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Abstract. It is shown that the number of alternating knots of given genus g > 1 grows as a
polynomial of degree 6g − 4 in the crossing number. The leading coefficient of the polynomial,
which depends on the parity of the crossing number, is related to planar trivalent graphs with a
Bieulerian path. The rate of growth of the number of such graphs is estimated.

1. Introduction

In the fundamental paper [14], Menasco and Thistlethwaite proved that two
alternating diagrams of the same knot or link are related by a sequence of flypes,
i.e. are flype-equivalent. This theorem has, among others, applications to enumer-
ation problems of links. Apart from their knot-theoretic relevance, such problems
are expected to have impact for, and so are of interest to, biologists, physicists and
chemists studying knotting in their work (for example in DNA, or in statistical
mechanics). The present paper deals with such a problem. Specifically, let an,g

denote the number of alternating knots of crossing number n and genus g > 1.
Our effort will be to determine the behaviour of an,g for g fixed and n → ∞.
Writing an �n bn for limn→∞ an/bn = 1, our main result is stated as follows:

Theorem 1.1. If g > 1, as n → ∞ through the even/odd integers, we have

an,g �n Cg,e/on
6g−4 + O(n6g−5) , (1)

with non-zero constants Cg,e and Cg,o (independent on n for fixed parity of n),
and

400 ≤ lim inf
g→∞

g
√

(6g)! Cg,e/o ≤ lim sup
g→∞

g
√

(6g)! Cg,e/o ≤ 220

36
≈ 1438.38 .
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(In the following, a statement involving ‘Cg,e/o’ is to be understood as a pair
of statements, one involving ‘Cg,e’ with n restricted to even integers, and one
involving ‘Cg,o’ with n restricted to odd integers.)

The main tool applied in the study of the numbers an,g are certain group the-
oretic objects called Wicks forms.

A Wicks form is a canonical form of a product of commutators in a free group
G [25]. The algebraic genus of a Wicks form w is the least positive integer ga

such that w is a product of ga commutators in G. The topological genus of an
oriented Wicks form w = w1 . . . w2l−1w2l is defined as the topological genus of
the oriented compact connected surface obtained by labeling and orienting the
edges of a 2l−gon in the oriented plane by the letter of w and by identifying the
edges labeled by a letter and its inverse. The algebraic and the topological genus
coincide (cf. [10], [7]).

Wicks forms have been considered in [7], [25] to study products of commu-
tators and products of squares in free groups. In [1] the exact formula for their
number was computed, and it was proved that there is a bijection between Wicks
forms of genus g and 1−vertex triangulations of genus g orientable surfaces. L.
Mosher [15] has constructed a complex whose fundamental group is the mapping
class group of an orientable genus g surface. 1−vertex triangulations appear as the
vertices of this complex. Brenner and Lyndon considered such triangulations from
a combinatorial point of view motivated by the study of non-parabolic subgroups
in the modular group [6].

Wicks forms are also closely related to the structure of the class of alternat-
ing knots of given genus studied by the first author [21]. He showed that if an,g

denotes the number of alternating knots of crossing number n and genus g, then
an,g for g fixed and n → ∞ grows polynomially in n. He also gave an estimate
for the degree of this polynomial. In [22] the relation between alternating knot
diagrams, Wicks forms, and the Gauß diagrams of [19] was established, and it
was shown that the notions of genus for all of these objects coincide. Then the
theory of Wicks forms [25,1] was used to improve the estimate on the degree of
the polynomial (in n) enumerating an,g to 6g − 4 in genus g > 1.

In the present paper we deepen the relationship between Wicks forms and
the genus of alternating knots. We will show that the above estimate 6g − 4 is
exact for g > 1, thus determining the asymptotical behaviour of an,g as n → ∞
up to constants, depending on the parity of n, which we denote as Cg,e/o (for
even/odd n).

The main effort then will focus on identifying the constants Cg,e/o, i.e. the lead-
ing coefficient of the polynomial (for a given parity of n). We obtain a description
of this coefficient in terms of the number of a special type of Wicks forms we call
planar maximal Wicks forms. These are the forms whose graph is planar, triva-
lent (cubic), and 3-connected. As a Bieulerian path in the graph of such a form
induces in each vertex a cyclic orientation, we arrive at another, quite unrelated,
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occurrence of at least a subclass of the 3-valent graphs well-known as Feynman
diagrams [5], and then appearing in the theory of Vassiliev invariants [2,3]. Then
we use the work of [1] and [24] to estimate the number of such graphs, and hence
Cg,e/o, asymptotically for g → ∞. More precisely, we show that the coefficients
Cg,o and Cg,e are both non-zero for genus g > 1 and differ only at most by a
linear term in g, so that the qualitative difference between even and odd crossing
number for large g is minimal. We will also explain the reason for the degeneracy
of the case g = 1 (where a difference between even and odd crossing number
occurs) encountered in [21].

Since the alternating diagrams obtained from planar maximal Wicks forms are
special alternating, an unexpected consequence of our investigation is that gener-
ically an alternating knot of any genus (higher than one) is a special alternating
knot.

In a subsequent paper, the first author will extend the main result of this paper
also to the number of positive knots of given genus and given crossing number.
This requires an additional sharp estimate of this crossing number.

2. Preliminaries and statement of results

In order to state our results and introduce our tools, we start with some classical
definitions and recall important properties of alternating knots and links.

Definition 2.1. A crossing p in a knot diagram D is called reducible (or nugatory)
if D can be represented in the form

D is called reducible if it has a reducible crossing, else it is called reduced.

Definition 2.2. Denote by c(D) the crossing number of a knot diagram D. The
crossing number c(K) of a knot K is the minimal crossing number c(D) of all
diagrams D of K .

Theorem 2.3. ([12,17,23]) An alternating knot with a reduced alternating dia-
gram of n crossings has crossing number n.

Definition 2.4. For a diagram D of knot K , we define the genus g(D) as the genus
of the surface obtained by applying the Seifert algorithm to this diagram. It can
be expressed as

g(D) = c(D) − s(D) + 1

2
,

with s(D) being the number of Seifert circles of D.
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Fig. 1. A flype near the crossing p

For a knot K we call g(K) the genus of K , and define it by the minimal genus of
all Seifert surfaces (not only those obtained from the Seifert algorithm) of K .

The importance of this definition relies on the following classical fact:

Theorem 2.5. ([9,16]) For an alternating knot K with an alternating diagram D

we have g(K) = g(D).

By the work of Menasco and Thistlethwaite [14], alternating knots are inti-
mately related to another diagrammatic move called flype.

Definition 2.6. A flype is a move on a diagram shown in figure 1.

Theorem 2.7. ([14]) Two alternating diagrams of the same knot or link are flype-
equivalent, that is, transformable into each other by a sequence of flypes.

When we want to specify the distinguished crossing p, we say that it is a flype
near the crossing p.

We call the tangle P of figure 1 flypable. We say that the crossing p admits a
flype or that the diagram admits a flype at (or near) p.

We call the flype non-trivial, if both tangles P and Q have at least two cross-
ings.

We say that the crossing p admits a (non-trivial) flype if the diagram can be
represented as in figure 1 with p being the distinguished crossing (and both tan-
gles having at least two crossings). A diagram admits a (non-trivial) flype if some
crossing in it admits a (non-trivial) flype.

Since trivial flypes are of no interest we will assume from now on, unless
otherwise noted, that all flypes are non-trivial, without mentioning this explicitly
each time.

Let an,g be the number of prime alternating knots K of genus g(K) = g and
crossing number c(K) = n. (We conform here to the notation of [22].) The set of
such knots was shown to have special structure by a theorem of the first author.

Theorem 2.8. ([21, theorem 3.1]) Reduced (that is, with no nugatory crossings)
alternating knot diagrams of given genus decompose into finitely many equivalence
classes under flypes and (reversed) applications of antiparallel twists at a crossing

(2)

Henceforth we call the move in (2) a t̄2 move.
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It was observed in [21] that in a sequence of flypes and t̄2 moves, all the flypes
can be performed in the beginning. It follows then from [14] that there are only
finitely many alternating knots with t̄2-irreducible diagrams of given genus g, and
we call all such knots, and their alternating diagrams generators or generating
knots/diagrams of genus g.

A clasp is a tangle made up of two crossings. According to the orientation of
the strands we distinguish between reverse and parallel clasps.

There is an obvious bijective correspondence between the crossings of the 2
diagrams in figure 1 before and after the flype, and under this correspondence we
can speak of what is a specific crossing after the flype. In this sense, we make the
following definition:

Definition 2.9. We call two crossings in a diagram ∼-equivalent, if they can be
made to form a reverse clasp after some (sequence of) flypes.

Is is an easy exercise to check that ∼ is an equivalence relation.

Definition 2.10. We call an alternating diagram generating, if each
∼-equivalence class of its crossings has 1 or 2 elements. The set of diagrams
which can be obtained by applying flypes and t̄2 moves on a generating diagram
D we call generating series of D.

Thus theorem 2.8 says that alternating diagrams of given genus decompose
into finitely many generating series.

Definition 2.11. Let cg be the maximal crossing number of a generating diagram
of genus g, and dg the maximal number of ∼-equivalence classes of such a dia-
gram.

A consequence of theorem 2.8 is

Corollary 2.12. For any g ≥ 1

∑

n

an,gx
n = Rg(x)

(xpg − 1)dg

for some numbers pg, dg ∈ N and Rg ∈ Q[x].

This corollary can be written also in the following form (see corollary 3.2 of
[21]): there are numbers pg, ng ∈ N and polynomials Pg,1, . . . , Pg,pg

∈ Q[n]
with an,g = Pg,nmodpg

(n) for n ≥ ng.



6 A. Stoimenow, A. Vdovina

Let us write Pn = Pg,n when g is fixed. Using [21] we can say more on Pn

(see §3). While the entire Pn depend on n mod pg, the degree deg Pn and leading
coefficient max cf Pn of Pn depend only on n mod 2. Let dg,o = deg Pn + 1 for n

odd and dg,e = deg Pn + 1 for n even, and dg = max(dg,o, dg,e). The equivalence
of this definition of dg to the one in corollary 2.12 (where dg is taken to be the
smallest possible) follows from standard generating function theory, and to the
one given in definition 2.11 follows from [14] (see [21], or §3 below for a better
explanation). In [21], a rather rough estimate on the dg was given, which was later
improved in [22].

Theorem 2.13. ([22]) dg ≤ 6g − 3.

It was asked whether this is the best possible estimate. The first of the next 3
theorems, which summarize the results of this paper, answers partially this and
some other questions of [22]. It is proved in §4.

For two sequences an and bn we write an ∼ bn if limn→∞ |bn/an| exists, and
is not 0 or ∞.

Theorem 2.14. The following holds:

(1) dg,o = dg,e = 6g − 3 for g > 1. That is, an,g ∼ n6g−4.
(2) cg ≥ 10g − 7.

It will be convenient, from now on, to consider only genus g > 1. The case
g = 1 is completely described in [21].

Definition 2.15. A special diagram is a diagram all of whose Seifert circles have
either an empty interior or exterior. (Here interior and exterior denote the bounded
and unbounded connected component of the complement of the Seifert circle in
R

2 and empty means not containing a crossing of the knot diagram.)

After we identify the degrees of the Pn, we relate their leading coefficients to
3-valent graphs. Note, that these coefficients can also be written as the limits

Cg,o = lim
n→∞

a2n+1,g

(2n + 1)6g−4
and Cg,e = lim

n→∞
a2n,g

(2n)6g−4
.

We consider planar 3-connected 3-valent graphs (with no multiple edges and
loops). When equipping such a graph with a Bieulerian path (whenever this is pos-
sible), we associate to it a special generating knot and prove that all generating
knots with maximal degree contribution to the Pn correspond to such graphs.

As a Bieulerian path endows each vertex of such a graph with a cyclic orien-
tation, we have yet another appearance of, at least some, 3-valent graphs from the
theory of Vassiliev invariants [3] in a different context, after Bar-Natan’s remark-
able paper [2].

A consequence of our correspondence is that special alternating knots dom-
inate among alternating knots of given genus (higher than 1), as the crossing
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number increases, as we prove in §4. (The conditions for an alternating knot to
have a special alternating diagram and to be positive are equivalent, see [18].)

Theorem 2.16.

#{Kalternating positive prime, c(K) = n, g(K) = g }
#{Kalternating prime, c(K) = n, g(K) = g } −→ 1

as n → ∞ for any fixed g > 1.

(Here and below #S and |S| both denote the cardinality of a finite set S.)
Later we tackle the asymptotic estimation of the number of 3-connected 3-

valent planar graphs of genus g (that is, with 4g − 2 vertices and 6g − 3 edges)
with Bieulerian paths up to cyclic permutation. Let Bg be this number. We have
from our correspondence a relation to the numbers Cg,e = max cf Pg,2n and
Cg,o = max cf Pg,2n+1:

Bg ≥ (6g − 4)!
(
Cg,o + Cg,e

) ≥ Bg

6
. (3)

This inequality is explained in §3.
Moreover, we prove that the ratios of Cg,e and Cg,o can be double-sidedly esti-

mated by polynomials in g (corollary 5.9). Thus the rate of growth of Bg becomes
of interest. We obtain the following estimates on this rate. The proof uses the work
of [24] and [25], and is given in §5.

Theorem 2.17.

400 ≤ lim inf
g→∞

g
√

Bg ≤ lim sup
g→∞

g
√

Bg ≤ 220

36
≈ 1438.37585 . . .

We conclude this section with a few more preliminary remarks.
In [19] the concept of Gauß diagrams was introduced as a tool for generating

knot invariants. Given a knot diagram, one links by a chord on a circle the pre-
images of the two passes of each crossing, orienting the chord from the underpass
to the overpass. The resulting object is called a Gauß diagram (GD).

In general any circle with oriented chords is called a Gauß diagram. Not all
Gauß diagrams come from knot diagrams; those that do are called realizable Gauß
diagrams. We ignore in the sequel the sign of the crossings, that is, the direction of
the arrows. Then realizable Gauß diagrams correspond bijectively to alternating
knot diagrams up to mirroring.

In [22] we remarked that the Gauß diagram of a generating diagram has no
triple of chords, not intersecting each other, and intersecting the same subset of
the remaining chords.
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Definition 2.18. The diagram

is called connected sum A#B of the diagrams A and B. If a diagram D can be
represented as the connected sum of diagrams A and B, such that both A and B

have at least one crossing, then D is called disconnected (or composite), else it is
called connected (or prime).

By the work of Menasco, diagrammatic primeness and topological primeness
coincide for alternating knots.

Theorem 2.19. ([13]) A prime alternating diagram depicts a prime alternating
knot.

We should remark that the Gauß diagrams of prime diagrams are those for
which any two chords a and b can be connected by a sequence of chords c1, . . . , cn

with a = c1, b = cn, such that ci and ci+1 intersect. We call such Gauß diagrams
prime.

For the following discussion, it will be most convenient to consider prime
alternating knots up to mirroring, but with orientation.

The reason for considering prime diagrams is that, once we prove theorem
2.14.(1), the contribution to an,g from composite diagrams is negligible. Genus
and number of ∼-equivalence classes is additive under connected sum, and by
theorem 2.13 the number of ∼-equivalence classes of composite genus g diagrams
can be at most 6g − 6.

We now turn again to flypes and introduce a distinction according to the ori-
entation near the crossing p at which the flype is performed. See figure 2.

An important observation is that each crossing admits at most one of the types
A and B of flypes, and this remains so after applying any sequence on flypes on
the diagram.

Fig. 2. A flype of type A and B
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We remark that on the Gauß diagram, a flype of type B looks like

3. Enumerating alternating knots of given genus

The Flyping theorem 2.7 is the central ingredient of the method to take account
of duplications of the same alternating knot occurring among diagrams of given
genus. This has been carried out in [21], but we repeat most of it and describe
some of the parts in more detail, since it is decisive and provides a guideline
for what follows. Our objective will be to identify the leading coefficient of the
polynomials Pn.

A first observation is that if two Gauß diagrams G and H can be transformed
by flypes and cyclic rotations, so can their generating diagrams. Thus, to remove
duplications of the same alternating knot in different generating series is the same
as to remove duplications of the knots represented by the generating diagrams,
thereby reducing the list of such diagrams. Once this is done, duplications of the
same knot can occur only within each generating series separately.

A symmetry of the Gauß diagram can be described as follows. Assign to the
chords of G numbers 1, . . . , n. Then a symmetry is a permutation σ ∈ Sn such
that, when replacing the labels of G from i to σ(i) and calling G′ this new labeled
diagram, G′ can be transformed into G by a sequence of flypes and a cyclic rotation
of the circle.

It is clear that any symmetry descends to a permutation of ∼-equivalence clas-
ses, and each such permutation of ∼-equivalence classes comes from exactly one
symmetry up to flypes (flypes permute the crossings of a ∼-equivalence class
arbitrarily). Thus the symmetry group SG of a Gauß diagram G can be considered
as a subgroup of the permutation group of G’s ∼-equivalence classes.

If G is a generating diagram, each one of G’s symmetries can be also consid-
ered to permute the ∼-equivalence classes of a diagram in the generating series
of G (because they correspond tautologically to ∼-equivalence classes of G).

Flypes and cyclic rotations carry over under passing to the generating diagram
(removing pairs of chords from each ∼-equivalence class, until one or two are
left). Thus two diagrams of a(n alternating) knot in the same generating series
are transformable into each other by the action of a symmetry of the generating
diagram.

Conversely, a symmetry of the generating diagram G transforms a diagram D

in G’s generating series into a diagram of the same knot, unless in the symmetry
of G type A flypes have been performed at crossings to which t̄2 moves have been
applied in passing from G to D.
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This can be accounted for by considering instead of G the diagram G̃, obtained
from G by applying a t̄2 move at each crossing which is the single crossing in its
∼-equivalence class in G. (It will follow from (5) that the contribution of diagrams
with a ∼-equivalence class of one single crossing is negligible.)

However, if we know (and we will prove that in theorem 4.7; see also remark
4.9) that the G we need to consider do not admit non-trivial flypes and have no
parallel clasps (that is, don’t admit even trivial flypes of type A with one of the
tangles having a single crossing), then this subtlety does not come about, and we
can still work with G (rather than G̃). We really need to ensure the lack of parallel
clasps, because in the definition of symmetry we worked with marked chords (or
crossings), and a flype at a crossing in a parallel clasp, although not altering the
diagram, does alter the markings, and thus permutes ∼-equivalence classes.

Thus, to enumerate the alternating knots of n crossings in the generating series
of a diagram G by aG,n (which are the same as equivalence classes of Gauß dia-
grams in this series modulo symmetries), we apply Burnside’s lemma [11, lemma
14.3 on p. 1058]. Let aG,s,n be the number of n crossing diagrams in the (fixed)
generating series of G fixed by some symmetry s ∈ SG. Then

aG,n = 1

|SG|
∑

s∈SG

aG,s,n . (4)

Let G have dG ∼-equivalence classes. Then aG,s,n counts compositions of n of
dG numbers, some of which are equal, unless s = Id. This is polynomial in n of
degree

dG − 1 − #identifications = #cycles of s − 1 .

Thus the maximal contribution is exactly this for s = Id, which is
(

n + dG − 1

dG − 1

)
= 1

(dG − 1)!
ndG−1 + O(ndG−2)

and

aG,n = 1

|SG| (dG − 1)!
ndG−1 + O(ndG−2) . (5)

Consequently, we have shown (modulo the proof of theorem 4.7)

Cg,o = 1

(dg,o − 1)!

∑

G generating,
c(G) odd,
dG = dg,o

1

|SG| . (6)

We will show in the next section that the G occurring in the sum are exactly
those coming (in a way defined there) from planar 3-valent 3-connected graphs
with a Bieulerian path.
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As a cyclic rotation of the Gauß diagram, under the identification of the Gauß
diagram with a 3-valent graphs with Bieulerian path, corresponds to a cyclic
permutation of the sequence of edge passes described by the path, we will thus
consider graphs with Bieulerian path up to such cyclic permutations of the path.

Another important knot diagrammatic step will be to get disposed of the flypes,
showing that for the planar 3-valent graphs with Bieulerian path the knot diagrams
do not admit flypes, and thus the reduction of generating diagrams is necessary
only by cyclic rotations.

The case of considering only cyclic rotations as symmetries has been studied,
as for such graphs G it is known that |SG| ∈ {1, 2, 3, 6} [4]. Thus we obtain from
(6) and its analogue for c(G) even the relation (3). Therefore, the basic problem
is to estimate the number of such graphs Bg. This is done in §5.

4. Identifying maximal generating diagrams

Let G be a connected 3-valent graph. Fix some arbitrary orientation (direction) of
the edges in G. A Bieulerian path in G is a closed path that traverses each edge
of G exactly twice, only once in each direction, and does not traverse any edge
followed immediately by its inverse (itself in the opposite direction).

To a Bieulerian path one can associate a word in some alphabet (called Wicks
form and considered in more detail later), obtained by labeling each edge by a
letter, and putting this letter (resp. its inverse) when the edge is traversed in (resp.
oppositely to) its orientation.

In [22] we described the bijection between a graph with Bieulerian path G and
a Gauß diagram G′.

To obtain G′ from G one just writes the letters of its word (Wicks form) w

along a circle and links by a chord each letter and its inverse. To obtain G from G′,
we consider the circle of G′ as a 2n-gon (each side corresponding to a basepoint
of a chord) and identify sides corresponding to the basepoints of the same chord,
obtaining G lying on a surface S. (The circle G′ bounds a disk that yields S under
the identifications.) To indicate the origin of G and S, we write G = G(w) and
S = S(w). The dual of G forms a 1-vertex triangulation of S.

We call a graph with a Bieulerian path realizable if and only if its associated
Gauß diagram is realizable (as a knot diagram). In this case each Seifert circle of
the knot diagram corresponds to a vertex of the graph, and each crossing of the
knot diagram attached to a pair of Seifert circles corresponds to an edge joining
the vertices of these Seifert circles. In this sense we call the number of crossings
attached a Seifert circle its valence (the valence of its corresponding vertex in the
graph).

Then in [22] we defined the genus of Gauß diagrams and of graphs in different
ways and showed that they coincide. Also the genus of a knot diagram (which
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is equal for alternating diagrams to the genus of the knot; see Theorem 2.5 was
showed to be equal to the genus of its Gauß diagram.

We do not repeat these definitions, but recall that in the case of a trivalent
graph,

genus of graph = 3 + # edges

6
= 2 + # vertices

4
.

If the graph is additionally planar, then

genus of graph = # faces − 1

2
,

where the infinite face is counted.
It is easy to see that composite knot diagrams give composite Gauß diagrams,

which in turn correspond to graphs with a cut vertex. Since genus is additive under
the join of graphs

as mentioned, a composite genus g knot diagram can have at most 6g − 6 ∼-
equivalence classes. Thus the contribution of such diagrams is negligible, once
we have shown that there are diagrams with more ∼-equivalence classes (see the
proof of theorem 2.14).

Definition 4.1. A primitive Conway tangle [8] is a tangle of the form

We call two crossings a and b in a diagram D neighbored, if they belong
to a reversely oriented primitive Conway tangle in D, that is, there are crossings
c1, . . . , cn with a = c1 and b = cn, such that ci and ci+1 form a reverse clasp in D.
(Equivalently, a and b correspond in the graph to edges which can be connected
by a path passing only through vertices of valence 2.)

This is a similar definition to ∼-equivalence, but with no flypes allowed. Thus
the number of ∼-equivalence classes of a diagram is not more than the number
of neighbored equivalence classes of the same diagram, or of any flyped version
of it.

The following was proved in [22] in a slightly implicit way, so we will recapture
the proof in more detail.
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Lemma 4.2. A knot diagram of genus g has at most 6g−3 neighbored equivalence
classes (and hence at most 6g − 3 ∼-equivalence classes).

Moreover, knot diagrams of genus g having exactly 6g − 3 neighbored equiv-
alence classes come exactly from graphs with Bieulerian path, all whose vertices
have valence 2 or 3.

Proof. Note that in the Gauß diagram neighbored equivalent crossings correspond
to chords we called in [22] parallel. Then note that in fact we needed in the proof
of theorem 3.6 in [22] (second paragraph) only the lack of parallel pairs of chords
to ensure that Ĝ has no vertices of valence 1 and 2. Then we showed that Ĝ has
at most 6g − 3 edges, and exactly 6g − 3 edges if and only if all its vertices have
valence 2 or 3. 
�

The lemma means in particular, that if G′ is realizable and its knot diagram D has
6g − 3 ∼-equivalence (or just neighbored equivalence) classes, then all vertices
of G′ have valence 2 or 3, and thus the Seifert circles of D have 2 or 3 adjacent
crossings. Hence the knot diagram is special.

In general the condition of being realizable is difficult to test for G′, but in the
trivalent case it is surprisingly simple.

Theorem 4.3. A trivalent graph with Bieulerian path is realizable if and only if it
is planar(ly embeddable). In this case the knot diagram is special.

We should remark that a planar graph is in fact a graph equipped with a con-
crete planar embedding, while the realizability of the graph does not depend on
the planar embedding. However, we will shortly show that for the cases we need
to consider the planar embedding is unique (see remark 4.8).

For the proof, and later, we will need the following additional structure on a
trivalent graph with Bieulerian path.

Definition 4.4. A Bieulerian path in a trivalent graph induces an orientation on
each 3-valent vertex v given by a cyclic order of the 3 adjacent edges. To define
it, orient the 3 adjacent edges a, b and c towards v. Then if the word of the Bie-
ulerian path contains the subwords ab−1, bc−1 and ca−1 (in whatever order), then
the orientation at v is given by (a, b, c).
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If the Bieulerian path contains the subwords ac−1, cb−1 and ba−1 (in whatever
order), then the orientation at v is (c, b, a).

The proof of theorem 4.3 we give now establishes a natural correspondence
between a plane 3-valent graph with Bieulerian path and a special knot diagram.

Proof of theorem 4.3. Let G be a 3-valent graph with Bieulerian path. The path
induces the orientation of vertices. If two ends of the edge have the same orien-
tation, put on the edge an additional vertex of degree two. We have a graph G′

with vertices of degree two and three. Every edge x of G, which was divided in
two parts, will be replaced in the Bieulerian path by x1x2. We can change the
orientations of the edges of G′ such that in the Bieulerian path the orientations
of edges alternate. Now we have an oriented graph such that for every vertex all
edges incident to it either all are incoming or all are outgoing.

If all edges incident to a vertex all are outgoing (incoming) we say, that the
vertex is of the first (second) type.

In the middle of any edge of G′ we put a small cross, it will be a future crossing
of the knot diagram. Now we draw a circle with the center in each vertex, such
that the circles with centers in the ends of the same edge are tangent at the small
cross. We equip each circle with the orientation induced by the orientation of the
vertex. These circles will be the Seifert circles for our knot diagram.

Now we form the knot diagram from the Seifert circles by an algorithm, which
is inverse to the Seifert algorithm. Overcrossings and undercrossings are defined
as follows: if the knot strand goes from a vertex of the first type to a vertex of
the second type, we have an overcrossing; if the strand goes from a vertex of the
second type to a vertex of the first type, we have an undercrossing.

Note, that even after inserting vertices of valence 2, the graph has no edge
connecting different vertices of valence 2, and thus the resulting knot diagram has
not more than two neighbored crossings in each neighbored equivalence class. 
�

Not all vertex orientations come from Bieulerian paths. However, those that
do, come in a unique way.

Lemma 4.5. Any vertex orientation coming from a Bieulerian path determines
the Bieulerian path uniquely (& vice versa).

Proof. This is rather obvious, since the the Bieulerian path is determined uniquely
by its local pieces around each vertex. 
�
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Proof of theorem 2.14. We give an example of a planar 3-valent graph of genus
g and 6g − 3 ∼-equivalence classes and even and odd crossing number of the
corresponding diagram. In the case of odd crossing number we have 10g − 7
crossings. (This graph has 6g − 3 ∼-equivalence classes since it is 3-connected
and 3-valent.)

We give the examples in the form of Bieulerian path, parametrized by t =
2(g − 2).

The case of odd crossing number (Figure 3) is

ab−1cd−1x1x
−1
2 y1z

−1
3 z4y

−1
2 x5 . . . x−1

2t−2yt−1

z−1
2t−1z2t y

−1
t ef −1gh−1ia−1f e−1x2t x

−1
2t−1

x2t−2 . . . x2x
−1
1 kl−1bi−1hn−1mz−1

2t z2t−1 . . .

z−1
2 z1c

−1lk−1dz−1
1 z2y

−1
1 x3x

−1
4 y2z

−1
5 . . .

z2t−2y
−1
t−1x2t−1x

−1
2t ytm

−1ng−1 .

(Note that this is one single word, split because of its length, and the dots, also at
the end of a line, indicate only a finite number of letters to be inserted suggestively
according to the figure.)

Fig. 3.
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Fig. 4.

The case of even crossing number (Figure 4) is

a−1bf −1lk−1x1x
−1
2 x3x

−1
4 x5 . . .

x−1
2t−2x2t−1x

−1
2t eg−1hi−1ae−1

ytz
−1
2t z2t−1y

−1
t−1x2t−2 . . . x−1

5

y2z
−1
4 z3y

−1
1 x2x

−1
1 dc−1f b−1ih−1

my−1
t x2t x

−1
2t−1yt−1z

−1
2t−2 . . .

z5y
−1
2 x4x

−1
3 y1z

−1
2 z1d

−1kl−1c

z−1
1 z2z

−1
3 z4z

−1
5 . . . z2t−2z

−1
2t−1z2tm

−1g .


�

Remark 4.6. The lower bound 10g − 7 is almost optimal at least for special
alternating generators. If we take a planar cubic graph of genus g, and put two
crossings on each of its 6g − 3 edges (that is, add a vertex of valence two on
each edge), then we obtain by the above described construction an alternating
link diagram with as many components as regions we have, namely 2g + 1. Since
the change of 2 crossings to 1 along each edge changes the number of components
by ±1, we need at least 2g such replacements to obtain a knot diagram. Thus the
maximal number of crossings we can have is

2 (6g − 3) − 2g = 10g − 6 .
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If we have a t̄2-irreducible special diagram with a Seifert circle of valence ≥ 4,
then one can see that one can always perform a Reidemeister II move on an appro-
priate pair of non-neighbored edges in this Seifert circle so as to obtain a special
diagram of the same genus and two crossings more, which is still t̄2-irreducible
(although not always any pair of such edges will do).

Not for all planar 3-valent graphs of genus g with Bieulerian path the corre-
sponding diagram has 6g − 3 ∼-equivalence classes. Such graphs are described
in the following theorem.

Theorem 4.7. Let G be a planar 3-valent graph (with Bieulerian path) and D

its knot diagram (as constructed in the proof of theorem 4.3). Then the following
conditions are equivalent:

(1) G is 3-connected (i.e., removing any pair of edges does not disconnect it),
(2) D has 6g − 3 ∼-equivalence classes,
(3) D admits no (non-trivial) flypes.

Remark 4.8. By a theorem of Whitney each 3-valent 3-connected graph has, if
any, a unique planar embedding up to moves in S2 (see [2]). Thus for the cases
that are of interest to us we do not need to care about ambiguities of the planar
embedding, and can consider the graph also abstractly.

Proof. We prove by a ring conclusion the equivalence of the negations of the 3
conditions stated.

¬2 ⇒ ¬1. If 2. does not hold, then D has < 6g − 3 ∼-equivalence classes,
but 6g − 3 neighbored equivalence classes. Thus there are 2 crossings a and b

in D which can be made neighbored only after flypes, (As crossings which can
be made neighbored after trivial flypes are already neighbored, these flypes must
be non-trivial.) Since neighbored crossings cannot admit a type A flype (and the
type of flype a crossing admits is not changed under flypes), these flypes must be
of type B. Thus we have the following picture:

(7)

As each of the Ti contains at least 2 crossings, they both must contain Seifert cir-
cles of valence 3 (otherwise one of them would be a reversely oriented primitive
Conway tangle, and a and b would be neighbored), and passing to the graph, this
graph is disconnected by the removing of the edges corresponding to a and b.

¬1 ⇒ ¬3. Assume that G is not 3-connected (it is 2-connected, as an edge
disconnecting it would give a nugatory crossing in D). Then D looks like in (7)
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with both Ti containing Seifert circles of valence 3 (coming from a 3-valent vertex
in each of the two disconnected components remaining from G after deleting the
edges corresponding to a and b). If some Ti contained only one crossing, then
there would be only one Seifert circle S in Ti of valence 3, to which a and b are
attached. The third crossing attached to S would be reducible. Therefore, both Ti

have at least 2 crossings, and D admits a non-trivial flype.
¬3 ⇒ ¬2. We can assume that each Seifert circle in D bounds only 2 or 3

crossings. Otherwise by lemma 4.2, D will have < 6g−3 neighbored equivalence
classes, and so < 6g − 3 ∼-equivalence classes, and we would be done.

First, assume that D admits a type B flype at a crossing x. Then the picture is
like this:

(the thickened lines should depict parts of the Seifert circles).
The crossing x joins 2 Seifert circles a and b:

One of a and b must have 3 crossings at it, otherwise x will be the middle crossing
in

(8)

contradicting the fact that D by construction has no neighbored equivalence class
of more than 2 crossings. If both a and b have 3 crossings, we have
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with m = a and n = b. Else let without loss of generality b be the Seifert circle
with 2 crossings. Then we have

(9)

for m = a and n being a new Seifert circle (so far possibly equal to a).
In both cases we have that m and n bound 3 crossings each (in latter case

because D by construction has no neighbored equivalence class of more than 2
crossings).

The Seifert circle n does not leave T ′ through its other 2 ends, i.e., does not
look like

Otherwise, because of the specialty of D, all crossings attached to n in T ′ (if any)
would be on the outside of n, i.e., in the shaded regions

Then T ′ would have no crossing (and hence T at most one) or would contain
reducible crossings, or D would be composite, in all cases giving a contradiction.
(Therefore, in particular n = a.)

Thus n remains within T ′, and T ′ contains the two other crossings attached to
n.

Then a flype at x (and y if in case (9)), would join m and n into a Seifert circle of 4
crossings. This flyped version of D has by lemma 4.2 less than 6g −3 neighbored
equivalence classes, and so D will have < 6g − 3 ∼-equivalence classes.
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If now D admits a type A flype

in both T1,2 the Seifert circles entering and leaving the tangle must look like

because they must respect the orientation at the in- and outputs and must not cross.
As both Seifert circles must have ≥ 1 crossing attached to them in each of the

Ti (else some of the tangles is empty or the diagram is composite), and a and b
have at most 3 crossings attached to them, each of a and b has exactly one crossing
attached to it in each of the Ti . If this crossing is the same for both Seifert circles
(i.e., connects them) for both Ti , then the Ti are both 1 crossing tangles, and D is
the trefoil diagram (of genus 1, which we don’t consider). Otherwise, in one of
the Ti the crossings y at a and z at b are different, and then (because the diagram
is special) Ti must look like

T″

If the shaded tangle T ′′ has no crossing, then for orientation reasons the two cross-
ings at a and b are reducible. If it has one crossing, then we have a fragment like
(8). Therefore, T ′′ has at least two crossings, and T ′′ (and hence D) admits a
non-trivial type B flype (near y or z), which leads this case back to the previous
one. 
�

Remark 4.9. It follows that in fact D admits not even trivial type A flypes with
one of the tangles having a single crossing, that is, D has no parallel clasp (unless
it is the trefoil diagram of genus 1 which we don’t consider). This is because a
3-connected trivalent graph G has no multiple edges (in genus g > 1).

Theorems 4.3 and 4.7 prove
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Corollary 4.10. There is a bijective correspondence between genus g diagrams
with 6g − 3 ∼-equivalence classes and planar 3-connected 3-valent graphs with
Bieulerian paths (considered up to moves in S2 on the graph and cyclic permuta-
tions of the path). 
�
Proof of theorem 2.16. This is now putting together the previous results. Clearly,
we need to consider only genus g generators D of the maximal number of ∼-equiv-
alence classes. By lemma 4.2, this maximal number is 6g−3, and generators with
that many ∼-equivalence classes have graphs with vertices of valence 2 and 3. By
theorem 4.3 the diagrams of such graphs are special, and we know from theorem
2.14 that for any crossing number parity, at least one such example exists. Finally,
from Part 3 of theorem 4.7 we know that diagrams in the series of D have only
symmetries coming from the Bieulerian path, and the order of such a symmetry
is at most 6. 
�

5. Asymptotical estimates

To study the behaviour of Cg,e/o for g → ∞, we need to recall the notion of
Wicks forms. We will concentrate only on properties relevant to our context (and
thus do not discuss all of those mentioned in the introduction).

An oriented Wicks form is a cyclic word w = w1w2 . . . w2l (a cyclic word is the
orbit of a linear word under cyclic permutations) in some alphabet a±1

1 , a±1
2 , . . .

of letters a1, a2, . . . and their inverses a−1
1 , a−1

2 , . . . , such that

(i) if aε
i appears in w (for ε ∈ {±1}) then a−ε

i appears exactly once in w,
(ii) the word w contains no cyclic factor (subword of cyclically consecutive

letters in w) of the form aia
−1
i or a−1

i ai (no cancellation),
(iii) if aε

i a
δ
j is a cyclic factor of w then a−δ

j a−ε
i is not a cyclic factor of w

(substitutions of the form aε
i a

δ
j �−→ x, a−δ

j a−ε
i �−→ x−1 are impossi-

ble).

An oriented Wicks form w = w1w2 . . . in an alphabet A is isomorphic to
w′ = w′

1w
′
2 . . . in an alphabet A′ if there exists a bijection ϕ : A −→ A′ with

ϕ(a−1) = ϕ(a)−1 such that w′ and ϕ(w) = ϕ(w1)ϕ(w2) . . . define the same
cyclic word.

The genus gt (w) of an oriented Wicks form w = w1 . . . w2l−1w2l is defined as
the topological genus of the oriented compact connected surface S(w) obtained
as described in §4.

The automorphism group Aut(w) of an orientedWicks form w = w1w2 . . . w2l

of length 2l is the group of all cyclic permutationsµof the linear wordw1w2 . . . w2l

such that w and µ(w) are isomorphic linear words (i.e. µ(w) is obtained from w

by permuting the letters of the alphabet). The group Aut(w) is a subgroup of the
cyclic group Z/2lZ acting by cyclic permutations on linear words representing w.
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The automorphism group Aut(w) of an oriented Wicks form w can of course
also be described in terms of permutations on the oriented edge set of G = G(w)

induced by orientation-preserving homeomorphisms of S = S(w) leaving G

invariant. In particular an oriented maximal Wicks form and the associated dual
1-vertex triangulation have isomorphic automorphism groups. Thus Aut(w) is the
same as SG in (6).

Let G be a cubic (3-valent) connected graph on 4g − 2 vertices and the word
U be one of its Bieulerian paths. Note that a Bieulerian path can be presented
as a word, which is called an oriented Wicks form of genus g. We will consider
only Wicks forms, which came from Bieulerian paths of 3-connected planar cubic
graphs on 4g −2 vertices and we will call them planar Wicks forms. (These forms
are also maximal in the sense of [1], but we will drop this term to simplify lan-
guage, since all Wicks forms we deal with are in fact maximal.) Note that these
are graphs without multiple edges in genus g > 1.

Let us call a planar Wicks form ŵ based if one interval (basepoint) between
a pair of (cyclically) consecutive letters is distinguished. Let the genus of ŵ be
that of w, where w is obtained from ŵ by forgetting the basepoint. Based planar
Wicks forms are considered equivalent only up to bijections of their letters.

We define the mass mg = |Wg| to be the cardinality of the (finite) set Wg of
based planar Wicks forms of given genus g.

Any planar Wicks form w of genus g can give rise (by adding a basepoint) to
at most 6g − 3 different based planar Wicks forms. Thus it suffices to consider
the rate of growth of mg. Our first goal is to prove that asymptotically as g → ∞,

lim inf
g→∞

mg+1

mg

≥ 400 . (10)

Let H3 be a subgraph which consists of three edges a, b, c leaving one com-
mon vertex. Let us choose three different points of the graph G, which are not
vertices and identify them with the 1-valent vertices of the subgraph H3.

Definition 5.1. A vertex V (with oriented edges a, b, c pointing toward V ) in a
planar Wicks form w is positive if

w = ab−1 . . . bc−1 . . . ca−1 . . . or w = ac−1 . . . cb−1 . . . ba−1 . . .

and V is negative if

w = ab−1 . . . ca−1 . . . bc−1 . . . or w = ac−1 . . . ba−1 . . . ab−1 . . . .

If ŵ is a based planar Wicks form obtained by adding a basepoint to w, then a ver-
tex V is called positive (or negative) in ŵ if and only if it is positive (or negative)
in w.
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Let V be a negative vertex of a planar Wicks form of genus g > 1. Since
we noted that the graph has no multiple edges, the vertex V has three distinct
neighbors. We have then

w = x1ab−1y2u1z1ca
−1x2u2y1bc−1z2u3

(some identifications among xi, yj and zk may occur, see [25] for all the details)
and the word w is obtained by a so-called γ−construction from the word w′ =
xũ2yũ1zũ3. The subwords ui of w are obtained from the subwords ũi of w′ by
replacing x, y, z by x1x2, y1y2, z1z2 respectively.

By γ−construction we obtain a Bieulerian path w on a plane cubic graph H

with 4g + 2 vertices from a Bieulerian path w′ on a plane cubic graph G with
4g − 2 vertices. Here H is obtained from G by adding the vertex V with three
edges a, b, c incident to it. We attach the edges a, b, c to (not necessarily dis-
tinct) edges x, y, z of G. Since the label of each edge x, y, z appears exactly
twice in w (i.e., we can interchange it with its inverse), we have eight possibilities
to do the γ−construction by adding the negative vertex V in a given face of G

with three specified edges x, y, z in its boundary. Alternatively speaking, these
eight possibilities are given by the orientations of the three vertices adjacent to V

in H .
For based Wicks forms the same construction applies, and the basepoint is

inherited naturally.

Definition 5.2. We call the application which associates to a planar Wicks form
w of genus g > 2 with a chosen negative vertex V the planar Wicks form w′

of genus g − 1 defined as above the reduction of w with respect to the negative
vertex V . This notion extends naturally to based planar Wicks forms.

Lemma 5.3. An oriented Wicks form (or based planar Wicks form) of genus g has
exactly 2g negative and 2g − 2 positive vertices.

Proof. See [1, proposition 2.1]. 
�
Proof of theorem 2.17. Let g > 1. We compare Wg+1 and Wg by estimating the
number of possible γ−constructions that lead from the one set to the other and
backward.

Forgetting for a moment the basepoint, each element of Wg+1 can be obtained
by applying γ−construction to an element in Wg. The Lemma 5.3 shows that
we can construct 2(g + 1) planar Wicks forms in Wg by applying reduction with
respect to a negative vertex to a given element in Wg+1. When taking basepoints
back into account, though, not any such reduction is admissible, because the base-
point must not separate the letters removed or identified. So, the number of such
reductions is at most (2g + 2)mg+1.

Let us estimate the number of “augmentations”. Since the resulting and the
initial graphs are both planar, we can apply the γ−construction only inside of
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each face of the embedding of the planar graph G into the plane. Also, to be sure,
that the resulting graph will be 3-connected, we will apply γ -construction only to
two or three different edges. (That is, not all of x, y and z in the above description
are equal.) In this case for an element of genus g a γ -construction gives eight ele-
ments of genus g+1: we can choose the orientations of the three adjacent vertices
to the new negative one. There are 2g + 1 faces, denote the number of edges of
one face by ni . Then, starting with a given element in Wg, there are not less than
8

∑2g+1
i=1 (

(
ni

3

)+2
(
ni

2

)
) possibilities for γ−construction, with

∑2g+1
i=1 ni = 12g−6.

In the sum of the ni every edge of the graph is counted twice. (The method to
estimate the number of possibilities for γ−construction is similar to one in the
proof of Theorem 1.1 in [1].)

Consider a function f (ni) = (
ni

3

) + 2
(
ni

2

)
, where

∑2g+1
i=1 ni = 12g − 6. We

need to know when the function F(g) = 8
∑2g+1

i=1 (
(
ni

3

) + 2
(
ni

2

)
) is minimal. The

following inequalities are true for the function f (ni):

1) f (ni + 2) + f (ni) > 2f (ni + 1)

2) if ni < nj − 1, then f (ni) + f (nj ) > f (nj − 1) + f (ni + 1).

So, our function F(g) is minimal for g ≥ 6 if and only if 2g − 11 of ni are equal
to 6 and twelve of ni are equal to 5.

Since f (5) = 30 and f (6) = 50, we have that the lower bound for the number
of “augmentations” is 8(100g − 190)mg.

Finally, we obtain for g ≥ 6

mg+1 ≥ 8(100g − 190)mg

2g + 2
.

This shows (10), and hence the stated lower bound.
To obtain the upper bound, we use the work of Tutte [24]. (In the following an

equation reference of the type (x.y) always refers to that paper.)
Let Tg be the number of plane (that is, concretely planarly embedded) 3-valent

3-connected graphs G of genus g, that is, with 2g+1 regions. By Whitney’s theo-
rem the planar embedding of each G is unique up to change of the infinite region,
and the number of such choices is linearly bounded in g, and thus we can fix
a favorable choice of the infinite region without loss of generality. By an easy
argument, any planar 3-valent graph has a region R whose boundary ∂R has at
most 5 vertices, so fix the infinite region to be a k-gon with k ≤ 5. Then G turns
into what is called in [24] a triangulation of ∂R. (The 3-connectedness implies
the condition stated below (1.2).)

It follows then from (5.11)-(5.13) that the number of triangulations for k =
3, 4, 5 differ only by a polynomial in n. Here n is the number given in (1.4), and
it is, up to a constant, equal to 1/3 of the number of edges of G, and thus (up to a
constant) to 2g. Then (8.1) gives

lim
g→∞

g
√

Tg =
(

256

27

)2

= 216

36
.
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The remaining factor 24 comes from the possible cyclic orientations of the 4g −2
vertices of G and Lemma 4.5. 
�
Remark 5.4. Obviously, the interval between lower and upper bound remains wide
open. On the lower side, many more sequences of the transformations of [25] than
we could handle lead to 3-connected planar graphs. On the upper side, it is clear
that many choices of cyclic orientations of vertices will not give connected paths.
However, we do not know how to (substantially) benefit from these circumstances
to narrow the gap.

The next lemma is needed to establish the correspondence between the even
and odd crossing number case.

Lemma 5.5. The orientation of a positive vertex can be reversed without altering
the orientation of the other vertices.

Proof. Let v be a positive vertex, such that edges a, b, c are leaving v. By the
definition of the positive vertex

w = ab−1U1bc−1U2ca
−1U3 or w = ac−1W1cb

−1W2ba−1W3 .

Reversing of the orientation will give

w = ac−1U2cb
−1U1ba−1U3 or w = ab−1W2bc−1W1ca

−1W3 ,

which does not change the orientation of other vertices. 
�
Definition 5.6. Call a 3-valent planar graph G with Bieulerian path even resp.
odd, if its associated knot diagram has even resp. odd number of crossings. This is
equivalent to saying that the number of edges of G connecting oppositely oriented
vertices is even resp. odd.

Corollary 5.7. There is a bijection between even and odd 3-valent planar graphs
of genus g > 1 with Bieulerian paths and distinguished positive vertex. 
�
Remark 5.8. Of course, for genus 1 there are no positive vertices and the corollary
does not hold. This explains the degeneracy of this case. (We have from [21] that
d1,e = 2 = 3 = d1,o, and there are no special even crossing number genus 1
alternating diagrams.)

Corollary 5.9.

1

6(2g − 2)
≤ Cg,o

Cg,e

≤ 6(2g − 2) .

Proof. Use the previous corollary, (6) and |SG| ≤ 6. 
�
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From this corollary and (3) we obtain

lim inf
g→∞

g
√

(6g − 4)!Cg,o = lim inf
g→∞

g
√

Bg ,

and the analogous statement for ‘lim sup’ and/or ‘Cg,e’. Thus we have

Corollary 5.10.

400 ≤ lim inf
g→∞

g
√

(6g − 4)!Cg,o ≤ lim sup
g→∞

g
√

(6g − 4)!Cg,o

≤ 220

36
≈ 1438.37585 . . . ,

with the same inequality for Cg,e. 
�
Accumulating the previous results, we obtain our main theorem.

Proof of theorem 1.1. Theorem 2.14, with the explanation of §3, and Theorem 4.7
establish (1) with Cg,o as in (6) (and Cg,e similarly given), where an �n bn+O(cn)

means an �n bn and an − bn = O(cn). The estimates on Cg,e/o were given in
Corollary 5.10. 
�
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