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Abstract. The two dimensional quasi-geostrophic (2D QG) equation with critical and super-
critical dissipation is studied in Sobolev space Hs(R2). For critical case

(
α = 1

2

)
, existence of

global (large) solutions in Hs is proved for s � 1
2 when ‖θ0‖L∞ is small. This generalizes and

improves the results of Constantin, D. Cordoba and Wu [4] for s = 1, 2 and the result of A.
Cordoba and D. Cordoba [8] for s = 3

2 . For s ≥ 1, these solutions are also unique. The improve-
ment for pushing s down from 1 to 1

2 is somewhat surprising and unexpected. For super-critical
case

(
α ∈ (

0, 1
2

))
, existence and uniqueness of global (large) solution inHs is proved when the

product ‖θ0‖βHs‖θ0‖1−β
Lp is small for suitable s � 2 − 2α, p ∈ [1,∞] and β ∈ (0, 1].
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1. Introduction

Consider the following dissipative two dimensional quasi-geostrophic (2D QG)
equation:

θt + u · ∇θ + κ(−�)αθ = 0,

θ(x, 0) = θ0(x), (1.1)

where 0 ≤ α ≤ 1, κ ≥ 0, θ is temperature and u is fluid velocity. u and θ are
related via a stream function ψ :

u = (u1, u2) =
(

− ∂ψ
∂x2

,
∂ψ

∂x1

)
, (−�) 1

2ψ = −θ. (1.2)

The spacial domain � is either R
2 or T

2 ≡ [0, 2π ]2 with periodic boundary con-
dition. In this article, we consider the case that � = R

2. The treatment for the
case � = T

2 is similar and thus omitted.
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Equation (1.1) is an important model in geophysical fluid dynamics. See e.g.
[5], [12], [22] and [23]. Mathematically, when κ = 0, it is an important exam-
ple of 2D active scalar with a specific mathematical structure which remarkably
resembles that of Euler equations for 3D incompressible fluid; when κ > 0 and
α = 1

2 , it is the dimensionally correct analogue of Navier-Stokes equations for
viscous 3D incompressible fluid. The cases α > 1

2 , α = 1
2 and α < 1

2 are called
respectively sub-critical, critical and super-critical. In the following, we will com-
pletely ignore the case when α � 1. Global well-posedness can be proved without
much difficulty for this case. However, due to weak dissipation, well-posedness
of 2D QG with α < 1 is non-trivial, especially for critical and super-critical cases.
Recently, these equations have been intensively studied because of their impor-
tance in mathematical and geophysical fluid dynamics. See among others, [1]-[2],
[4]-[16], [21]-[25], [27] and references therein.

In this paper, we study global existence of the solutions to the 2D QG equation
with critical and super-critical dissipation in Sobolev spaceHs . For critical case,
existence of global solutions inHs is proved for s � 1

2 when ‖θ0‖L∞ is small. This
improves and generalizes the results of Constantin, D. Cordoba and Wu [4] for
s = 1, 2 and the result of A. Cordoba and D. Cordoba [8] for s = 3

2 . Uniqueness
of these solutions for s � 1 can be concluded by the result of [15]. Notice that
the smallness condition on ‖θ0‖L∞ does not imply smallness of ‖θ0‖Hs . Both the
improvement and the generalization discussed above are not trivial. In [4], the
technique of integration by parts was crucial in obtaining some subtle estimates.
If s is a non-integer, it seems impossible to play with integration by parts. Instead,
in [8] for the special choice of s = 3

2 and α = 1
2 , very delicate commuting prop-

erties of Riesz transforms and their subtle estimates in Hardy space and BMO
space were utilized in an elegant way. However, this method seems not suitable
for general value of s, nor for super-critical case. It is interesting to point out that
our result improves the result of [4] and [8] by pushing the allowed value of s
from 1 down to 1

2 . This is somewhat surprising and unexpected for a few important
reasons as explained in more details in the remarks following the statement of our
main theorem.

For super-critical case, existence and uniqueness of the global solution inHs

is proved for s ∈
[
2 − 2α, (1−α)(1+2α)

2α

]
when the product ‖θ0‖βHs‖θ0‖1−β

L∞ is small

for some β ∈ (0, 1) to be given in the following. Therefore, provided that ‖θ0‖L∞

is small enough, ‖θ0‖Hs can still be very large and vice versa. Uniqueness of the
solution follows from the result of [15] for any s � 2 − 2α. In fact, more general
results are obtained for θ0 ∈ Lp with p ∈ [1,+∞]. See Theorem 3.1 for more
details. This generalizes the global existence results recently obtained in Ju [13]
for p = 2.

The key ingredient of the proofs for these new improvements is an improved
version of an important commutator estimate. The basic theory for commutator
estimation was established in harmonic analysis via pseudo-differential calculus.



Global Solutions to the Two Dimensional Quasi-Geostrophic Equation 629

See Coifman and Meyer [3]. Using a theorem due to Coifman and Meyer, Kato
and Ponce [19] proved an early version of the commutator estimate and used it
in dealing with 3D Navier-Stokes and Euler Equations. Later, Kenig, Ponce and
Vega [20] obtained an improved version of the commutator estimate and used it
to study the well-posedness of KdV equation. In A. Cordoba and D. Cordoba [8],
the commutator estimate of Kato and Ponce was used to study 2D QG. In Ju [13],
the more general version of the commutator estimate of Kenig, Ponce and Vega
was used to improve several results of [8]. In this paper, using the technique of
generalized version of the commutator estimate of Kenig, Ponce and Vega, we
improve global existence results of [4] and [8] for critical case. The strength of
Kenig-Ponce-Vega commutator estimate is demonstrated in this paper by pushing
s from 1 down to 1

2 and by generalizing the result for all s � 1
2 ; while methods

in [4] and [8] fail for general value of s. Besides the improved result for critical
case, the approach in this paper also provides new results for super-critical case,
for which the previous two methods fail as well.

The rest of this article is organized as follows. In Section 2, we present some
notations and recall some important preliminary results as preparation. In Sec-
tion 3, we state our main results for the case when � = R

2. Similar results hold
for � = T

2. We also give the proofs of these results in this section. In subsec-
tion 3.1, we prove global existence of the solution. In subsection 3.2, we prove
the uniqueness of these solutions.

2. Notations and Preliminaries

We recall some notations and facts for � = R
2. Similar results are valid for

� = T
2 as well. Fourier transform f̂ of a tempered distribution f is defined as

f̂ (k) = 1

(2π)2

∫

�

f (x)e−ik·xdx.

Denote 
 ≡ (−�) 1
2 . Obviously


̂f (ξ) = |ξ |f̂ (ξ).
More generally, 
βf for β ∈ R can be identified with the Fourier transform


̂βf (ξ) = |ξ |βf̂ (ξ).
The following standard notations are used:

‖f ‖pLp =
∫

�

|f |pdx, ‖f ‖L∞ = ess sup
x∈�

|f (x)|,

‖f ‖Hs = ‖
sf ‖L2, ‖f ‖Hs,p = ‖
sf ‖Lp .
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By (1.2), we have

u = (
∂x2


−1θ, −∂x1

−1θ

) = (−R2θ, R1θ) ≡ R⊥θ,

where Rj , j = 1, 2 are the Riesz transforms defined by

Rjf (x) = CP.V .

∫

R2

f (x − y)yj

|y|3 dy, j = 1, 2.

Therefore, by Calderón-Zygmund Theorem, there is a constant CR(p) > 0 such
that

‖u‖Lp ≤ CR(p)‖θ‖Lp, ∀p ∈ (1,∞). (2.1)

Global existence of weak solution for 2D QG equation is obtained by Resnick
[24].

Theorem 2.1. Suppose θ0 ∈ L2 and k ≥ 0. Then, for any T > 0, there exists at
least one weak solution to the 2D QGE in the following sense:

d

dt

∫

�

θϕdx −
∫

�

θ(u · ∇ϕ)dx + κ

∫

�

θ
2αϕdx = 0, ∀ϕ ∈ C∞
0 ,

where θ ∈ L∞(0, T ;L2). Moreover, if κ > 0, θ ∈ L2(0, T ;Hα)).

Another important property of 2D QG equation obtained in [24] is that if
θ0 ∈ Lp for any p ∈ [1,∞], then

‖θ(t)‖Lp � ‖θ0‖Lp, ∀t > 0.

We will use this property extensively in the later discussion.
For sub-critical case, global existence and uniqueness for strong solutions are

obtained in [6] and [27]. For critical and super-critical case, see [4], [8], [13],
[15] and [16]. See also [2] for the discussion in Besov space.

3. The Main Result and the Proof

First of all, we state our main result as the following theorem:

Theorem 3.1. Assume α ∈ (0, 1
2 ], κ > 0, � = R

2 and θ0 ∈ Hs .

1. Given α = 1
2 and s � 1

2 , there is a constant C1 > 0 such that for any weak
solution θ to equation (1.1), if

‖θ0‖L∞ � κ

C1
,

then

‖θ(t)‖Hs ≤ ‖θ0‖Hs , ∀t > 0,

and the solution θ is unique for s > 1 and θ0 ∈ L2.
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Moreover, if ‖θ0‖L∞ < κ
C1

, then θ ∈ L2(0,+∞;Hs+ 1
2 ) and the solution θ is

unique if s � 1 and θ0 ∈ L2.
2. Given α ∈ (

0, 1
2

]
, p ∈ [

1, 1
α

]
, s � 2 − 2α and

β =
2
p

+ 1 − 2α
2
p

+ s − 1
,

which is within
[

1
s+α , 1

]
, there is a constant C2 > 0 such that for any weak

solution θ to equation (1.1), if initially

‖θ0‖βHs‖θ0‖1−β
Lp � κ

C2
, (3.1)

then

‖θ(t)‖Hs ≤ ‖θ0‖Hs , ∀t > 0.

The solution θ is unique if s > 2 − 2α and θ0 ∈ L2. Furthermore, if
‖θ0‖βHs‖θ0‖1−β

Lp < κ
C2

, then θ ∈ L2(0,∞;Hs+α) and the solution θ is unique

if s � 2 − 2α and θ0 ∈ L2.
3. Given α ∈ (

0, 1
2

)
, p ∈ (

1
α
, +∞] ⋂ [

2
1−2α , +∞]

,

s ∈


2 − 2α,
1 − 2

p
+ α

(
1 − 2α + 2

p

)

2α − 2
p



 ,

and

β =
2
p

+ 1 − 2α
2
p

+ s − 1

which is within
[

1
s+α , 1

]
, there is a constant C3 > 0 such that for any weak

solution θ to equation (1.1), if initially

‖θ0‖βHs‖θ0‖1−β
Lp � κ

C3
, (3.2)

then

‖θ(t)‖Hs ≤ ‖θ0‖Hs , ∀t > 0.

The solution θ is unique if s > 2 − 2α and θ0 ∈ L2. Furthermore, if
‖θ0‖βHs‖θ0‖1−β

Lp < κ
C3

, then θ ∈ L2(0,∞;Hs+α) and the solution θ is unique

if s � 2 − 2α and θ0 ∈ L2.

Remark. 1. For the critical case, Constantin, D. Cordoba and Wu [4] proved as
their main results that the solution θ ∈ Hs exists globally in time for s = 2 and
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s = 1 if θ0 ∈ Hs and ‖θ0‖L∞ � C
κ

for some constant C > 0; while Theorem

3.3 of A. Cordoba and D. Cordoba [8] shows that the solution θ ∈ H 3
2 exists

globally in time if θ0 ∈ H 3
2 and ‖θ0‖L∞ � k

C
for some constantC > 0. There-

fore, part 1 of our main theorem improves these results. Notice that smallness
of ‖θ0‖L∞ does not imply smallness of ‖θ0‖Hs .

2. In [4], the technique of integration by parts was crucial in obtaining several
subtle estimates for the cases when s = 1 and s = 2. If s is not a integer, then
it is impossible to play with integration by parts. Instead, in [8], for the special
choice of s = 3

2 , very delicate commuting properties of Riesz transforms and
their subtle estimates in Hardy space and BMO space were utilized elegantly.
However, this method seems hard to be extended for general value of s.

3. Notice that the initial conditions (3.1) and (3.2), which yield the global solu-
tion inHs for super-critical case, do not require either smallness of ‖
sθ0‖L2 .
Therefore, by part 2 and part 3 of our main theorem, for super-critical case,
we can still obtain global existence of the solution in Hs ∩ L2 for arbitrarily
large ‖
sθ0‖L2 provided that ‖θ0‖Lp is small enough and vice versa. These
results, which further generalize some of the recent results obtained in [13]
for p = 2 ∈ (1, 1

α
), would not be available via the methods of [8] or [4].

4. The method of proof provided in the following can also be used to study exis-
tence of local solutions without any smallness restrictions. Some new results
have been obtained in [13] which improve those in [8]. More involved study
will be explored in [17].

5. It is important to point out that the critical power s = 2 − 2α is very special
from the point of view of scaling invariance asH 2−2α gives the important scal-
ing invariant solution function space. Another important aspect of the special
role for 2 − 2α is that, so far, uniqueness result for the solutions in Hs can
be obtained for s � 2 − 2α only. See more details in Subsection 3.2. See
also [15]. On the other hand, existing best local existence results in Sobolev
spaceHs for critical and super-critical also require that s � 2−2α. See [13].
The coincidence of these phenomena seems not accidental. This makes part 1
for our main theorem, especially the existence of Hs solution for s ∈ [ 1

2 , 1),
particularly interesting from this point of view, as it gives the first family of
such kind of solutions which break the barrier of the critical power s = 2−2α
for critical case. So, this result is somewhat surprising and unexpected. It is
not clear if such kind of solutions exist for super-critical case.

6. Finally, we point out that similar results are also valid for the case when� = T
2

with periodic boundary condition. For brevity, we omit the details.

We recall the following important commutator and product estimates:

Lemma 3.1 (Commutator and Product Estimates). Suppose that s > 0 and
p ∈ (1,+∞). If f, g ∈ S , the Schwartz class, then

‖
s(fg)− f
sg‖Lp ≤ C
(‖∇f ‖Lp1 ‖g‖Hs−1,p2 + ‖f ‖Hs,p3 ‖g‖Lp4

)
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and

‖
s(fg)‖Lp ≤ C (‖f ‖Lp1 ‖g‖Hs,p2 + ‖f ‖Hs,p3 ‖g‖Lp4 )

with p2, p3 ∈ (1,+∞) such that

1

p
= 1

p1
+ 1

p2
= 1

p3
+ 1

p4
.

Remark. The above lemma has been proved in Kenig, Ponce and Vega [20] with

 being replaced by J = (1 − �)

1
2 and the homogeneous Hs,p spaces being

replaced by non-homogeneous ones. In the proof, the method of Kato and Ponce
[19] is used which utilizes the results of Coifman and Meyer [3]. This lemma can
be proved to be still valid for 
 by making use of a dilation argument of Kato as
given in [18]. It is also clear that the lemma is valid whenever the corresponding
right-hand sides terms are all finite.

For the rest of this section, we shall present the proof of our main theorem.

3.1. Existence

Now we start with some useful a priori estimates which will provide the formal
proof of the regularity of the weak solutions in space Hs , i.e. the existence of
solutions inHs . First of all, multiplying (1.1) with θ and taking the inner product
in L2, we have

1

2

d

dt
‖θ‖2

L2 + κ‖
αθ‖2
L2 ≤ 0.

Therefore, for any t > 0, we have

‖θ(t)‖2
L2 + κ

∫ t

0
‖
αθ(τ)‖2

L2dτ ≤ ‖θ0‖2
L2,

which gives us the basic uniform boundedness of θ in L2 and the property that
θ ∈ L2(0,+∞, Hα).

Noticing that ∇ · u = 0, we have

(u · ∇(
sθ),
sθ) = 0.

Multiplying (1.1) with 
2sθ and taking the inner product in L2, we have

1

2

d

dt
‖
sθ‖2

L2 + κ‖
s+αθ‖2
L2 = −(
s(u · ∇θ)− u · ∇(
sθ),
sθ).

Notice that 
s and ∇ are commutable, we have

|(
s(u · ∇θ)− u · ∇(
sθ),
sθ)| = |(
s(u · ∇θ)− u · (
s∇θ),
sθ)|
≤ C‖
s(u · ∇θ)− u · (
s∇θ)‖

L
p′

2
‖
sθ‖Lp2 ,
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where

1

p2
+ 1

p′
2

= 1, p2 ∈ (2,∞), p′
2 ∈ (1, 2)

and

1

p1
+ 2

p2
= 1, p1 ∈ (1,∞), p2 ∈ (2,∞).

Now we can make use of the commutator estimate. Since

1

p1
+ 1

p2
= 1

p′
2

,

we have

‖
s(u · ∇θ)− u · (
s∇θ)‖
L
p′

2
≤ C(‖∇u‖Lp1 ‖
sθ‖Lp2 + ‖
su‖Lp2 ‖∇θ‖Lp1 )

≤ C‖
θ‖Lp1 ‖
sθ‖Lp2 (3.3)

where, we have used (2.1) in the last inequality.
Therefore

1

2

d

dt
‖
sθ‖2

L2 + κ‖
s+αθ‖2
L2 � C‖
θ‖Lp1 ‖
sθ‖2

Lp2 .

Assume that s + α > 1. Select

p1 = 2(s + α), β = 1

s + α
.

We have the following Gagliardo-Nirenberg inequality:

‖
θ‖Lp1 � C‖
s+αθ‖β
L2‖θ‖1−β

L∞ .

Since

2

p2
= 1 − 1

p1
= 1 − 1

2(s + α)
,

for α = 1
2 , we have the following Gagliardo-Nirenberg inequality:

‖
sθ‖Lp2 � C‖
s+αθ‖δ
L2‖θ‖1−δ

L∞ ,

where

δ = 2s2 − 2(1 − α)s + 1 − 2α

2(s + α − 1)(s + α)
= s

s + α
.

Moreover, if α = 1
2 , it is easy to that for s > 1 − α = 1

2 , β + 2δ = 2. Indeed,

β + 2δ = 2s2 + (2α − 1)s − α

(s + α)(s + α − 1)
= 2s2 − 1

2

(s + 1
2 )(s − 1

2 )
= 2.
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Therefore,

1

2

d

dt
‖
sθ‖2

L2 + κ‖
s+αθ‖2
L2 � C‖
θ‖Lp1 ‖
sθ‖2

Lp2

� C‖
s+αθ‖β+2δ
L2 ‖θ‖3−β−2δ

L∞

= C‖
s+αθ‖2
L2‖θ‖L∞ . (3.4)

Hence, if α = 1
2 and

‖θ0‖L∞ � κ

C
,

then we have, for s > 1
2 ,

‖θ‖Hs � ‖θ0‖Hs , ∀t � 0.

Furthermore, if

‖θ0‖L∞ <
κ

C
,

then, for any T > 0,
∫ T

0
‖θ(t)‖2

H
s+ 1

2
dt < ∞.

Now consider the special case that α = 1
2 and s = 1

2 .
Select p1 = 2 and p2 = 4, then 1

p1
+ 2

p2
= 1. Notice that

‖
sθ‖Lp2 = ‖
 1
2 θ‖L4 � C‖
θ‖

1
2
L2‖θ‖

1
2
L∞ .

Therefore

‖
θ‖Lp1 ‖
sθ‖2
Lp2 � C‖
θ‖2

L2‖θ‖L∞ .

Hence, we have

1

2

d

dt
‖
 1

2 θ‖2
L2 + κ‖
θ‖2

L2 � C‖
θ‖2
L2‖θ‖L∞ . (3.5)

Therefore the above conclusion holds as well for s = 1
2 . This finish the a priori

estimates for part 1 of Theorem 3.1.
In what follows, we consider the estimates in a more general way, which is

valid for any α ∈ (0, 1). However, since we are only interested in critical and
super-critical cases. In the following we ignore detailed discussion when α > 1

2 .
Now, let us consider the following Gagliardo-Nirenberg inequalities:

‖
θ‖Lp1 � C‖
s+αθ‖β
L2‖θ‖1−β

Lp , ‖
sθ‖Lp2 � C‖
s+αθ‖δ
L2‖
sθ‖1−δ

L2 ,
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where p1, p2, β and δ satisfy the following equations:

1

p1
= 1

2
+ β

(
1

2
− s + α

2

)
+ 1 − β

p
, (3.6)

1

p2
= δ

(
1

2
− α

2

)
+ 1 − δ

2
, (3.7)

1

p1
+ 2

p2
= 1, (3.8)

β + 2δ = 2, (3.9)

and the following additional conditions:

p1 ∈ (1,∞), p2 ∈ (2,∞), p � 1,

δ ∈
[

1

2
,

2s + 2α − 1

2s + 2α

]
, β ∈

[
1

s + α
, 1

]
. (3.10)

If we can find suitable solutions of p1, p2, p, β and δ for the above equations
satisfying the conditions given in (3.10), then we obtain the following:

1

2

d

dt
‖
sθ‖2

L2 + κ‖
s+αθ‖2
L2 � C‖
s+αθ‖2

L2‖
sθ‖β
L2‖θ‖1−β

Lp

� C‖
s+αθ‖2
L2‖
sθ‖β

L2‖θ0‖1−β
Lp , (3.11)

which will then yield the global existence of θ in Hs if initially

‖
sθ0‖βL2‖θ0‖1−β
Lp � κ

C
. (3.12)

Furthermore, if

‖
sθ0‖βL2‖θ0‖1−β
Lp <

κ

C
, (3.13)

then we have in addition that
∫ ∞

0
‖
s+αθ(t)‖2

L2dt � C

κ
‖
sθ0‖2

L2 . (3.14)

As will be seen in subsection 3.2, this property is important for us to prove unique-
ness of the solutions we obtained in the following.

In the following we try to find these suitable solutions when they exist. By
(3.6), (3.7), (3.8) and (3.9), we have

p1 = 1

αδ
, p2 = 2

1 − αδ
.
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We also have
(
s − 1 + 2

p

)
β = 2

p
+ 1 − 2α

and
(
s − 1 + 2

p

)
δ = 1

p
+ s + α − 3

2
.

Case 1: s − 1 + 2
p

= 0.

Then

s = 2 − 2α,
1

p
= α − 1

2
.

Since p ∈ [1,+∞], we have α � 1
2 and that β and δ can be any numbers in their

full ranges.
For α = 1

2 , we have p = ∞ and s = 1. Choosing β = 1 yields global
existence of θ ∈ H 1 when ‖θ0‖H 1 � κ

C
. A more general result was previously

obtained in [13] where it is proved that for any α ∈ (0, 1), if s = 2 − 2α and

‖θ0‖Hs � κ

C
,

then θ exists globally in Hs .
For other choice of β ∈ [2/3, 1), we have global existence of θ ∈ H 1 with

‖θ0‖βH 1‖θ0‖1−β
L∞ � κ

C
.

Notice that a more general result than above for α = 1
2 can be obtained for any

β ∈ [0, 1] by interpolating the previously obtained two global existence results
with β = 0 and β = 1 respectively. Thus, it is not a new result. This ends the
discussion of Case 1.

The left two cases are those when s − 1 + 2
p

�= 0. Then we have

β =
2
p

+ 1 − 2α
2
p

+ s − 1
, δ =

1
p

+ s + α − 3
2

2
p

+ s − 1
. (3.15)

Case 1. s − 1 + 2
p
< 0.

Since we need β > 0, that is,

1

p
+ 1

2
< α,

this implies α > 1
2 . Thus we omit discussion of this case completely since in this

article we focus only on the critical and super-critical cases.
The final case is more interesting to us than the previous two. We will separate

this case further into three subcases in the following discussion.
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Case 2. s − 1 + 2
p
> 0.

Then β > 0 implies that

1

p
+ 1

2
> α. (3.16)

Consider the conditions that

β + 2δ = 2, δ ∈
[

1

2
,

2s + 2α − 1

2s + 2α

]
, β ∈

[
1

s + α
, 1

]
.

It is easy to see that the condition β � 1 is equivalent to

s � 2 − 2α, (3.17)

which is a stronger condition than s−1+ 2
p
> 0 due to (3.16); while the condition

that β � 1
s+α is equivalent to

s

(
2α − 2

p

)
� 1 − 2

p
+ α

(
1 − 2α + 2

p

)
. (3.18)

Subcase 3a:p = 1
α

. Then (3.18) is not a restriction for s. So, for any α ∈ (0, 1)
and s � 2 − 2α, we have

β = 1

2α + s − 1
∈

[
1

s + α
, 1

]
.

Therefore, if initially

‖θ0‖βHs‖θ0‖1−β
L

1
α

� κ

C
,

then θ exists globally in Hs . Furthermore, if

‖θ0‖βHs‖θ0‖1−β
L

1
α
<
κ

C
,

then
∫ ∞

0
‖
s+αθ(t)‖2

L2dt � C

κ
‖
sθ0‖2

L2 .

Subcase 3b: p > 1
α

. Then (3.18) gives

s �
1 − 2

p
+ α

(
1 − 2α + 2

p

)

2α − 2
p

.
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So, the allowed range for s is

2 − 2α � s �
1 − 2

p
+ α

(
1 − 2α + 2

p

)

2α − 2
p

, (3.19)

which means that, in order to have solution(s) for s, we need

1

p
+ α � 1

2
.

Therefore, we have that only α � 1
2 is allowed for this subcase.

If α = 1
2 , then p = ∞ and s = 1. This case is already covered in Case 1.

If α ∈ (
0, 1

2

)
, then for any p such that

p ∈
(

1

α
, +∞

] ⋂ [
2

1 − 2α
, +∞

]
, (3.20)

and for any s such that

2 − 2α � s �
1 − 2

p
+ α

(
1 − 2α + 2

p

)

2α − 2
p

,

we have

β =
2
p

+ 1 − 2α
2
p

+ s − 1
∈

[
1

s + α
, 1

]
.

Therefore, if initially

‖θ0‖βHs‖θ0‖1−β
Lp � κ

C
,

then θ exists globally in Hs . Furthermore, if

‖θ0‖βHs‖θ0‖1−β
L

1
α
<
κ

C
,

then
∫ ∞

0
‖
s+αθ(t)‖2

L2dt � C

κ
‖
sθ0‖2

L2 .

Notice that especially if p = ∞, then the range for s is

2 − 2α � s � 1 + α(1 − 2α)

2α
= (1 + 2α)(1 − α)

2α
.
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Subcase 3c: 1 � p < 1
α

. Then (3.18) gives

s �
1 − 2

p
+ α

(
1 − 2α + 2

p

)

2α − 2
p

. (3.21)

It can be shown by elementary calculations that for α ∈ (0, 1)

1 − 2
p

+ α
(

1 − 2α + 2
p

)

2α − 2
p

> 2 − 2α

if and only if

α >
1

2
+ 1

p
.

Now consider only the interested α ∈ (
0, 1

2

]
. Then

1 − 2
p

+ α
(

1 − 2α + 2
p

)

2α − 2
p

� 2 − 2α.

So, for α ∈ (
0, 1

2

]
, p ∈ [

1, 1
α

)
and s � 2 − 2α, we can let

β =
2
p

+ 1 − 2α
2
p

+ s − 1
∈

[
1

s + α
, 1

]
.

Therefore, if initially

‖θ0‖βHs‖θ0‖1−β
Lp � κ

C
,

then θ exists globally in Hs . Furthermore, if

‖θ0‖βHs‖θ0‖1−β
L

1
α
<
κ

C
,

then ∫ ∞

0
‖
s+αθ(t)‖2

L2dt � C

κ
‖
sθ0‖2

L2 .

This ends the discussion of Case 3.
Now we see that Subcases 3a and 3c yield the needed a priori estimates for

part 2 of Theorem 3.1; while Subcase 3b yields the needed a priori estimates for
part 3 of Theorem 3.1.

By now, we have formally proved the existence results by the above corre-
sponding a priori estimates. To finish the proof rigorously, we can make use of
the standard method of retarded mollification to first obtain as above the uniform
a priori bounds for the mollified solutions, and then use Theorem 2.1 and pass
to the limit to obtain the same bounds for the weak solution θ . Since this is a
standard procedure, it is therefore omitted for simplicity of presentation.

The above discussion finishes the proof of the existence part of Theorem 3.1.
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3.2. Uniqueness

The solutions we have obtained in above subsection are all unique. Indeed, we
have the following uniqueness results proved in Ju [15].

Theorem 3.2. Suppose that κ > 0, α ∈ (0, 1) and that θ is a weak solutions of
the 2D dissipative QGE (1.1) with the initial data θ0 ∈ L2.

1. If s ≥ 2(1 − α) and θ ∈ L2(0, T ;Hs+α), then the weak solution to (1.1) is
unique.

2. If s > 2(1 − α) and θ ∈ L∞(0, T ;Hs), then the weak solution to (1.1) is
unique.

Using Theorem 3.2, it is easy to check that the uniqueness results stated in Theo-
rem 3.1 are all valid.

This finishes the proof of the uniqueness part of Theorem 3.1.
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