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Abstract. We study the connection between stringy Betti numbers of Gorenstein toric varieties
and the generating functions of the Ehrhart polynomials of certain polyhedral regions. We use
this point of view to give counterexamples to Hibi’s conjecture on the unimodality of δ-vectors
of reflexive polytopes.

1. Introduction

Let N be a lattice of rank d and let P be a d-dimensional lattice polytope in
NR = N ⊗Z R. For each nonnegative integer m, let fP (m) be the number of
lattice points inmP . Then fP is a polynomial inm of degree d, called the Ehrhart
polynomial of P . The generating function FP (t) = ∑

m≥0 fP (m)t
m is a rational

function in t and can be written as

FP (t) = δ0 + δ1t + · · · + δdt
d

(1 − t)d+1
,

for some nonnegative integers δi , with δ0 = 1. We put δP = (δ0, . . . , δd), and
with a slight abuse of notation we denote by δP (t) the numerator of FP (t). If � is
the largest i such that δi is nonzero, then � = d + 1 − r , where r is the smallest
positive integer such that rP contains a lattice point in its interior. Recall that a
lattice polytope is reflexive if it contains 0 in its interior and its polar polytope has
vertices in the dual lattice. Given the lattice polytope P , we have δi = δ�−i for
all i if and only if rP is the translate of a reflexive polytope. Hibi conjectured in
[Hi2, p. 111] that if this is the case, then δP is unimodal:

δ0 ≤ · · · ≤ δ[�/2]. (1)
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788 M. Mustaţǎ, S. Payne

In the particular case when P is the Birkhoff polytope of doubly stochastic n× n

matrices, unimodality had been conjectured by Stanley [St] and was recently
proved by Athanasiadis [At].

We assume now that P is reflexive, so � = d. Hibi showed that in this case

δ0 ≤ δ1 ≤ δj (2)

for 2 ≤ j ≤ [d/2]. If, in addition, the boundary of P admits a regular triangu-
lation such that the vertices of each facet are a basis for the lattice N , then δP is
the h-vector of the triangulation (see [Hi1]). In particular, if such a triangulation
exists, then Stanley’s theorem on the h-vectors of simplicial polytopes implies
that δP is unimodal, so P satisfies Hibi’s conjecture.

Note that if P is a reflexive polytope of dimension d ≤ 5, then Hibi’s conjec-
ture follows from (2). The following reflexive polytope gives a counterexample
to the conjecture for d = 6; for a more restricted and still open version of the
conjecture, see [OH].

Example 1.1. Letf = 1
3(e1+· · ·+e6) in R

6, letN be the lattice Z
6+Z·f , and letP

be the polyope with vertices {e1, . . . , e6, e1 −f, . . . , e6 −f }. It is straightforward
to check that P is reflexive, and one computes that 2P and 3P contain 78 lattice
points and 314 lattice points, respectively. It follows that δP = (1, 6, 8, 6, 8, 6, 1).

In this paper we give a combinatorial formula for δP when P is reflexive, as a
positive linear combination of shifted h-vectors of simplicial polytopes, which
we arrive at by using toric varieties to equate the combinatorial invariants δi of
P with “stringy” invariants from complex algebraic geometry. This formula can
also be proved directly, using elementary combinatorial arguments. We present
proofs from both points of view. With this formula in hand, it is not difficult to
construct examples, such as Example 1.1, where δP is not unimodal.

In order to explain our approach, we first reinterpret in algebro-geometric
terms the proof of unimodality of δP in the special case mentioned above, due to
Hibi. Here and throughout, P is assumed to be reflexive unless stated otherwise.
Since P is reflexive, the polar polytope P ◦ is reflexive, too. Note that the polytope
P ◦ corresponds to a toric variety XP ◦ defined by the fan over the faces of P , and
to an ample divisor DP ◦ on XP ◦ . The fact that P ◦ is reflexive is equivalent with
the fact that DP ◦ is the canonical divisor on XP ◦ (so in particular XP ◦ is a Fano
variety).

Consider a triangulation P of the boundary of P and let � be the fan whose
maximal cones are the cones over the facets of P . We have a proper birational
morphism f : X(�) → X = XP ◦ induced by the identity on N . If P is a regular
triangulation such that the vertices of each facet of P give a basis ofN , then f is a
resolution of singularities,X(�) is projective, and f is crepant, i.e. the pull-back
of the canonical bundle on X is isomorphic to the canonical bundle on X(�).
Conversely, every such resolution of singularities ofX arises from a triangulation



Ehrhart polynomials and stringy Betti numbers 789

as above. Given such a triangulation, δi is the 2i-th Betti number of X(�), the
dimension of the singular cohomology groupH 2i (X(�); Q), and the unimodality
of δP follows from the Hard Lefschetz Theorem on X(�).

In general, there may not exist any crepant resolution ofXP ◦ . However, using
the theory of motivic integration, one can define “stringy Betti numbers” of XP ◦

that agree with the Betti numbers of a crepant resolution whenever such a reso-
lution exists [Bat]. A result of Batyrev and Dais shows that δi is the 2i-th stringy
Betti number of XP ◦ [BD, Theorem 7.2]. We generalize this result as follows.

IfX = X(�) is a complete, d-dimensional Gorenstein toric variety, then there
is a function�K onNR that on each cone is given by an element of the dual lattice,
and such that�K(vi) = 1 for every primitive generator vi of a ray of�. Consider
the set

Q = {v ∈ NR | ψK(v) ≤ 1}.
For every cone σ in� the intersectionQ∩σ is a lattice polytope; it is the convex
hull of the origin and of the primitive generators of the rays of σ . We see that Q,
viewed as the union of the polytopes Q ∩ σ , is naturally a polyhedral complex,
and that Q is homeomorphic to a ball of dimension d.

Therefore we may define as in [Hi3] a polynomial of degree d (the Ehr-
hart polynomial) fQ such that fQ(m) is the number of lattice points in mQ for
every nonnegative integerm. Then we can write the generating function FQ(t) =∑

m≥0 fQ(m)t
m in the form

FQ(t) = δ0 + δ1t + · · · + δdt
d

(1 − t)d+1
,

for some nonnegative integers δi .

Theorem 1.2. For every complete Gorenstein toric variety X, δi is equal to the
2i-th stringy Betti number of X.

Although there may not exist any crepant resolution of singularities forX, we
can always find a projective crepant morphism of toric varieties f : X(�) → X

such thatX(�) has only Gorenstein orbifold singularities. Since f is crepant, the
stringy Betti numbers of X are equal to the stringy Betti numbers of X(�). A
theorem of Yasuda [Ya] then implies that the stringy Betti numbers of X(�) are
equal to the dimensions of the graded pieces of the orbifold cohomology ofX(�).
We get a combinatorial formula for these dimensions using a toric formula due
to Borisov, Chen, and Smith [BCS]. The resulting description of δQ is as follows.
Fix a triangulation T of the boundary ofQ whose vertices are in N , and let� be
the fan over the faces of T . For a face F ∈ T with vertices v1, . . . , vr , define

Box(F ) = {a1v1 + · · · + arvr ∈ NR : 0 < ai < 1},
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and let �F be the fan in N/(N ∩ spanF) whose cones are the projections of the
cones in� containing F . For a positive integerm, let h�F [m] denote the h-vector
of �F shifted by m, defined by

h�F [m]i =
{

0 for i < m.

(h�F )i−m for i ≥ m.

Note that �F is the simplicial fan corresponding to the T -invariant subvariety of
X(�) determined by the cone over F , and (h�F )i is the 2i-th Betti number of
X(�F ). In particular, if X(�) is projective, then the Hard Lefschetz Theorem on
X(�F ) implies that h�F is unimodal.

Theorem 1.3. If T is any triangulation of the boundary of Q whose vertices are
in N , then

δQ = hT +
∑

F∈T , v∈Box(F )∩N
h�F [�K(v)].

In particular, the sum of shifted h-vectors in Theorem 1.3 is independent of the
choice of triangulation.

2. δ-vectors and stringy Betti numbers

A d-dimensional Gorenstein variety X with canonical singularities has a stringy
E-function

Est(X;w, z) ∈ Z[[w, z]] ∩ Q(w, z)

defined using Hodge theory and motivic integration on a resolution of singulari-
ties of X. If Est(X;w, z) = ∑

p,q apqw
pzq is a polynomial, then the j -th stringy

Betti number of X is defined to be (−1)j
∑

p+q=j apq .
Suppose now that X = X(�) is a complete Gorenstein toric variety (see [Fu]

for basic facts on toric varieties). In this case Est(X;w, z) is a polynomial in wz,
so the odd stringy Betti numbers vanish and the 2i-th stringy Betti number of X
is the coefficient of (wz)i [Bat, Section 3]. Our proof of Theorem 1.2 is based on
the following formula for Est(X;w, z) as a rational function [Bat, Theorem 4.3].
Since X is Gorenstein, we have a function ψK on NR that on each cone is given
by an element in the dual lattice, and such that �K(vi) = 1 for every primitive
generator vi of a ray of�. For each cone σ ∈ �, let σ ◦ denote the relative interior
of σ . Recall that

∑
v∈σ ◦(wz)−�K(v) is a rational function in wz (see, for example,

[Bar, VIII.1]). Batyrev has shown that we have the following equality of rational
functions,

Est(X;w, z) = (wz− 1)d
∑

σ∈�

∑

v∈σ ◦∩N
(wz)−�K(v). (3)
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As in the Introduction, we define

Q = {v ∈ NR | �K(v) ≤ 1}.
There is an Ehrhart polynomial fQ such that, for positive integersm, fQ(m) is the
number of lattice points in mQ, and fQ satisfies Ehrhart reciprocity: fQ(−m) is
the number of lattice points in the interior of mQ. The proofs of these assertions
follow as in [Hi2], using the fact that Q is homeomorphic to a ball of dimension
d . The generating function FQ(t) = ∑

m≥0 fQ(m)t
m can then be written

FQ(t) = δ0 + δ1t + · · · + δdt
d

(1 − t)d+1
,

for some nonnegative integers δi .
For the proof of Theorem 1.2 we will need the following two lemmas. A proof

of the first lemma in the case whenQ is a polytope can be found in [Hi2] and the
general case is similar, but we include the proof for the reader’s convenience.

Lemma 2.1. With the above notation, we have δi = δd−i for every i.

Proof. Note first that if m is a positive integer, then a lattice point v is in the
interior of mQ if and only if v is in (m− 1)Q. Indeed, v is in the interior of mQ
if and only if ψK(v) < m, and since ψK(v) is an integer this is the case if and
only if ψK(v) ≤ m− 1, which happens if and only if v is in (m− 1)Q. Ehrhart
reciprocity implies that

fQ(m− 1) = (−1)dfQ(−m) (4)

for every positive integer m, and therefore for all m.
If we write fQ(m) = ∑d

i=0 ai
(
i+m
i

)
, then we deduce

FQ(t) =
∑

m∈N

d∑

i=0

ai

(
i +m

i

)

tm =
d∑

i=0

ai ·
∑

m∈N

(
i +m

i

)

tm =
d∑

i=0

ai

(1 − t)i+1
.

If we put F̃Q(t) = ∑
m≥1 fQ(−m)tm, then

F̃Q(t) =
d∑

i=0

ai ·
∑

m≥i+1

(−1)i
(
m− 1

i

)

tm =
d∑

i=0

(−1)i
ai t

i+1

(1 − t)i+1
,

so we have the equality of rational functions F̃Q(t) = −FQ(t−1).
On the other hand, (4) gives F̃Q(t) = (−1)d tFQ(t), henceFQ(t−1) = (−1)d+1

tFQ(t). Since (1−t)d+1FQ(t) = ∑d
i=0 δit

i , this equality gives δi = δd−i for every
i. �	
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Lemma 2.2. With the above notation, we have

(1 − t)FQ(t) =
∑

v∈N
tψK(v).

Proof. We can write

FQ(t) =
∑

m∈N

∑

v∈mQ∩N
tm =

∑

v∈N

∑

m≥ψK(v)
tm,

using the fact that v is in mQ if and only if m ≥ ψK(v). The assertion in the
lemma follows. �	
Proof of Theorem 1.2. It is enough to show thatEst(X; t, 1) = δQ(t). Combining
Lemma 2.2 with (3), we have

Est(X; t, 1) = (t − 1)d(1 − t−1)FQ(t
−1).

Now

FQ(t
−1) = δQ(t

−1)

(1 − t−1)d+1
.

By Lemma 2.1 we have δi = δd−i , so δQ(t−1) = t−dδQ(t). Hence

Est(X; t, 1) = (t − 1)d
δQ(t)

td(1 − t−1)d
= δQ(t).

�	

3. δ-vectors via orbifold cohomology

The orbifold cohomology of a Gorenstein variety Y with quotient singularities
was defined by Chen and Ruan [CR] and Yasuda [Ya], as follows. There is a
canonically associated orbifold (smooth Deligne-Mumford stack) Y whose coarse
moduli space is Y . Let I (Y) be the inertia stack of Y . We denote by Yi ⊂ I (Y)
the connected components of I (Y) and let Yi be the coarse moduli space of Yi .
The “age” si of Yi is a positive integer determined by the action of the inertia
group. As a graded vector space, the orbifold cohomology of Y is given by

H ∗
orb(Y,Q) =

⊕

Yi⊂I (Y)
H ∗(Yi ,Q)[si],

where [si] denotes a grading shift by si , so Hj(Yi ,Q)[si] = Hj−si (Yi ,Q).
It is a theorem of Yasuda [Ya] that the j -th stringy Betti number of Y is equal

to the dimension ofHj

orb(Y,Q). See also [Po] for a proof of this result in the case
of toric varieties.
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We mention that Chen and Ruan have constructed a ring structure on orbifold
cohomology in [CR]. J. Fernandez gave in [Fe] a necessary and sufficient condi-
tion for when the Chen-Ruan cohomology satisfies the Hard Lefschetz Theorem.
His condition inspired us in looking for the counterexamples to Hibi’s Conjecture.

There is an algebraic version of orbifold cohomology, due to Abramovich,
Graber and Vistoli [AGV], the so-called orbifold Chow ring. Note that when Y is
a simplicial toric variety, each Yi is also a simplicial toric variety, so the odd coho-
mology of Yi vanishes andH 2∗(Yi ,Q) is isomorphic to the Chow ringA∗(Yi ,Q).
It follows that at least as vector spaces, H 2∗

orb(Y,Q) agrees in this case with the
[AGV] version A∗

orb(Y,Q) as used by Borisov, Chen and Smith [BCS]. We men-
tion that while there seems to be agreement among experts that the ring structures
are also the same in this case, there is no available reference. We stress however
that we do not need this, as we are interested only in the vector space structure of
the orbifold cohomology.

Proof of Theorem 1.3. LetY be the toric variety corresponding to the fan�whose
maximal cones are the cones over the facets of the triangulation T . For a face
F ∈ T and a lattice point v ∈ Box(F ), �F is the fan associated to the stacky
fan�/σ(v) defined in [BCS], and hence h�F is the vector whose i-th entry is the
dimension of Ai(X(�F )). Furthermore, the integer �K(v) is equal to deg yv as
defined in [BCS]. Hence the theorem follows from [BCS, Proposition 5.2]. �	

Although we arrived at Theorem 1.3 through the connection with orbifold
cohomology and the results of [BCS], it is also possible to prove this result directly
using elementary combinatorial methods, as follows. For a fan � with h-vector
h� = (h0, . . . , hr), we write h�(t) for the polynomial h�(t) = h0 +h1t + · · · +
hrt

r .

Second proof of Theorem 1.3. By Lemma 2.2, it will suffice to show that

(1 − t)d ·
∑

v∈N
t�K(v) =

∑

F∈T ,v∈Box(F )

t�K(v) · h�F (t).

Now each lattice point in the cone over a face G ∈ T can be written uniquely
as a nonnegative integer linear combination of the vertices of G plus a fractional
part. Hence any lattice point v0 in the relative interior of this cone can be written
uniquely as

v0 = v + vG|F + v′,

where v is in Box(F ) for some face F ≺ G, vG|F is the sum of the vertices of G
that are not in F , and v′ is a nonnegative integer linear combination vertices of
G. Since each lattice point v ∈ N is in the relative interior of exactly one cone, it
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follows that

(1 − t)d
∑

v∈N
t�K(v) =

∑

F∈T ,v∈Box(F )

t�K(v) ·
∑

G�F
tdimG−dim F (1 − t)codimG

=
∑

F∈T ,v∈Box(F )

t�K(v) · h�F (t),

as required. �	

Example 3.1. Let m be a positive integer. Let f ∈ R
2m be the vector f =

( 1
m
, . . . , 1

m
), and let N be the lattice N = Z

2m + Z · f . We take P ⊂ R
2m to be

the polytope with vertices e1, . . . , e2m, e1 −f, . . . , e2m−f . It is straightforward
to check that P is reflexive. We will show that

δP = (1, 2m, 2m+ 2, 2m, 2m+ 2, . . . , 2m, 2m+ 2, 2m, 1).

This generalizes Example 1.1, and shows that form > 0 there are 2m-dimensional
reflexive polytopes with [m−1

2 ] descents in (δ0, δ1, . . . , δm).
We compute δP by applying Theorem 1.3 to the triangulation P of the boundary

of P whose facets are 〈e1, . . . , e2m〉, 〈e1 −f, . . . , e2m−f 〉, 〈e1, . . . , êj , . . . , ek,

ek − f, . . . , e2m−f 〉 and 〈e1, . . . , ej , ej − f, . . . , êk − f , . . . , e2m − f 〉 for 1 ≤
j < k ≤ 2m. This triangulation is obtained by “pulling” the sequence of points
e1, . . . , e2m−1. In particular, P is a regular triangulation, and hence hP is unimo-
dal. Now P has 4m vertices, so (hP)1 = 2m, and P has 4m2 − 2m+ 2 facets, so
(hP)0 + · · · + (hP)2m = 4m2 − 2m + 2. It then follows from unimodality and
the fact that (hP)0 = (hP)2m = 1 that

hP = (1, 2m, 2m, . . . , 2m, 2m, 1).

To compute δP , it remains to compute the contributions of the points in Box(F )
for the faces F ∈ P . The only faces of P whose Box is nonempty are F =
〈e1, . . . , e2m〉 and F ′ = 〈e1 −f, . . . , e2m−f 〉, which contain {f, . . . , (m−1)f }
and {−f, . . . , (1−m)f }, respectively. Since F and F ′ are facets,�F = �F ′ = 0
and h�F = h�F ′ = 1. Since mv = 2k for v = ±k · f , it follows that

δP = hP + (0, 0, 2, 0, 2, . . . , 2, 0, 2, 0, 0),

as required.
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Birkhäuser, Boston, first edition 1983; second edition 1996

[Ya] Yasuda, T.: Twisted jets, motivic measures and orbifold cohomology, Compos. Math.
140, 396–422 (2004)


