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0 Introduction

The motivation for our work stems from the questions posed by Enriques in
Chapter VIII of his book “Le superficie algebriche” [10] about surfaces of
general type with pg = 4 and their moduli.

For these, K2 ≥ 4, and the cases K2 = 4, 5 were completely classified by
Enriques (cf. [10], section 2, chapter VIII, pp.268–271, and also [13]). Enriques
also discussed at length the case K2 = 6, which was later completely classified
by Horikawa [14].
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The first question posed by Enriques was the following: for which value of
K2 does there exist a surface with pg = 4 and birational canonical map? This
existence question, posed by Enriques for K2 ≥ 8, was later solved by virtue of
the contributions of several authors, and we now know that such surfaces exist
for 7 ≤ K2 ≤ 28, (see [6,8], and see [15] for an example with K2 = 31).

The answer to the question concerning classification and moduli is much
harder, and a complete classification has been achieved up to now only for
K2 ≤ 7; see for instance the monograph [1] for the case K2 = 7.

The challenging open problem for K2 = 6, 7 is to completely understand the
structure of the moduli space, i.e., to determine the incidence correspondence
of the various locally closed strata described in the classification.

Horikawa [12] showed that the moduli space for K2 = 5 is connected, with
two irreducible components of dimension 40 meeting along a divisor. He showed
later [14] that for K2 = 6 there are exactly four irreducible components and
at most three connected components. He did so by first listing all possibili-
ties for the canonical map, dividing the moduli space of surfaces with K2 = 6
into 11 nonempty locally closed strata, and then analysing some of their local
deformations.

More precisely, Horikawa named the 11 strata Ia, Ib, II, IIIa, IIIb, IVa1 ,
IVa2 , IVb1 , IVb2 , V1, V2 (see [14] or (1.3) below for precise definitions of each
stratum). According to Horikawa’s notation we define

Notation Let A and B be two of the strata introduced above. The notation
“A → B” means that B intersects the closure of A, i.e., there is a deformation of
a surface of type B to surfaces of type A (it suffices to have a flat family over a
small disk �ε ⊂ C whose central fibre is of type B and whose general fibre is of
type A).

With this notation Horikawa summarized his results in the following diagram

39 IIIa

������
��

��
��

38 IVa1

������������
Ia

����
��

��
��

��

V1

��

IIIb

����
��

��
��

II

37 IVa2

��

IVb1 V2

36 IVb2 Ib

The numbers on the left are the dimensions of the strata in the corresponding
row.

Our main result is:
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Theorem 0.1 The moduli space of surfaces with pg = 4, K2 = 6 has at most two
connected components.

In fact, II → IIIb, i.e., there is a deformation of surfaces of type IIIb to surfaces
of type II.

We would moreover like to pose the following

Question 0.2 Is the above moduli space (for pg = 4, K2 = 6) disconnected?

A possible reason for this could be that the surfaces of both connected com-
ponents degenerate to surfaces with a genus two pencil. Therefore, if we view the
corresponding algebraic surfaces as two respective symplectic four-manifolds
(with the canonical symplectic structure defined in Catanese [7]), the former
has a symplectic genus 2 Lefschetz pencil with transitive braid monodromy, the
latter has a symplectic genus 2 Lefschetz pencil with nontransitive braid mo-
nodromy. Remains the problem to show whether a symplectic four–manifold
underlying one of our surfaces does not admit two such different Lefschetz
pencils.

The new idea that we exploit here is the following: the canonical models X
of surfaces of type II are exactly the hypersurfaces of degree 9 in the weighted
projective space P(1, 1, 2, 3) (with rational double points as singularities). This
remark was used in [5] to give a new explanation of the result of Horikawa
that the moduli space is nonreduced on the open set II, and it implies that the
canonical divisor is 2-divisible as a Weil divisor on X.

The same 2–divisibility occurs for type IIIb, so for both type of surfaces we
have a semicanonical ring B = ⊕

H0(O(nL)) (for some L with 2L ≡ KX), and
what we do is to find a flat family of deformations of the semicanonical ring.

How to do this? The ring B is a Gorenstein ring, of codimension 1 in case II,
of codimension 4 in case IIIb, where X is embedded in P(1, 1, 2, 3, 4, 5, 6).

To describe the semicanonical ring and its deformations in case IIIb, we use,
as in our previous paper [2], the format of 4 × 4 Pfaffians of antisymmetric
extrasymmetric 6 × 6 matrices.

This format applies to a codimension 2 subvariety of the stratum of surfaces
of type IIIb: these have a pencil of hyperelliptic curves of genus 3, and one has
to lift (cf. [18]) this graded ring of dimension 1 to the semicanonical ring of the
surface.

The deformation trick is similar to the one used in [2] for the canonical ring:
filling entries of homogeneous degree 0 in the matrix with parameters (and
respecting the extrasymmetric format). When these parameters are nonzero,
three of the given Pfaffians can be used to eliminate the three variables of
respective weights 4, 5, 6. We obtain then a semicanonical ring of type II.

We want now to discuss briefly the cited method of extrasymmetric antisym-
metric 6 × 6 matrices.

The main point here is the lack of a structure theorem for Gorenstein sub-
varieties of codimension 4 (for codimension 3 we have the celebrated theorem
of Buchsbaum and Eisenbud [4]).

Several explicit formats were proposed by Dicks, Reid and Papadakis
([11,16,17]).



424 I.C. Bauer et al

The geometric roots (cf. [19]) for the format we use here lie in the fact that
the Segre product P

2 ×P
2 is embedded in P

8 as the variety of 3×3 matrices A of
rank 1, hence defined there by nine quadratic equations, admitting 16 syzygies.

If however one writes A = B + C, with C symmetric, B antisymmetric, then
one can form the antisymmetric 6 × 6 matrix:

D =
(

B C
−C B

)

.

The matrix D has an extrasymmetry from which follows indeed that the 15
(4 × 4) Pfaffians of D are not independent, but exactly reduce to the above 9
quadratic equations.

Using a flat family of deformations of the above subvariety, and interpreting
the entries of the matrix as indeterminates to be specialized, one obtains an
easy construction of Gorenstein subvarieties of codimension 4.

We refer to Reid [19] for a thorough discussion of the problem of under-
standing Gorenstein rings in codimension 4. Our result shows that the “moduli
space” of such rings could be rather complicated, since this format does not
apply for a general surface of type IIIb, and moreover since we obtain a defor-
mation from codimension 4 to codimension 1, but we observe that one cannot
pass through all the lower codimensions.

In the following section we shall determine which of the eleven Horikawa
classes yield canonical models X where the canonical divisor is 2-divisible as a
Weil divisor (we use here the classical notation ≡ for linear equivalence).

1 Surfaces with 2-divisible canonical divisor

Throughout the whole paper the ground field is supposed to be the field of the
complex numbers C.

Let S be the minimal model of a surface with K2
S = 6, pg = 4, and X its

canonical model (obtained by contracting the curves C with KS · C = 0). We
recall that by [9] these surfaces are automatically regular, since they are minimal
with K2 < 2pg.

In this section we shall classify the closed set of the moduli space given by
the surfaces for which

(2-div) there exists a Weil divisor L on X such that 2L ≡ KX and
h0(OX(L)) ≥ 2.

Observe that this hypothesis immediately implies that the image of the canon-
ical map φKX is a quadric cone Q ⊂ P

3 and that h0(OX(L)) = 2.
Recall now that, if |KS| has a nonempty fixed part � and we write |KS| =

|M| +�, then, since KS is nef,

6 = K2
S = KS ·�+ M ·�+ M2 ≥ M ·�+ M2 ≥ 2 + 4,
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the last inequality following from the 2-connectedness of canonical divisors, and
the fact that the canonical system is not a pencil (as shown in Horikawa [14]).

Thus, if the fixed part � �= ∅ we have

M2 = 4, M ·� = 2, KS ·� = 0.

Therefore we conclude that KX has no fixed part on the canonical model X,
and only the following cases a priori occur:

(0) |KX | is base point free and ϕ is 3-to-1
(2a) |KX | has two smooth base points or
(2b) |KX | has a smooth base point plus necessarily an infinitely near one

(in both the cases (2a) and (2b) ϕ should be 2-to-1; they are however
shown by Horikawa not to occur)

(1) |KX | has a singular base point p on X and ϕ is 2-to-1.

The last case is the only one where there is a fixed part � on the minimal
model. Since to the point p ∈ Sing(X) corresponds the fundamental cycle Z
(the −2-cycle pullback of the maximal ideal Mp ⊂ OX,p), we have � ≥ Z. Z
has the property that for each divisor� which lies in the inverse image of p one
has Z ·� ≤ 0.

Write�= Z +�, and assume� > 0. Observe then that M ·� = 2, KS ·� = 0
implies �2 = −2. Then −2 = �2 = Z2 + 2Z · � + �2 ≤ −2 + 0 − 2 = −4
is a contradiction, so that � equals the fundamental cycle. Therefore the base
point scheme of |KX | is exactly the point p. Blowing up the base points of φKX

we obtain a morphism f 0 : X0 → Q. We observe that there are at most two
irreducible exceptional curves of X0 → X.

In any case the blow-up formula yields

• KX0 = π∗(KX) in cases (0) and (1)
• in case (2) there are two −1-curves E1, E2 such that KX0 −E1−E2 = π∗(KX).

Remark 1.1 In case (0) the canonical map �X is a finite morphism, whence
(2-div) holds if and only if Im(�X) is a quadric cone, i.e., if and only if �X has
degree 3 (as it is easy to see, cf. Lemma 4.1 of [14]).

In the other two cases we have deg(�X) = 2.

Remark 1.2 Assume that we are in cases (2) or (1) and that the canonical image
is a quadric cone Q.

Let L′, L0, L′′ be the respective proper transforms on X, resp. X0, resp. S of
a general line l ⊂ Q.

Observe that the canonical divisor KX is the pull back of a hyperplane divisor
on Q, and its pullback to X0 has as movable part the pullback H of a hyperplane
divisor on Q.

Whence H ≡ 2L0 +W, where W is the effective divisor on X0 corresponding
to the inverse image of the vertex v ∈ Q.

More precisely, W is the fixed part of |H − 2L0|.
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Assume that there is a Weil divisor L satisfying (2-div): then one immedi-
ately sees that h0(OX(L)) = 2 and there is an effective divisor E′ on X with
L ≡ L′ + E′, and where E′ is the fixed part of the pencil |L|. Then the fixed part
of KX − 2L′ equals 2E′, whence π∗(W) = 2E′.

It follows that (the linear equivalence class of) KX ≡ 2L′ + π∗(W) is 2-divis-
ible as a Weil divisor if and only if π∗(W) is 2-divisible as an effective divisor.

There are two possibilities for this: f 0−1
(v) has dimension 0, or, in case where

f 0−1
(v) has dimension 1, we have π∗f 0−1

(v) = 2E′. In this last case, we have
that f 0 factors through the Segre-Hirzebruch surface F2.

We recall now the case subdivision given by Horikawa in [14].

Definition 1.3 Assume we are in case (0) (KX has no base points): then we have
type Ia if φKX has degree 1, type Ib if φKX has degree 2, type II if φKX has degree 3.

Otherwise we are in case (1) and φKX has degree 2.
Type III is the case where there is no genus 2 pencil on X. There are two

subcases: IIIa, where the canonical image is a smooth quadric and we have two
smooth base points, and IIIb, where the canonical image is a quadric cone and
we have one singular base point.

The two cases of type IVa1 , IVa2 have a smooth quadric as canonical image,
the two cases of type IVb1 , IVb2 have a quadric cone as canonical image, X0 is
a double cover of F2, but the section �∞ (inverse image of the singular point
of Q) is not part of the branch locus.

Surfaces of type IV and V all have a genus 2 pencil. Surfaces of type V1 and
V2 have a quadric cone as canonical image, X0 is a double cover of F2, and the
section at infinity is part of the branch locus. For type V1 we are in case (2), for
type V2 we are in case (1).

Proposition 1.4 The canonical model X of a surface with K2 = 6, pg = 4 sat-
isfies condition (2-div) (there exists a Weil divisor L on X such that 2L ≡ KX
and h0(OX(L)) ≥ 2) if and only if it is of one of the following types: II, IIIb, V1
or V2.

Proof Since the canonical image must be a quadric cone Q, cases Ia, Ib, IIIa,
IVa1 , IVa2 are immediately excluded.

Assume that (2-div) holds for some surface of type IVb1 or IVb2 . We know
that the section at infinity �∞ is not part of the branch locus on F2.

Then, by our previous remark, the inverse image W∞ of �∞ on X0 must be
contracted by π : X0 → X.

In case (2), we observe that |H| is base point free and H · Ei = 1, whence Ei
maps to a line and not to the vertex.

In case (1), again |H| is base point free, and by Horikawa[14] Theorem 6.2
the base point of |KX | is an ordinary double point. Let F be the corresponding
−2 curve: then H · F = 2 and we have again a contradiction.

We have already seen that (2-div) holds for type II.
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In case IIIb the section�∞ (cf. Theorem 5.2, ibidem) is isolated in the branch
locus, whence its set theoretic inverse image is a smooth −1-curve W∞, thus

f 0−1
(v) has dimension 0.

In cases V1, V2 again one shows that f 0−1
(v)has dimension 0, using Theorems

6.1, resp. 6.2, ibidem. �


2 Surfaces of type II and IIIb

In this section we want to concentrate on the surfaces of type II and IIIb, that
is on the surfaces for which (2-div) holds (cf. prop. 1.4), but there is no genus 2
pencil on S (as in cases V1 and V2).

The following lemma shows that the classes II and IIIb are exactly those for
which the pencil |L| has no fixed part.

Lemma 2.1 Assume that (2-div) holds and write KS ≡ 2�+Z where KS · Z = 0.
Then the pencil |L| is without fixed part (i.e., L′ ≡ L, equivalently� ≡ L′′) if and
only if there is no genus 2 pencil on X. In this case, the general element in |L′′|
is smooth irreducible of genus g(L′′) = 3 and we have: (L′′)2 = 1, L′′ · Z = 1. It
follows also that Z2 = −2 and thus Z is the fundamental cycle of a singular point
P1 of X.

Proof Write |�| = |L′′| + E′′ with E′′ > 0. Since KS ≡ 2L′′ + 2E′′ + Z, we have
L′′ · KS + E′′ · KS = 3, and moreover L′′ · KS > 0, E′′ · KS > 0.

It is impossible that L′′ · KS = 1, since then L′′2 is odd, and L′′ · KS ≥ 2 (L′′
is nef), a contradiction.

Thus L′′ · KS = 2 and L′′2 = 0, thus we have a genus 2 pencil.
Conversely, the curves of a genus 2 pencil map to the lines of the quadric

cone Q, but if |L| is without fixed part then E′′ = 0, and we claim that L′′ = �

is a pencil of genus 3 curves.
In fact, L′′KS = 3 = 2(L′′)2 + L′′Z, thus L′′Z is odd. Since L′′Z is non nega-

tive and odd, while L′′KS = 3 implies that (L′′)2 is also odd, the only possibility
is that (L′′)2 = 1, L′′Z = 1. Whence, p(L′′) = 3.

In particular, |L′′| has a unique smooth base point P0 and the general curve
in |L′′| is smooth by Bertini’s theorem.

Since L′′Z = 1, follows that Z2 = −2, and since Z is the only divisor
in 2L′′ + Z ≡ KS exceptional for S → X, follows that Z is a fundamental
cycle. �


Definition 2.2 Assume that (2-div) holds. Then the semicanonical ring of X is
the graded ring

B :=
∞⊕

m=0

Bm :=
∞⊕

m=0

H0(OX(mL)).
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Remark 2.3 Obviously,

B2m ∼= H0(OX(mKX)) ∼= H0(OS(mKS)), B2m+1 ∼= H0(OS(mKS + L′′)).

Lemma 2.4 Assume that |L| is without fixed part on X. Then the sequence

0 → H0(OS(mKS)) → H0(OS(mKS + L′′)) → H0(ωL′′((m − 1)KS)) → 0

is exact. Moreover, dim B2m = 5+3m(m−1) for m ≥ 2, dim B2m+1 = 7+3(m+1)
(m − 1) for m ≥ 1.

Proof We have an exact sequence of sheaves given by the adjunction formula
and moreover h1(O(mKS)) = 0 for each m since q(S) = 0. The rest follows
from the previous remark and from the fact that KS · L′′ = 3 and a general L′′
is smooth of genus 3. �

Lemma 2.5 Consider a basis {x0, x1} of H0(OX(L)) and pick y2 ∈ H0(OX(2L))
in order to complete {x2

0, x0x1, x2
1} to a basis of H0(OX(2L)). Then {x3

0, x2
0x1, x0x2

1,
x3

1, x0y2, x1y2} are linearly independent and there exists an element z3 completing
the previous set to a basis of H0(OX(3L)).

Proof If not, w.l.o.g. we may assume that we have a relation

x0y2 = G3(x0, x1)

where G is homogeneous of degree 3 and divisible by x1.
But then, setting y00 := x2

0, y11 := x2
1, y01 := x0x1, we have

G3(x0, x1)= x1L(y00, y11, y01, y2)

where L is a linear form. Whence, the canonical image of X satisfies three
quadratic equations

y00y11 = y2
01, y00y2 = y01L(y), y01y2 = y11L(y).

But it is shown by Horikawa [14] that |KS| is not a pencil.
There remains only to observe that h0(OX(3L)) = 7, by the previous lemma.

�

Lemma 2.6 Assume that |L| is without fixed part on X. The following three
conditions are equivalent:

• X is of type II, i.e., the canonical map has degree 3
• the general curve in |L′′| is nonhyperelliptic
• the sections x0, x1, y2, z3 provide a morphism ψ to the weighted projective

3-space P(1, 1, 2, 3) which is birational onto a hypersurface � of degree 9.
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In case IIIb we have:

• every curve in |L′′| is hyperelliptic,
• the base point P0 of |L′′| is a Weierstraß point of every curve L′′
• Z is the fixed part of KS
• the canonical map is a double covering of a quadric cone.

Proof Since |L′′| has a simple base point P0 the general curve in the pencil
is smooth of genus 3 and its canonical system has no base points. Whence
|3L′′ + Z| = |KS + L′′| has no base points on the general curve L′′, and in par-
ticular P0 is not a base point; thus the base points are contained in Z. Whence
on X the only possible base point (where x0 = x1 = z3 = 0) is P1.

We observe that there is a base point of ψ if and only if y2 vanishes on P1,
and this case will be denoted by (*).

In case (*) P1 is a point where x0 = x1 = y2 = 0, whence Z is in the fixed
part of the canonical system, but |KS − Z| = |2L′′| has no base point since
(KS − Z)2 = 4. Hence, |KS − Z| yields a morphism f : X → P

3 which is a
double cover of the quadric cone, and P1 is the unique point where x0 = x1 =
y2 = 0, and Z is exactly the fixed part of the canonical system.

In general, by Lemma 2.5 follows thatψ is birational if and only if the general
curve in |L′| is non-hyperelliptic, and in any case the degree of ψ is at most 2.

If we are not in case (*), we simply observe that ψ is then a morphism and
that deg(ψ) deg(�) = 9 = 6(3/2), but we have already seen that if the map is
not birational, its degree is 2.

Whence, it follows that ψ is a birational morphism (and obviously then
deg(�) = 9).

In case (*) every curve in |L′| is a double cover of a line, whence all the curves
in |L′| are hyperelliptic. Since the point P0 is invariant by the involution of S
yielding the hyperelliptic involution on every curve in |L′|, it follows that P0 is
a Weierstraß point.

More precisely, the exact sequence

0 → OS(L′′ + Z) → OS(KS) → OL′′(KS) → 0

and the remark that OL′′(KS) = ωL′′(−P0) shows that |KS| has P0 as a base
point on L′′ if and only if L′′ is hyperelliptic and P0 is a Weierstraß point. �


Horikawa gave a very concrete description of surfaces of type IIIb.

Theorem 2.7 (5.2 in [14]) Let S be a surface of type IIIb. Then S is birationally
equivalent to a double covering of F2 whose branch locus B consists of the neg-
ative section �∞ and of B0 ∈ |7�∞ + 14�| which has a quadruple point x and a
(3, 3)-point at y such that x and y belong to the same fibre �0 ∈ |�|. Moreover, y
may be infinitely near to x.
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3 On rings associated to curves of genus 3

To compute the semi-canonical ring we use ideas related to the hyperplane
section principle introduced by Miles Reid (cf. page 218 of [18]).

The hyperplane section principle: Let B be a graded ring, and x0 ∈ B a homo-
geneous nonzero divisor of degree deg x0 > 0; set B = B/(x0). The hyperplane
section principle says that quite generally, the generators, relations and syzygies
of B reduce mod x0 to those of B.

Proposition 3.1 Let B be the semicanonical ring of X and fix an element x0 of
degree 1 in B whose divisor yields a smooth curve C ∈ |L′′|. Then the quotient
ring B = B/(x0) satisfies

B2m+1 = H0(ωL′′((m − 1)KS)), B2m = H0(OL′′(mKS)).

Proof The first assertion follows immediately from Lemma 2.4. The second
assertion is immediately verified for m = 1, while, for m ≥ 2, it follows from
the exact sequence

0 → H0(OS(mKS − L′′)) → H0(OS(mKS)) → H0(OL′′(mKS))

→ H1(OS(mKS − L′′)) → 0

and the vanishing of

h1(OS(mKS − L′′)) = h1(OS(−[(m − 2)KS + L′′ + Z])).

Here we use Serre duality plus the fact that, on a regular surface (q =
0) H1(OS(−D)) = 0 if the divisor D is effective and numerically connected
(cf. [3]). That (m − 2)KS + L′′ + Z is numerically connected can be proved
directly, but follows more easily for case IIIb when we observe that by Theorem
5.2 of [14], Z is an irreducible −2-curve. �


Let us compute the ring B for surfaces of type IIIb.
We see immediately from the previous proposition, and from Lemma 2.6 that

the quotient ring B is isomorphic to a ring of the type described in the following

Definition 3.2 Let C be a smooth hyperelliptic curve of genus 3, p ∈ C be a
Weierstraß point, and X a section of H0(OC(p)) with div(X) = p.

Consider the ring R(C, p) := ⊕
d≥0 H0(OC(p)⊗n) and define R(C, 3

2 p) as the
graded subring with

{
R(C, 3

2 p)2d := R(C, p)3d

R(C, 3
2 p)2d+1 := R(C, p)3d+1

,

and with product defined, for homogeneous elements, a and b, by ab := a ⊗ b,
unless a, b have odd degree, in which case we define ab := a ⊗ b ⊗ X.
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So, the ring B for surfaces of type IIIb being a subring of R(C, p), we need
first to describe the latter.

The ring of a Weierstraß point of a smooth hyperelliptic curve is well known
in every genus: for the convenience of the reader we state and prove here the
result in the case of genus 3.

Lemma 3.3 Let C be a hyperelliptic curve of genus 3, p ∈ C a Weierstraß point:
then R(C, p) ∼= C[X, Y, T]/(T2 − P14(X, Y)) where deg(X, Y, T) = (1, 2, 7) and
P14 is homogeneous of degree 14.

Proof Let X be a section of H0(OC(p)) with div(X) = p: the section X is an-
tiinvariant and the divisor p is invariant under the hyperelliptic involution σ ,
such that φ : C → C/σ ∼= P

1 is branched on a divisor B of degree 8.
The morphism φ is given by a basis of H0(OC(2p)), for instance let us take

X2 and a new element Y.
We have φ∗OC = O

P1 ⊕ ZO
P1(−4), where Z is an equation for the ramifica-

tion divisor of φ.
The even part of our ring is thus

⊕∞
m=0 H0(φ∗OC(m))= C[X2, Y]⊕ZC[X2, Y].

Since Z ∈ H0(OC(8p)), and X divides Z, we may write

Z = XT, T ∈ H0(OC(7p)).

Observe that X, Z being antiinvariant, then T is invariant.
Consider now H0(OC((2m + 1)p): this space splits as the direct sum of the

(±1)-eigenspaces. By looking at the behaviour at the ramification points, we
see immediately that the sections of H0(OC((2m + 1)p)+ are divisible by T, the
ones of H0(OC((2m + 1)p)− are divisible by X, thus the odd part of our ring is
TC[X2, Y] ⊕ XC[X2, Y].

It follows that our ring is C[X, Y] ⊕ TC[X, Y].
Its ring structure is easily obtained when we observe that T2 is the pull back

of the equation of the seven remaining branch points: thus we have a relation
of the form T2 = P14(X, Y) and our claim is proven. �

Proposition 3.4 Let C be a hyperelliptic curve of genus 3, p ∈ C be a Weier-
straß point. Then R(C, 3

2 p) ∼= C[x, y, z, w, v, u]/I, where deg(x, y, z, w, v, u) =
(1, 2, 3, 4, 5, 6) and the ideal I is generated by the 4 × 4 Pfaffians of the antisym-
metric ‘extrasymmetric’ 6 × 6 matrix

M =













0 0 z v y x

0 w u z y

0 P̃9 u v

0 w2 zw

0 0

−sym 0













,

where P̃9 is a homogeneous polynomial of degree 9 in the variables x, y, z, w.
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Proof Observe preliminarly that by our definition of R(C, 3
2 p), X and T lie in

the ring, but Y does not. However XY, YT, Y2, Y3 lie in the ring.
It is easy to verify that the following 6 elements

x = X y = XY z = Y2

w = Y3 v = T u = YT

generate R(C, 3
2 p); note that, by the definition of the above six elements, the

2 × 2 minors of the matrix (
x y z v
y z w u

)

(1)

belong to the ideal I of relations (beware: the product is taken in the ring
R(C, 3

2 p)).
The other relations for these generators come from the equation T2 − P14;

we note that the coefficient of Y7 in the polynomial P14 of Lemma 3.3 cannot
vanish (or the eight branch points of the hyperelliptic map φ would not be
distinct), and therefore we can assume w.l.o.g. that this coefficient is 1. We write
then the relation as T2 − Y7 − XP13. Let P̃9 be a homogeneous polynomial of
degree 9 in the variables (x, y, z, w) such that P̃9(X, XY, Y2, Y3) = P13(X, Y)
(we checked that it exists and is uniquely determined modulo the 2 × 2 minors
of the matrix (1)).

The relation T2 − P14 is a relation in degree 14 in R(C, p), and R(C, p)14 is
not contained in the subring R(C, 3

2 p): but multiplying it by suitable monomials
we obtain the following relations

XT2 − XY7 − X2P13(X, Y) in degree 15

YT2 − Y8 − XYP13(X, Y) in degree 16

Y2T2 − Y9 − XY2P13(X, Y) in degree 18,

which can be rewritten as polynomials in the variables x, y, z, w, v, u (uniquely
determined modulo the 2 × 2 minors of (1)) as

v2 − z2w − xP̃9 in degree 10

vu − zw2 − yP̃9 in degree 11

u2 − w3 − zP̃9 in degree 12.

The ideal I generated by these three last equations and the 2 × 2 minors of
(1) is the ideal of the 4 × 4 Pfaffians of the matrix in the statement.

That there are no other relations follows since the Hilbert function of
R(C, 3

2 p) is equal to the one of C[x, y, z, w, v, u]/I. �
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4 The family of deformations

The hyperplane section principle gives a strategy to reconstruct the ring B for
every surface of type IIIb: take C a smooth element of the pencil |L′′| and x0
corresponding section, the ‘hyperplane section’ quotient B = B/(x0) equals the
ring R(C, 3

2 p) of Proposition 3.4.
B is obtained from R(C, 3

2 p) by adding the generator x0 and deforming the
9 equations, adding suitable multiples of x0 in such a way that all the syzygies
also deform.

To compute all possible ‘extensions’ as above is in general very difficult. For
these problems it is in general useful to use a ‘flexible format’ (i.e., with free
parameters) as the one we are going to recall.

The extrasymmetric format. Let A be a polynomial ring.
An antisymmetric matrix M is defined to be extrasymmetric in [19], remark

6.6, if it has the form













0 a b c d e

0 f g h d

0 i pg pc

0 qf qb

0 pqa

−sym 0













for suitable elements a, b, c, d, e, f , g, h, i, p, q ∈ A. For example, if p = q = 1
and a, b, c, d, e, f , g, h, i are general linear forms in P

8, we get the ideal of the
Segre embedding P

2 × P
2 ↪→ P

8 mentioned in the introduction.
The ideal I generated by the fifteen 4×4 Pfaffians of an antisymmetric extra-

symmetric matrix is in fact generated by 9 of them; moreover, if the entries are
general enough, this Pfaffian ideal has exactly 16 independent syzygies, which
can all be explicitly written as functions of the entries of the matrix (the compu-
tation is done in [18] in a slightly more special case, and it extends to this more
general case).

This implies that, if we have a ring that can be written in this form, and the
ring has no further syzygies (except the 16 we know), deforming the entries of
the matrix (preserving the symmetries) we get at the same time a deformation
of the ideal and a deformation of the syzygies (i.e. a flat deformation).

The first example of a ring presented through the 4 × 4 Pfaffians of an
antisymmetric extrasymmetric matrix was produced by D. Dicks and M. Reid
in [17]. This more general form appeared in [19]; see also [2] for another appli-
cation of it. M. Reid has recently found a further generalisation (seen by the
authors at a conference in Utrecht in june 2004) which we do not explain here
since we do not need it for our present purposes.

In Proposition 3.4 we wrote the ring R(C, 3
2 p) = B in extrasymmetric format;

therefore, if we add a variable x0 in degree 1 and lift M to a matrix N that
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is still antisymmetric and extrasymmetric, its Pfaffians should define a surface
of type IIIb.

Note that, since the format is not complete in the sense of Kodaira-Spencer
and Kuranishi, the family which we write may be (and in fact is) smaller than
the whole family of surfaces of type IIIb.

We add then the variable x0 and rename the old variable x by x1.

Theorem 4.1 Consider the ring C[x0, x1, y, z, w, v, u] with variables of respective
degrees (1, 1, 2, 3, 4, 5, 6).

Consider an antisymmetric extrasymmetric matrix

M′ =











0 0 z v y x1
0 w u P3 y

0 P9 u v
0 wP4 zP4

0 0
−sym 0











.

where the Pi are homogeneous polynomials of degree i in the first 5 variables of
the ring, and let J be the ideal generated by the 4 × 4 Pfaffians of M.

Then, for general choice of the polynomials Pi, C[x0, x1, y, z, w, v, u]/J is the
semi-canonical ring of a surface of type IIIb.

We obtain in this way a family of codimension 2 (and therefore of dimension
36) in the stratum of the moduli space of surfaces with pg = 4, K2 = 6 correspond-
ing to surfaces of type IIIb.

Proof J defines a subvariety X in P(1, 1, 2, 3, 4, 5, 6).
We first show that, for general choice of P3, P4 and P9, X has only rational

double points as singularities.
We denote by V the threefold (containing X) defined by the 2 × 2 minors of

the submatrix of M′

B =
(

z v y x1
w u P3 y

)

.

Since the condition of having rational double points is well known to be
open, it is sufficient to consider the case P3 = z.

V is a cone over a quasismooth scroll in P(1, 2, 3, 4, 5, 6) (observe that the
variable x0 does not appear)): it is therefore quasismooth outside the vertex
p0 := (1, 0, 0, 0, 0, 0, 0).

X is defined in V by the remaining three equations

v2 = z2P4 + x1P9

vu = zwP4 + yP9

u2 = w2P4 + zP9.
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The three above equations describe (as we vary P4 and P9) an open set of a
linear system of Weil divisors on V without other base points than p0; by Ber-
tini’s theorem, for general choice of the coefficients of P4 and P9 the surface X
is quasismooth outside p0. We claim that the singular points other than p0 must
satisfy x0 = x1 = 0: in fact if, say, x1 �= 0, we may set x1 = 1 and smoothness
follows from quasismoothness.

If x0 = x1 = 0 the equations of V force y = z = 0, and consequently by the first
of the above further three equations we get the vanishing of the coordinate v.

We are left with at most two nonzero coordinates, u and w, but consider the
last equation (u2 = · · · ): for general P4 we have (up to a rescaling) P4 = w+· · · ,
thus we get only one point, exactly the point (0, 0, 0, 0, 1, 0, 1).

This point is in fact a singular point of the ambient space, since the C
∗ action

has in the corresponding point in C
7 a nontrivial stabilizer ∼= Z/2Z. Therefore

in this point X has an isolated singularity locally isomorphic to the quotient of
a smooth surface by a Z/2Z action: in other words, a singular point of type A1.

We are left with the vertex p0 of the cone V. This point is smooth for the
ambient space P(1, 1, 2, 3, 4, 5, 6): we set {x0 = 1} and work in affine coordinates.

For general choice of the coefficients P9 is invertible at p0: since all other
entries of M do vanish in p0 we get that all equations vanish in p0 and only the
Pfaffians including P9 are smooth in it.

We get that the Zariski tangent space of X at p0 has dimension 3, and more
precisely it is {x1 = y = z = 0}. We eliminate then (we have set {x0 = 1}) x1, y
and z. We obtain the equation wv = P−1

9 u(u2 − w2P4): a rational double point
of type A2.

We have thus shown that, for general choice of the coefficients, X has only
rational double points as singularities.

The projection from V to the quadric cone P(1, 1, 2) given by the first three
variables x0, x1, y has P

1 as general fibre: for x1 �= 0 the equations of V can be
explicitly solved, and yield z = y2/x1, w = y3/x2

1.
The remaining three equations cut clearly two points on the general P

1 fibre
of the projection to P(1, 1, 2): therefore the induced map X → P(1, 1, 2) has
degree 2.

We have the following recipe to obtain the branch curve:

• start with the polynomial z2P4 + x1P9;
• substitute z �→ y2/x1;
• substitute w �→ y3/x2

1;
• multiply the result by x4

1.

What we get is a polynomial (in fact in the last step we get rid of the denomi-
nators) of degree 14 in the variables x0, x1, y (remember that we have assumed
v, u not to appear in P9), therefore the branch curve is a general curve of degree
14 in P(1, 1, 2) contained in the ideal (y7, x1y6, x2

1y4, x3
1y3, x4

1y2, x5
1); these curves

form a linear system on P(1, 1, 2) with base point (1, 0, 0). Its general element
has a point of multiplicity 5 in (1, 0, 0) and is smooth elsewhere.
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We blow up the point (1, 0, 0), take the complete transform and remove 4
times the exceptional divisor. Then we get a triple point with tangent cone three
times the direction of the exceptional divisor.

Blowing up again and removing the new exceptional divisor twice from the
complete transform of the branch curve, we then obtain a 4-tuple point with (in
general) three different tangent directions: after a last blow up we remain with
at most non essential singularities.

Summarizing, our branch curve of degree 14 has a 5-tuple point in (1, 0, 0)
with an infinitely near (3, 3)-point; by [14], thm. 5.2., the desingularisation of X
is a surface of type IIIb.

In order to count the number of moduli of this subfamily of surfaces of type
IIIb, we observe that the two singular points are infinitely near (one condition),
the ‘infinitely near’ triple point is in the direction of the exceptional divisor (one
condition).

Moreover, we have the further condition that the coefficient of the mono-
mial yx4

1 (in the equation of the branch curve) vanishes: in fact a straightforward
computation shows that the two first conditions force the equation of the branch
curve to be only in the ideal

(y7, x1y6, x2
1y4, x3

1y3, x4
1y2, yx4

1, x5
1).

Under the assumption that P3 = z, we have a 38−3 = 35 dimensional family
of surfaces of type IIIb; in general we can (by row and column operations plus
change of coordinates of the form z �→ z + · · · ) only assume P3 = z + λx3

0. The
projection on P(1, 1, 2) has clearly still degree 2 and we have a similar recipe
for computing the branch curve. We still have a curve as described in Theorem
2.7, still the two base points are infinitely near, but the singular point can have
multiplicity 4 (instead of 5), so are not in the subfamily and the dimension of
the whole family is one more, i.e., 36. �

Remark 4.2 In the previous proof, to show that the general surface in our 36-
dimensional family has only rational double points as singularities, we showed
that the general surface in a subfamily of codimension 1 given by the assump-
tion P3 = z has at most a A1 singularity in x0 = x1 = 0, and a further singularity
of type A2.

For the general case we will always find a A1 singularity in x0 = x1 = 0,
since we know that the semicanonical pencil has a singular base point. The
other singularity is only a consequence of the assumption P3 = z and disappear
for a general choice of the Pi as for example (MAGMA code provided by the
referee)

P3 = z + x3
0 P4 = w + 4y2 + x0x3

1

P9 = x9
0 + 3x2

0x7
1 + x9

1 + x1y4.

Remark 4.3 It is clear from the previous proof that the above family given by
the Pfaffians of M′ (having dimension 36, cf. 4.1) is a proper subfamily of the
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37-dimensional family of surfaces of type IIIb, such that the two essential sin-
gularities of the branch curve of the canonical double cover are infinitely near
(cf. [14]). We do not have any geometric characterization for this subfamily.

We also do not know whether there is a larger family of surfaces of type IIIb
which deform to surfaces of type II.

Theorem 4.4 Let (x0, x1, y, z, w, v, u) be variables of respective degrees (1, 1, 2, 3,
4, 5, 6). Let M be the 6 × 6 antisymmetric matrix

M =











0 t z v y x1
0 w u P3 y

0 P9 u v
0 wP4 zP4

0 tP4
−sym 0











.

where the Pi’s are homogeneous polynomials of degree i in the above variables
and t is the parameter on a small disk �ε ⊂ C.

For general choice of P3, P4 and P9 the 4 × 4 Pfaffians of M define a variety
X ⊂ �ε × P(1, 1, 2, 3, 4, 5, 6) whose projection on �ε is flat, with central fibre a
surface of type IIIb and with general fibre a surface of type II.

Proof The flatness of the above family (for general entries) follows directly
from the flexibility of the format. For t = 0 the above matrix equals the matrix
M′ in thm. 4.1.

Assume now that t �= 0.
Note that the Pfaffians Pf1235 and Pf1236 are of the form tu − · · · and tv −

· · · , and that for a general choice of P4, the Pfaffian Pf1256 can be written
as t2w − .... Therefore, for t �= 0, we can eliminate the variables u, v, w, and
R ∼= C[x0, x1, y, z]/J for a suitable ideal J; a straightforward calculation shows
that J is a principal ideal generated by the equation obtained from Pf1234 after
eliminating the variables u, v, w using Pf1235, Pf1236 and Pf1256.

This is a polynomial of degree 9, so the surface is birational to a hypersurface
of degree 9 in P(1, 1, 2, 3), whence we obtain a surface of type II. �


Our main theorem (0.1) follows right away from the above. The referee has
observed that, if you take the three quantities P3, P4 and P9 in theorem 4.4 as
independent variables, you get a parametrized families of Fano 5-folds defining
a small deformation of a Fano of index 18 [containing a surface of type IIIb as
a complete intersection of degree (3, 4, 9)] to a hypersurface of degree 9.
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