if and only if x is f -periodic.

As an application of canonical height functions, we obtain an estimate on the
number of points with bounded height in an infinite f -orbit. First we introduce
some notation and terminology. For a canonical height function ĥ for f , we set

ĥ+ = 1

1 − δ−2

(
ĥ− 1

δ
ĥ ◦ f −1

)
, ĥ− = 1

1 − δ−2

(
ĥ− 1

δ
ĥ ◦ f

)
.

Then ĥ± are non-negative functions, and ĥ+(x) = 0 if and only if ĥ−(x) = 0
if and only if x is f -periodic (cf. Corollary 4.3). For a point x ∈ A

2(K), let
Of (x) := {f l(x) | l ∈ Z} denote the f -orbit of x. For a non f -periodic point
x ∈ A

2(K), we set

ĥ(Of (x)) = log
(̂
h+(x)̂h−(x)

)
log δ

. (0.1)

Then the right-hand side of (0.1) depends only on the orbitOf (x) and the choice
of the height function ĥ, and not on the particular choice of the point x in the
orbit. Moreover, as a function of x, we have ĥ(Of (x)) �� miny∈Of (x) log ĥ(y)
on A

2(K) \ {f -periodic points} (cf. Lemma 5.1).
For regular polynomial automorphisms of degree d ≥ 2, it is known that, for

any non f -periodic point x ∈ A
2(K), one has

lim
T→+∞

#{y ∈ Of (x) | h(y) ≤ T }
log T

= 2

log d
.

(See [16, Theorem C], [3, Théorème 2], and [12, Théorème A].) The next theorem
gives a refinement and generalization.

Theorem C. Let f : A
2 → A

2 be a polynomial automorphism of dynamical
degree δ ≥ 2 over a number field K . Then for all infinite orbits Of (x),

#{y ∈ Of (x) | h(y) ≤ T } = 2

log δ
log T − ĥ(Of (x))+O(1) (0.2)

as T → +∞. Here the O(1) bound depends only on f and the choice of ĥ,
independent of the orbit Of (x).
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It is interesting that the dynamical degree of f appears in the right-hand side
of (0.2). We remark that, when f is not regular, i.e., (2 ≤) δ < deg f , even the
following weaker estimate seems new:

lim
T→+∞

#{y ∈ Of (x) | h(y) ≤ T }
log T

= 2

log δ
.

The contents of this paper is as follows. In §1 we briefly review some properties
of height functions. In §2 we show that if f is a regular polynomial automorphism
of degree d ≥ 2 then there is a constant c such that

h(f (x))+ h(f −1(x)) ≥
(
d + 1

d

)
h(x)− c (0.3)

for all x ∈ A
2(K). In §3 we recall Hénon maps, Friedland–Milnor’s theorem

on the conjugacy classes of polynomial automorphisms, and some properties of
dynamical degrees of polynomial automorphisms. In §4 we prove Theorem A and
Corollary B in a more general setting of polynomial automorphisms of A

n whose
conjugates satisfy an inequality similar to (0.3). In §5 we prove Theorem C in
this more general setting. On certain K3 surfaces, Silverman counted the number
of points with bounded height in a given infinite chain ([15, §3]). Our method of
proof of Theorem C is inspired by his method.

1. Quick review on height theory

In this section, we briefly review the properties of height functions that we will
use in this paper.

LetK be a number field andOK its ring of integers. For x = (x0 : · · · : xn) ∈
P
n(K), the naive logarithmic height of x is defined by

h(x) = 1

[K : Q]


 ∑
P∈Spec(OK)\{0}

max
0≤i≤n

{−ordP (xi)} log #(OK/P )

+
∑

σ :K↪→C

max
0≤i≤n

{log |σ(xi)|}

 .

This definition naturally extends to all points x ∈ P
n(Q) as to give the naive

logarithmic height function h : P
n(Q) → R.

We begin by recalling the following two basic properties of height functions.

Theorem 1.1 (Northcott’s finiteness theorem, [14] Corollary 3.4). For any pos-
itive number M and positive integer D, the set{

x ∈ P
n(Q)

∣∣∣[Q(x) : Q] ≤ D, h(x) ≤ M
}

is finite.
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Theorem 1.2 ([14] Theorem 3.3, [10] Chap. 4, Prop. 5.2).

(1) (Height machine) There is a unique way to attach, for any projective variety
X defined over Q, a map

hX : Pic(X) −→ {real-valued functions on X(Q)}
{real-valued bounded functions on X(Q)} , L �→ hX,L

with the following properties:
(i) hX,L⊗M = hX,L + hX,M +O(1) for any L,M ∈ Pic(X);

(ii) If X = P
n and L = OPn(1), then hPn,OPn (1) = h+O(1);

(iii) If f : Y → X is a morphism of projective varieties andL is a line bundle
on X, then hY,f ∗L = hX,L ◦ f +O(1).

(2) (Positivity of height) Let X be a projective variety defined over Q and L a
line bundle on X. We set B = Supp(Coker(H 0(X,L) ⊗ OX → L)). Then
there exists a constant c1 such that hX,L(x) ≥ c1 for all x ∈ (X \ B)(Q).
A rational map f = [F0 : F1 : · · · : Fn] : P

n ��� P
n defined over Q is said to

be of degree d if the Fi’s are homogeneous polynomials of degree d over Q, with
no common factors. Let Zf ⊂ P

n(Q) denote the locus of indeterminacy.

Theorem 1.3 ([10] Chap. 4, Lemma 1.6). Let f : P
n ��� P

n be a rational map
of degree d defined over Q. Then there exists a constant c2 such that

h(f (x)) ≤ d h(x)+ c2

for all x ∈ P
n(Q) \ Zf .

2. Geometric properties of regular polynomial automorphisms

In this section, we show (0.3) for regular polynomial automorphisms of A
2. First

we recall the definition of regular polynomial automorphisms of A
2. Consider a

polynomial automorphism of degree d ≥ 2 of the form

f

(
x

y

)
=
(
p(x, y)

q(x, y)

)
,

where p(x, y) and q(x, y) are polynomials in two variables, and d is the max-
imum of degp and deg q. Let f : P

2 ��� P
2 be the extension of f given in

homogeneous coordinates as

f


XY
Z


 =


Z

dp(X/Z, Y/Z)

Zdq(X/Z, Y/Z)

Zd


 .

Let f −1 : A
2 → A

2 be the inverse of f , and f −1 : P
2 ��� P

2 be its extension.
We denote by H the line at infinity.
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Since f is not a morphism, there is a point p on P
2 at which f is not defined.

Then p lies on H , and there is a curve C on P
2 that contracts to p by f −1, i.e.,

f −1(C) = p (cf. [1, Lemme II.10]). Since f −1 is an automorphism on A
2, C

must be equal toH . Hence p = f −1(H), which implies that p ∈ H is the unique
point of indeterminacy of f . Similarly f −1 has a unique point of indeterminacy
on H , denoted by q. A polynomial automorphism of A

2 is said to be regular if
p �= q.

By elimination of indeterminacy, by successively blowing up points starting
from p ∈ P

2, we obtain a projective surface W and a composition of blow-ups
πW : W → P

2 such that f ◦ πW : W ��� P
2 becomes a morphism. We take

W so that the number of blow-ups needed for elimination of indeterminacy is
minimal. Noting that πW induces an isomorphism π−1

W (P2 \ {p}) → P
2 \ {p}, we

take q′ ∈ W with πW(q′) = q. In a parallel way as for p, f −1 ◦ πW : W ��� P
2

becomes a morphism after a finite number of blow-ups starting at q′.
To summarize, there is a projective surface V obtained by successive blow-ups

of P
2 at p and then successive blow-ups at q in a parallel way as for p such that, if

π : V → P
2 denotes the morphism of blow-ups, then f ◦π extends to a morphism

ϕ : V → P
2 and f −1 ◦ π extends to a morphism ψ : V → P

2. As for W , we
take V so that the number of blow-ups needed for elimination of indeterminacy
is minimal.

V
ψ

���������������

π

��

ϕ

���������������

P
2

P
2

f−1
��� � � � � � f ��������

P
2

(2.1)

Before stating the next theorem, we fix some notation and terminology. Let
ρ : Y → X be a morphism of smooth projective surfaces. For an irreducible curve
C on Y , its push-forward is defined by

ρ∗(C) :=
{

deg(ρ|C : C → f (C)) f (C) (if f (C) is a curve),

0 (if f (C) is a point).

This extends linearly to the homomorphism ρ∗ from divisors on Y to divisors on
X. For two divisors Z1, Z2 on Y , we write Z1 ≥ Z2 if Z1 − Z2 is effective. A
divisor Z on Y is said to be nef if Z · C ≥ 0 for any curve C on Y .

Theorem 2.1. Let f : A
2 → A

2 be a regular polynomial automorphism of degree
d ≥ 2. LetH denote the line at infinity. Let V be as in (2.1). Then, as a Q-divisor
on V ,

D := ϕ∗H + ψ∗H −
(
d + 1

d

)
π∗H

is effective.
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Proof. The proof we present here, which simplifies the proof we gave in the initial
draft, is due to Noboru Nakayama.

As above, let πW : W → P
2 be a composition of blow-ups of P

2 starting at
p such that ϕW := f ◦ πW : W ��� P

2 becomes a morphism. Let HW be the
proper transform of H by πW , and EW the exceptional curve on W given by the
last blow-up of πW . Since ϕW is a morphism and W is taken so that the number
of blow-ups is minimal, we see that ϕW sends EW to H isomorphically.

We consider π∗
WH and ϕ∗

WH . We write π∗
WH = aHW + bEW + MW and

ϕ∗
WH = a′HW + b′EW + IW , where a, b, a′, b′ are non-negative integers, and
MW, IW are effective divisors onW with Supp(EW) �⊆ Supp(MW),Supp(EW) �⊆
Supp(IW ) such that MW, IW are contracted to p by πW .

We determine a, b, a′, b′. Since πW is a birational morphism, πW∗π∗
WH = H .

It follows that a = 1. Similarly, ϕW∗ϕ∗
WH = H yields b′ = 1. On the other

hand, let [H ] denote the cohomology class of H in H 2(P2,Z). Since the degree
of f : A

2 → A
2 is d, we get ϕW∗π∗

W [H ] = d[H ] ∈ H 2(P2,Z). It follows that
ϕW∗π∗

WH = dH and b = d. Since the degree of f −1 : A
2 → A

2 is also d, we
get πW∗ϕ∗

WH = dH and a′ = d. Putting together, we have

π∗
WH = HW + dEW +MW,

ϕ∗
WH = dHW + EW + IW .

Since the effective divisor π∗
WH is nef, Lemma 2.2 below yields that

ϕ∗
W(dH) = ϕ∗

W(ϕW∗π∗
WH) = (ϕ∗

WϕW∗)π∗
WH ≥ π∗

WH.

We thus get

dIW ≥ MW. (2.2)

In a parallel way as for p, let πU : U → P
2 be a composition of blow-ups of

P
2 starting at q such that ψU := f −1 ◦ πU : U ��� P

2 becomes a morphism. Let
HU be the proper transform ofH by πU , and FU the exceptional curve onU given
by the last blow-up of πU . The morphism ψU sends FU to H isomorphically. In
a parallel way, we get

π∗
UH = HU + dFU +NU,

ψ∗
UH = dHU + FU + JU, (2.3)

dJU ≥ NU,

whereNU, JU are effective divisors onU with Supp(FU) �⊆ Supp(NU), Supp(FU)
�⊆ Supp(JU) such that NU, JU are contracted to q by πU .
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By the construction of V , there are birational morphisms α : V → W and
β : V → U such that the following diagram is commutative.

V
β

����
��

��
��

π

��

α

���
��

��
��

�
ϕ

��

ψ

		

U
ψU

����
��

��
�

πU

���
��

��
��

W
πW

����
��

��
�� ϕW

���
��

��
��

�

P
2

P
2

f−1
��� � � � � � � f ���������

P
2

Let H # on V be the proper transform of H by π . Let E,M, I on V be the
proper transforms of EW,MW, IW by α, respectively. Let F,N, J be the proper
transforms of FU,NU, JU by β, respectively. Then the following equalities hold:

π∗H = H # + dE + dF +M +N, (2.4)

ϕ∗H = d(H # + dF +N)+ E + I, (2.5)

ψ∗H = d(H # + dE +M)+ F + J. (2.6)

By (2.4)–(2.6), we get

D = ϕ∗H + ψ∗H −
(
d + 1

d

)
π∗H

=
(
d − 1

d

)
H # − 1

d
M + I − 1

d
N + J.

Since dI ≥ M and dJ ≥ N by (2.2) and (2.3), we see that D is effective. ��
Lemma 2.2. Let ρ : Y → X be a birational morphism of smooth projective
surfaces. Let Z be an effective divisor on Y . If Z is nef, then ρ∗ρ∗Z ≥ Z.

Proof. First we treat a case when ρ is the blow-up of X at a point x ∈ X. Let E
denote the exceptional curve on Y . We writeZ = a1C1 +· · ·+akCk+bE, where
C1, · · · , Ck, E are distinct irreducible and reduced curves, and a1, · · · , ak, b are
non-negative integers. Then ρ∗Z = a1ρ(C1) + · · · + akρ(Ck). Hence ρ∗ρ∗Z =
a1(C1 +m1E)+ · · · + ak(Ck +mkE), where mi is the multiplicity of the curve
ρ(Ci) at x. Note that mi = Ci · E.

Since Z is nef, we get

Z · E = a1(C1 · E)+ · · · + a1(Ck · E)+ b(E · E)
= a1m1 + · · · + akmk − b ≥ 0.

Hence a1m1 + · · · akmk ≥ b and we get ρ∗ρ∗Z ≥ Z.
In general, we decompose ρ into a composition of blow-ups: ρ = ρl ◦ · · · ◦

ρ2 ◦ ρ1, where each ρi is the blow-up at a point. Put ρ ′ := ρl ◦ · · · ◦ ρ2, and
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Z′ := ρ1∗Z. Since the projection formula yields (ρ1∗Z) · C = Z · (ρ∗
1C) for any

curve, we see that Z′ is nef. Then, by induction, ρ ′∗ρ ′
∗Z

′ ≥ Z′. Pulling back by
ρ1, we get ρ∗

1 (ρ
′∗ρ ′

∗Z
′) ≥ ρ∗

1Z
′. Thus

ρ∗ρ∗Z = ρ∗
1ρ

′∗ρ ′
∗(ρ1∗Z) ≥ ρ∗

1 (ρ1∗Z) ≥ Z.

Now we prove (0.3).

Theorem 2.3. Let f : A
2 → A

2 be a regular polynomial automorphism of degree
d ≥ 2 defined over a number field K . Then, there exists a constant c such that

h(f (x))+ h(f −1(x)) ≥
(
d + 1

d

)
h(x)− c

for all x ∈ A
2(K).

Proof. We can prove Theorem 2.3 as in [16, Theorem 3.1]. We take x ∈ A
2(K).

Since π : V → P
2 gives an isomorphism π |π−1(A2) : π−1(A2) → A

2, there is a
unique point x̃ ∈ V with π(̃x) = x. By Theorem 2.1, we have

hV,OV (ϕ
∗H)(̃x)+ hV,OV (ψ

∗H)(̃x) =
(
d + 1

d

)
hV,OV (π

∗H)(̃x)

+hV,OV (D)(̃x)+O(1).

It follows from Theorem 1.2(1) that

hV,OV (ϕ
∗H)(̃x) = hP2,OV (H)

(ϕ(̃x))+O(1) = hP2,OV (H)
(f (x))+O(1).

We similarly have

hV,OV (ψ
∗H)(̃x) = hP2,OV (H)

(f −1(x))+O(1),

hV,OV (π
∗H)(̃x) = hP2,OV (H)

(x)+O(1).

On the other hand, since π(Supp(D)) ⊆ Supp(H), we have x̃ �∈ Supp(D). Since
D is effective by Theorem 2.1, it follows from Theorem 1.2(2) that there is a
constant c2 independent of x̃ such that hV,OV (D)(̃x) ≥ c2. Hence we get the asser-
tion. ��

3. Hénon maps, conjugacy classes of polynomial automorphisms,
and dynamical degrees

In this section, we review Hénon maps, Friedland–Milnor’s theorem on the con-
jugacy classes of polynomial automorphisms, and some properties of dynamical
degrees of polynomial automorphisms, which will be used in §4. We also give
explicit forms of ϕ∗H , ψ∗H and π∗H in Theorem 2.1 for Hénon maps.
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A Hénon map is a polynomial automorphism of the form

f

(
x

y

)
=
(
p(x)− ay

x

)
, (3.1)

where a �= 0 and p is a polynomial of degree d ≥ 2. Let f : P
2 ��� P

2 (resp.
f −1 : P

2 ��� P
2) be the birational extension of f (resp. f −1). Then f has the

unique point of indeterminacy p = t [0, 1, 0], and f −1 has the unique point of
indeterminacy q = t [1, 0, 0]. In particular, Hénon maps are examples of regular
polynomial automorphisms.

We recall Friedland–Milnor’s theorem [5, §2], which is based on Jung’s the-
orem [7]. Let

E =
{
f : A

2 → A
2,

(
x

y

)
�→
(
ax + P(y)

by + c

) ∣∣∣∣ a, b ∈ Q
×
, c ∈ Q

P(y) ∈ Q[Y ]

}
(3.2)

be the group of triangular automorphisms (also called elementary automorphisms,
or de Jonquères automorphisms).

Theorem 3.1 ([5], §2). Let f : A
2 → A

2 be a polynomial automorphism over
Q. Then there is a polynomial automorphism γ : A

2 → A
2 over Q such that

g := γ−1 ◦ f ◦ γ is one of the following types:

(i) g is a triangular automorphism;
(ii) g is a composition of Hénon maps.

Note that Friedland–Milnor proved the theorem over C, but the theorem holds
over Q by the specialization argument in [3, Lemme 2].

A polynomial automorphism f is said to be triangularizable if it is conjugate
to a triangular automorphism.

Here we recall properties of dynamical degrees of polynomial automorphisms
f : A

2 → A
2. The dynamical degree of f is defined by

δ(f ) := lim
n→+∞

(
deg f n

) 1
n

(cf. [13, Définition 1.4.7]). Suppose g = γ−1 ◦ f ◦ γ is conjugate to f . Then,
since gn = γ−1 ◦f n ◦γ , we have deg f n−2 deg γ ≤ deg gn ≤ deg f n+2 deg γ .
It follows that δ(f ) = δ(g). Thus dynamical degrees depend only on conjugacy
classes of polynomial automorphisms.

For polynomial automorphisms g1, g2 : A
2 → A

2 with degree at least 2 and
their extensions g1, g2 : P

2 ��� P
2, one has

deg(g1 ◦ g2) ≤ (deg g1)(deg g2), (3.3)

with equality if and only if the unique point qg1 of indeterminacy of g−1
1 is differ-

ent from the unique point pg2 of indeterminacy of g2 (cf. [13, Proposition 1.4.3]).
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We remark that a composition g of Hénon maps is a regular polynomial automor-
phism, because the indeterminacy point of g is t [0, 1, 0] while the indeterminacy
point of g−1 is t [1, 0, 0]. We recall the following results.

Proposition 3.2. Let f : A
2 → A

2 be a polynomial automorphism. Let d be the
degree of f and δ the dynamical degree of f .

(1) δ is an integer with 1 ≤ δ ≤ d.
(2) δ = 1 if and only if f is triangularizable.
(3) Suppose d ≥ 2. Then δ = d if and only if f is a regular polynomial automor-

phism.

Proof. We rely on the results of Furter [4] to give a quick proof.We put τ = deg(f 2)

deg f .
Then Furter showed that either (i) τ ≤ 1 or (ii) τ is an integer greater than or equal
to 2. Moreover, (i) occurs if and only if f is triangularizable ([4, Proposition 5]).
In the case (ii), one has deg f n = τn · deg f ([4, Proposition 4]).

(1) In the case (i), f is conjugate to a triangular automorphism g. Then the defi-
nition (3.2) yields that deg gn ≤ deg g, whence δ(f ) = δ(g) = 1. In the case
(ii), the dynamical degree of f is equal to an integer τ ≥ 2.

(2) It follows from the above proof of (1).
(3) Since d is assumed to be ≥ 2, (3.3) shows that f is a regular polynomial

automorphism if and only if τ = deg f (≥ 2). Since τ = δ(f ) if τ ≥ 2, we
get the assertion. ��

Since Hénon maps are basic objects in the dynamics of polynomial automor-
phisms of A

2 (cf. Theorem 3.1), it is worth giving explicit forms of ϕ∗H ,ψ∗H and
π∗H in Theorem 2.1 for Hénon maps of degree d ≥ 2, as Silverman [16] did for
quadratic Hénon maps. In particular, this gives a different proof of Theorem 2.1
in case of Hénon maps.

For this, we need an explicit description of blow-ups at (infinitely near) points
on P

2 that resolve the point of indeterminacy of a Hénon map f . The case deg g =
2 was carried out by Silverman [16, §2], and the general case by Hubbard–Papado-
pol–Veselov [6, §2] in their compactification of Hénon maps in C

2 as dynamical
systems. Let us put together their results in the following theorem. (Note that, for
the next theorem, the field of definition of f can be any field, and p(x) need not
be monic.)

Theorem 3.3 ([6], §2).

(1) Let f be a Hénon map in (3.1), and f : P
2 ��� P

2 its birational extension.
Then f becomes well-defined after a sequence of 2d − 1 blow-ups. Explicitly,
blow-ups are described as follows:

(i) First blow-up at p;
(ii) Next blow up at the unique point of indeterminacy, which is given by the

intersection of the exceptional divisor and the proper transform of H ;
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(iii) For the next d−2 times after (ii), blow-up at the unique point of indeter-
minacy, which is given by the intersection of the last exceptional divisor
and the proper transform of the first exceptional divisor;

(iv) For the next d−1 times after (iii), blow-up at the unique point of indeter-
minacy, which lies on the last exceptional divisor but not on the proper
transform of the other exceptional divisors.

(2) Let f2d−1 : W → P
2 be the extension of the Hénon map after the sequence

of 2d − 1 blow-ups. Let E
′
i denote the proper transform of i-th exceptional

divisor (i = 1, . . . , 2d − 1). Then f2d−1 maps E
′
i (i = 1, . . . , 2d − 2) to q,

while E
′
2d−1 is mapped to H by an isomorphism.

(3) E
′
1

2 = −d, E
′
i

2 = −2 (i = 2, . . . , 2d − 2), and E
′
2d−1

2 = −1.

In particular, for Hénon maps, V in (2.1) is the projective surface obtained
by successive 2d − 1 blow-ups of P

2 at p as in Theorem 3.3 and then successive
2d − 1 blow-ups at q in a parallel way as in Theorem 3.3.

Let Ei (1 ≤ i ≤ 2d − 1) be the proper transform of i-th exceptional divisor
on V on the side of p, and Fj (1 ≤ j ≤ 2d − 1) be the proper transform of j -th
exceptional divisor on V on the side of q. Let H # be the proper transform of H .
The configuration of H #, Ei and Fj is illustrated in Figure 1.
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�
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H #E2

E3

E4

Ed−1 Ed

E1

Ed+1

E2d−3

E2d−2

E2d−1

F2

F3

F4

Fd−1 Fd

F1

Fd+1

F2d−3

F2d−2

F2d−1

Fig. 1. The configuration after blow-ups. The line H # has the self-intersection number −3.
The lines E1 and F1 have the self-intersection numbers −d. The lines E2, E3, . . . , E2d−2 and
F2, F3, . . . , F2d−2 have the self-intersection numbers −2. The lines E2d−1 and F2d−1 have the
self-intersection numbers −1
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Proposition 3.4. Let f : A
2 → A

2 be a Hénon map of degree d ≥ 2. Let the
notation be as above.

(1) As divisors on V , we have

π∗H = H # +
d∑
i=1

iEi +
2d−1∑
i=d+1

dEi +
d∑
j=1

jFj +
2d−1∑
j=d+1

dFj ,

ϕ∗H = dH # + E1 +
d∑
i=2

dEi +
2d−1∑
i=d+1

(2d − i)Ei +
d∑
j=1

jdFj +
2d−1∑
j=d+1

d2Fj ,

ψ∗H = dH # +
d∑
i=1

idEi +
2d−1∑
i=d+1

d2Ei + F1 +
d∑
j=2

dFj +
2d−1∑
j=d+1

(2d − j)Fj .

(2) The effective Q-divisor D in Theorem 2.1 is expressed as

D = d2 − 1

d
H # + d − 1

d
E1 +

d∑
i=2

d2 − i

d
Ei +

2d−1∑
i=d+1

(2d − i − 1)Ei

+d − 1

d
F1 +

d∑
j=2

d2 − j

d
Fj +

2d−1∑
j=d+1

(2d − j − 1)Fj .

Proof. We will show the expression for ϕ∗H . Since ϕ maps H #, Ei (1 ≤ i ≤
2d − 2) and Fj (1 ≤ j ≤ 2d − 1) to the point q, we have

ϕ∗H ·H # = 0, ϕ∗H · Ei = 0, ϕ∗H · Fj = 0

for 1 ≤ i ≤ 2d−2 and 1 ≤ j ≤ 2d−1. Since ϕmapsE2d−1 toH isomorphically,
we have

ϕ∗H · E2d−1 = 1.

Noting that the Picard group of V is generated byH #, Ei, Fj (1 ≤ i, j ≤ 2d−1),
we set ϕ∗H = aH # +∑2d−1

i=1 biEi +∑2d−1
j=1 cjFj . From the above information

and the information of the configuration after blow-ups (cf. Figure 1), we have
the system of linear equations

− 3a + b2 + c2 = 0;

∣∣∣∣∣∣∣∣∣∣∣∣

−db1 + bd = 0,

a − 2b2 + b3 = 0,

bi−1 − 2bi + bi+1 = 0,

b1 + bd−1 − 2bd + bd+1 = 0,

b2d−2 − b2d−1 = 1;

∣∣∣∣∣∣∣∣∣∣∣∣

−dc1 + cd = 0,

a − 2c2 + c3 = 0,

cj−1 − 2cj + cj+1 = 0,

c1 + cd−1 − 2cd + cd+1 = 0,

c2d−2 − c2d−1 = 0;

where i = 3, . . . , d−1, d+1, . . . , 2d−2 and j = 3, . . . , d−1, d+1, . . . , 2d−2.
By solving this system, we obtain the expression for ϕ∗H . Similarly we obtain
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the formula for ψ∗H . The formula for π∗H follows from the construction of V .
(We can also show this by using π∗H ·H # = 1, π∗H ·Ei = 0 and π∗H ·Fj = 0
for all i and j .) The assertion (2) follows from (1). ��
Remark 3.5. Using classical results of Jung [7] and van der Kulk [9], it is possible
to explicitly compute D for any regular polynomial automorphisms f of degree
d ≥ 2, as in Proposition 3.4 for Hénon maps. In this case, coefficients of D are
expressed in terms of the polydegree (d1, . . . , dl) of f (cf. [5, §3]). Note that, for
Hénon maps f of degree d ≥ 2, its polydegree is (d), i.e., l = 1 and d1 = d.

4. Canonical height functions

In this section, we will prove Theorem A and Corollary B in a more general setting
of polynomial automorphisms of A

n. We note that, when n ≥ 3, the degree of a
polynomial automorphism and the degree of its inverse may not be the same. For
details about the dynamics of polynomial automorphisms, we refer the reader to
the survey [13]. We begin by fixing some notation and terminology.

Definition 4.1. For two real-valued functions λ, λ′ defined on A
n(K), we write

λ �� λ′ if there exist positive constants a1, a2 and constants b1, b2 such that
a1λ(x)+ b1 ≤ λ′(x) ≤ a2λ(x)+ b2 for all x ∈ A

n(K).

Theorem 4.2. Let g : A
n → A

n be a polynomial automorphism over a number
field K . Let δ and δ− denote the degrees of g and g−1, respectively. Assume that
δ ≥ 2 and that there exists a constant c ≥ 0 such that

1

δ
h(g(x))+ 1

δ−
h(g−1(x)) ≥

(
1 + 1

δδ−

)
h(x)− c. (4.1)

(1) The following limits are finite:

ĥ+(x) = lim sup
l→+∞

1

δl
h(gl(x)), ĥ−(x) = lim sup

l→+∞

1

δl−
h(g−l(x)). (4.2)

They satisfy

ĥ+ ◦ g = δ ĥ+, ĥ− ◦ g−1 = δ− ĥ−, (4.3)

ĥ+ ◦ g−1 = 1

δ
ĥ+, ĥ− ◦ g = 1

δ−
ĥ−.

(2) Define ĥ : A
n(K) → R by

ĥ(x) = ĥ+(x)+ ĥ−(x). (4.4)

Then ĥ satisfies:
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(i) h(x) �� ĥ(x);

(ii)
1

δ
ĥ (g(x))+ 1

δ−
ĥ
(
g−1(x)

) =
(

1 + 1

δδ−

)
ĥ(x).

(3) It is clear that ĥ± and ĥ in (1) and (2) are non-negative functions. We have
the following equivalences:

ĥ(x) = 0 ⇐⇒ ĥ+(x) = 0 ⇐⇒ ĥ−(x) = 0 ⇐⇒ x is g-periodic.

(4) Any function ĥ : A
n(K) → R satisfying (2-i) and (2-ii) is called a canonical

height function for g. Suppose that ĥ′ : A
n(K) → R is also a canonical height

function for g and satisfies ĥ′ = ĥ+O(1). Then ĥ′ = ĥ.

Corollary 4.3. Let g be as in the statement of Theorem 4.2, including the assump-
tion that g satisfies (4.1). We denote by ĥ+

g , ĥ
−
g the functions given in (4.2), and

by ĥg the canonical height function for g given in (4.4). Let γ : A
n → A

n

be a polynomial automorphism over K , and define a polynomial automorphism
f : A

n → A
n by f = γ ◦ g ◦ γ−1.

(1) Define ĥ : A
n(K) → R by

ĥ(x) = ĥg(γ
−1(x)).

Then ĥ satisfies:
(i) h(x) �� ĥ(x);

(ii)
1

δ
ĥ (f (x))+ 1

δ−
ĥ
(
f −1(x)

) =
(

1 + 1

δδ−

)
ĥ(x).

(Notice that δ, δ− are respectively the degrees of g, g−1 and not necessarily
equal to the degrees of f, f −1.)

(2) Any function ĥ : A
n(K) → R satisfying the above properties (i) and (ii)

is called a canonical height function for f . Then ĥ satisfies the uniqueness
property as described in Theorem 4.2(4), with f in place of g.

(3) For any canonical height function ĥ for f , we set

ĥ+(x) = 1

1 − (δδ−)−1

(
ĥ(x)− 1

δ−
ĥ(f −1(x))

)
,

ĥ−(x) = 1

1 − (δδ−)−1

(
ĥ(x)− 1

δ
ĥ(f (x))

)
.

Then ĥ± enjoy the transformation formulas (4.3) with f in place of g, and
satisfy ĥ = ĥ+ + ĥ−.

(4) Any canonical height function ĥ for f and the functions ĥ± defined in (3) are
non-negative functions. They satisfy the equivalences as described in Theo-
rem 4.2(3), with f in place of g.
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Proof of Theorem A and Corollary B. Admitting Theorem 4.2 and Corollary 4.3,
we will prove TheoremA and Corollary B. We may replaceK by a finite extension
field. Since the dynamical degree δ of f : A

2 → A
2 is assumed to be greater than

or equal to 2, Theorem 3.1 and Proposition 3.2 yield that there is a polynomial
automorphism γ so that g := γ−1 ◦f ◦ γ is a composition of Hénon maps. Since
a composition of Hénon maps is a regular polynomial automorphism (cf. lines
before Proposition 3.2), it follows from Proposition 3.2(3) that the degree of g is
equal to the dynamical degree of g. Noting that the dynamical degrees of f and
g are the same, this means that deg g = δ. From Theorem 2.3, g satisfies (4.1),
and so we can apply Theorem 4.2 to g. Then Theorem A and Corollary B follow
from Corollary 4.3. ��
Proof of Theorem 4.2. (1) We remark that the definition (4.1) of ĥ± has some sim-
ilarity to the definition of Green currents on A

n(C) forg (cf. [13, Définition 2.2.5]),
and to Silverman’s definition of canonical heights on certain K3 surfaces [15, §3].

Let us see that the values ĥ±(x) are finite by showing the following claim.

Claim 4.3.1. There exist constants c± such that ĥ±(x) ≤ h(x) + c± for all x ∈
A
n(K).

Proof. By Theorem 1.3, there exists a constant c2 such that 1
δ
h(g(x)) ≤ h(x)+ c2

δ

for all x ∈ A
n(K). We show

1

δl
h(gl(x)) ≤ h(x)+

(
l∑
i=1

1

δi

)
c2

by the induction on l. Indeed, since 1
δ
h(gl+1(x)) ≤ h(gl(x))+ c2

δ
, we have

1

δl+1
h(gl+1(x)) ≤ 1

δl
h(gl(x))+ c2

δl+1
≤ h(x)+

(
l+1∑
i=1

1

δi

)
c2.

By putting c+ = c2
∑+∞

i=1
1
δi

= c2
δ−1 , we obtain

ĥ+(x) = lim sup
l→+∞

1

δl
h(gl(x)) ≤ h(x)+ c+.

The estimate for ĥ− is shown similarly. (Note that it follows from δ ≥ 2 that
δ− ≥ 2.) ��
To see the transformation formulas (4.3), we observe

ĥ+ (g(x)) = lim sup
l→+∞

1

δl
h
(
g(gl(x))

)

= δ lim sup
l→+∞

1

δl+1
h
(
gl+1(x))

) = δĥ+(g(x)).
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This gives the first transformation formula, and the other formulas are shown sim-
ilarly. This completes the proof of (1).

(2) We begin by showing ĥ � h.

Claim 4.3.2. We have

ĥ(x) ≥ h(x)− δδ−
(δ − 1)(δ− − 1)

c

for all x ∈ A
n(K), where c is the constant given in (4.1).

Proof. We set h′ = h− δδ−
(δ−1)(δ−−1) c. Then we have for all x ∈ A

n(K)

1

δ
h′(g(x))+ 1

δ−
h′(g−1(x)) ≥

(
1 + 1

δδ−

)
h′(x). (4.5)

Then we have
1

δ2
h′(g2(x))+ 1

δδ−
h′(x) ≥

(
1 + 1

δδ−

)
1
δ
h′(g(x)),

1

δδ−
h′(x)+ 1

δ2−
h′(g−2(x)) ≥

(
1 + 1

δδ−

)
1
δ−h

′(g−1(x)).

Adding these two inequalities and using (4.5) again, we obtain

1

δ2
h′(g2(x))+ 1

δ2−
h′(g−2(x)) ≥

(
1 + 1

(δδ−)2

)
h′(x).

Inductively, we have

1

δ2l
h′(g2l (x))+ 1

δ2l−
h′(g−2l (x)) ≥

(
1 + 1

(δδ−)2
l

)
h′(x).

(Though not necessary for the proof, one can also show

1

δm
h′(gm(x))+ 1

δm−
h′(g−m(x)) ≥

(
1 + 1

(δδ−)m

)
h′(x)

for every m ∈ Z>0.) By letting l → +∞, we obtain

lim sup
l→+∞

1

δ2l
h′(g2l (x))+ lim sup

l→+∞

1

δ2l−
h′(g−2l (x))

≥ lim sup
l→+∞

(
1

δ2l
h′(g2l (x))+ 1

δ2l−
h′(g−2l (x))

)
≥ h′(x). (4.6)

Since

ĥ+(x) = lim sup
m→+∞

1

δm
h(gm(x))

= lim sup
m→+∞

1

δm

(
h′(gm(x))+ δδ−

(δ − 1)(δ− − 1)
c

)
≥ lim sup

l→+∞

1

δ2l
h′(g2l (x))



302 S. Kawaguchi

and similarly ĥ−(x) ≥ lim supl→+∞
1

δ2l−
h′(g−2l (x)), it follows that the left-hand

side of (4.6) is less than or equal to ĥ(x), while the right-hand-side is h(x) −
δδ−

(δ−1)(δ−−1) c. Thus we get the desired inequality. ��

It follows from Claim 4.3.1 and Claim 4.3.2 that ĥ satisfies property (i). Indeed
we have

h(x)− δδ−
(δ − 1)(δ− − 1)

c ≤ ĥ(x) ≤ 2h(x)+ c+ + c−. (4.7)

Property (ii) is checked from the transformation formulas (4.3).
(3) We will show that x ∈ A

n(K) is g-periodic if and only if ĥ(x) = 0. Sup-
pose ĥ(x1) = 0. Then by (ii) and the non-negativity of ĥ, we have ĥ(g(x1)) = 0
and ĥ(g−1(x1)) = 0. Take an extension field L of K such that x1 is defined over
L. Since ĥ �� h, ĥ satisfies the Northcott finiteness property. Thus the set

{gl(x1) | l ∈ Z} (⊆ {x ∈ A
n(L) | ĥ(x) = 0})

is finite, and so x1 is g-periodic. On the other hand, suppose ĥ(x2) =: a > 0. Then
1
δ
ĥ(g(x2))+ 1

δ− ĥ(g
−1(x2)) =

(
1 + 1

δδ−

)
ĥ(x2) =

(
1 + 1

δδ−

)
a. Thus we have

ĥ(g(x2)) ≥ 1 + δδ−
δ + δ−

a or ĥ(g−1(x2)) ≥ 1 + δδ−
δ + δ−

a.

Since 1+δδ−
δ+δ− > 1, this shows that the set {gl(x2) | l ∈ Z} is not a set of bounded

height. Thus x2 cannot be g-periodic.
Next we will show that ĥ(x) = 0 ⇐⇒ ĥ+(x) = 0 ⇐⇒ ĥ+(x) = 0. Since

ĥ± are non-negative and ĥ = ĥ+ + ĥ−, it is clear that ĥ(x) = 0 implies ĥ+(x) =
ĥ−(x) = 0. We will show that ĥ+(x) = 0 implies ĥ(x) = 0. A key observation
here is again that ĥ satisfies the Northcott finiteness property. Suppose ĥ+(x) = 0.
Then

ĥ(gl(x)) = ĥ+(gl(x))+ ĥ−(gl(x)) = δlĥ+(x)+ 1

δl−
ĥ−(x) = 1

δl−
ĥ−(x).

Let L be a finite extension of K over which x is defined. Then

{gl(x) ∈ A
n(L) | l ≥ 0} ⊆ {y ∈ A

n(L) | ĥ(y) ≤ ĥ−(x)}

is finite. Hence x is g-periodic. Similarly we see that ĥ−(x) = 0 implies ĥ(x) = 0.
This completes the proof of (3).

(4) To show the uniqueness property, suppose ĥ′ is also a canonical height func-
tion for g such that λ := ĥ′−ĥ is bounded on A

n(K). SetM := supx∈An(K) |λ(x)|.
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Then(
1 + 1

δδ−

)
M =

(
1 + 1

δδ−

)
sup

x∈An(K)

|λ(x)|

= sup
x∈An(K)

∣∣∣∣1δ λ(g(x))+ 1

δ−
λ(g−1(x))

∣∣∣∣ ≤
(

1

δ
+ 1

δ−

)
M.

Since 1 + 1
δδ− − 1

δ
− 1

δ− = (δ−1)(δ−−1)
δδ− > 0, we have M = 0, whence ĥ = ĥ′. ��

Proof of Corollary 4.3. (1) Let ĥg be the canonical height function for g con-
structed in Theorem 4.2(2). We will show that ĥ := ĥg ◦ γ−1 satisfies properties
(i) and (ii) of Corollary 4.3. By (4.7), we have ĥg(γ−1(x)) ≤ 2h(γ−1(x)) +
c+ + c−. Theorem 1.3 yields that there is a constant cγ−1 such that h(γ−1(x)) ≤
(deg γ−1) h(x)+ cγ−1 for all x ∈ A

n(K). Thus

ĥ(x) ≤ 2(deg γ−1) h(x)+ (2cγ−1 + c+ + c−). (4.8)

On the other hand, Theorem 1.3 yields that there is a constant cγ such that
h(γ (x)) ≤ (deg γ ) h(x)+ cγ for all x ∈ A

n(K). Hence

h(γ−1(x)) ≥ (deg γ )−1h(x)− (deg γ )−1cγ .

By (4.7) we have ĥg(γ−1(x)) ≥ h(γ−1(x))− δδ−
(δ−1)(δ−−1) c, and so

ĥ(x) ≥ (deg γ )−1h(x)− (deg γ )−1cγ − δδ−
(δ − 1)(δ− − 1)

c. (4.9)

Now property (i) follows from (4.8) and (4.9).
Property (ii) follows from

ĥ(f (x))+ ĥ(f −1(x)) = ĥg(γ
−1(f (x)))+ ĥg(γ

−1(f −1(x)))

= ĥg(g(γ
−1(x)))+ ĥg(g

−1(γ−1(x)))

=
(

1 + 1

δδ−

)
ĥg(γ

−1(x)) =
(

1 + 1

δδ−

)
ĥ(x),

where we used Theorem 4.2(2-ii) in the third equality.
(2) This follows from the proof of Theorem 4.2(4), with f in place of g.
(3) By property (1-ii), we readily see ĥ = ĥ+ + ĥ−. Also, property (1-ii) gives

ĥ ◦ f − 1

δ−
ĥ = δ

(
ĥ− 1

δ−
ĥ ◦ f −1

)
.

This shows the first transformation formula: ĥ+(f (x)) = δ ĥ+(x). The other
transformation formulas are checked similarly.
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(4) To show that ĥ is non-negative, we assume the contrary, so that there exists
x ′ ∈ A

n(K) with ĥ(x ′) =: a′ < 0. Then we have

ĥ(f (x ′)) ≤ 1 + δδ−
δ + δ−

a′ or ĥ(f −1(x ′)) ≤ 1 + δδ−
δ + δ−

a′.

This implies that ĥ is not bounded from below. Since h �� ĥ, this is a contra-
diction.

We have shown that ĥ ≥ 0. Then ĥ+(f l(x))+ ĥ−(f l(x)) = ĥ(f l(x)) ≥ 0 for
any l ∈ Z and x ∈ A

n(K). This is equivalent to

ĥ+(x) ≥ − 1

(δδ−)l
ĥ−(x).

By letting l → +∞, we have ĥ+(x) ≥ 0. Similarly we have ĥ−(x) ≥ 0.
Thus ĥ, ĥ± are all non-negative functions. The proof of Theorem 4.2(3), with

f in place of g, then gives the desired equivalences. ��
In the remainder of this section, we would like to discuss the condition (4.1)

in Theorem 4.2. The next proposition shows that the constant (1 + 1
δδ− ) in (4.1)

cannot be replaced by any larger number.

Proposition 4.4. Let g : A
n → A

n a polynomial automorphism of degree δ ≥ 2
over a number field K . Let δ− denote the degree of g−1. Then

lim inf
x∈An(K)
h(x)→∞

1
δ
h(g(x))+ 1

δ−h(g
−1(x))

h(x)
≤ 1 + 1

δδ−
. (4.10)

Proof. To derive a contradiction, suppose (4.10) does not hold. Then there are
positive numbers a > 1+ 1

δδ− andM such that, for any x ∈ A
n(K)withh(x) ≥ M ,

one has

1

δ
h(g(x))+ 1

δ−
h(g−1(x)) ≥ ah(x). (4.11)

We take a non g-periodic point x0 ∈ A
n(K) and fix it. We setOg(x0) = {gm(x0) |

m ∈ Z}. Since the set {y ∈ Og(x0) | h(y) < M} is finite by the Northcott finite-
ness property, we see together with (4.11) that there is a constant c ≥ 0 such that,
for all y ∈ Og(x0), one has

1

δ
h(g(y))+ 1

δ−
h(g−1(y)) ≥ ah(y)− c.

Noting a > 1 + 1
δδ− ≥ 1

δ
+ 1

δ− , we set c′ :=
(
a − 1

δ
− 1

δ−

)−1
c and h′ := h− c′.

Then h′ satisfies

1

δ
h′(g(y))+ 1

δ−
h′(g−1(y)) ≥ ah′(y)
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for all y ∈ Og(x0). As in the proof of Claim 4.3.2, we get

1

δ2
h′(g2(y))+ 1

δ2−
h′(g−2(y)) ≥

(
a2 − 2

δδ−

)
h′(y).

We set a1 = a2 − 2
δδ− . Since

a1 − 1 − 1

(δδ−)2
= a2 − 2

δδ−
− 1 − 1

(δδ−)2

>

(
1 + 1

δδ−

)2

− 2

δδ−
− 1 − 1

(δδ−)2
= 0,

we have a1 > 1 + 1
(δδ−)2

. Thus, if we define a sequence {al}+∞
l=0 by a0 = a and

al+1 = a2
l − 2

(δδ−)2l
, then we get inductively

1

δ2l
h′(g2l (y))+ 1

δ2l−
h′(g−2l (y)) ≥ alh

′(y).

On the other hand, it follows from Theorem 1.3 and the argument in Claim 4.3.1
that there is a constant c′′ independent of l ∈ Z>0 such that, for all y ∈ Og(x0),

2h′(y)+ c′′ ≥ 1

δ2l
h′(g2l (y))+ 1

δ2l−
h′(g−2l (y)).

Thus 2h′(y) + c′′ ≥ alh
′(y) for all l ∈ Z and all y ∈ Og(x0). Since x0 is a non

g-periodic point, the Northcott finiteness property implies that the set {h(y) | y ∈
Og(x0)} is unbounded. Thus h′(y) > 0 for some y ∈ Og(x0). Since liml→+∞
al = +∞ by the following Lemma 4.5(1), this is a contradiction. ��
Lemma 4.5. LetD ≥ 4. Let {al}+∞

l=0 be a sequence defined by a0 = a and al+1 =
a2
l − 2D−2l .

(1) If a > 1 + 1
D

, then liml→+∞ al = +∞.
(2) If a = 1 + 1

D
, then liml→+∞ al = 1.

(3) If 1 ≤ a < 1 + 1
D

, then liml→+∞ al = 0.

Proof. We show (1). Set εl = al −1−D−2l . In particular ε0 = a−1−D−1 > 0.
Since εl+1 = al+1 − 1 − D−2l+1 = 2εl(1 + D−2l ) + ε2

l , we get εl+1 > 2εl >
· · · > 2l+1ε0. Hence liml→+∞ εl = +∞ and thus liml→+∞ al = +∞

We show (2). In this case, we have al = 1 +D−2l . Thus liml→+∞ al = 1.
Finally we show (3). On one hand, we get by induction al ≥ 2D−2l−1

for
l ≥ 1, and in particular al ≥ 0 for l ≥ 1. On the other hand, we claim for suffi-
ciently large l that al < 1. Indeed, we assume the contrary and suppose al ≥ 1
for all l. By induction, we get al < 1 + D−2l . We set λl = 1 + D−2l − al , and
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so 0 < λl ≤ D−2l . Then al+1 = a2
l − 2D−2l = (1 + D−2l − λl)

2 − 2D−2l =
1+D−2l+1 −2λl(1+D−2l )+λ2

l . Hence we get λl+1 = 2λl(1+D−2l )−λ2
l ≥ 2λl ,

which says that liml→+∞ λl = +∞. This is a contradiction. Hence there is an l0
with al0 < 1. Since (0 ≤) al0+k ≤ a2k

l0
, we get liml→+∞ al = 0. ��

We denote by L the left-hand side of (4.10). It follows from Theorem 2.3 that,
if g is a regular polynomial automorphism of A

2 of degree δ ≥ 2, then δ = δ−
and L = 1 + 1

δ2 . We remark that Marcello [12, Théorème 3.1] showed that, if g
is a regular polynomial automorphism of A

n (this means the set of indeterminacy
Zg and Z

g−1 are disjoint, cf. [13, Définition 2.2.1]), then L ≥ 1. It would be
interesting to know what polynomial automorphisms g on A

n satisfy (4.1).

5. The number of points with bounded height in an f -orbit

In this section, we will prove Theorem C. As in §4 we will show Theorem C in
a more general setting. The arguments below are inspired by those of Silverman
on certain K3 surfaces [15, §3].

Throughout this section, let f : A
n → A

n be a polynomial automorphism
over a number field K as in Corollary 4.3. Namely, we assume that there is a
polynomial automorphism γ : A

n → A
n such that g := γ−1 ◦ f ◦ γ is a poly-

nomial automorphism satisfying the condition (4.1) in Theorem 4.2. Let ĥ be a
canonical height function for f , and ĥ± the functions defined in Corollary 4.3(3).

For x ∈ A
n(K), we define the f -orbit of x by

Of (x) := {f l(x) | l ∈ Z}.
For an f -orbit Of (x), we define the canonical height of Of (x) (with respect to
ĥ) by

ĥ(Of (x)) = log ĥ+(x)
log δ

+ log ĥ−(x)
log δ−

∈ R ∪ {−∞}.
Lemma 5.1.
(1) The value ĥ(Of (x)) depends only on the orbit Of (x) and the choice of the

height function ĥ, and not on the particular choice of the point x in the orbit.
Moreover, ĥ(Of (x)) = −∞ if and only if Of (x) is a finite orbit.

(2) Assume that Of (x) is an infinite orbit. Then we have

ĥ(Of (x))+ ε1 ≤
(

1

log δ
+ 1

log δ−

)
min

y∈Of (x)
log ĥ(y) ≤ ĥ(Of (x))+ ε2,

where the positive constants ε1 and ε2 are given by

ε1 = 1

log δ
log

(
1 + log δ

log δ−

)
+ 1

log δ−
log

(
1 + log δ−

log δ

)
,

ε2 = ε1 +
(

1

log δ
+ 1

log δ−

)
log max{δ, δ−}.
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Proof. (1) follows from Corollary 4.3(3)(4). To prove (2), set

p = 1 + log δ

log δ−
and q = 1 + log δ−

log δ
.

Then p > 1, q > 1, and 1
p

+ 1
q

= 1. By Hölder’s inequality, we have

ĥ(y) = ĥ+(y)+ ĥ−(y)

= 1

p

(
p

1
p ĥ+(y)

1
p

)p
+ 1

q

(
q

1
q ĥ−(y)

1
q

)q
≥ p

1
p q

1
q ĥ+(y)

1
p ĥ−(y)

1
q .

Hence, 1
p

logp + 1
q

log q + 1
p

log ĥ+(y)+ 1
q

log ĥ−(y) ≤ log ĥ(y). Since

1

p
log ĥ+(y)+ 1

q
log ĥ−(y) =

(
1

log δ
+ 1

log δ−

)−1

ĥ(Of (x)),

we obtain ĥ(Of (x))+ ε1 ≤
(

1
log δ + 1

log δ−

)
miny∈Of (x) log ĥ(y).

On the other hand, we have ĥ(f l(x)) = δlĥ+(x) + δ−l
− ĥ−(x) for l ∈ Z. We

set g(t) = δt ĥ+(x)+ δ−t
− ĥ−(x) for t ∈ R, and

t0 := log(̂h−(x) log δ−)− log(̂h+(x) log δ)

log δ + log δ−
.

Then one sees that g takes its minimum at t0, with g(t0) = p
1
p q

1
q ĥ+(x)

1
p ĥ−(x)

1
q .

Consequently as a function of l ∈ Z, ĥ(f l(x)) takes its minimum at l = [t0] or
l = [t0] + 1, where [t0] denotes the largest integer less than or equal to t0. Then
we get

ĥ(f [t0](x)) = δ[t0]ĥ+(x)+ δ
−[t0]
− ĥ−(x)

= δ−(t0−[t0])δt0 ĥ+(x)+ δ
t0−[t0]
− δ

−t0− ĥ−(x)
< max{δ, δ−} (δt0 ĥ+(x)+ δ

−t0− ĥ−(x)
)

= max{δ, δ−}p 1
p q

1
q ĥ+(x)

1
p ĥ−(x)

1
q .

Similarly we get

ĥ(f [t0]+1(x)) = δ1+[t0]−t0δt0 ĥ+(x)+ δ−(1+[t0]−t0)δ−t0− ĥ−(x)

< max{δ, δ−}p 1
p q

1
q ĥ+(x)

1
p ĥ−(x)

1
q .

This shows
(

1
log δ + 1

log δ−

)
miny∈Of (x) log ĥ(y) ≤ ĥ(Of (x))+ ε2. ��
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Theorem 5.2. let f : A
n → A

n be a polynomial automorphism over a number
field K as in Corollary 4.3. Let ĥ be a canonical height function for f . For any
non f -periodic point x ∈ A

n(K), we define counting functions

N(x, T ) := #{y ∈ Of (x) | h(y) ≤ T },
N̂(x, T ) := #{y ∈ Of (x) | ĥ(y) ≤ T }.

We also define a comparison function

�(x, T ) :=
(

1

log δ
+ 1

log δ−

)
log T − ĥ

(
Of (x)

)
.

(1) We have

N̂(x, T ) = 0 if �(x, T ) < 0,∣∣ N̂(x, T )− �(x, T )
∣∣ ≤ log 2

log δ
+ log 2

log δ−
+ 1 if �(x, T ) ≥ 0.

(2) For all infinite orbits Of (x), we have

N(x, T ) = �(x, T )+O(1) as T → +∞,

where theO(1) bound depends only on f and the choice of ĥ, independent of
the orbit Of (x).

Proof. (1) Suppose �(x, T ) < 0. Then for any y ∈ Of (x), Lemma 5.1(2) yields
that(

1

log δ
+ 1

log δ−

)
log ĥ(y) ≥ ĥ(Of (x))+ ε1 >

(
1

log δ
+ 1

log δ−

)
log T .

Thus ĥ(y) > T for any y ∈ Of (x), which gives the former part of (1).
Let us show the latter part of (1). Since Of (x) is an infinite orbit, the map

Z � l �→ f l(x) ∈ A
n(K) is one-to-one. Then

#{y ∈ Of (x) | ĥ(y) ≤ T } = #{l ∈ Z | ĥ(f l(x)) ≤ T }
= #{l ∈ Z | δlĥ+(x)+ δ−l

− ĥ
−(x) ≤ T }.

It follows from Lemma 5.3 below that

−1 +
log T

2ĥ+(x)

log δ
+

log T

2ĥ−(x)

log δ−
≤ #{y ∈ Of (x) | ĥ(y) ≤ T }

≤ 1 +
log T

ĥ+(x)

log δ
+

log T

ĥ−(x)

log δ−
,

for T ≥ ĥ+(x)
log δ−

log δ+log δ− ĥ−(x)
log δ

log δ+log δ− or equivalently
(

1
log δ + 1

log δ−

)
log T ≥

ĥ(Of (x)).
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On the other hand, we have

−1 +
log T

2ĥ+(x)

log δ
+

log T

2ĥ−(x)

log δ−

= −1 − log 2

log δ
− log 2

log δ−
+
(

1

log δ
+ 1

log δ−

)
log T − ĥ(Of (x)),

1 +
log T

ĥ+(x)

log δ
+

log T

ĥ−(x)

log δ−
= 1 +

(
1

log δ
+ 1

log δ−

)
log T − ĥ(Of (x)).

This shows the latter part of (1), up to verifying Lemma 5.3.
(2) Since h �� ĥ by property (i) of Corollary 4.3, there exist a positive

constant a2 and a constant b2 such that ĥ ≤ a2h+ b2. Then we have

N(x, T ) = #{y ∈ Of (x) | h(y) ≤ T }
≤ #{y ∈ Of (x) | ĥ(y) ≤ a2T + b2}
≤
(

1

log δ
+ 1

log δ−

)
log(a2T + b2)− ĥ(Of (x))+ 1 + log 2

log δ
+ log 2

log δ−
≤ �(x, T )+O(1) as T → +∞.

Using a1h + b1 ≤ ĥ for some positive constant a1 and constant b1, we have
N(x, T ) ≥ �(x, T )+O(1) as T tends to +∞. ��

Lemma 5.3. Let A,B, T > 0 be positive numbers. If T ≥ A
log δ−

log δ+log δ−B
log δ

log δ+log δ− ,
then we have

−1 + log T
2A

log δ
+ log T

2B

log δ−
≤ #{l ∈ Z | δlA+ δ−l

− B ≤ T } ≤ 1 + log T
A

log δ
+ log T

B

log δ−
.

Proof. If l ∈ Z satisfies δlA + δ−l
− B ≤ T , then δlA ≤ T and δ−l

− B ≤ T .

Note that
log B

T

log δ− ≤ log T
A

log δ is equivalent to T ≥ A
log δ−

log δ+log δ−B
log δ

log δ+log δ− . Then, for

T ≥ A
log δ−

log δ+log δ−B
log δ

log δ+log δ− , we have

#{l ∈ Z | δlA+ δ−l
− B ≤ T } ≤ #

{
l ∈ Z

∣∣∣∣∣
log B

T

log δ−
≤ l ≤ log T

A

log δ

}

≤ 1 + log T
A

log δ
+ log T

B

log δ−
.

On the other hand, if l ∈ Z satisfies δlA ≤ T
2 and δ−l

− B ≤ T
2 , then δlA+δ−l

− B ≤
T . Thus,
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#{l ∈ Z | δlA+ δ−l
− B ≤ T } ≥ #

{
l ∈ Z

∣∣∣∣∣
log 2B

T

log δ−
≤ l ≤ log T

2A

log δ

}

≥ −1 + log T
2A

log δ
+ log T

2B

log δ−
.

��
Proof of Theorem C. As we saw in the proof of Theorem A and Corollary B, for
any polynomial automorphism f : A

2 → A
2 of dynamical degree ≥ 2, there is a

polynomial automorphism γ : A
2 → A

2 such that g := γ−1 ◦f ◦γ satisfies (4.1)
in Theorem 4.2. Then, applying Theorem 5.2(2) to f , we obtain Theorem C. ��
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