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Abstract. The Ruelle Sullivan map for an R
n-action on a compact metric space with invariant

probability measure is a graded homomorphism between the integer Cech cohomology of the
space and the exterior algebra of the dual of R

n. We investigate flows on tori to illuminate that it
detects geometrical structure of the system. For actions arising from Delone sets of finite local
complexity, the existence of canonical transversals and a formulation in terms of pattern equi-
variant functions lead to the result that the Ruelle Sullivan map is even a ring homomorphism
provided the measure is ergodic.

1. Introduction

We consider a variety of cohomology groups for a continuous R
n-action ϕ on a

compact metric space X. Among them are the Cech cohomology Ȟ (X,Z) of X
and the dynamical cohomology of the dynamical system (X, ϕ) by which we mean
the Lie-algebra cohomology H(Rn, C∞(X,R)) of R

n with coefficients in the ϕ-
smooth real functions on X. An analog of the Cech-de Rham complex provides
us with a graded ring homomorphism between the two.

Cohomology captures topological information about the dynamical system.
If we are also given an invariant Borel probability measure µ then we can cap-
ture some of the geometric structure which comes from the (euclidean) geometry
of the R

n-orbits. We do this by exploiting Ruelle-Sullivan currents associated
with sub-actions. These yield linear functionals on dynamical cohomology which
we combine into a graded homomorphism from the cohomology to the exterior
algebra of the dual R

n∗ of R
n. The Ruelle Sullivan map

τϕ,µ : Ȟ (X,Z) → �R
n∗ (1)
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is defined as the composition of the two homomorphisms. A similar group
homomorphism related to the above but between the K-group K(C(X)) and
�R

n∗ can be found in [C080].
Our aim here is to study some properties of the Ruelle-Sullivan map and to

provide interesting and computable examples which illuminate that the Ruelle-
Sullivan map detects geometrical structure. For instance, it captures the continu-
ous eigenvalues of the action (Theorem 14) and can be used to distinguish cut &
projection sets of fixed dimension and codimension, which have the same coho-
mology group but project out of geometrically different lattices (Theorem 15).

A large part of the paper is devoted to the more special class of R
n-actions aris-

ing from Delone sets of finite local complexity in R
n. In this case X = �P is the

continuous hull of such a Delone set P . This system has the particular advantage
that P also defines canonical local transversals for the R

n-action. These trans-
versals are used to define H(Rn, C∞

t lc(�P ,R)), the transversally locally constant
dynamical cohomology of �P . It arises from a subcomplex of the Lie-algebra
complex and is isomorphic to the Cech cohomology Ȟ (�P ,R) with real coeffi-
cients under the above mentionned ring homomorphism.

Two further groups, ȞP (Rn) and HP (R
n), the strongly and weakly

P -equivariant cohomology groups of R
n, are defined as cohomologies of sub-

complexes of the de Rham complex for R
n. ȞP (Rn) is a more intuitive picture of

H(Rn, C∞
t lc(�P ,R)). Theorems 20,23 contain the proof of the result announced

in [Ke03] that the (strongly)P -equivariant cohomology is isomorphic to the Cech
cohomology (with real coefficients) of the continuous hull of P . HP (Rn) is the
closure of ȞP (Rn) in an appropriate sense and is isomorphic to the dynamical
cohomology H(Rn, C∞(�P ,R)). We use techniques from differential topology
to show that the Ruelle-Sullivan map is even a ring homomorphism for ergodic
R
n-actions associated with Delone sets of finite local complexity (Theorem 26).

2. Ruelle-Sullivan currents

We consider (X, ϕ), a topological R
n-dynamical system. That is, X is a com-

pact metric space and ϕ is a continuous action of R
n on X. For each v in R

n,
ϕv : X → X is a homeomorphism of X and the map sending (x, v) to ϕv(x) is
jointly continuous. Moreover, we have ϕv ◦ ϕw = ϕv+w, for all v,w in R

n. We
also call (X, ϕ) simply an R

n-action.
We letµ be a ϕ-invariant Borel probability measure onX. Such measures exist

always [G176]. In some cases we will assume that the system is ergodic; that is,
a closed invariant set has either measure 1 or measure 0.

We letC(X) denote the algebra of continuous complex functions onX. We call
f ∈ C(X) ϕ-differentiable if, given any v ∈ R

n, the limits limt→0
f (ϕtv(x))−f (x)

t

exist for all x ∈ X and hence define a function on X. If for each v this function is
continuous then f is called continuously ϕ-differentiable. f is called ϕ−smooth
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or just smooth if it is infinitely continuously ϕ-differentiable. We let C∞(X)
denote the set of smooth functions in C(X). An easy adaptation of the usual argu-
ments involving convolution with a smooth bump function shows that C∞(X) is
uniformly dense in C(X).

More generally, if W is any finite dimensional real vector space, we let
C(X,W) denote the set of continuous W -valued functions on X. The definition
of C∞(X,W) extends easily.

We let R
n∗ denote the dual space of the vector space R

n and for v ∈ R
n and

w ∈ R
n∗, we denote the pairing by 〈v,w〉. We let�R

n∗ denote the graded exterior
algebra of R

n∗. We consider C∞(X,�R
n∗), which is also a graded ring under

point-wise wedge-product, and define d : C∞(X,R) → C∞(X,Rn∗),

df (x)(v) = lim
t→0

f (ϕtv(x))− f (x)

t
,

for v ∈ R
n and x ∈ X. This extends as usual to a differential

d : C∞(X,�k
R
n∗
) → C∞(X,�k+1

R
n∗
),

i.e. a derivation of degree one with d2 = 0. For concreteness, if {e1, . . . , en} is a
basis for R

n, we let {de1, . . . , den} denote the dual basis. Then every element of
degree k is a linear combination of elements of the form

f dei1 ∧ · · · ∧ deik ,

where f ∈ C∞(X,R) and ij ∈ {1, . . . , n}. Furthermore,

d(f dei1 ∧ · · · ∧ deik ) =
n∑

i=1

∂if dei ∧ dei1 ∧ · · · ∧ deik (2)

where ∂if (x) = limt→0
f (ϕtei (x))−f (x)

t
.

Definition 1. The Lie-algebra cohomology of R
n with values in C∞ (X,R),

H(Rn, C∞(X,R)), is the cohomology of the complex (C∞(X,�R
n∗), d). We

call it also simply the dynamical cohomology of (X, ϕ).

The product on C∞(X,�R
n∗) induces a graded ring structure on

H(Rn, C∞(X,R)). If ϕ is locally free, i.e. if for all x ∈ X there is ε such
that |v| < ε and ϕv(x) = x imply v = 0, then X is a foliated space in the sense
of [MS88] and the above definition coincides with their definition of tangential
cohomology. However we do not require the local freeness of ϕ.

We may use our invariant measure µ to define a map from this cohomology
to �R

n∗.
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Definition 2. The Ruelle-Sullivan current Cµ associated with µ is the linear map

〈Cµ, ·〉 : C∞(X,�R
n∗
) → �R

n∗
,

defined by

〈Cµ,ω〉 =
∫

X

ω(x)dµ(x).

Lemma 3. Let µ be an invariant probability measure for the action ϕ. Then

〈Cµ, dω〉 = 0,

for all ω in C∞(X,�R
n∗).

Proof. This follows from (2) together with the invariance of µ under ϕ. 	

Corollary 4. The pairing with Cµ descends to a map on cohomology,

τ̃ϕ,µ : H(Rn, C∞(X,R)) → �R
n∗
.

Remark 5. All of this section can be easily generalized to the case of an action ϕ of
an arbitrary Lie-groupG onX. Since this would be the right framework for tilings
which have finite local complexity w.r.t. a larger subgroup of the Euclidean group
than the translation group we indicate the main changes. The role of R

n∗ is played
by the dual g∗ of the Lie-algebra g of G and the definition of ϕ-differentiable is
expressed with the help of the Lie-algebra action involving the exponential map
exp : g → G. Thus the differential d : C∞(X,�kg∗) → C∞(X,�k+1g∗) is
defined by

df (x)(v) = lim
t→0

f (ϕexp tv(x))− f (x)

t
,

dw(v1, v2) = −w([v1, v2]) ,

for f ∈ C∞(X,�0g∗) and w ∈ g∗ viewed as constant smooth function in
C∞(X,�1g∗), v, v1, v2 ∈ g. Finally, the Ruelle-Sullivan current takes values
in �g∗ and satisfies 〈Cµ, dω〉 = d〈Cµ,ω〉. Hence it descends to a map on the
Lie-algebra cohomology:

τ̃ϕ,µ : H(g, C∞(X,R)) → H(g,R).

3. The Cech-cohomology and the Ruelle-Sullivan map

The purpose of this section is to construct a morphism from the Cech cohomology
Ȟ (X,Z) of X to the dynamical cohomology of (X, ϕ) and to prolong τ̃µ,ϕ to a
map τµ,ϕ : Ȟ (X,Z) → �R

n∗, the Ruelle-Sullivan map.
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We begin by fixing a open cover of X, U = {Ui}i , and a (smooth) partition of
unity ρi which is subordinate to this cover, i.e. suppρi ⊂ Ui . For i0 < i1 < · · · <
ij , we let

Ui0i1···ij = Ui0 ∩ Ui1 ∩ · · ·Uij .
We note that for any open set U , any continuous function f on U and any i, the
expression ∂if still makes sense as a function on U (assuming the limit exists)
even though the setU is not invariant under ϕ. So we define C∞(U,�R

n∗) as the
smooth functions on U taking values in �R

n∗.
We define the double complex

Kj,k(U) =
⊕

i0<i1<···<ij
C∞(Ui0i1···ij , �

k
R
n∗
),

where here and below the sum is only over i0 < i1 < · · · < ij with non-empty
Ui0i1···ij . The i0 · · · ij -component of ω ∈ Kj,k(U) is denoted by ωi0···ij . For nota-
tional purposes, we also define ωi0···ij = 0 if Ui0i1···ij = ∅, and ωσ(i0)···σ(ij ) =
sgn(σ )ωi0···ij , for any permutation σ .

The double complex has two commuting differentials, the Lie-algebra differ-
ential d : Kj,k(U) → Kj,k+1(U), defined above and the Cech differential

δ : Kj,k(U) → Kj+1,k(U),
given by

(δω)i0···ij+1 =
j+1∑

l=0

(−1)lωi0···îl ···ij+1
,

îl meaning that il is omitted.
Using the subordinate partition of unity {ρi}i we define for j > 0, h :

Kj,k(U) → Kj−1,k(U),
(hω)i0···ij−1 =

∑

i

ρiωii0···ij−1 .

Then hδ + δh = 1 and so for any k the complex (Mayer-Vietoris sequence)

0 → C∞(X,�k
R
n∗
)

r→ K0,k(U) δ→ · · ·Kj,k(U) δ→ Kj+1,k(U) · · · (3)

is exact, i.e. has trivial cohomology, where r(ω)i is the restriction of ω to Ui .
We let Č(Ui0i1···ij ,R) and Č(Ui0i1···ij ,Z) denote the functions from Ui0i1···ij to

R and Z, respectively, which are locally constant, and hence smooth. Then we set

Čj (U ,R) = ⊕
i0<i1<···<ij Č(Ui0i1···ij ,R),

Čj (U ,Z) = ⊕
i0<i1<···<ij Č(Ui0i1···ij ,Z).
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It is clear that we have

Čj (U ,Z) ⊂ Čj (U ,R) ⊂ Kj,0(U),
and together with the map δ, these form subcomplexes. We let i denote the
inclusion of either of the first two in the last. The cohomology (in δ) of the subcom-
plexes no longer vanishes, because the corresponding maps h involve functions
(the ρi) which are not locally constant. Then, Ȟ (U ,R) and Ȟ (U ,Z) are the Cech
cohomologies of the covering U with coefficients in R and Z, respectively. For
notational convenience, we will use Čj (U) and Ȟ (U) to denote either of Čj (U ,R)
or Čj (U ,Z) and the corresponding cohomology.
Ȟ (U) carries a graded ring structure [BT82]. The product is induced from the

map Čj (U)× Čk(U) → Čj+k(U), (ω, ω′) �→ ω · ω′,

(ω · ω′)i0···ij+k = (−1)jkωi0···ij ∧ ω′
ij+1···ij+k .

It is useful to have the following special case in mind. Ifϕ is a free R
n-action and

X consists of a single orbit then the action induces onX the structure of a differen-
tiable manifold and the Lie-algebra cohomology with coefficients in C∞(X,R)
agrees with its de Rham cohomology. The above double-complex is then the
Cech-de Rham double complex used to construct a ring homomorphism between
the Cech cohomology of X and its de Rham cohomology [BT82]. When Cech
cohomology with real coefficients is considered this homomorphism becomes an
isomorphism.

In our more general situation the same approach yields a ring homomorphism
between the Cech cohomology ofX and the dynamical cohomology of (X, ϕ), but
it won’t, in general, become an isomorphism when real coefficients are consid-
ered. This is the next result, whose proof goes exactly as in the de Rham theorem
[BT82]. Note that h maps Kj,k(U) to Kj−1,k(U), while d maps Kj−1,k(U) to
kj−1,k+1(U). Hence, (dh)n will map Kn,0(U) to K0,n(U), for all n ≥ 0.

Theorem 6. The maps

(−1)j r−1(dh)j i : Čj (U) → C∞(X,�j
R
n∗
),

induce a graded ring homomorphism

θϕ,U : Ȟ (U) → H(Rn, C∞(X,R)),

with coefficients either Z or R in the Cech cohomology.

Recall that an open cover U ′ is a refinement of U , if there is a map α : U ′ → U
such that U ⊂ α(U). Such a map induces a map at the level of cohomology
Ȟ (U) → Ȟ (U ′) which is independent of the choice of α. The Cech cohomol-
ogy of X, Ȟ (X) is defined to be the inductive limit of the groups Ȟ (U) over all
open covers U of X. The morphisms θϕ,U furnish a graded ring homomorphism
θϕ : Ȟ (X) → H(Rn, C∞(X,R)), with coefficients either Z or R in the Cech
cohomology.
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Definition 7. Let (X, ϕ) be an R
n-action with ϕ-invariant measure µ. The

Ruelle-Sullivan map τϕ,µ : Ȟ (X,Z) → �R
n∗ is defined by

τϕ,µ(a) = 〈Cµ, θϕ(a)〉.
In particular, if a is represented as an element of Ȟ (U ,Z), where U is an open

cover of X, then τϕ,µ(a) = 〈Cµ, θϕ,U (a)〉.
The Ruelle-Sullivan map does not have to be injective. But it contains infor-

mation coming from an invariant measure and therefore about the (euclidean)
geometry of the orbits. The philosophy is that Cech cohomology together with
the Ruelle-Sullivan map will furnish a better invariant for R

n-actions than just
Cech cohomology alone.

Clearly, the Ruelle-Sullivan map is a graded homomorphism of groups. We
will discuss in Section 6.1 a large class of examples for which it is even a graded
ring homomorphism.

Remark 8. Let us comment on the terminology. This is really just for motivation,
so we will not go into any details. Given a foliation and a transverse invariant
measure, Ruelle and Sullivan constructed a current, usually called the Ruelle-
Sullivan current. In our situation we have an action rather than just a foliation
but if the action is locally free this yields a foliated space, in the sense of Moore
and Schochet [MS88]. However, we have much more. If one selects a linearly
independent set of k vectors, one can define an action of R

k by restricting the
flow to the linear span of the vectors. Any invariant measure for the R

n-action
can be used to give an invariant measure for this action. Associated to this is a
Ruelle-Sullivan current which yields a map from the cohomology of X to the
real numbers. If one fixes the cohomology class and considers the set of vectors
to vary, this is an element of degree k in the exterior algebra of R

n∗. Hence, the
Ruelle-Sullivan construction can be viewed as giving map from the cohomology
to the exterior algebra of R

n∗. This is our Ruelle-Sullivan map.

Remark 9. Also the double complex generalises to the case of an arbitrary Lie-
group action on X. As a result one gets a Ruelle-Sullivan map

τϕ,µ : Ȟ (X,Z) → H(g,R).

Remark 10. Connes presents in [C080] a similar group homomorphism in non-
commutative geometry. He starts with a Lie-group G action on a C∗-algebra A
with invariant trace tr to construct a group homomorphism from the K-group of
A to the cohomology of the Lie-algebra,

Chtr : Ki(A) →
⊕

k

H i+2k(g,R).

When A = C(X) with trace induced from an invariant measure µ and rational
coefficients are considered, Connes’construction specialises to the one considered
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above; Chtr factors through the Chern character identifying K(C(X))⊗ Q with
Ȟ (X,Q). The question when this identification can be made even over integer
coefficients is a lot harder.

Coming back to G = R
n where the Connes-Thom isomorphism yields

Ki (C(X)) ∼= Ki−n(C(X)�ϕR
n) the components of the Ruelle Sullivan map may

be also be related to functionals on K(C(X) �ϕ R
n) which arise from pairings

with certain cyclic cocycles of C∞(X)�ϕ R
n [C94]. We do not elaborate on that

apart from mentionning that for a minimal, uniquely ergodic dynamical system
(X, ϕ) whose action is locally free and such that X has a totally disconnected
transversal we have, at least if Ȟ (X,Z) is torsion free, that K0(C(X)�ϕ R

n) ∼=⊕
k Ȟ

n+2k(X,Z) [FH99] and the state onK0(C(X)�ϕR
n) defined by the unique

measure on X coincides when restricted to Ȟ n(X,Z) with the restriction of τϕ,µ
to Ȟ n(X,Z). For these systems the Ruelle-Sullivan map is therefore an extension
of the gap-labelling.

We end this section with two results which will be useful for our computations.

Proposition 11. Let (X, ϕ) and (Y, ψ) be R
n-actions with invariant measures µ

and ν, respectively. Suppose that

η : X → Y

is a continuous function which is measure preserving and equivariant; i.e. ν =
µ ◦ η−1 and ψv ◦ η = η ◦ ϕv, for all v in R

n. Then

Ȟ ∗(Y,Z)
τψ,ν−−−→ �R

n∗

η∗
�

�=

Ȟ ∗(X,Z)
τϕ,µ−−−→ �R

n∗

is a commutative diagram.

Proof. This is a straightforward substitution in the integral. 	

We also want to understand how our map is affected by linear reparametriza-

tions of the flow.

Proposition 12. Let (X, ϕ) be an R
M -action andA : R

n → R
M be a linear map.

Define an R
n action, ψ , on X by ψv = ϕAv. Then

Ȟ (X,Z)
τϕ,µ−−−→ �R

M∗

=
�

��A∗

Ȟ (X,Z)
τψ,µ−−−→ �R

n∗

is a commutative diagram where �A∗ denotes the extension of the dual map
A∗ : R

M∗ → R
n∗ to the exterior algebras.
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Proof. For clarity we denote the differentials by dϕ and dψ . Let v ∈ R
M . Then by

(2) 〈v,A∗dϕf 〉 = 〈Av, dϕf 〉 = 〈v, dψf 〉. Hence A∗dϕf = dψf which implies
θ
j

ψ = �jA∗θjϕ and therefore τψ,µ = �A∗τϕ,µ. 	


4. Flows on tori

We discuss a variety of examples which are all related to flows on tori.
Let� denote a regular lattice in R

M ; that is,� is a cocompact discrete subgroup
of R

M . We consider the torusX� = R
M/� with q : R

M → X� the quotient map.
Let A : R

n → R
M be a linear map. We define

ϕAv (q(x)) = ϕAv(q(x)), ϕv(q(x)) = q(x + v) (4)

for all x in R
M and v in R

n. This is our basic dynamical system. We call it the
flow on the torus defined by (A, �). If it has one dense orbit then it is minimal
and uniquely ergodic, the measure being the normalised Lebesgue measure. If
the system is not minimal there are other invariant measures. We note that ϕA

is locally free whenever A is injective. In that case we may call it a generalized
Kronecker flow.

Of course, for all choices of A and �, Ȟ (X�,Z) is isomorphic as a graded
ring to the exterior ring �Z

M . What we are after here is the image of the Ruelle-
Sullivan map, which will, as it contains geometrical data, distinguish between
different choices for � and A.

Theorem 13. Consider the flow on the torus defined by (A, �) as above. Let µ
be the normalised Lebesque measure on X�. The corresponding Ruelle-Sullivan
map is a surjective graded ring homomorphism from Ȟ (X�,Z) onto �(A∗�∗).
Here A∗ is the dual of A and �∗ the dual (or reciprocal) lattice. If the restriction
of A∗ to �∗ is injective then the Ruelle-Sullivan map is also injective.

Proof. We begin with the case that n = M , A = id, the identity, and � = Z
M the

standard cubic lattice generated by an orthonormal basis {ei}i . Then the generators
of θϕ(Ȟ (XZM ,Z)) have representatives given by forms of the type dxi1 ∧· · ·∧dxik
and we see immediately that the latter has image under the Ruelle-Sullivan map
dei1 ∧ · · · ∧ deik . Hence the Ruelle-Sullivan map is a graded ring isomorphism
between Ȟ (XZM ,Z) and �Z

M∗
.

Next we consider the case � = Z
M but general A which yields by Proposi-

tion 12 that the Ruelle-Sullivan map is a surjective graded ring homomorphism
between Ȟ (XZM ,Z) and �A∗

Z
M∗

.
Finally we consider the case that � = BZ

M for some invertible matrix B and
general A. Hence B : R

M → R
M induces a map XZM → X� intertwining the

action ϕA with ϕBA. From Proposition 11 it follows that the Ruelle-Sullivan map
is a surjective graded ring homomorphism between Ȟ (X�,Z) and�(A∗B∗

Z
M∗
).

B∗
Z
M∗ = �∗ is the dual lattice.
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If the restriction of A∗ to �∗ is injective then, by multiplicativity, this is also
the case for the restriction of �A∗ to ��∗. This implies by Proposition 12 the
injectivity of τϕ,µ. 	


4.1. Eigenvalues of minimal actions

We consider the above example but in the extreme case that n ≥ M = 1, � = Z,
and A is surjective. We look at XZ

∼= S1 as the unit circle in the complex plane.
There is a non-zero vector w in R

n∗ such that Av = 〈v,w〉. The R
n-action on the

complex unit circle is thus given by

ψv(z) = e2πi〈v,w〉z, (5)

for v in R
n, and z in S1. Lebesgue measure on the circle is the unique invari-

ant probability measure for this action. By Theorem 13 the Ruelle Sullivan map
identifies the generator of Ȟ 1(S1,Z) ∼= Z with w.

Now let ϕ be a minimal action of R
n on a compact space X with invariant

probability measure µ. An element w ∈ R
n∗ is called a continuous eigenvalue of

the action if there is a continuous non-zero function f : X → C such that

f ◦ ϕv = e2πi〈v,w〉f,

for all v in R
n. Solomyak characterises the continuous eigenvalues of a minimal

R
n-action on a compact metric space (X, ϕ) with the help of its metric D as fol-

lows [So98]: For δ > 0, x ∈ X let �δ(x) = {v ∈ R
n|D(ϕv(x), x) < δ}. Then w

is a continuous eigenvalue if and only if for some x ∈ X

lim
δ→0

sup
v∈�δ(x)

|e2πi〈v,w〉 − 1| = 0.

Theorem 14. Let ϕ be a minimal action of R
n on a compact metric space X with

invariant measure µ. τϕ,µȞ 1(X,Z) contains all continuous eigenvalues of ϕ.

Proof. Let w be a continuous eigenvalue with corresponding function f . By
rescaling f we may assume it has absolute value 1 at some point. From the eigen-
value condition, the set of points where it has absolute value 1 is ϕ-invariant,
and since the flow is minimal, this must be all of X. The map f provides an
R
n-equivariant map fromX toS1, the latter with action as given in (5). ν = µ◦f −1

is hence the normalised Lebegue measure on S1. Applying Proposition 11 with
η = f one obtains τϕ,µ(Ȟ 1(X,Z)) ⊃ τψ,ν(Ȟ

1(S1,Z)) = Zw. 	
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4.2. Cut & project sets: window independent cohomological information

We now consider cut & project sets which also come under the name projection
point patterns or model sets. We restrict to the case in which the internal space is
a real vector space. We will see that part of their cohomology is determined by a
generalised Kronecker flow on a torus.

Consider a decomposition of R
M into two orthogonal subspaces E and E⊥

and a regular lattice � ⊂ R
M . Denoting π the orthogonal projection onto E and

π⊥ its orthogonal complement we suppose that the restriction of π to � is injec-
tive, i.e. E⊥ ∩ � = {0}, and that π⊥(�) is dense in E⊥. These data (E,E⊥, �)
constitute a cut & project scheme as in [Mo97]. Identifying the dual of E and
E⊥ (as abelian groups) with E and E⊥, respectively, the data (E⊥, E, �∗) define
the dual cut & project scheme. Indeed, the restriction of π to � being injective
implies denseness of π⊥(�∗), and denseness of π⊥(�) implies that the restriction
of π to �∗ is injective [Mo97].

To construct a so-called cut & project set inE one is also given subsetK ⊂ E⊥

which is compact and the closure of its interior. Then

PK = {π(γ )|γ ∈ �, π⊥(γ ) ∈ K}

is called the cut & project set with window K . PK and K are called non-singular
if π⊥(�) ∩ ∂K = ∅.

As we will describe in the next section in more detail, PK defines an R
n-action

on a topological space �PK , called the hull of PK . For non-singular PK , the hull
has the form �PK = (E ⊕ E⊥

c )/� where E⊥
c is the cut up internal space. It is

obtained from E⊥ by disconnecting it along all points of ∂K +π⊥(�). Although
the latter is a dense set, the resulting surjection η : E⊥

c → E⊥ is almost one-
to-one. The R

n-action on �PK which is induced from the translation of PK in
R
n (see Section 5) is here simply given by ψv(q̃(x, y)) = q̃(x + v, y) where

q̃ : E ⊕ E⊥
c → (E ⊕ E⊥

c )/� is the canonical projection. η induces an almost
one-to-one surjection η : �PK → X� = R

M/� interwining ψ with the flow
associated to (A, �) where, in the notation above, R

n = E and A is the inclusion
map E ⊂ R

M . The generalised Kronecker flow is minimal and uniquely ergodic
and the uniquely ergodic measure on �PK is the pull back of the measure on the
Kronecker flow under η [FHK02].

Our aim is to study here the part of the cohomology which does not depend
on the cuts but only on the cut & projection scheme. This is, more precisely, the
image of η∗ : Ȟ (X�,Z) → Ȟ (�PK ,Z).

Theorem 15. Consider a cut & project set as above. Then the Ruelle-Sullivan
map associated with its R

n-action restricts to a graded ring isomorphism between
η∗(Ȟ (X�,Z)) and �π(�∗).
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Proof. Application of Proposition 11 reduces the system to the Kronecker flow
associated to (A, �) where A is the inclusion E ⊂ R

M . Now the dual of A is pre-
cisely the projection π whose restriction to �∗ is injective. The statement follows
therefore from Theorem 13. 	


If also the restriction of π⊥ to � is injective, i.e. E ∩� = {0}, then PK has no
periods, and vice versa. This is also equivalent to the denseness of π(�∗) [Mo97].
We are thus led to the following conjecture. The definition of a Delone set of finite
local complexity will be given in the next section.

Conjecture 16. Let P be a Delone set of finite local complexity. Suppose that its

associated R
n-action is minimal and uniquely ergodic. Then R

n∗/τϕ,µȞ 1(�P ,Z)

is the dual group of the reciprocal lattice of the lattice of periods of P .

5. Transversally locally constant forms and hulls of aperiodic systems

We now turn to the issue of a de Rham type isomorphism. We mentionned that the
dynamical cohomology of (X, ϕ) coincides with the usual de Rham cohomology
in the case that X consists only of one orbit and ϕ is locally free. In this case the
de Rham theorem applies which states that when real coefficients are considered
the homomorphism θϕ of Theorem 6 becomes an isomorphism for good covers.
This cannot be expected for the general case. Our main applications are to the
study of aperiodic order and more specifically aperiodic tilings or point patterns
of Euclidean space. In that case we will describe the appropriate refinement of
dynamical cohomology which is needed to obtain an isomorphism.

We find it most convenient to work in the context of Delone sets but, as is well
known, we could equally well talk about tilings. Recall that a set P in R

n is a
Delone set if there are positive constants rP , RP such that

1. P is rP -discrete, i.e. for all x �= y in P , |x − y| ≥ rP , and
2. for all x in R, there is y in P with |x − y| ≤ RP .

We say that P is aperiodic if, for any x in R
n, P + x = P holds only if

x = 0. Finally, P has finite local complexity if, for any fixed R, the number of
sets (P − x) ∩ B(0, R), for x in P , is finite. Here B(x,R) is the (open) ball of
radius R around x. All Delone sets considered in this article are assumed to have
finite local complexity. It is worth stating that the proper notion of finite local
complexity is relative to a subgroup of the isometry group of R

n. Here, we are
implicitly using the subgroup of translations. When more general sub-Lie-groups
of the isometry group are considered the generalisations indicated in Remarks 5,9
have to be taken into account.
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The hull associated withP , denoted by�P , is a compact metric space obtained
by completion of the set of all translations of P , {P + x | x ∈ R

n}, in the metric

D(P, P ′) = inf{ε | ∃x, x ′ ∈ B(0, ε
2
) : (P − x) ∩ B(0, ε−1)

= (P ′ − x ′) ∩ B(0, ε−1)}.
The elements of �P can all be interpreted as Delone sets. The natural transla-
tion of Delone sets in R

n extends to an action of R
n on �P . This is our action:

ϕv(P
′) = P ′ − v, for P ′ in �P and v in R

n.
A fair amount is now known about the structure of such spaces. One particu-

larly interesting feature is that the space possesses canonical local transversals to
the action of R

n. For each P ′ in �P and 0 < ε < R−1
P we define

TP ′,ε = {P ′′ ∈ �P | P ′′ ∩ B(0, ε−1) = P ′ ∩ B(0, ε−1)}.
These closed sets are transversal in the sense that P ′′ ∈ TP ′,ε implies ϕv(P ′′) /∈
TP ′,ε if 0 �= |v| < rP

2 .

Definition 17. A function f defined on �P is transversally locally constant if,
for every P ′ in �, there is 0 < ε < R−1

P such that f is constant on TP ′,ε .
C∞
t lc(�P ,�R

n∗) denotes the transversally locally constant functions in C∞(�P ,
�R

n∗). The Lie-algebra cohomologyH(Rn, C∞
t lc(�P ,R)) of R

n with coefficients
in C∞

t lc (�P ,�R
n∗) will also be called the transversally locally constant dynam-

ical cohomology of �P .

For any open cover U of�P and j, k ≥ 0, we defineKj,k

tlc (U) to be those elements
ofKj,k(U)which are transversally locally constant. It is clear from the definitions
that Ktlc(U) forms a sub-complex of the double complex K(U).

In our case, there are natural choices for the open covers U . We let V be an
open subset of R

n and

TP ′,ε,V = {P ′′ + v : P ′′ ∈ TP ′,ε, v ∈ V }.
Given any R > 0 the sets of the form TP ′,ε,B(x,r) with x ∈ R

n and r ≤ R generate
the topology of �P .

Lemma 18. Čj (U ,R) is contained inKj,0
t lc (U) and coincides with the kernel of d

on Kj,0
t lc (U).

Proof. Let V = B(x, r) with r < rP
2 . Then TP ′,ε,V is diffeomorphic to TP ′,ε ×V ,

the diffeomorphism’s inverse being (P ′, v) �→ P ′ +v (here the smoothness of the
diffeomorphism should be understood w.r.t. ϕ-differentiability, in the transverse
direction only continuity is required). Under this diffeomorphism a transversally
locally constant function is constant in the second coordinate and the differential
d becomes the identity times the exterior derivative on R

n. Since the topology
is generated by the above sets the lemma is thus a direct consequence of the
definition of transversally locally constant. 	
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Lemma 19. Let U be a covering by sets TP ′,ε,V with convex V of diameter less
than rP

4 . Then the complexes

K
j,0
t lc (U)

d→ K
j,1
t lc (U)

d→ K
j,2
t lc (U)

d→ · · ·

are acyclic. That is, their cohomology vanishes except in degree zero.

Proof. As usual, the result follows once we have found a contracting homotopy
h̃ : Kj,k→Kj,k−1, h̃d + dh̃ = 1, for k ≥ 1.

For that we need to make sure that the covering is good in the sense that
finite intersections of the type

⋂
i TPi ,εi ,Vi have contractible leaves. Consider pairs

(S, U) where S is a discrete subset of an open set U ⊂ R
n. Let TS,U = {P ′ ∈

�P : P ′ ∩ U = S} and TS,U,V = TS,U + V .Then

TS,U ∩ TS′,U ′ =
{
TS∪S′,U∪U ′ if U ∩ S ′ ⊂ S and U ′ ∩ S ⊂ S ′

∅ otherwise

and TS,U + v = TS+v,U+v. Using these rules one finds

TS,U,V ∩ TS′,U ′,V ′ =
⋃

v∈V

⋃

w∈V ′−v
T (w)+ v

where

T (w) =





TS∪(S′+w),U∪(U ′+w) if U ∩ (S ′ + w) ⊂ S

and (U ′ + w) ∩ S ⊂ (S ′ + w),

∅ otherwise.

If the diameter of V and V ′ is smaller than rP
4 then |w| < rP

2 so that, by the
rP -discreteness of P , T (w) �= ∅ for at most one w. For such a w we thus have
TS,U,V ∩ TS′,U ′,V ′ = TS∪(S′+w),U∪(U ′+w),V∩(V ′−w). We see that V ∩ (V ′ − w) is
convex and hence contractible. Finite intersections

⋂
i TPi ,εi ,Vi fall in the above

framework and are thus empty or of the form TS,U,V for some S,U, V with con-
tractible V of diameter smaller than r

2 .
In particular, as in the proof of Lemma 18,

⋂
i TPi ,εi ,Vi = TS,U,V is diffeo-

morphic to the Cartesian product TS,U × V . Taking therefore in these product
coordinates h̃ = 1 × H , where H is the standard contracting homotopy on R

n

[AM85], we obtain a map which preserves transversally locally constant functions
and satisfies h̃d + dh̃ = 1 × (H d̃ + d̃H) = 1 (here d̃ is the exterior derivative
on R

n). 	


The following theorem follows now as in the classical situation of the de Rham
theorem from the last two lemmata together with the observation that any cover
of �P has a refinement by covers of the type used in the last lemma.
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Theorem 20. The ring homomorphism θϕ of Theorem 6 provides an isomor-
phism between Ȟ (�P ,R), the Cech cohomology of �P with real coefficients,
and H(Rn, C∞

t lc(�P ,R)), the transversally locally constant dynamical cohomol-
ogy.

6. P -equivariant cohomology

The notion introduced in the last section of transversally locally constant forms
on the hull �P (and hence of the transversally locally constant dynamical coho-
mology) can be reduced to something simpler and much less technical. This is the
aim of the current section.

We begin by introducing the notion of a strongly P -equivariant function on
R
n [Ke03] where P is as in the last section a Delone set of R

n of finite local
complexity. Roughly speaking, a function f on R

n is strongly P -equivariant if
there is some constant R such that, if the patterns in P surrounding two points x
and y of radius R are equal (after translating by −x and −y, respectively), then
f must take the same values at x and y. More precisely, we have the following.

Definition 21. Let f be a function defined on R
n. We say that f is strongly

P -equivariant if there is a constant R > 0 such that, if x, y in R
n satisfy

(P − x) ∩ B(0, R) = (P − y) ∩ B(0, R),
then f (x) = f (y).

For a finite dimensional vector spaceW , we let Č∞
P (R

n,W) denote the smooth
strongly P -equivariant functions from R

n to W . The cohomology of the sub-
complex of strongly P -equivariant forms on R

n is called the strongly P -equivari-
ant cohomology of R

n and denoted by ȞP (Rn).
The functions of the closureC∞

P (R
n,W) of Č∞

P (R
n,W) inC∞(Rn,W) (w.r.t.

the standard Fréchet topology) are called weakly P -equivariant. The cohomol-
ogy of the sub-complex of weakly P -equivariant forms on R

n is called the
weakly P -equivariant cohomology of R

n and denoted by HP (Rn). We note that
P -equivariant forms are always bounded.

Proposition 22. 1. Let f : �P → W be transversally locally constant. The
function fP defined on R

n by

fP (x) = f (P − x)

is strongly P -equivariant. In addition, if f is ϕ-smooth, then fP is a smooth
function.

2. If g : R
n → W is a strongly P -equivariant function, then the function g̃(P −

x) = g(x), defined apriori on the orbit of P , extends to a continuous trans-
versally locally constant function on �P . If g is smooth, then g̃ is ϕ-smooth.



708 J. Kellendonk, I. F. Putnam

3. The map f �→ fP is a graded ring isomorphism betweenC∞
t lc(�P ,�R

n∗) and
Č∞
P (R

n,�R
n∗) intertwining the differential d on the former with the usual

exterior derivative on forms on R
n. It extends by continuity to a graded ring

isomorphism between C∞(�P ,�R
n∗) and C∞

P (R
n,�R

n∗).

Proof. 1. By a partition of unity argument it suffices to show the statement for
a function f which has support in some TP ′,ε,B(0, rP2 )

and on which it is trans-
versally constant. In other words, under identification TP ′,ε,B(0, rP2 )

∼= TP ′,ε ×
B(0, rP2 ), f is of the form f = 1 × g where g : R

n → W has support in
B(0, rP2 ). Then fP (x) = g(y) for each y ∈ R

n such that P − x ∈ TP ′−y,ε .
This is well-defined since there is at most one such y inB(0, rP2 ). Now it is clear
that fP is strongly P -equivariant with constant R = ε−1. The preservation of
smoothness follows directly using the local product structure.

2. If g is strongly P -equivariant and R the constant from Definition 21 then g̃ is
transversally locally constant with ε = R−1. The preservation of smoothness
follows as in 1.

3. The first statement is a direct consequence of 1 and 2 above together with the
straightforward observation that f̃P = f and g̃P = g. The second statement
follows from the fact that the completion of C∞

t lc(�P , ϕ,R) in the Fréchet
topology defined by the semi-norms ‖ω‖∞ (supremum norm) and ‖ω‖i1···ik =
‖∂ei1 · · · ∂eik ω‖∞ isC∞(�P , ϕ,R). This is directly seen using the local product
structure.

	

As a consequence of this proposition we have

Theorem 23. f �→ fP induces graded ring isomorphisms between the transver-
sally locally constant dynamical cohomologyH(Rn, C∞

t lc(�P ,R))and the strongly
P -equivariant cohomology ȞP (Rn), and between the dynamical cohomology
H(Rn, C∞(�P ,R)) and the weakly P -equivariant cohomology HP (Rn).

Remark 24. Let us call a complex continuous function over R
nP -equivariant if

it lies in the closure of ČP (Rn,C) w.r.t the supremum norm. Then f �→ fP
induces an algebra isomorphism between C(�P ) and this closure. Hence the
topological space�P is described by the complex continuousP -equivariant func-
tions. The Cech cohomology of�P is, however, the cohomology of the sub-com-
plex of strongly P -equivariant forms. The latter was therefore simply called the
P -equivariant cohomology (of R

n) in [Ke03].

6.1. Multiplicativity of the Ruelle-Sullivan map

The advantage of Theorem 23 is that elements of ȞP (Rn) have representatives
which are forms over R

n. These are not only more easily accessible but also allow



The Ruelle-Sullivan map for actions of R
n 709

to use techniques from differential topology, as is done in the proposition below.
It is used to show that the Ruelle-Sullivan map for ergodic invariant measures of
R
n-actions on hulls of Delone sets with finite local complexity is multiplicative.

We denote for ω ∈ C∞(X,�R
n∗)

‖ω‖1 =
∫

X

|ω(x)|dµ(x)

where | · | is a norm on �R
n∗.

Proposition 25. Let P be a Delone set with finite local complexity and µ be an
ergodic invariant probability measure for the action of R

n on �P . Let ω be any
closed strongly P -equivariant k-form on R

n, k ≥ 1. For any ε > 0 there exists
a closed strongly P -equivariant form ωε which defines the same element as ω in
ȞP (R

n) and such that

‖ωε − τ̃ϕ,µ(ω)‖1 ≤ ε.

Here τ̃ϕ,µ is the expression of the Ruelle-Sullivan map on ȞP (Rn) and we view
τ̃ϕ,µ(ω) as constant form on R

n.

Proof. Let ω be a closed strongly P -equivariant k-form. We let ωr be the form
obtained by averaging over r-cubes Ir = [− r

2 ,
r
2 ]n:

ωr(x) = 1

rn

∫

Ir

ω(x + y)dy.

By the Birkhoff ergodic theorem ωr converges to τ̃ϕ,µ(ω) for r → ∞ in the norm
‖ · ‖1 [Li01]. Moreover, each ωr is a closed strongly P -equivariant k-form. The
proposition follows therefore if we can verify that ωr − ω = dGr for a strongly
P -equivariant k − 1-form Gr .

For any e1, . . . , ek−1 ∈ R
n and y ∈ R

n, we let gy : R
n → �k−1

R
n∗ be given

by

〈e1 ∧ · · · ∧ ek−1, gy(x)〉 = (−1)k−1
∫ 1

0
dt〈e1 ∧ · · · ∧ ek−1 ∧ y, ω(x + ty)〉.

gy is strongly P -equivariant, as the integral depends only on the values of ω
between x and x + y. Furthermore,

〈e0 ∧ · · · ∧ ek−1, dgy(x)〉 =
k−1∑

i=0

(−1)iei · ∇〈e0 ∧ · · · êi · · · ∧ ek−1, gy(x)〉

= (−1)k−1
∫ 1

t=0
dt (〈e1 ∧ · · · ∧ ek−1 ∧ y, dω(x + ty)〉

−(−1)ky · ∇〈e0 ∧ · · · ∧ ek−1, ω(x + ty)〉)
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where y ·∇f is the derivative of the function f in the direction y. Sinceω is closed
the first term vanishes, and using y ·∇f (x+ty) = d

dt
f (x+ty) the second integral

gives 〈e0 ∧ · · · ∧ ek−1, ω(x+ y)−ω(x)〉. Hence ω(x+ y)−ω(x) = dgy(x) and

Gr = 1

rn

∫

Ir

gydy.

Gr is thus a strongly P -equivariant form satisfying ωr − ω = dGr . 	

Theorem 26. Let P be a Delone set with finite local complexity and µ be an
ergodic invariant probability measure for the action of R

n on �P . The Ruelle-
Sullivan map

τϕ,µ : Ȟ (�P ,Z) → �R
n∗

is a homomorphism of graded rings.

Proof. We have seen that the map θϕ is a ring homomorphism. We show that also
τ̃ϕ,µ is multiplicative. Let ω, ρ be two closed strongly P -equivariant forms over
R
n. Given ε > 0 let ωε be as in the statement of Proposition 25. Then

τ̃ϕ,µ(ωρ) = τ̃ϕ,µ(ωερ)

since (ω − ωε)ρ is exact. Furthermore

τ̃ϕ,µ(ωερ) = τ̃ϕ,µ(τ̃ϕ,µ(ωε)ρ)+
∫

�P

(ωε − τ̃ϕ,µ(ωε))ρ dµ

and hence

|τ̃ϕ,µ(ωρ)− τ̃ϕ,µ(ω)τ̃ϕ,µ(ρ)| ≤ ‖ωε − τ̃ϕ,µ(ω)‖1‖ρ‖∞ ≤ ε‖ρ‖∞

where ‖ρ‖∞ = supx |ρ(x)|. The result follows since ε was arbitrary. 	
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